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Preface

It is not an exaggeration to say that all economic activity or all contracts among
individuals in a society are made under conditions of uncertainty or incomplete
information. Indeed, the need to introduce uncertainty in the classical Walrasian
equilibrium model, was felt byArrow and Debreu (1954) and it is explicitly modeled
in Chapter 7 of the Theory of Value of Debreu (1959).

In Chapter 7 of the well-known treatise of Debreu (1959), it is suggested that
once preferences and/or initial endowments are state dependent, i.e. they depend
on a finite number of states of nature of the world, and agents, who are completely
informed, maximize ex ante expected utility, then all the results on the existence
and optimality of the Walrasian equilibrium continue to hold.

Radner (1968) went a step further, by introducing asymmetric or differential
information into the Arrow–Debreu model. In particular, he assigned to each agent,
in addition to his/her random initial endowment and random utility function, a
private information set, which is a measurable partition of the exogenously given
probability measure space (which describes the states of nature of the world).

Radner (1968) noticed that if all net trades reflect the private information of
each agent, (i.e. they are measurable with respect to σ-algebra that his/her partition
generates), then, again the standard existence and optimality results of the Walrasian
equilibrium concept continue to hold, although some prices might be negative. This
Walrasian expectations equilibrium notion (or Radner equilibrium) is an ex ante
notion, and captures the idea of contracts under asymmetric information.

A related concept, called “rational expectations equilibrium” (REE), was also
studied, e.g., Kreps (1977), Radner (1979), Allen (1981), among others. The REE
is an interim notion and in this set up agents maximize (interim) expected utility
functions, conditioned on their own private information as well as the information
that the equilibrium prices generate.

Given the fact that there is asymmetric information, a variety of equilibrium
concepts could be put forward. We find the condition of the measurability of an
allocation for REE as the best way to proceed. Otherwise the agents calculate their
demands without being certain about their initial endowments realization.

Unlike, the Radner equilibrium, the REE need not exist in well behaved economies,
as shown by Kreps (1977), and may not be Pareto optimal, unless utility functions
are state independent, and also it may not be Bayesian incentive compatible and
may not be implementable as a perfect Bayesian equilibrium1 of an extensive form
game, (Glycopantis–Muir–Yannelis (2003)).

1 Definitions of all concepts in this preface are given in the introductory chapter in this
volume.
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The above two notions, i.e., Radner equilibrium and REE are non-cooperative
solution concepts, i.e., agents maximize ex ante or interim utility functions subject
to their own budget constraint and their own, initial or eventual, private informa-
tion constraint, independently of each other, and without sharing their own private
information.

In seminal papers Wilson (1978) and Myerson (1984) introduced differential
information in the core and the Shapley value respectively. Notice, that once coop-
eration is allowed, then a basic problem which arises is how the private information
will be shared among the agents in a coalition. For example, pooling of information
may not be the best alternative for an agent who is well informed and is expected
to cooperate with a non-well informed agent. Also, using common knowledge in-
formation within a coalition may not be such a great idea for a well informed agent
who cannot take advantage of his/her fine private information.

To put it differently the issue of incentive compatibility of the information
asymmetries becomes a real problem that needs to be addressed. After all, agents
do not want to be cheated, and at the same time they would like to write efficient
contracts. This of course poses the following question: Is it possible for agents
to write incentive compatible and Pareto optimal contracts? Let us answer this
question by considering a simple two agents example.

Example 0.1 There are two Agents, 1 and 2, and three equally probable states of
nature denoted by a, b, c and one good per state denoted by x. The utility functions,
initial endowments and private information sets are given as follows:

u1(w, x1) =
√

x1, for w = a, b, c

u2(w, x2) =
√

x2, for w = a, b, c

e1(a, b, c) = (10, 10, 0), F1 = {{a, b}, {c}}
e2(a, b, c) = (10, 0, 10), F2 = {{a, c}, {b}}.

Notice that a “fully”, pooled information, Pareto optimal, (i.e. a weak fine core
outcome) is

x1(a, b, c) = (10, 5, 5)
x2(a, b, c) = (10, 5, 5). (1)

However, this outcome is not incentive compatible because if the realized state
of nature is a, then Agent 1 has an incentive to report that it is state c, (notice that
Agent 2 cannot distinguish state a from state c) and become better off. In particular,
Agent 1 will keep her initial endowment in the event {a, b} which is 10 units and
receive another 5 units from Agent 2, in state c, (i.e., u1(e1(a) + x1(c) − e1(c)) =
u1(15) > u1(x(a)) = 10) and becomes better off. Obviously Agent 2 is worse off.
Similarly, Agent 2 has an incentive to report b when he observes {a, c}

This example demonstrates that “full or ex post Pareto optimality” is not nec-
essarily compatible with incentive compatibility.

Most importantly, as it is known from Krasa–Yannelis (1994), the individual
measurability of allocations in the one good case characterizes incentive compati-
bility. Thus, the only candidate in the above example for an incentive compatible
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allocation is the initial endowment which is dominated by the allocation in (1).
Consequently, full Pareto optimal and incentive compatible allocations need not
exist as the above example demonstrates.2

Thus, if we were to produce positive existence results for cooperative solu-
tion concepts which guarantee incentive compatibility we should not insist on full
Pareto optimality but some “constrained informational” Pareto optimality. Indeed,
by defining cores and values in differential information economies imposing mea-
surability constraints, one is able to prove existence and incentive compatibility of
cooperative solution concepts, (e.g. Yannelis (1991) and Krasa–Yannelis (1994)).

The following example will illustrate the role of the private information mea-
surability of an allocation.

Example 0.2 There are two Agents, 1 and 2, two goods denoted by x and y and
two equally probable states denoted by {a, b}. The agents’ characteristics are:

u1(w, x1, y1) =
√

x1y1, for w = a, b

u2(w, x2, y2) =
√

x2y2, for w = a, b

e1(a, b) = ((10, 0), (10, 0)), F1 = {a, b}
e2(a, b) = ((10, 8), (0, 10)), F2 = {{a}, {b}}.

The feasible allocation below is Pareto optimal (interim, ex post and ex ante).

((x1(a), y1(a)), (x1(b), y1(b))) = ((5, 4), (5, 5))
((x2(a), y2(a)), (x2(b), y2(b))) = ((15, 4), (5, 5)). (2)

However, the allocation in (2) above is not incentive compatible because if b is the
realized state of nature Agent 2 can report state a and become better off, i.e.,

u2(e2(b) + (x2(a), y2(a)) − e2(a)) = u2((0, 10) + (15, 4) − (10, 8))
= u2(5, 6) > u2(x2(b), y2(b)) = u2(5, 5).

Notice that the allocation in (2) is not F1-measurable (i.e., measurable with respect
to the private information of Agent 1). Hence, an individually rational, efficient
(interim, ex ante, ex post) without the Fi-measurability (i = 1, 2) condition need
not be incentive compatible.

Observe that one can restore the incentive compatibility simply by making
the allocation in (2) above Fi-measurable for each i, (i = 1, 2). In particular, the
Fi-measurable allocation below is incentive compatible, and private information
(Fi-measurable) Pareto optimal.

(x1(a), y1(a)), (x1(b), y1(b)) = ((5, 5), (5, 5))
(x2(a), y2(a)), (x2(b), y2(b)) = ((15, 3), (5, 5)).

The importance of the measurability condition in restoring incentive compati-
bility and of course guaranteeing the existence of an optimal contract is obvious in
the above example and this approach was introduced by Yannelis (1991).

2 This example is taken from Koutsougeras–Yannelis (1993). It should be noted that
Prescott-Townsend (1984) observed that the set of Pareto optimal and incentive com-
patible allocations may not be convex and therefore need not exist. See also Allen (2003).
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It is worth pointing out that two important, new features that distinguish the
“partition approach” of modeling differential information (e.g., Radner (1968),
Wilson (1978), among others) and the mechanism design or Harsanyi-type modeling
approach (e.g., Myerson (1984), among others).

First, as the examples above indicated, initial endowments are random and
therefore the definition of incentive compatibility is different than the one found
in the mechanism design literature where initial endowments, if they are explicitly
stated, are typically assumed to be constant.

Second, as the reader will observe, in several of the papers in this volume the
incentive compatibility is coalitional rather than individual. It is not difficult to see
by means of examples that contracts that are individual incentive compatible may not
be coalitional incentive compatible and therefore may not be viable. We believe that
the coalitional incentive compatibility is more appropriate for multilateral contracts.
The following demonstrates this.

Example 0.3 Consider a three person differential information economy, with
Agents 1, 2, 3, two goods denoted by x, y, and the three equal probable states
are denoted by a, b, c. The agents’ utility functions, random initial endowments and
private information sets are as follows:

ui(xi, yi) =
√

xiyi, i = 1, 2, 3,

e1(a, b, c) = ((20, 0), (20, 0), (20, 0)), F1 = {a, b, c}
e2(a, b, c) = ((0, 10), (0, 10), (0, 5)), F2 = {{a, b}, {c}}
e3(a, b, c) = ((10, 10), (10, 10), (20, 30)), F2 = {{a}, {b}, {c}}.

The allocation below is individual incentive compatible but not coalitional.

((x1(a), y1(a)), (x1(b), y1(b)), (x1(c), y1(c))) = ((10, 5), (10, 5), (12.5, 7.5))
((x2(a), y2(a)), (x2(b), y2(b)), (x2(c), y2(c))) = ((10, 5), (10, 5), (2.5, 2.5))
((x3(a), y3(a)), (x3(b), y3(b)), (x3(c), y3(c))) = ((10, 10), (10, 10), (25, 25)).

(3)

Notice that only Agent 3 can cheat Agents 2 and 3 in state a or b, by announcing b
and a respectively, but has no incentive to do so. Hence, allocation (3) is individual
incentive compatible. However, Agents 2 and 3 can form a coalition and when
state c occurs they report to Agent 1 state b. Thus, Agent 1 gets (10, 5) instead of
(12.5, 7.5) and Agents 2 and 3 distribute among themselves 2.5 units of each good,
and clearly are better off.

The reader may wonder if the new cooperative solution concepts in a differential
information economy provide any new insights that cannot be captured by the REE
or Walrasian expectations equilibrium. The following example demonstrates this.

Example 0.4 Consider a three person economy, with Agents 1, 2, 3, one good
denoted by x, and three equally probable states denoted by a, b, c. The agents’
utility function, initial endowments, and private information sets are as follows:

ui =
√

xi, i = 1, 2, 3
e1(a, b, c) = (5, 5, 0)), F1 = {{a, b}, {c}}
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e2(a, b, c) = (5, 0, 5), F2 = {{a, c}, {b}}
e3(a, b, c) = (0, 0, 0), F2 = {{a}, {b}, {c}}.

The allocation below is Fi-measurable (i = 1, 2, 3) and cannot be improved upon
by any Fi-measurable, and feasible redistributions of the initial endowments of any
coalition (this is the private core, Yannelis (1991)):

x1(a, b, c) = (4, 4, 1)
x2(a, b, c) = (4, 1, 4)
x3(a, b, c) = (2, 0, 0). (4)

Notice that the allocation in (4) is incentive compatible in the sense that Agent
3 is the only one who can cheat Agents 1 and 2 if the realized state of nature is
a. However, Agent 3 has no incentive to misreport state a since this is the only
state she gets positive consumption, and in any case one of Agents 1 or 2 will
be able to tell the lie. Neither is it possible, as it can be easily seen, to form a
coalition, profitable to both members, and misreport the state they have observed.
Finally, notice that if Agent 3 had “bad” information, i.e., F ′

3 = {a, b, c}, then, in a
private core allocation, she gets zero consumption in each state. Thus, advantageous
information is taken into account.

Contrary to the private core allocation in (4) above, neither the REE nor the
Walrasian expectations equilibrium (or Radner equilibrium) can capture this phe-
nomenon. Both concepts ignore Agent 3 no matter how fine her private information
is, contrary to the private core which rewarded Agent 3 who used her superior
information to make a Pareto improvement for the whole economy.

The above example suggests that the REE may not be the appropriate concept
to capture contracts under asymmetric information and a new price expectations
equilibrium might be needed. Indeed, work in this direction is recently being done
by Tourky–Yannelis (2003) who are introducing a personalized price expectations
equilibrium notion. This notion exists in situations that the REE and Radner equi-
librium fail to exist and it can characterize the private core.

Before we close, we would like to remark that despite the fact that this book has
discussed some successful alternative equilibrium concepts, other than the REE
and Radner equilibrium, the issue of modeling continuum economies (perfectly
competitive economies in the sense of Aumann (1964)) is still open. The problem
seems to center in defining precisely the idea of each agent’s private information
as being negligible.

Acknowledgements. We are deeply indepted to our coauthor Allan Muir for his thougthful
comments and suggestions. We also wish to thank Roko Aliprantis who encouraged us to put
this book in the series Studies in Economic Theory. Werner Müller the Editor of Economics
in Springer (now bought by Kluwer) and his staff were extremely helpful and patient during
the preparation of this volume, and we sincerely appreciate their kind assistance. Needless to
say without the contribution of all the authors this volume would never have been produced.
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Summary. We summarize here basic cooperative and noncooperative equilibrium
concepts, in the context of differential information economies with a finite number
of agents. These, on the one hand, game theoretic, and, on the other hand, Walrasian
equilibrium type concepts are explained, and their relation is pointed out, in the
context of specific economies with one or two goods and two or three agents.
We analyze the incentive compatibility of several cooperative and noncooperative
concepts, and also we discuss briefly the possible implementation of these concepts
as perfect Bayesian equilibria through the construction of relevant game trees. This
possibility is related to whether the allocation is incentive compatible. This depends
on whether there is free disposal or not.

Keywords and Phrases: Differential information economy, Walrasian expecta-
tions or Radner equilibrium, Rational expectations equilibria, Free disposal, Weak
fine core, Private core, Weak fine value, Private value, Coalitional Bayesian incen-
tive compatibility, Game trees, Perfect Bayesian equilibrium, Sequential equilib-
rium.

JEL Classification Numbers: D5, D82, C71, C72.

1 Introduction

The classical Walrasian equilibrium model as formalized by Arrow - Debreu (1954)
and McKenzie (1954) consists of a finite set of agents each of which is characterized

� We are very grateful to A. Muir for his invaluable help and suggestions. We wish to thank A.
Hadjiprocopis for his invaluable help with the implementation of Latex in a Unix environment. He
also provided us with numerically approximate solutions to Radner equilibrium and weak fine value
problems, using a random selection algorithm.
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by her preferences and initial endowments. The Walrasian model captures in a
deterministic way the trade or contract (redistribution of initial endowments) among
the agents and has played a central role in all aspects of economics. For this model
significant results have been obtained, i.e. existence and Pareto optimality of the
Walrasian equilibrium, equivalence of the Walrasian equilibrium with the core, (see
Debreu and Scarf, 1963), and the relation between the core and the Shapley value,
(see Emmons and Scafuri, 1985). These results have also been extended in infinite
dimensional spaces (see for example Aumann, 1964; and the books of Hildenbrand,
1974; Khan and Yannelis, 1991).

Although infinite dimensional commodity spaces do capture uncertainty, they
do not capture trade under asymmetric (or differential) information. On the other
hand, it should be noted that most trades in an economy are made by agents who
are asymmetrically informed and the need to introduce differential information into
the Cournot - Nash model and the Arrow- Debreu - McKenzie model was evident
in the seminal works of Harsanyi (1967) and Radner (1968). Their equilibrium
concepts are noncooperative and have found extensive applications. In seminal
papers, Wilson (1978) and Myerson (1982) introduced private information in the
cooperative concepts of the core and the Shapley value respectively.

Briefly, the purpose of this paper is to survey the basic equilibrium concepts
in economies with differential information. We employ a set of examples of finite
economies which enable us to compare the outcomes that different equilibrium
concepts generate. Also, we examine the implementation and the incentive com-
patibility of different equilibrium concepts.

Our survey differs from the two recent ones by Forges (1998), Forges et al.
(2000) and Ichiishi and Yamazaki (2002). These papers follow the Harsanyi type
model and focus on the devolopment of cooperative, core concepts. In contrast,
we focus on the partition model, examine in detail additional concepts such as
the Shapley value and provide an extensive form foundation for the concepts we
examine. Furthermore we analyze the incentive compatibility of the different equi-
librium concepts and consider their implementation as a perfect Bayesian equilib-
rium (PBE). These considerations can help us to decide how to choose among the
available equilibrium concepts the most appropriate one. We also provide several
illuminating examples which enable one to contrast and compare the different equi-
librium notions. These examples could be especially useful to those who start work
in the area.

A finite economy with differential information consists of a finite set of agents
and states of nature. Each agent is characterized by a random utility function, a ran-
dom consumption set, random initial endowments, a private information set which
is a partition of the set of the states of nature, and a prior probability distribution
on these states. For such an economy a number of cooperative and non-cooperative
equilibrium concepts have been developed.

We believe that the natural and intuitive way to proceed is to analyse concepts
in terms of measurability of allocations (Yannelis, 1991). In particular, as it is well
known, (e.g. Prescott and Townsend, 1984; Allen, 2003), without measurability, the
set of feasible and incentive compatible allocations is not convex and therefore the
existence of an incentive compatible core becomes a serious problem. On the other
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hand certain measurability conditions imply incentive compatibility and they help
us to narrow down the set of admissible allocations to a more manageable equilib-
rium set which is not only incentive compatibility but also exists. It is precisely for
this reason that we follow the measurability approach.

We concentrate here mainly on cooperative concepts which allow for different
types of measurability of the proposed allocations, i.e. for alternative forms of
information sharing among the agents. In particular we consider the private core,
(Yannelis, 1991), which is the set of all state-wise feasible and private information
measurable allocations that cannot be dominated, in terms of expected utility, by
any coalition’s feasible and private information measurable net trades, the weak fine
core (WFC), defined inYannelis (1991) and Koutsougeras andYannelis (1993), and
the concepts of private value and the weak fine value (WFV), (Krasa and Yannelis,
1994), which employ the Shapley value.1

On the other hand we discuss the noncooperative concepts of the generalized
Walrasian equilibrium type ideas of Radner equilibrium, defined in Radner (1968),
and rational expectations equilibrium (REE), which is discussed in Radner (1979),
Allen (1981), Einy et al. (2000), Kreps (1977) and Laffont (1985) and Grossman
(1981), among others. Unlike the Walrasian equilibrium, Radner equilibrium with
positive prices or REE may not exist in well behaved economies.

The paper is organized as follows. Section 2 contains the definition of a differ-
entiable information economy. Section 3 defines cooperative equilibrium concepts.
Section 4 defines noncooperative equilibrium concepts and makes some compar-
isons between the various ideas. Section 5 applies the equilibrium ideas in the
context of one-good and Section 6 in that of two-good examples. Section 7 visits
the incentive compatibility idea and Section 8 discusses implementation or non-
implementation properties, in terms of PBE, of various equilibrium notions. Sec-
tion 9 pays special attention to the relation between REE and weak core concepts
and Section 10 concludes the discussion with some remarks. Finally Appendix I
discusses some relations between core concepts.

2 Differential information economy (DIE)

In this section we define the notion of a finite-agent economy with differential
information for the case where the set of states of nature, Ω and the number of
goods, l, per state are finite. I is a set of n players and Rl

+ will denote the set of
positive real numbers.

A differential information exchange economy E is a set

{((Ω,F), Xi,Fi, ui, ei, qi) : i = 1, . . . , n}

where

1. F is a σ-algebra generated by a partition of Ω;
2. Xi : Ω → 2R

l
+ is the set-valued function giving the random consumption set

of Agent (Player) i, who is denoted by Pi;

1 See also Allen and Yannelis (2001) for additional references.
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3. Fi is a partition of Ω generating a sub-σ-algebra of F , denoting the private
information2 of Pi; Fi is a partition of Ω generating a sub-σ-algebra of F ,
denoting the private information3 of Pi;

4. ui : Ω×Rl
+ → R is the random utility function of Pi; for each ω ∈ Ω, ui(ω, .)

is continuous, concave and monotone;
5. ei : Ω → Rl

+ is the random initial endowment of Pi, assumed to be Fi-
measurable, with ei(ω) ∈ Xi(ω) for all ω ∈ Ω;

6. qi is an F-measurable probability function on Ω giving the prior of Pi. It is
assumed that on all elements of Fi the aggregate qi is strictly positive. If a
common prior is assumed on F , it will be denoted by µ.

We will refer to a function with domain Ω, constant on elements of Fi, as
Fi-measurable, although, strictly speaking, measurability is with respect to the
σ-algebra generated by the partition.

In the first period agents make contracts in the ex ante stage. In the interim
stage, i.e., after they have received a signal4 as to what is the event containing the
realized state of nature, they consider the incentive compatibility of the contract.

For any xi : Ω → Rl
+, the ex ante expected utility of Pi is given by

vi(xi) =
∑
Ω

ui(ω, xi(ω))qi(ω).

Let G be a partition of (or σ-algebra on) Ω, belonging to Pi. For ω ∈ Ω denote
by EG

i (ω) the element of G containing ω; in the particular case where G = Fi

denote this just by Ei(ω). Pi’s conditional probability for the state of nature being
ω′, given that it is actually ω, is then

qi
(
ω′|EG

i (ω)
)

=

⎧⎨⎩0 : ω′ /∈ EG
i (ω)

qi(ω′)

qi

(
EG

i (ω)
) : ω′ ∈ EG

i (ω).

The interim expected utility function of Pi, vi(x|G), is given by

vi(x|G)(ω) =
∑
ω′
ui(ω′, xi(ω′))qi

(
ω′|EG

i (ω)
)
,

which defines a G-measurable random variable.
Denote by L1(qi,Rl) the space of all equivalence classes of F-measurable

functions fi : Ω → Rl; when a common prior µ is assumed L1(qi,Rl) will be
replaced by L1(µ,Rl). LXi is the set of all Fi-measurable selections from the
random consumption set of Agent i, i.e.,

2 Following Aumann (1987) we assume that the players’ information partitions are common knowl-
edge.

3 Sometimes Fi will denote the σ-algebra generated by the partition, as will be clear from the context.
4 A signal to Pi is an Fi-measurable function to all of the possible distinct observations specific to

the player; that is, it induces the partition Fi, and so gives the finest discrimination of states of nature
directly available to Pi.
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LXi = {xi ∈ L1(qi,Rl) : xi : Ω → Rl

is Fi-measurable and xi(ω) ∈ Xi(ω) qi-a.e.}

and let LX =
∏n

i=1 LXi
.

Also let

L̄Xi = {xi ∈ L1(qi,Rl) : xi(ω) ∈ Xi(ω) qi-a.e.}

and let L̄X =
∏n

i=1 L̄Xi .
An elementx = (x1, . . . , xn) ∈ L̄X will be called an allocation. For any subset

of players S, an element (yi)i∈S ∈
∏

i∈S L̄Xi will also be called an allocation,
although strictly speaking it is an allocation to S.

In case there is only one good, we shall use the notation L1
Xi

, L1
X etc. When a

common prior is also assumed L1(qi,Rl) will be replaced by L1(µ,Rl).
Finally, suppose we have a coalitionS, with members denoted by i. Their pooled

information
∨

i∈S Fi will be denoted by FS
5. We assume that FI = F .

3 Cooperative equilibrium concepts: Core and Shapley value

We discuss here certain fundamental concepts.6 First we define the notion of the
private core (Yannelis, 1991).

Definition 3.1. An allocation x ∈ LX is said to be a private core allocation if

(i)
∑n

i=1 xi =
∑n

i=1 ei and
(ii) there do not exist coalition S and allocation (yi)i∈S ∈ ∏i∈S LXi

such that∑
i∈S yi =

∑
i∈S ei and vi(yi) > vi(xi) for all i ∈ S.

The private core is an ex ante concept and under mild conditions it is not empty,
as shown inYannelis (1991) and Glycopantis et al. (2001). If the feasibility condition
(i) is replaced by (i)′

∑n
i=1 xi ≤

∑n
i=1 ei then free disposal is allowed.

Next we define the weak fine core (WFC) (Yannelis, 1991; Koutsougeras and
Yannelis, 1993). This is a refinement of the fine core concept of Wilson (1978) or
Srivastava (1984). The fine core notion of Wilson as well as that in Koutsougeras
andYannelis may be empty in well behaved economies. This is why we are working
with a different concept.

Definition 3.2. An allocation x = (x1, . . . , xn) ∈ L̄X is said to be a WFC alloca-
tion if

(i) each xi(ω) is FI -measurable;
(ii)

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω), for all ω ∈ Ω;

(iii) there do not exist coalition S and allocation (yi)i∈S ∈
∏

i∈S L̄Xi such that
yi(·)−ei(·) isFS-measurable for all i ∈ S,

∑
i∈S yi =

∑
i∈S ei and vi(yi) >

vi(xi) for all i ∈ S.

5 The “join”
∨

i∈S Fi denotes the smallest σ-algebra containing all Fi, for i ∈ S.
6 The interim weak fine core (IWFC) is discussed in a later section.
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As comparisons are made on the basis of expected utility, the weak fine core is
also an ex ante concept. It captures the idea of an allocation which is ex ante “full
information” Pareto optimal. As with the private core the feasibility condition can
be relaxed to (ii)′

∑n
i=1 xi(ω) ≤∑n

i=1 ei(ω), for all ω ∈ Ω.
Finally we define the concept of weak fine value (WFV) (see Krasa and Yan-

nelis, 1994, 1996). We must first define a transferable utility (TU) game in which
each agent’s utility is weighted by a non-negative factor λi, (i = 1, ..., n), which
allows for interpersonal comparisons. In a TU-game an outcome can be realized
through transfers of payoffs among the agents. On the other hand a (weak) fine
value allocation is more specific. It is realizable through a redistribution of payoffs
among the agents and, following this, no side payments are necessary.7 The WFV
set is also non-empty.

A game with side payments is defined as follows.

Definition 3.3. A game with side payments Γ = (I, V ) consists of a finite set of
agents I = {1, ..., n} and a superadditive8 , real valued function V defined on 2I

such that V (∅) = 0. Each S ⊆ I is called a coalition and V (S) is the ‘worth’ of
the coalition S.

The Shapley value of the game Γ (Shapley, 1953) is a rule that assigns to each
Agent i a payoff, Shi(V ), given by the formula9

Shi(V ) =
∑
S⊆I

S⊇{i}

(| S | −1)!(| I | − | S |)!
| I |! [V (S)− V (S\{i})]. (1)

The Shapley value has the property that
∑

i∈I Shi(V ) = V (I), i.e. the implied
allocation of payoffs is Pareto efficient.

We now define for each DIE, E , with common prior µ, which is assumed for
simplicity, and for each set of weights,λ = {λi ≥ 0 : i = 1, . . . , n}, the associated
game with side payments (I, Vλ). We also refer to this as a transferable utility (TU)
game.

Definition 3.4. Given {E , λ} an associated game Γλ = (I, Vλ) is defined as
follows: For every coalition S ⊂ I let

Vλ(S) = max
x

∑
i∈S

λi

∑
ω∈Ω

ui(ω, xi(ω))µ(ω) (2)

subject to

(i)
∑

i∈S xi(ω) =
∑

i∈S ei(ω), for all ω ∈ Ω, and
(ii) xi − ei is

∨
i∈S Fi−measurable.

We are now ready to define the WFV allocation.

7 See Emmons and Scafuri (1985, p. 60) and the examples in Section 6 below for further discussion.
8 This means that given disjoint S, T ⊂ I then V (S) + V (T ) ≤ V (S ∪ T ).
9 The Shapley value measure is the sum of the expected marginal contributions an agent can make

to all the coalitions of which he/she can be a member (see Shapley, 1953).
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Definition 3.5. An allocation x = (x1, . . . , xn) ∈ L̄X is said to be a WFV al-
location of the differential information economy, E , if the following conditions
hold

(i) Each net trade xi − ei is
∨n

i=1 Fi-measurable,
(ii)

∑n
i=1 xi =

∑n
i=1 ei and

(iii) There exist λi ≥ 0, for every i = 1, ..., n, which are not all equal to zero,
with

∑
ω∈Ω λiui(ω, xi(ω))µ(ω) = Shi(Vλ) for all i, where Shi(Vλ) is the

Shapley value ofAgent i derived from the game (I, Vλ), defined in (2) above.10

Condition (i) requires the pooled information measurability of net trades. Con-
dition (ii) is the market clearing condition and (iii) says that the expected utility of
each agent multiplied by his/her weight, λi, must be equal to his/her Shapley value
derived from the TU game (I, Vλ). Obviously for the actual utility that the agent
will obtain the weight must not be taken into account. Therefore an agent could
obtain the utility of a positive allocation even if λi were zero.

If condition (ii) in Definitions 3.4 and (i) in 3.5 are replaced by xi − ei is Fi-
measurable, for all i, then we obtain the definition of the private value allocation.

An immediate consequence of Definition 3.4 is that Shi(Vλ) ≥
λi

∑
ω∈Ω ui(ω, ei(ω))µ(ω) for every i, i.e. the value allocation is individually

rational. This follows immediately from the fact that the game (Vλ, I) is superad-
ditive for all weights λ. Similarly, efficiency of the Shapley value implies that the
weak-fine (private) value allocation is weak-fine (private) Pareto efficient.

Note 3.1. The core of an economy with differential information was first defined
by Wilson (1978) and the Shapley value with differential information by Myerson
(1982). The above analysis is based on the measurability approach introduced by
Yannelis (1991). This approach enables one to prove readily the existence of alter-
native core and value concepts. Furthermore, as we will see in subsequent sections,
certain measurability restrictions, as for example the private information measura-
bility of an allocation, ensure incentive compatibility. General existence results for
the core and value can be found in Yannelis (1991), Allen (1991a, 1991b), Krasa
- Yannelis (1994), Lefebvre (2001) and Glycopantis et al. (2001). The reader is
referred to the Appendix for a more complete list of core concepts.

4 Noncooperative equilibrium concepts:
Walrasian expectations (or Radner) equilibrium and REE

In order to define a competitive equilibrium in the sense of Radner we need the
following. A price system is an F-measurable, non-zero function p : Ω → Rl

+
and the budget set of Agent i is given by

Bi(p) =
{
xi : xi : Ω → Rl is Fi-measurable xi(ω) ∈ Xi(ω)

10 By replacing the join measurability with private information measurability we can define the private
value allocation.
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and
∑
ω∈Ω

p(ω)xi(ω) ≤
∑
ω∈Ω

p(ω)ei(ω)
}
.

Notice that the budget constraint is across states of nature.

Definition 4.1. A pair (p, x), where p is a price system and x = (x1, . . . , xn) ∈ LX

is an allocation, is a Walrasian expectations or Radner equilibrium if

(i) for all i the consumption function maximizes vi on Bi(p)
(ii)

∑n
i=1 xi ≤

∑n
i=1 ei ( free disposal), and

(iii)
∑

ω∈Ω p(ω)
∑n

i=1 xi(ω) =
∑

ω∈Ω p(ω)
∑n

i=1 ei(ω).

This is an ex ante concept. We allow for free disposal, because otherwise a
Radner equilibrium with positive prices might not exist. This is demonstrated below
through Example 5.2 in which a price becomes negative. In general, for purposes
of comparison we consider also the case with

∑n
i=1 xi =

∑n
i=1 ei.

Proposition 4.1. A (free disposal) Radner equilibrium is in the (free disposal)
private core.

The proof parallels the usual one of the complete information case.

We note that a Radner equilibrium with free disposal may not be in the non-free
disposal private core. The point can be made using Example 5.2 below, in which
the Radner equilibrium with free disposal and private core without free disposal
consist of completely different allocations. The question arises why the proposition
immediately above fails. The argument cannot be pushed through because under
different free disposal assumptions the feasibility condition is different.

Next we turn our attention to the notion of REE. We shall need the following.
Let σ(p) be the smallest sub-σ-algebra ofF for which a price system p : Ω → Rl

+
is measurable and let Gi = σ(p)∨Fi denote the smallest σ-algebra containing both
σ(p) and Fi. We shall also condition the expected utility of the agents on G which
produces a random variable.

Definition 4.2. A pair (p, x), where p is a price system and x = (x1, . . . , xn) ∈ L̄X

is an allocation, is a REE if

(i) for all i the consumption function xi(ω) is Gi-measurable;
(ii) for all i and for allω the consumption function maximizes vi(xi|Gi)(ω) subject

to the budget constraint at state ω,

p(ω)xi(ω) ≤ p(ω)ei(ω);

(iii)
∑n

i=1 xi(ω) =
∑n

i=1 ei(ω) for all ω ∈ Ω.

REE is an interim concept because we condition on information from prices
as well. An REE is said to be fully revealing if Gi = F =

∨
i∈I Fi for all i ∈ I .

Although in the definition we do not allow for free disposal, we comment briefly
on such an assumption in the context of Example 5.2.

Note 4.1. The concept of Radner equilibrium is due to Radner (1968) and it extends
the Arrow-Debreu contingent claims model, (see Debreu, 1959, Ch. 7), to allow for
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differential information. The existence of a free disposal Radner equilibrium can
be found in Radner (1968). The definition of REE is taken from Radner (1979) and
Allen (1981). The REE does not exist always, may not be fully Pareto optimal, or
incentive compatible and may not be implementable as a PBE (Glycopantis et al.,
2003b). The Radner equilibrium without free disposal is always incentive compat-
ible, as it is contained in the private core. Moreover, under standard assumptions,
it exists, as shown by Radner (1968). An example illustrating both concepts can be
found below.

5 Illustrations of equilibrium concepts and comparisons to each other:
One-good examples

We now offer some comments on and make comparisons between the various equi-
librium notions. In many instances we will use the same example to compute differ-
ent equilibrium concepts. Hence the outcomes that different equilibrium concepts
generate will become clear.

As we saw in Proposition 4.1 the Radner equilibrium allocations are a subset
of the corresponding private core allocations. Of course it is possible that a Radner
equilibrium allocation with positive prices might not exist. In the two-agent econ-
omy of Example 5.2 below, assuming non-free disposal the unique private core is
the initial endowments allocation while no Radner equilibrium exists. On the other
hand, assuming free disposal the REE coincides with the initial endowments allo-
cation which does not belong to the private core. It follows that the REE allocations
need not be in the private core. Therefore a REE need not be a Radner equilibrium
either. In Example 5.1 below, without free disposal no Radner equilibrium with
positive prices exists but REE does. It is unique and it implies no-trade.

As for the comparison between private core and WFC allocations the two sets
could intersect but there is no definite relation. Indeed the measurability requirement
of the private core allocations separates the two concepts. Finally notice that no
allocation which does not distribute the total resource could be in the WFC.

For n = 2 one can easily verify that the WFV belongs to the weak fine core.
However it is known (see for example Scafuri and Yannelis, 1984) that for n ≥ 3 a
value allocation may not be a core allocation, and therefore may not be a Radner
equilibrium. Also a value allocation might not belong to any Walrasian type set.

In a later section we shall discuss whether core and Walrasian type allocations
have certain desirable properties, from the point of view of incentive compatibility.
We shall then turn our attention to the implementation of such allocations.

In this and the following sections we indicate, by putting dates, whether we
have already discussed in Glycopantis et al. (2001, 2003a, 2003b), at least partly,
the various examples. Where both types are calculated we find it more convenient
to start with the non-cooperative concepts.

Example 5.1. (2001, 2003a) Consider the following three agents economy, I =
{1, 2, 3} with one commodity, i.e. Xi = R+ for each i, and three states of nature
Ω = {a, b, c}.
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The endowments and information partitions of the agents are given by

e1 = (5, 5, 0), F1 = {{a, b}, {c}};
e2 = (5, 0, 5), F2 = {{a, c}, {b}};
e3 = (0, 0, 0), F3 = {{a}, {b}, {c}}.

ui(ω, xi(ω)) = x
1
2
i and every player has the same prior distribution µ({ω}) = 1

3 ,
for ω ∈ Ω.

It was shown in Appendix II of Glycopantis et al. (2001) that, without free
disposal, the redistribution ⎛⎜⎝4 4 1

4 1 4
2 0 0

⎞⎟⎠
is a private core allocation, where the ith line refers to Player i and the columns
from left to right to states a, b and c.

If the private information set of Agent 3 is the trivial partition, i.e., F ′
3 =

{a, b, c}, then no trade takes place and clearly in this case he gets zero utility. Thus
the private core is sensitive to information asymmetries. On the other hand in a
Radner equilibrium or a REE, Agent 3 will always receive zero quantities as he has
no initial endowments, irrespective of whether his private information partition is
the full one or the trivial one.

Example 5.2. (2001, 2003a) We now consider Example 5.1 without Agent 3.

For the various types of allocations below, we distinguish between the cases
without and with free disposal. We denote the prices by p(a) = p1, p(b) =
p2, p(c) = p3. Throughout ε, δ ≥ 0.

A. REE

Now, a price function, p(ω), known to both agents, is defined on Ω. Apart from
his own private Ei ⊆ Fi, each agent also receives a price signal which is a value
in the range of the price function. Combining the two types of signals he deduces
the event from Ω that has been realized, Ep,Ei

= {ω : p(ω) = p and ω ∈ Ei}.
He then chooses a constant consumption on Ep,Ei which maximizes his interim
expected utility subject to the budget set at state ω.

We now distinguish between:

Case 1. All prices positive and p1 	= p2 	= p3.
Then, as soon as the price signal is announced every agent knows the exact state of
nature and simply demands his initial endowment in that state.

Case 2. All prices positive and p1 = p2 	= p3.
Then Agent 2 will always realize which is the state of nature and will demand
his initial endowment. On the other hand Agent 1 will not be able to distinguish
between states a and b. However given the fact that his utility function is the same
across states, he will also demand his initial endowment in all states of nature.
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Case 3. All prices positive and p1 = p3 	= p2.
This is identical to Case 2 with the roles of the two agents interchanged.

Case 4. The positive prices are constant onΩ and hence non-revealing. Each agent
relies exclusively on his private information and will demand in each state his initial
endowment.
In all cases the rational expectations price function can be any such that its range of
values is a positive vector and it will confirm the initial endowments as equilibrium
allocation. Furthermore it makes no difference to the above reasoning whether free
disposal is allowed or not.

We can also argue in general that with one good per state and monotonic utility
functions, the measurability of the allocations implies that REE, fully revealing or
not, simply confirms the initial endowments.

B. Radner equilibrium

The measurability of allocations implies that we require consumptions x1(a) =
x2(b) = x and x1(c) for Agent 1, and x2(a) = x2(c) = y and x2(b) for Agent 2.
We can also write x = 5− ε, x1(c) = δ, y = 5− δ and x2(b) = ε.

We now consider,

Case 1. Without free disposal
There is no Radner equilibrium with prices in R3

+.

Case 2. With free disposal.
The prices are p1 = 0, p2 = p3 > 0 and the allocation is(

4 4 1
4 1 4

)
·

It corresponds to ε, δ = 1 which means that in state a each of the agents throws
away one unit of the good.

C. WFC

The agents pool their information and therefore any feasible consumption vector
to either agent will be measurable. Hence we do not need to distinguish between
free disposal and non-free disposal. All WFC allocations will exhaust the resource
in each state of nature.

There are uncountably many such allocations, as for example(
5 2.5 2.5
5 2.5 2.5

)
·

This allocation is
∨2

i=1 Fi-measurable and cannot be dominated by any coalition
of agents using their pooled information.

Referring back to Example 5.1 we can note that a private core allocation is
not necessarily a WFC allocation. For example the division (4, 4, 1), (4, 1, 4) and
(2, 0, 0), to Agents 1, 2 and 3 respectively, is a private core but not a weak fine
core allocation. The first two agents can get together, pool their information and do
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Figure 1

better. They can realize the WFC allocation, (5, 2.5, 2.5), (5, 2.5, 2.5) and (0, 0, 0)
which does not belong to the private core because of lack of measurability.

D. Private core

Case 1. Without free disposal.
No individual can increase his allocation and retain measurability. Therefore, in
this case the only allocation in the core is the initial endowments.

Case 2. With free disposal.
Free disposal can take the form:(

5− ε 5− ε δ

5− δ ε 5− δ

)
where ε, δ > 0.

The private core is the section of the curve (δ + 1
3 )(ε + 1

3 ) = 16
9 between the

indifference curves corresponding to U1 = 20
1
2 and U2 = 20

1
2 . Notice that the

allocation (
4 4 1
4 1 4

)
corresponds to δ, ε = 1 and is in the private core. The private core and the Radner
equilibrium are shown in Figure 1.

E. WFV

Here we shall show that x1 = x2 = (5, 2.5, 2.5) is a weak fine value allocation.
First we note that the “join” F1 ∨ F2 = {{a}{b}{c}}. So every allocation is
F1 ∨ F2-measurable and condition (i) of Definition 3.5 is satisfied. Condition (ii)
is also immediately satisfied.
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First Vλ is calculated to be

Vλ({1}) =
2× 5

1
2

3
λ1, Vλ({2}) =

2× 5
1
2

3
λ2 and

Vλ({1, 2}) =
10

1
2 + 2× 5

1
2

3
(
λ2

1 + λ2
2
) 1

2

It is easy to see that

Sh1(Vλ) =
1
2

{
2× 5

1
2

3
λ1 +

10
1
2 + 2× 5

1
2

3
(
λ2

1 + λ2
2
) 1

2 − 2× 5
1
2

3
λ2

}
. (3)

Definition 3.5 gives

2(2.5)
1
2λ1 =

10
1
2 + 2× 5

1
2

2
(λ2

1 + λ2
1)

1
2 − 5

1
2λ2. (4)

Similarly the condition on player 2’s allocation gives

2(2.5)
1
2λ2 =

10
1
2 + 2× 5

1
2

2
(λ2

1 + λ2
1)

1
2 − 5

1
2λ2. (5)

Subtracting we get 2× 2
1
2 (λ1 − λ2) = 5

1
2 (λ1 − λ2).

It follows that λ1 = λ2. Substituting this common value λ not equal to 0 back

into one of the conditions, λ cancels leaving 2(2.5)
1
2 = 10

1
2 +2×5

1
2

2 × 2
1
2 − 5

1
2

which is an identity. It follows that Definition 3.5 is satisfied.
Next we investigate whether there are any other WFV. The conditions are

λ1
[
x

1
2 +y

1
2 +z

1
2
]

= 5
1
2 (λ1−λ2)+k(λ2

1 +λ2
2)

1
2 and λ2

[
(10−x) 1

2 +(5−y) 1
2 +

(5− z) 1
2
]

= 5
1
2 (λ2 − λ1) + k(λ2

1 + λ2
2)

1
2 where k = 10

1
2 +2×5

1
2

2 .
There is an obvious symmetry here: if λ1, λ2, x, y, z is a solution then so is

λ2, λ1, 10 − x, 5 − y, 5 − z, so that we may assume, without loss of generality,
that λ2 is different from zero, since both λ’s cannot be zero, and write θ = λ1

λ2
.

Subtracting the two equations we obtain θS1 − S2 = 2× 5
1
2 (θ − 1), where S1 =

(x)
1
2 + (y)

1
2 + (z)

1
2 , S2 = (10 − x) 1

2 + (5 − y) 1
2 + (5 − z) 1

2 , which implies

θ = S2−2×5
1
2

S1−2×5
1
2
.

We also have θS1 = 5
1
2 (θ−1)+k(θ2+1)

1
2 which implies [θ(S1−5

1
2 )+5

1
2 ]2 =

k(θ2+1)
1
2 . This in turn implies {(S1−5

1
2 )2−k2}θ2+2×5

1
2 (S1−5

1
2 )θ+5−k2 =

0. This has real roots iff 5(S1−5
1
2 )2 ≥ (5−k2){(S1−5

1
2 )2−k2}, or, equivalently,

(S1−5
1
2 )2 ≥ k2−5, orS1 ≥ 5

1
2 +(k2−5)

1
2 , which implies the rootS1 = 5.32978.

By symmetry we also need S2 ≥ 5.32978. The symmetric case θ = 1 gives
S1 = S2 = 2

1
2 k which has an approximate value of 5.39835. It corresponds to

x1 = x2 = (5, 2.5, 2.5).
Clearly there is not much room to move away from the symmetric case. On the

other hand if S1 goes up then S2 goes down. This follows from the fact that the
sum of the payoffs to the players is equal to Vλ({1, 2}). This suggests the problem

Maximize S1 subject to S2 = 	.
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The First Order Conditions are: (10 − x) 1
2 = 1

2ηx
1
2 , (5 − y) 1

2 = 1
2ηy

1
2 and

(5− z) 1
2 = 1

2ηz
1
2 .

From these we obtain y
1
2

x
1
2

= (5−y)
1
2

(10−x)
1
2

and z
1
2

x
1
2
= (5−z)

1
2

(10−x)
1
2

, which imply x=2y=2z.

Re-substituting in S2 = 	 we derive 	 = (10− 2z)
1
2 +(5− z) 1

2 +(5− z) 1
2 =

(2 + 2
1
2 )(5 − z) 1

2 which for 	 = 5.32978 implies, approximately, y = z =
5 − ( �

2+2
1
2
)2 = 2.56310, x = 5.12621, S1 = 5.46605, and θ = 0.86290.

It follows that the WFV allocations correspond to θ ∈ [0.86290, 1.158882837],
where the two numbers are the inverse of each other.

Example 5.3. The problem is a two-state, Ω = {a, b}, three-player game with
utilities and initial endowments given by:

u1(x1j) = x
1
2
1j ; e1 = (4, 0), F1 = {{a}, {b}}

u2(x2j) = x
1
2
2j ; e2 = (0, 4), F2 = {{a}, {b}}

u3(x3j) = x
1
2
3j ; e3 = (0, 0), F3 = {a, b},

where xij denotes consumption of Player i in state j, (a is identified with 1 and b
with 2). Every player has the same prior distribution µ(ω) = 1

2 for ω ∈ Ω.
The associated TU game has value function

Vλ({1}) = λ1, Vλ({2}) = λ2, Vλ({3}) = 0,

Vλ({1, 2}) = 2(λ2
1+λ

2
2)

1
2 , Vλ({1, 3}) = (λ2

1+λ
2
3)

1
2 , Vλ({2, 3}) = (λ2

2+λ
2
3)

1
2 ,

Vλ({1, 2, 3}) = 2(λ2
1 + λ2

2 + λ2
3)

1
2 .

The equations for a value allocation are then:

2
3
λ1 +

1
3

(
2(λ2

1 + λ2
2)

1
2 − λ2

)
+

1
3
(λ2

1 + λ2
3)

1
2

+
2
3

(
2(λ2

1 + λ2
2 + λ2

3)
1
2 −
(
λ2

2 + λ2
3
) 1

2
)

= λ1

(
x

1
2
11 + x

1
2
12

)
,

2
3
λ2 +

1
3

(
2(λ2

1 + λ2
2)

1
2 − λ1

)
+

1
3
(λ2

2 + λ2
3)

1
2

+
2
3

(
2(λ2

1 + λ2
2 + λ2

3)
1
2 − (λ2

1 + λ2
3)

1
2

)
= λ2

(
x

1
2
21 + x

1
2
22

)
,

1
3

(
(λ2

1 + λ2
3)

1
2 − λ1

)
+

1
3

(
(λ2

2 + λ2
3)

1
2 − λ2

)
+

4
3

(
(λ2

1 + λ2
2 + λ2

3)
1
2 − (λ2

1 + λ2
2)

1
2

)
= λ3

(
x

1
2
31 + x

1
2
32

)
,

subject to x11 + x21 + x31 = 4.x12 + x22 + x32 = 4.

The left-hand side are just numbers which we can calculate. General solution
of these equations seems difficult, but we would hope to get a symmetric solution,
in the following sense: the economy is symmetric under the interchange of Agent
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1 with Agent 2, together with interchange of the good in state 1 and the good in
state 2; so we might expect a solution in which

x11 = x22, x12 = x21, x31 = x32, λ1 = λ2.

We will write, for simplicity

x
1
2
11 = x

1
2
22 = x, x

1
2
12 = x

1
2
21 = y,

and hence x31 = x32 = (4− (x2 + y2))
1
2 , λ1 = λ2 = λ.

We will treat two cases. Firstly, ifλ3 = 0, the last equation is identically satisfied
and the first two equations (which are the same) give 2 × 2

1
2λ = λ(x + y). So λ

is arbitrary and x + y = 2 × 2
1
2 . If we suppose x = 2

1
2 + δ, y = (−δ) 1

2 , then
x11 + x21 = 4 + δ2, so we have δ = 0 and hence

x11 = x12 = x21 = x22 = 2, x31 = x32 = 0,

with λ1 = λ2 > 0 arbitrary and λ3 = 0.
Now consider the possibility that λ3 > 0 and we may normalise it to be equal

to 1. The first two equations are the same and they state:

1
3

(
2(2)

1
2 + 1

)
λ− 1

3
(λ2 + 1)

1
2 +

4
3
(2λ2 + 1)

1
2 = λ(x+ y). (6)

The third equation becomes

−2
3

(
2(2)

1
2 + 1

)
λ+

2
3
(λ2 + 1)

1
2 +

4
3
(2λ2 + 1)

1
2 = 2

[
4− (x2 + y2)

] 1
2
. (7)

It is a matter of tedious calculations on equations (16) and (17) to show that
there are no value allocations with λ3 	= 0 which are symmetric.

We now consider approximate equilibria, using the random algorithm. First we
look into the case where in the equations for a value allocation we insertλi = 1, ∀i.
The system does not perform very well. Approximate values can be found but the
total error, the square root of the sum of squares of RHS-LHS of the equations, is
0.21098557 which is rather large. On the other hand variations in the total resource
improve the approximation.

If we allow in the system above for the λi’s also to be chosen then a rather
satisfactory approximate solution emerges:
x11 = 1.9999, x12 = 2.0001, x21 = 2, 0000, x22 = 1.9998, x31 =

x32 = 0 (approximately), λ1 = 1, λ2 = 1.00009, λ3 = 0.0129, with total error
0.000000007.

In the example we have examined Agent 3 has zero endowments and bad infor-
mation. As a result, when all the λi’s can be chosen the solution of the equations
of the value allocation are approximately the same as when no weight is attached
to Agent 3.
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6 Two-good examples

We note that with one good per state and monotone utility functions there is a direct
relation between allocations and utilities, i.e. x ≥ y iff u(x) ≥ u(y). This allows
one to prove results which do not hold in general. This is the reason why we present
also examples with two goods. We also note that in the one good case the unique
REE allocation exists always and it coincides with no trade. Thus it exists, it is
incentive compatible and Pareto optimal. However, as it is shown below, this is not
the case when there are two goods.

Example 6.1. (2003b) We consider a two-agent economy, I = {1, 2} with two
commodities, i.e. Xi = R2

+ for each i, and three states of nature Ω = {a, b, c}.

The endowments, per state a, b, and c respectively, and information partitions
of the agents are given by

e1 = ((7, 1), (7, 1), (4, 1)), F1 = {{a, b}, {c}};
e2 = ((1, 10), (1, 7), (1, 7)), F2 = {{a}, {b, c}}.

We shall denote A1 = {a, b}, c1 = {c}, a2 = {a}, A2 = {b, c}.

ui(ω, xi1(ω), xi2(ω)) = x
1
2
i1x

1
2
i2, and for all players µ({ω}) = 1

3 , for ω ∈ Ω.
We have that u1(7, 1) = 2.65, u1(4, 1) = 2, u2(1, 10) = 3.16, u2(1, 7) = 2.65
and the expected utilities of the initial allocations, multiplied by 3, are given by
U1 = 7.3 and U2 = 8.46.

A. REE

Case 1.
First, we are looking for a fully revealing REE. Prices are normalized so that p1 = 1
in each state. In effect we are analyzing an Edgeworth box economy per state.

State a. We find that

(p1, p2) =
(

1,
8
11

)
; x∗

11 =
85
22
, x∗

12 =
85
16
,

x∗
21 =

91
22
, x∗

22 =
91
16

; u∗
1 = 4.53, u∗

2 = 4.85.

State b. We find that

(p1, p2) = (1, 1); x∗
11 = 4, x∗

12 = 4, x∗
21 = 4, x∗

22 = 4; u∗
1 = 4, u∗

2 = 4.

State c. We find that

(p1, p2) =
(

1,
5
8

)
; x∗

11 =
37
16
, x∗

12 =
37
10
, x∗

21 =
43
16
,

x∗
22 =

43
10

; u∗
1 = 2.93, u∗

2 = 3.40.

The normalized expected utilities of the equilibrium allocations are U1 =
11.46, U2 = 12.25. This completes the analysis of the fully revealing REE.
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We now look into whether there is a partially revealing or a non-revealing REE
as well.

Case 2. Referring to the three states, we consider price vectors p1 = p2 	= p3

or p1 	= p2 = p3 or p1 = p3 	= p2.
We find that in all these cases no REE exists.

Case 3. We consider the price vectors to be equal, i.e. p1 = p2 = p3, which means
that the Agents get no information from the prices.

We find that no such equilibrium exists.

The above analysis shows that there is only a fully revealing REE. The equilib-
rium quantities are different in each state and therefore the REE allocations do not
belong to either the private core or Radner equilibria.

Next we characterize the Radner equilibria. Apart from the analysis in the
context of Example 6.1, (Radner equilibria 1), we also consider a modified model,
in Example 6.2, in which every agent can distinguish between all states of nature,
(Radner equilibria 2). The calculations in the latter case can be contrasted to the
ones for the fully revealing equilibria.

Existence arguments in the case of correspondences can be advanced. However
the actual calculation of such equilibria is not always straightforward.

B. Radner equilibria 1

The price vectors are p(a) = p1 = (p11, p
1
2), p(b) = p2 = (p21, p

2
2) and p(c) =

p3 = (p31, p
3
2). On the other hand we require measurability of allocations with

respect to the private information of the agents.
The problems of the agents are:

Agent 1.
Maximize U1 = 2(AB)

1
2 + (x3

11x
3
12)

1
2

Subject to

A(p11 + p21) +B(p12 + p22) + p31x
3
11 + p32x

3
12 = 7(p11 + p21) + (p12 + p22) + 4p31 + p32

and

Agent 2.
Maximize U2 = (x1

21x
1
22)

1
2 + 2(CD)

1
2

Subject to

p11x
1
21 +p12x

1
22 +C(p21 +p31)+D(p22 +p32) = p11 +10p12 +(p21 +p31)+7(p22 +p32).

Applying a Gorman (1959) type argument we see that the demands of the
agents will be of the form: A = M1

2(p1
1+p2

1)
, B = M1

2(p1
2+p2

2)
, x3

11 = M2
2p3

1
, x3

12 = M2
2p3

2
,

x1
21 = m1

2p1
1

, x1
22 = m1

2p1
2

, C = m2
2(p2

1+p3
1)

and D = m2
2(p2

2+p3
2)

.
It follows that a Radner equilibrium with non-negative prices exists if the fol-

lowing system of equations has a non-negative solution.

2
((p11 + p21)(p

1
2 + p22))

1
2

=
1

(p31p
3
2)

1
2
,
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M1 +M2 = 7(p11 + p21) + (p12 + p22) + 4p31 + p32
1

(p11p
1
2)

1
2

=
2

((p21 + p31)(p
2
2 + p32))

1
2

m1 +m2 = p11 + 10p12 + (p21 + p31) + 7(p22 + p32)
M1

2(p11 + p21)
+
m1

2p11
= 8,

M1

2(p12 + p22)
+
m1

2p12
= 11

M2

2p31
+

m2

2(p21 + p31)
= 5,

M2

2p32
+

m2

2(p22 + p32)
= 8

M1

2(p11 + p21)
+

m2

2(p21 + p31)
= 8,

M1

2(p12 + p22)
+

m2

2(p22 + p32)
= 8.

The above system of equations is homogeneous of degree zero in the pi
j’s,

theMi’s and themi’s. Therefore some price, for example, p11 could be fixed which
reduces by one the number of unknowns. However the market equilibrium equations
have one degree of redundancy as a consequence of Walras’ law,

p11(A+ x1
21 − 8) + p12(B + x1

22 − 11) + p21(A+ C − 8) + p22(B +D − 8)
+p31(x

3
11 + C − 5) + p32(x

3
12 +D − 8) = 0.

One can prove the existence of a Radner equilibrium by modifying the usual
argument in general equilibrium theory, to take into account the fact that for Cobb-
Douglas utility functions the demands are not defined on the whole boundary of
the simplex. It is a rather tedious argument and we do not include it.

Approximate values for the equilibrium were obtained from the application of
the random selection algorithm. A succession of random variables was appraised
using a criterion consisting of the square root of the sum of squares of errors, the
best selection so far being retained at each step. We did not normalize prices and
all equations were used.

We obtained p11 = 1.1566, p12 = 0.5876, p21 = 0.3979, p22 = 1.08597, p31 =
1.3272, p32 = 0.49009, M1 = 14.1971, M2 = 4.1574, m1 = 7.9433, and m2 =
11.8474, which satisfy the equations to three decimal places. We have also checked
the accuracy to more decimal places. If an error implies infeasibility in the sense
that demand is larger than the resource then the implication is that a small quantity
is not forthcoming. In the calculations we did not normalize prices, in order to allow
for the maximum flexibility in the algorithm.

The same approximate solution can be obtained using Newton’s method, start-
ing the iteration from a suitable initial set of values. In order to avoid the problems
arising from the need to invert a singular matrix, we normalized p21 = 1 and,
invoking Walras’ law, we left out the 4th market equilibrium equation.

However there are dangers which may be illustrated by leaving out the 6th
market equation. For the same initial values we approach a different point, where
p22 is essentially zero but the sixth equation is not satisfied. This is possible because
in the Walras equation the contribution from the 6th equation has coefficient p22 and
thus can take any value. This means that a particular limit point cannot be a Radner
equilibrium.
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We also note that, of course, approximate solutions are not necessarily near the
true solution. Even with continuity of functions the changes in the values corre-
sponding to small changes in the variables might be very large.

We now have a digression the purpose of which is to explain that the full
information, deterministic Radner equilibrium is not the same as the fully revealing
REE.

C. Radner equilibria 2

Example 6.2. We shall now calculate the Radner equilibrium for the case with
F1 = F2 = {{a}{b}{c}}.All other data are as in Example 6.1.

The problems of the two agents are:

Agent 1.
Maximize U1 = (x1

11x
1
12)

1
2 + (x2

11x
2
12)

1
2 + (x3

11x
3
12)

1
2

Subject to

p11x
1
11+p12x

1
12+p21x

2
11+p22x

2
12+p31x

3
11+p32x

3
12 = 7(p11+p21)+(p12+p22)+4p31+p32

and

Agent 2.
Maximize U2 = (x1

21x
1
22)

1
2 + (x2

21x
2
22)

1
2 + (x3

21x
3
22)

1
2

Subject to

p11x
1
21+p

1
2x

1
22+p

2
1x

2
21+p

2
2x

2
22+p

3
1x

3
21+p

3
2x

3
22 = p11+10p12+(p21+p

3
1)+7(p22+p

3
2).

Applying a Gorman type argument we obtain xi
1j = Mi

2pi
j

and xi
2j = mi

2pi
j
.

These demands imply U1 = 1
2(p1

1p1
2)

1
2
M1 + 1

2(p2
1p2

2)
1
2
M2 + 1

2(p3
1p3

2)
1
2
M3 and U2 =

1
2(p1

1p1
2)

1
2
m1 + 1

2(p2
1p2

2)
1
2
m2 + 1

2(p3
1p3

2)
1
2
m3.

The above U1 and U2 have to be maximized, each subject to the Agent’s con-
straint cast in terms of Mi’s for Agent 1 and mi’s for Agent 2, which is done
below.

Notice that no price could be zero because both agents would seek infinite
utility. Conditions for Radner equilibrium, such that each agent buys every good,
are:

p11p
1
2 = p21p

2
2, M1 +M2 +M3 = 7(p11 + p21) + (p12 + p22) + 4p31 + p32

p11p
1
2 = p31p

3
2, m1 +m2 +m3 = p11 + 10p12 + (p21 + p31) + 7(p22 + p32)

M1

2p11
+
m1

2p11
= 8,

M1

2p12
+
m1

2p12
= 11

M2

2p21
+
m2

2p21
= 8,

M2

2p22
+
m2

2p22
= 8

M3

2p31
+
m3

2p31
= 5,

M3

2p32
+
m3

2p32
= 8.
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The solution is obtained as follows: We normalize prices by setting p11 = 1.
From the 5th and 6th equation we obtain p12 = 8

11 and the 7th and 8th equation imply
p12 = p22. The 9th and 10th equation imply p32 = 5

8p
3
1. Putting the last relations into

the 1st and 2nd we get the remaining prices. Putting all the information together
we have p11 = 1, p12 = 8

11 , p
2
1 = p22 = ( 8

11 )
1
2 , p31 = (64

55 )
1
2 , and p32 = 5

8 × ( 64
55 )

1
2 .

Employing the above values for pi
j we obtain for Mi and mi the following

relations:

M1 +M2 +M3 = 7× 8
11

+ 8×
(

8
11

) 1
2

+ 4
5
8
×
(

64
55

) 1
2

,

m1 +m2 +m3 = 8
3
8

+ 8×
(

8
11

) 1
2

+ 5
3
8
×
(

64
55

) 1
2

,

M1 +m1 = 16, M2 +m2 = 16×
(

8
11

) 1
2

and M3 +m3 = 10×
(

64
55

) 1
2

,

which imply a possible solutionM1 = 7× 8
11 ,m1 = 8× 3

11 ,M2 = m2 = 8×( 8
11 )

1
2 ,

M3 = 4 5
8 × ( 64

55 )
1
2 and m3 = 5 3

8 × ( 64
55 )

1
2 . An obvious solution is M1 = 7 8

11 ,

m1 = 8 3
11 ,M2 = m2 = 8× ( 8

11 )
1
2 ,M3 = 4 5

8 × ( 64
11 )

1
2 andm3 = 5 3

8 × ( 64
11 )

1
2 .

However this solution is not unique. For example, we can add to the value for
M1 a small ε > 0 and subtract it fromm1, and then adjust in the opposite direction
M2 andm2. We obtain then a new solution to the system with the same maximum
value for the utilities.

It follows that the normalized prices for an interior solution are unique, and
so are the maximum utilities, but the Mi’s and the mi’s can assume a number of
values. The explanation of the last observation is as follows. The product of the
two goods to the power 1

2 becomes one good and given the equilibrium prices the
structure of the problem is such that the agents are as well off with ε > 0 as with
ε = 0.

One can ask why is it that the same argument would not apply to the previous
formulation of Radner equilibria 1. There we seemed to be getting locally unique
values of Mi’s and mi’s. The reason was that we did not have the property that
rearranging incomes between the agents in Period 1 can be fully compensated by
doing so also in, for example, Period 2. In the present case the periods are among
themselves separated. This was not the case in the previous formulation.

In that case, if we increase the composite commodity (AB)
1
2 , where the Mi’s

have been calculated and decrease(x1
21x

1
22)

1
2 , by adjustingM1’s andm1’s, then we

have to decrease the commodity (x3
11x

3
12)

1
2 , and increase (CD)

1
2 , which requires

a reduction in (AB)
1
2 . Everything was finally balanced there.

There are also approximate equilibria from the random algorithm, which ap-
proach the true equilibrium above. Its application gives:

p11 = 1, p12 = 0.7272, p21 = 0.8528, p22 = 0.8528, p31 = 1.0787, p32 = 0.6742

and, approximately,M1 +m1 is 16.000051,M2 +m2 is 13.6448, andM3 +m3 is
10.7871. The algorithm also captures the fact that the values of the Mi’s andmi’s
are not fully determined.
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On the basis of the above analysis, we see that full information Radner equilib-
rium is not the same as fully revealing REE because in the latter case a monotonic,
nonlinear transformation can be applied, such as replacing (xi

11x
i
12)

1
2 by (xi

11x
i
12),

without affecting the results as the calculations are per period. This is not the case
in Radner equilibrium where the calculations are on the sum over all the periods.

We return now to the characterization of equilibrium concepts in Example 6.1.

D. WFC

With respect to the cooperative equilibrium concepts, first we show that in this
example the fully revealing REE is in the WFC. These allocations are obtained by
solving the following problem, where we use superscripts to characterize the states.
Superscripts 1, 2 and 3 correspond to states a, b and c respectively. The WFC is
characterized as follows:

Problem

Maximize U1 = (x1
11x

1
12)

1
2 + (x2

11x
2
12)

1
2 + (x3

11x
3
12)

1
2

Subject to

((8−x1
11)(11−x1

12))
1
2 +((8−x2

11)(8−x2
12))

1
2 +((5−x3

11)(8−x3
12))

1
2 =U2 (fixed)

U1 ≥ 7.3, U2 ≥ 8.46.

The conditions on the utility functions imply that there is a unique interior
maximum per U2. Setting up the Lagrangean function we obtain the first order
conditions:

x1
12

1
2

x1
11

1
2

= �
(11− x1

12)
1
2

(8− x1
11)

1
2

x2
12

1
2

x2
11

1
2

= �
(8− x2

12)
1
2

(8− x2
11)

1
2

x3
12

1
2

x3
11

1
2

= �
(8− x3

12)
1
2

(5− x3
11)

1
2(

x1
12

1
2

x1
11

1
2

)−1

= �

(
(11− x1

12)
1
2

(8− x1
11)

1
2

)−1

(
x2

12

1
2

x2
11

1
2

)−1

= �

(
(8− x2

12)
1
2

(8− x2
11)

1
2

)−1

(
x3

12

1
2

x3
11

1
2

)−1

= �

(
(8− x3

12)
1
2

(5− x3
11)

1
2

)−1

((
8− x1

11
) (

11− x1
12
)) 1

2 + ((8− x2
11)(8− x2

12))
1
2 +
((

5− x3
11
) (

8− x3
12
)) 1

2

= U2 (fixed).
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It is easy to see that these conditions are satisfied by the REE allocations with the
Lagrange multiplier � = 1.

E. Private core

Next we look at the way we can obtain the private core allocations and then we shall
have to find the WFV allocations. We allow for free disposal and see what happens.
For the private core allocations we impose private information measurability and
solve the following:

Problem

Maximize U1 = 2A
1
2B

1
2 + (x3

11x
3
12)

1
2

Subject to

(x1
21x

1
22)

1
2 + 2C

1
2D

1
2 ≥ U2 (fixed)

A+ x1
21 ≤ 8, B + x1

22 ≤ 8, A+ C ≤ 8, B +D ≤ 8,
A+ C ≤ 8, B +D ≤ 8, x3

11 + C ≤ 5, x3
12 +D ≤ 8,

U1 ≥ 7.3,U2 ≥ 8.46.

We operate with equality constraints eliminatingx1
21, x

1
22, x

3
11, x

3
12, A and D

and forming the LagrangeanL = 2(8−C)
1
2 (B)

1
2 +λ{(C)

1
2 (11−B)

1
2 +2(C)

1
2 (8−

B)
1
2 − U2}.
First order conditions are(

8− C
B

) 1
2

+
1
2

(
5− C
B

) 1
2

= �

{
1
2

(
C

11−B

) 1
2

+
(

C

8−B

) 1
2
}

(8)

and (
B

8− C

) 1
2

+
1
2

(
B

5− C

) 1
2

= �

{
1
2

(
11−B
C

) 1
2

+
(

8−B
C

) 1
2
}

(9)

which we can rewrite as

1
C

1
2

{
(8− C)

1
2 +

1
2
(5− C)

1
2

}
= �B

1
2

{
1
2

(
1

11−B

) 1
2

+
(

1
8−B

) 1
2
}
(10)

and

C
1
2

{(
1

8− C

) 1
2

+
1
2

(
1

5− C

) 1
2
}

= �
1
B

1
2

{
1
2
(11−B)

1
2 + (8−B)

1
2

}
.

(11)

Dividing gives

1
C

⎧⎨⎩ (8− C)
1
2 + 1

2 (5− C)
1
2

1
2

1
(8−C)

1
2

+ 1
(5−C)

1
2

⎫⎬⎭ = B

⎧⎨⎩
1
2

1
(11−B)

1
2

+ 1
(8−B)

1
2

1
2 (11−B)

1
2 + (8−B)

1
2

⎫⎬⎭ . (12)
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It is a matter of routine substitutions to show that the allocation x1 =
((5.5, 5.5), (5.5, 5.5), (2.5, 5.5)), x2 = ((2.5, 5.5), (2.5, 2.5), (2.5, 2.5)) is in
the private core, with normalized expected utilities U1 = 14.70 and U2 = 8.70.

Next we show that this allocation cannot be obtained as a Radner equilibrium
with positive prices. We are looking for equality in all the conditions stated in the
section Radner equilibria 1. A corner solution would require some zero quantities.

Substituting into the conditions for the demand functions we obtain M1 =
11(p11 + p21), m1 = 5p11, M1 = 11(p12 + p22), m1 = 11p12, M2 = 5p31, m2 =
5(p11 + p21), M2 = 11p23 and m2 = (p22 + p32). We normalize and set p11 = 1.
Then we obtain m1 = 5, p12 = 5

11 , p32 = 1, p31 = 11
5 , and we require further that

4p31p
3
2 = (p11 + p21)(p

1
2 + p22) and 4p11p

1
2 = (p21 + p31)(p

2
2 + p32). These equations

cannot be satisfied by nonnegative prices because they imply−3.890 = 6
11p

2
1+

6
5p

2
2.

Obviously there are measurable allocations which are not in the private core,
such as

x1 = ((5, 5), (5, 5), (2, 5)), and x2 = ((3, 6), (3, 3), (3, 3)),
x1 = ((4, 4), (4, 4, (1, 4)), x2 = ((4, 7), (4, 4), (4, 4))

as can be seen through routine calculations.
On the other hand we can show directly that a Radner equilibrium is in the

private core. Taking into account the constraints for demand to be equal to supply,
the first order conditions for the agents’ maximization of utilities can be cast as
follows.

For Agent 1:

B
1
2

(8− C)
1
2
− �′

(p11 + p21) = 0,
(8− C)

1
2

B
1
2

− �′
(p12 + p22) = 0, (13)

1
2

B
1
2

(5− C)
1
2
− �′

p31 = 0, and
1
2

(5− C)
1
2

B
1
2

− �′
p32 = 0, (14)

and for Agent 2:

1
2

(11−B)
1
2

C
1
2

− ψp11 = 0,
1
2

C
1
2

(11−B)
1
2
− ψp12 = 0, (15)

(8−B)
1
2

C
1
2

− ψ(p21 + p31) = 0, and
C

1
2

(8−B)
1
2
− ψ(p22 + p32) = 0. (16)

Substituting (14), (15), (16) and (17) into (9) and (10) we obtain in both instances
the relation �

′
= �ψ which shows that the Radner equilibrium is in the private core.

F. WFV

Routine calculations imply Vλ({1}) = 1
3λ1A, Vλ({2}) = 1

3λ2B, where A =
(2(7)

1
2 + 2) and B = (2(7)

1
2 + 10

1
2 ).

Next we have, Vλ({1, 2}) = 1
3 maxx {λ1(x1

11x
1
12)

1
2 +λ2(8−x1

11)
1
2 (11−x1

12)
1
2 +

λ1(x2
11x

2
12)

1
2 +λ2(8−x2

11)
1
2 (8−x2

12)
1
2 +λ1(x3

11x
3
12)

1
2 +λ2(5−x3

11)
1
2 (8−x3

12)
1
2 }.
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We define the per period terms of the sum by U1, U2 and U3. We assume that
both λ’s are positive. Otherwise all the weight is put on one agent. We can do
separate maximization and defining Λ1 = λ2

1, Λ2 = λ2
2 we obtain the conditions

(i) Λ1x
1
12(8− x1

11) = Λ2x
1
11(11− x1

12) and Λ1x
1
11(11− x1

12) = Λ2x
1
12(8− x1

11)
(ii) Λ1x

2
12(8− x2

11) = Λ2x
2
11(8− x1

12) and Λ1x
2
11(8− x1

12) = Λ2x
2
12(8− x2

11)
(iii) Λ1x

3
12(5− x3

11) = Λ2x
3
11(8− x3

12) and Λ1x
3
11(11− x3

12) = Λ2x
3
12(5− x3

11)

From (i), (ii) and (iii) we obtain, respectively, x1
12 = 11

8 x
1
11, x2

12 = x2
11 and

x3
12 = 8

5x
3
11. Which means that the maximum will be sought on these flats.

From the above we obtain U1 = ( 11
8 )

1
2 (λ1x

1
11 + λ2(8 − x1

11)), U2 =
λ1x

2
11 + λ2(8 − x2

11)) and U3 = ( 8
5 )

1
2 (λ1x

3
11 + λ2(5 − x3

11)). It follows, that

Vλ({1, 2}) = 1
3 maxx1 [(

11
8 )

1
2 (λ1x

1
11 + λ2(8− x1

11)) + (λ1x
2
11 + λ2(8− x2

11)) +
( 8
5 )

1
2 (λ1x

3
11 +λ2(5−x3

11))]. I.e. Vλ({1, 2}) = 1
3 maxx1 [8(11

8 )
1
2 {max(λ1, λ2)}+

8{max(λ1, λ2)} + 5(8
5 )

1
2 {max(λ1, λ2)}], which we can write as Vλ({1, 2}) =

Cmax(λ1, λ2), where C = (88)
1
2 + 8 + (40)

1
2 . The significance of the flats is

clear. For maximization the choice from the extreme values of the variable x1 de-
pends on the values of λ1 and λ2. In particular for λ1 > λ2 all endowments are
allocated to the utility function of Agent 1, for λ1 < λ2 the one of Agent 2, and for
λ1 = λ2 the allocation can be arbitrary. This can be seen by obtaining Vλ({1, 2})
through the per period maximization of the utility of Agent 1 subject to the utility
of Agent 2 being fixed.

For WFV allocations we require solutions to

λ1

∑
ω

(x11(ω)x12(ω))
1
2 =

1
2
{Cmax{λ1, λ2}+Aλ1 −Bλ2} (17)

λ2

∑
ω

(x21(ω)x22(ω)) =
1
2
{Cmax{λ1, λ2} −Aλ1 +Bλ2}

subject to
x1 + x2 ≤ e1 + e2,

relaxing the feasibility condition. The right-hand sides of the equations above are
the Shi(Vλ)’s.

The set of WFV allocations is not empty. It can be checked that for
λ1 = λ2 the allocation in which P1 gets ((4, 11

2 ), (5, 5), ( 5
4 , 2)) and P2 gets

((4, 11
2 ), (3, 3), ( 15

4 , 6)) is a WFV allocation. We see this by inserting these al-
locations and λ1 = λ2 into the relations above to obtain

(22)
1
2 + 5 + (2.5)

1
2 =

1
2

(
(88)

1
2 + 8 + (40)

1
2 + 2(7)

1
2 + 2− (10)

1
2 − 2(7)

1
2

)
2((22)

1
2 + 3 + (7.5)

1
2 ) =

1
2

(
(88)

1
2 +8+(40)

1
2−2(7)

1
2−2+(10)

1
2 +2(7)

1
2

)
which can be checked that they are satisfied.

On the other hand, it is a matter of tedious calculations to show that the fully
revealing REE is not a WFV allocation although it belongs to the weak fine core.
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Performing the calculations we obtain the relations

11.46λ1 =
1
2
[
23.71{max(λ1, λ2)}+ 7.291λ1 − 8.45378λ2

]
and

12.25λ2 =
1
2
[
23.71{max(λ1, λ2)} − 7.291λ1 + 8.45378λ2

]
.

We distinguish between two cases and we examine whether the REE is in a
weak fine value allocation.

Case 1. λ1 ≥ λ2
We require

11.46λ1 =
1
2
[
23.71λ1 + 7.291λ1 − 8.45378λ2

]
and

12.25λ2 =
1
2
[
23.71λ1 − 7.291λ1 + 8.45378λ2

]
which imply 4.04λ1 = 4.23λ2 and 8.21λ1 = 8.22λ1 both of which cannot be
satisfied.

Case 2. λ2 ≥ λ1
We require now

22.92λ1 = 23.71λ2 + 7.291λ1 − 8.45378λ2 and

24.50λ2 = 23.71λ2 − 7.291λ1 + 8.45378λ2

which imply 15.63λ1 = 15.26λ2 and 7.66λ2 = 7.29λ1 which again cannot be
satisfied.

The question arises why is the set of WFV allocations smaller than the WFC,
although this of course is only true in the case of two agents.An intuitive explanation
is that for the WFV allocations the conditions are more stringent because of the
homogeneity of equations in λ1, and λ2. We need to get from both equations in
(18) the same λ1

λ2
, and if we are given x(ω) this is highly unlikely to happen.

Now we show that a WFV equilibrium exists only for λ1 = λ2.
Adding side by side the equations (18), we get on the RHS Cmax{λ1, λ2}

which is equal to Vλ({1, 2}). Therefore the sum on the LHS must be also equal to
Vλ({1, 2}) and therefore a maximum, and we have seen how this depends on the
weights λ1 and λ2.

Putting all the information together leads to the following possibilities. λ1 > λ2
requires

λ1C =
1
2

{
λ1C +Aλ1 −Bλ2

}
0 =

1
2
{λ1C −Aλ1 +Bλ2} .

Either of these leads to
Bλ2 = (A− C)λ1 < 0

which is impossible. Similarly λ1 < λ2 is impossible.
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Finally with λ1 = λ2 the equations for a weak-fine-value become, on writing
yα = x12(ωα) and recalling that xα = 8

11yα,(
8
11

) 1
2

(2y1 − 11) + (2y2 − 8) +
(

5
8

) 1
2

(2y3 − 8) = 2− 10
1
2

which is satisfied by the previous specified allocation.

Example 6.3. The problem is a two-state, Ω = {a, b}, three-player, two-good
game with utilities and initial endowments given by:

u1(x
j
11, x

j
12) = min(xj

11, x
j
12); e1 = ((1, 0), (1, 0)), F1 = {{a}, {b}}

u2(x
j
21, x

j
22) = min(xj

21, x
j
22); e2 = ((0, 1), (0, 1)), F2 = {{a}, {b}}

u3(x
j
31, x

j
32) =

xj
31 + xj

32

2
; e3 = ((0, 0), (0, 0)), F3 = {{a, b}},

where xj
ik denotes consumption of Player i of Good k, in state j. Every player has

the same prior distribution µ(ω) = 1
2 for ω ∈ Ω.

The weights of the agents are λi for i = 1, 2, 3. First we calculate the charac-
teristic function Vλ.

ForS = {1}, {2} or {3}we have ei = xi and so ui = 0. Therefore Vλ({i}) =
0. Next consider S = ({1, 2}). The sum of the weighted utilities∑

j∈Ω

1
2
[λ1 min(xj

11, x
j
12) + λ2 min(xj

21, x
j
22)]

must be maximized subject to xj
11 + xj

21 = 1 and xj
12 + xj

22 = 1 for j ∈ Ω. It is
straightforward that for a maximum we must have x11 = x12 and x21 = x22 and
then that Vλ({1, 2}) = max(λ1, λ2). It is also straigtforward that Vλ({1, 3}) =
Vλ({2, 3}) = λ3

2 .
We now turn our attention to S = {1, 2, 3}. The expression

∑
j∈Ω

1
2

[
λ1 min(xj

11, x
j
12) + λ2 min(xj

21, x
j
22) + λ3

xj
31 + xj

32

2

]

must be maximized subject to xj
11 + xj

21 + xj
31 = 1 xj

12 + xj
22 + xj

32 = 1, for
j ∈ Ω.

Again from the first two terms we get max(λ1, λ2) and for the whole constraint
sum Vλ({1, 2, 3}) = max(λ1, λ2, λ3).

Consider now the special case λi = 1 for i = 1, 2, 3. Replacing in the above
λi by 1 we obtain

Vλ({i}) = 0, for i = 1, 2, 3

Vλ({1, 2}) = 1, Vλ({1, 3}) = Vλ({2, 3}) =
1
2

for i = 2, 3

Vλ({1, 2, 3}) = 1.
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For this particular case, λi = 1, the Shapley values are given by

Sh1(V ) = 0 +
1
6
(1− 0) +

1
6

(
1
2
− 0
)

+
2
6

(
1− 1

2

)
=

5
12

Sh2(V ) =
5
12
, and Sh3(V ) =

2
12
.

Hence the value allocation is, per state,

(x11, x12) = (x21, x22) =
(

5
12
,

5
12

)
and (x31, x32) =

(
2
12
,

2
12

)
.

On the other hand any Walrasian type allocation will award zero quantities to
Player 3, as he has no initial endowments. Therefore the point that this example is
making is that with the number of agents n ≥ 3, it is possible that there is a value
allocation which does not belong to a Walrasian type set, (i.e. it is not a REE or
Radner equilibrium).

However it can also be used to make one more point that is equally important.
It can be seen that for λ1 = λ2 = 1 and λ3 = 0 or for the case where there is
no third agent and with λ1 = λ2 = 1 we have Sh1(V ) = Sh2(V ) = 1

2 . This says
that it is possible that a group which includes all the agents can do better for its
members than each one of them in isolation, but this is not the end of the story. A
sub-group might do even better.

With respect to offering an interpretation of the distinction between side pay-
ments and a WFV allocation, we look at the following situation. Two agents have
some initial endowments, the same weights, and their utilities are really revenues
from selling these quantities in a non-competitive market. We can hand over all
quantities to one agent, ask him to sell them on the market, keep his Shapley share
and hand the other agent his own. With respect to the weak fine value it corresponds
to the case when only a redistribution of the endowments is allowed, in which case
we might only be able to do it when specific weights are given to the individuals.

Non-existence of REE:
Finally we discuss a specific version of the well known Kreps (1977) example of a
non-existent REE. On the other hand, in the same example, the private core exists
which suggests that the latter concept has an advantage over that of REE.11

Example 6.4 (2003b). There are two agents I = {1, 2}, two commodities, i.e.
Xi = R2

+ for each Agent, i, and two states of nature Ω = {ω1, ω2}, considered by
the agents as equally probable. In xij the first index will refer to the agent and the
second to the good.

We assume that the endowments, per state ω1 and ω2 respectively, and infor-
mation partitions of the agents are given by

e1 = ((1.5, 1.5), (1.5, 1.5), F1 = {{ω1}, {ω2}};
e2 = ((1.5, 1.5), (1.5, 1.5), F2 = {{ω1, ω2}}.

11 Example 6.4 is also discussed in Glycopantis et al. (2003b).
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The utility functions of Agents 1 and 2 respectively, are for ω1 given by u1 =
log x11 + x12 and u2 = 2 log x21 + x22 and for state ω2 by u1 = 2 log x11 + x12
and u2 = log x21 + x22.

We consider first the possibility of REE.

Case 1. Fully revealing REE.
Suppose that there exist, after normalization, prices (p1(1), p2(1))	=(p1(2), p2(2)),
where pi(j) denotes the price of good i in state j. The problems that the two agents
solve are as follows.

State ω1.

Agent 1:
Maximize u1 = log x11 + x12
Subject to

p1(1)x11 + p2(1)x12 = 1.5(p1(1) + p2(1))

and

Agent 2:
Maximize u2 = 2 log x21 + x22
Subject to

p1(1)x21 + p2(1)x22 = 1.5(p1(1) + p2(1)).

The agents solve analogous problems in state ω2. However it is not possible
to find (p1(1), p2(1)) 	= (p1(2), p2(2)). In the two problems the demands of the
agents are interchanged so that the total demand stays the same while the total
supply is fixed. It is also straightforward to check that there is no multiplicity of
equilibria per state.

Case 2. Non-revealing REE.
Now we consider the possibility of p1(1) = p1(2) = p1 and p2(1) = p2(2) = p2.
The two agents would act as follows.

Agent 1:
He can tell the states of nature and obtains the demand functions
forω1,x11 = p2

p1
andx12 = 1.5p1

p2
+0.5 and forω2,x11 = 2p2

p1
andx12 = 1.5p1

p2
−0.5

for 3p1 ≥ p2.
It is clear that the demands differ per state of nature.

Agent 2:
He sets x21(ω1) = x21(ω2) = x21 and x22(ω1) = x22(ω2) = x22 and solves the
problem:

Maximize u2 = 1
2 (2 log x21 + x22) + 1

2 ( log x21 + x22) = 1.5 log x21 + x22
Subject to

p1x21 + p2x22 = 1.5(p1 + p2).

So the highest indifference curve touches the budget constraint only once. On
the other hand the demands of Agent 1 differ per ω. It follows that the markets
cannot be cleared with common prices in both states of nature.

The above analysis shows that there is no REE in this model.



Equilibrium concepts in differential information economies 29

Next we consider, in the same example, the existence of private core allocations.
These are obtained as solutions of the problem:

Maximize E2 = 1.5 log x21 + x22
Subject to

1
2
( log x11(ω1) + x12(ω1)) +

1
2
( log x11(ω2) + x12(ω2)) ≥ E1 (fixed),

x1j(ω1), x1j(ω2) ≥ 0, E1, E2 ≥ 1.5 log 1.5 + 1.5
x21 + x11(ω1) ≤ 3, x21 + x11(ω2) ≤ 3,
x22 + x12(ω1) ≤ 3, x22 + x12(ω2) ≤ 3.

The structure of the problem, i.e. the continuity of the objective function and the
compactness of the feasible set, implies that it has always a solution. In particular,
if we set the quantity constraints equal to 3 and 1.5 log 1.5 + 1.5 = E1 then the
initial allocation is in the private core.

The discussion of Example 6.4 indicates that the REE may not be an appropriate
concept to explain trades in DIE. The agents here receive no instructions as to what
they should be doing.

7 Incentive compatibility

There are alternative formulations of the notion of incentive compatibility. The
basic idea is that an allocation is incentive compatible if no coalition can misreport
the realized state of nature and have a distinct possibility of making its members
better off.

Suppose we have a coalition S, with members denoted by i, and the comple-
mentary set I \ S with members j. Let the realized state of nature be ω∗. Each
member i ∈ S sees Ei(ω∗). Obviously not all Ei(ω∗) need be the same, however
all Agents i know that the actual state of nature could be ω∗.

Consider a state ω
′

such that for all j ∈ I \ S we have ω
′ ∈ Ej(ω∗) and for

at least one i ∈ S we have ω
′
/∈ Ei(ω∗). Now the coalition S decides that each

member i will announce that she has seen her own set Ei(ω
′
) which, of course,

contains a lie. On the other hand we have that ω
′ ∈
⋂

j /∈S Ej(ω∗).
The idea is that if all members of I \S believe the statements of the members of

S then each i ∈ S expects to gain. For coalitional Bayesian incentive compatibility
(CBIC) of an allocation we require that this is not possible. This is the incentive
compatibility condition we used in Glycopantis et al. (2001).12

We showed in Example 5.1 that in the three-agent economy without free disposal
the private core allocation x1 = (4, 4, 1), x2 = (4, 1, 4) and x3 = (2, 0, 0) is
incentive compatible. This follows from the fact thatAgent 3 who would potentially
cheat in state a has no incentive to do so. It has been shown in Koutsougeras and
Yannelis (1993) that if the utility functions are monotone and continuous then
private core allocations are always CBIC.

12 See Krasa and Yannelis (1994) and Hahn and Yannelis (1997) for related concepts.
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On the other hand the WFC allocations are not always incentive compatible, as
the proposed redistribution x1 = x2 = (5, 2.5, 2.5) in Example 5.2 shows. Indeed,
if Agent 1 observes {a, b}, he has an incentive to report c and Agent 2 has an
incentive to report b when he observes {a, c}.

CBIC coincides in the case of a two-agent economy with the concept of Indi-
vidually Bayesian Incentive Compatibility (IBIC), which refers to the case when S
is a singleton.

We consider here explicitly the concept of Transfer Coalitionally Bayesian
Incentive Compatible (TCBIC) allocations. This allows for transfers between the
members of a coalition, and is therefore a strengthening of the concept of Coali-
tionally Bayesian Incentive Compatibility (CBIC).

Definition 7.1. An allocation x = (x1, . . . , xn) ∈ L̄X , with or without free dis-
posal, is said to be TCBIC if it is not true that there exists a coalition S, states ω∗

and ω
′
, with ω∗ different from ω

′
and ω

′ ∈ ⋂i/∈S Ei(ω∗) and a random, net-trade
vector, z = (zi)i∈S among the members of S,

(zi)i∈S ,
∑
S

zi = 0

such that for all i ∈ S there exists Ēi(ω∗) ⊆ Zi(ω∗) = Ei(ω∗)∩ (
⋂

j /∈S Ej(ω∗)),
for which ∑

ω∈Ēi(ω∗)

ui(ω, ei(ω) + xi(ω
′
)− ei(ω

′
) + zi)qi

(
ω|Ēi(ω∗)

)
(18)

>
∑

ω∈Ēi(ω∗)

ui(ω, xi(ω))qi
(
ω|Ēi(ω∗)

)
.

Notice that ei(ω) + xi(ω
′
)− ei(ω

′
) + zi(ω) ∈ Xi(ω) is not necessarily mea-

surable. The definition implies that no coalition can hope that by misreporting a
state, every member will become better off if they are believed by the members of
the complementary set.

Returning to Definition 7.1, one can define CBIC to correspond to zi = 0 and
then IBIC to the case when S is a singleton. Thus we have (not IBCI)⇒ (not CBIC)
⇒ (not TCBIC). It follows that TCBIC ⇒ CBIC ⇒ IBIC.

We now provide a characterization of TCBIC:

Proposition 7.1. Let E be a one-good DIE, and suppose each agent’s utility func-
tion, ui = ui(ω, xi(ω)) is monotone in the elements of the vector of goods
xi, that ui(., xi) is Fi-measurable in the first argument, and that an element
x = (x1, . . . , xn) ∈ L̄1

X is a feasible allocation in the sense that
∑n

i=1 xi(ω) =∑n
i=1 ei(ω) ∀ω. Consider the following conditions:

(i) x ∈ L1
X =

∏n
i=1 L

1
Xi

. and
(ii) x is TCBIC.

Then (i) is equivalent to (ii).

Proof. See Glycopantis et al. (2003a).
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Next we state conditions under which the private core allocation is CBIC.

Proposition 7.2. let E be an arbitrary differential information economy with mono-
tone and continuous utility functions. The private core and the private value are
CBIC.

Proof. See Koutsougeras and Yannelis (1993), Krasa and Yannelis (1994), and
Hahn and Yannelis (2001).

Corollary 7.1. A no-free disposal Radner equilibrium is CBIC.13

Proof. It can be easily shown that any no-free disposal Radner equilibrium be-
longs to the private core. Therefore by Proposition 7.2 it follows that the Radner
equilibrium is CBIC.

Proposition 7.1 characterizes TCBIC and CBIC in terms of private individual
measurability of allocations. It will enable us to conclude whether or not, in case of
non-free disposal, any of the solution concepts will be TCBIC, whenever feasible
allocations are Fi-measurable.

It follows also that the redistribution(
5 2.5 2.5
5 2.5 2.5

)
is not CBIC because it is not Fi-measurable.

On the other hand the proposition implies, again in Example 5.1, that the allo-
cation (

5 5 0
5 0 5

)
is incentive compatible. As we have seen this is a non-free disposal REE, and a
private core allocation.

We note that the above propositions are not true if we assume free disposal.
In that case Fi-measurability does not imply incentive compatibility. In the case
with free disposal, private core and Radner equilibrium need not be incentive
compatible. In order to see this we notice that in Example 5.2 the (free disposal)
Radner equilibrium is x1 = (4, 4, 1) and x2 = (4, 1, 4). The above allocation is
clearly Fi-measurable and it can be checked directly that it belongs to the (free
disposal) private core. However it is not TBIC since if state a occurs Agent 1 has
an incentive to report state c and become better off.

Next we consider Example 6.1. We define A1 = {a, b} and A2 = {b, c}. We
assume that P1 acts first and that when P2 is to act he has heard the declaration
of P1.

As shown in Section 6 the fully revealing REE allocations and corresponding
utilities are:

In state a, x∗
11 =

85
22
, x∗

12 =
85
16
, x∗

21 =
91
22
, x∗

22 =
91
16

;u∗
1 = 4.53, u∗

2 = 4.85.

13 A direct proof of the CBIC of the non-free disposal Radner equilibrium with infinitely many
commodities has been given in Herves et al. (2003).
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In state b, x∗
11 = 4, x∗

12 = 4, x∗
21 = 4, x∗

22 = 4; u∗
1 = 4, u∗

2 = 4.

In state c, x∗
11 =

37
16
, x∗

12 =
37
10
, x∗

21 =
43
16
, x∗

22 =
43
10

;u∗
1 = 2.93, u∗

2 = 3.40.

The normalized expected utilities of the REE are U1 = 11.46, U2 = 12.25.
We can see that the REE redistribution, which belongs also to the WFC, is

not CBIC as follows.14 Suppose that P1 sees {a, b} and P2 sees{a} but misreports
{b, c}. If P1 believes the lie then state b is believed. So P1 agrees to get the allocation
(4, 4). P2 receives the allocation e2(a)+x2(b)−e2(b) = (1, 10)+(4, 4)−(1, 7) =
(4, 7) with u2(4, 7) = 5.29 > u2( 91

22 ,
91
16 ) = 4.85. Hence P2 has a possibility of

gaining by misreporting and therefore the REE is not CBIC. On the other hand if
P2 sees {b, c} and P1 sees {c}, the latter cannot misreport {a, b} and hope to gain
if P2 believes it is b.

In employing game trees in the analysis we adopt the definition of IBIC. The
game-theoretic equilibrium concept employed will be that of PBE. A play of the
game will be a directed path from the initial to a terminal node.

In terms of the game trees, a core allocation will be IBIC if there is a profile of
optimal behavioral strategies along which no player misreports the state of nature
he has observed. This allows for the possibility that players have an incentive to lie
from information sets which are not visited by an optimal play.

In view of the analysis using game trees we comment further on the general idea
of CBIC. First we look at it again, in a similar manner to the one in the beginning
of Section 4.

Suppose the true state of nature is ω̄. Any coalition can only see together that
the state lies in

⋂
i∈S Ei(ω̄). If they decide to lie they must first guess at what is

the true state and they will do so at some ω∗ ∈
⋂

i∈S Ei(ω̄). Having decided on

ω∗ as a possible true state, they pick some ω
′ ∈ ⋂j /∈S Ej(ω∗) and assuming the

system is not CBIC they hope, by each of them announcingEi(ω
′
) to secure better

payoffs.
This is all contingent on their being believed by I \ S, which depends on

having been correct in guessing that ω∗ = ω̄. If ω∗ 	= ω̄, i.e they guess wrongly,
then since

⋂
j /∈S Ej(ω∗) 	= ⋂j /∈S Ej(ω̄) the lie may be detected, since possibly

ω
′
/∈ ⋂j /∈S Ej(ω̄).

Therefore the definition of CBIC can only be about situations where a lie might
be beneficial. On the other hand the extensive form forces us to consider the al-
ternative of what happens if the lie is detected. It requires statements concerning
earlier decisions by other players to lie or tell the truth and what payoffs will occur
whenever a lie is detected, through observations or incompatibility of declarations.
Only in this fuller description can players make a decision whether to risk a lie.
Such considerations probably open the way to an incentive compatibility definition
based on expected gains from lying.

The issue is whether cooperative and noncooperative static solutions can be
supported through an appropriate noncooperative solution concept. The analysis
below shows that CBIC allocations can be supported by a PBE while absence of

14 Palfrey and Srivastava (1986) have also shown that the REE may not be incentive compatible.
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incentive compatibility implies lack of such support. It is also shown how imple-
mentation of allocations becomes possible by introducing an exogenous third party
or an endogenous intermediary.

We recall that a PBE consists of a set of players’ optimal behavioral strategies,
and consistent with these, a set of beliefs which attach a probability distribution
to the nodes of each information set (Tirole, 1988). It is a variant of the idea of a
sequential equilibrium (Kreps and Wilson, 1982).

Note 7.1. Different notions of incentive compatibility for differential information
economies were first introduced by in Krasa andYannelis (1994). It should be noted
that the framework for differential information economies is different than the one
in the Harsanyi type models and the notions of incentive compatibility which they
use. These models assume that the initial endowments are independent of the state
of nature and therefore uncertainty comes only from the utility functions.

Notice that if the initial endowments are assumed to be constant, then most
of the examples in this paper cannot be analysed by a Harsanyi type model. A
comparison between the DIE model and the Harsanyi type models can be found in
Hahn and Yannelis (1997). In particular this paper contains a comparison of some
of the Holmström and Myerson (1983) incentive compatibility notions and the ones
in the DIE literature.

Finally it is important to notice that in a multilateral contracts model, it appears
more appropriate to ensure CBIC rather than IBIC. Obviously CBIC implies IBIC
but the reverse is not true, as an example in the preface of this volume demonstrates.
Therefore lack of CBIC may make a contract unstable or not viable.

8 Non-implementation of Radner equilibria, of WFC and WFV allocations

We examine here the implementation, as a PBE of different equilibrium concepts.
This section is closely related to the previous one. The fundamental issue is to
connect, in the context of the partition model, the idea of implementation, in the
form of a PBE of an extensive form game, to the CBIC property. Namely, we
wish to check whether an allocation can be realized as a PBE in an incomplete
information, dynamic game, in the form of a tree, and how this is connected to the
CBIC property.

The static concept of the CBIC implies that no agent has an incentive to lie
with respect to the state(s) he has observed and the PBE satisfies basic rationality
criteria in a game tree in which the agents are asymmetrically informed.

We examine whether cooperative or Walrasian, noncooperative, static equilib-
rium allocations, can be supported as the outcome of a dynamic, noncooperative
solution concept. We also examine the role that a third party can play in supporting
an equilibrium.

A general conclusion is that static equilibrium allocations with the CBIC prop-
erty can be supported, under reasonable rules, as PBE outcomes. This discussion
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helps us to reach a conclusion as to which equilibrium concept can be considered
as appropriate. We find that private core allocations have distinct advantages.15

8.1 Non-implementation of Radner equilibria, of WFC and WFV allocations

We consider Example 5.2. We show here that lack of IBIC implies that two agents
do not sign a proposed contract because they have an incentive to cheat. Therefore
PBE leads to no-trade.

We shall investigate the possible implementation of the allocation(
4 4 1
4 1 4

)

of Example 5.2, contained in a proposed contract between P1 and P2. As we have
seen, with free disposal this is a Radner equilibrium allocation.

This allocation is not IBIC because, as we explained in Section 8, if Agent 1
observes A1 = {a, b}, he has an incentive to report c and Agent 2 has an incentive
to report b when he observes A2 = {a, c}.

We construct a game tree and employ reasonable rules for calculating payoffs.
In fact we look at the contract (

5 4 1
5 1 4

)
·

The proposed allocation can be obtained by invoking free disposal in state a. Of
course to impose free disposal causes certain problems, because the question arises
as to how it will be verified that the agents have actually thrown away 1 unit.
However we assume that this is possible. In the analysis below we assume that the
players move sequentially.

The rules for calculating the payoffs in terms of quantities, i.e. the terms of the
contract, are:

(i) If the declarations by the two players are incompatible, that is (c1, b2) then no-
trade takes place and the players retain their initial endowments.
That is the case when either state c, or state b occurs and Agent 1 reports state c
and Agent 2 state b. In state a both agents can lie and the lie cannot be detected
by either of them. They are in the events A1 and A2 respectively, they get 5 units
of the initial endowments and again they are not willing to cooperate. Therefore
whenever the declarations are incompatible, no trade takes place and the players
retain their initial endowments.

(ii) If the declarations are (A1, A2) then even if one of the players is lying, this
cannot be detected by his opponent who believes that state a has occurred and both
players have received endowment 5. Hence no-trade takes place.

15 For a thorough analysis in this section the reader is referred also to Glycopantis et al. (2001, 2003a,
2003b).
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Figure 2

(iii) If the declarations are (A1, b2) then a lie can be beneficial and undetected. P1
is trapped and must hand over one unit of his endowment to P2. Obviously if his
initial endowment is zero then he has nothing to give.

(iv) If the declarations are (c1, A2) then again a lie can be beneficial and undetected.
P2 is now trapped and must hand over one unit of his endowment to P1. Obviously
if his initial endowment is zero then he has nothing to give.

For the calculations of payoffs the revelation of the actual state of nature is not
required. We could specify that a player does not lie if he cannot get a higher payoff
by doing so. We assume that each player, given his beliefs, chooses optimally from
his information sets.

In Figure 2 we indicate, through heavy lines, plays of the game, obtained through
backward induction, which are the outcome of the choices by nature and the optimal
behavioral strategies by the players. The interrupted lines signify that nature simply
chooses among three alternatives, with equal probabilities. The fractions next to
the nodes of the information sets are obtained, whenever possible through Bayesian
updating. That is they are consistent with the choice of a state of nature and the
optimal behavioral strategies of the players.

For all choices by nature, at least one of the players tells a lie on the optimal
play. The players, by lying, avoid the possibility of having to make a payment and
the PBE confirms the initial endowments. The decisions to lie imply that the players
will not sign the contract (5, 4, 1) and (5, 1, 4). A similar conclusion would have
been reached if we investigated directly the allocation (4, 4, 1) and (4, 1, 4).
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Finally suppose we were to modify (iii) and (iv) of the rules i.e.: (iii) If the dec-
larations are (A1, b2) then a lie can be beneficial and undetected, and P1 is trapped
and must hand over half of his endowment to P2. Obviously if his endowment is
zero then he has nothing to give.
(iv) If the declarations are (c1, A2) then again a lie can be beneficial and undetected.
P2 is now trapped and must hand over half of his endowment to P1. Obviously if
his endowment is zero then he has nothing to give.

The new rules would imply the following changes in the payoffs in Figure 2,
from left to right. The second vector would now be (2.5, 7.5), the third vector (7.5,
2.5), the sixth vector (2.5, 2.5) and the eleventh vector (2.5, 2.5). The analysis in
Glycopantis et al. (2001) shows that the weak fine core allocation in which both
agents receive (5, 2.5, 2.5) cannot be implemented as a PBE. Again this allocation
is not IBIC. The same allocation belongs, for equal weights to the agents, also to
the WFV.

Finally we note that the PBE implements the initial endowments allocation(
5 5 0
5 0 5

)

which in the case of non-free disposal, coincides with the REE. However as it is
shown in Glycopantis et al. (2003b) a REE is not in general implementable.

8.2 Implementation of Radner equilibria and of WFC allocations through the
courts

We shall show briefly that the allocation(
4 4 1
4 1 4

)
of Example 5.2 can be implemented as a PBE through an exogenous third party.
This can be interpreted as a court which imposes penalties when an agent lies.

Nature chooses states a, b and cwith equal probabilities. P1 acts first and cannot
distinguish between a and b. When P2 is to act we assume that not only he cannot
distinguish between a and c but also he does not know what P1 has chosen before
him.

The rules are:

(i) If a player lies about his observation, then he is penalized by 1 unit of the good.
If both players lie then they are both penalized. For example if the declarations are
(c1, b2) and state a occurs both are penalized. If they choose (c1, A2) and state a
occurs then the first player is penalized. If a player lies and the other agent has a
positive endowment then the court keeps the quantity subtracted for itself. However,
if the other agent has no endowment, then the court transfers to him the one unit
subtracted from the one who lied.
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Figure 3

(ii) If the declarations of the two agents are consistent, that is (A1, A2) and state
a occurs, (A1, b2) and state b occurs, (c1, A2) and state c occurs, then they divide
equally the total endowments in the economy.

We obtain through backward induction the equilibrium strategies by assuming
that each player chooses optimally, given his stated beliefs.

Figure 3 indicates, through heavy lines, optimal plays of the game. The fractions
next to the nodes of the information sets are obtained through Bayesian updating.

Finally, suppose that the penalties are changed as follows. The court is extremely
severe when an agent lies while the other agent has no endowment. It takes all the
endowment from the one who is lying and transfers it to the other player.

Now P2 will play A2 from I2 and P1 will play A1 from I1. Therefore invoking
an exogenous agent implies that the PBE will now implement the WFC allocation

(
5 2.5 2.5
5 2.5 2.5

)
·
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Figure 4

8.3 Implementation of private core allocations

Here we draw upon the discussion in Glycopantis et al. (2001, 2003a). In the case
we consider now there is no court and therefore the agents in order to decide must
listen to the choices of the other agents before them. P3 is one of the agents and
we investigate his role in the implementation of private core allocations. Again we
define A1 = {a, b} and A2 = {a, c}.
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Private core without free disposal seems to be the most satisfactory concept. The
third agent, who has superior information, acting as an intermediary, implements
the contract and gets rewarded in state a.

We shall consider the private core allocation⎛⎜⎝4 4 1
4 1 4
2 0 0

⎞⎟⎠
of Example 5.1.

We know from Proposition 7.1 that such core allocations are CBIC and we shall
show now how they can be supported as PBE of a noncooperative game.

P1 cannot distinguish between states a and b and P2 between a and c. P3 sees
on the screen the correct state and moves first. He can either announce exactly what
he saw or he can lie. Obviously he can lie in two ways. When P1 comes to decide he
has his information from the screen and also he knows what P3 has played. When
it is the turn of P2 to decide he has his information from the screen and he also
knows what P3 and P1 played before him. Both P1 and P2 can either tell the truth
about the information they received from the screen or they can lie.

The rules of calculating payoffs, i.e. the terms of the contract, are as follows:
If P3 tells the truth we implement the redistribution in the matrix above which is
proposed for this particular choice of nature.
If P3 lies then we look into the strategies of P1 and P2 and decide as follows:

(i) If the declaration of P1 and P2 are incompatible we go to the initial endowments
and each player keeps his.

(ii) If the declarations are compatible we expect the players to honour their commit-
ments for the state in the overlap, using the endowments of the true state, provided
these are positive. If a player’s endowment is zero then no transfer from that agent
takes place as he has nothing to give.

In Figure 4 we indicate through heavy lines the equilibrium paths. The directed
paths (a, a,A1, A2) with payoffs (4, 4, 2), (b, b, A1, b2) with payoffs (4, 1, 0) and
(c, c, c1, A2) with payoffs (1, 4, 0) occur, each, with probability 1

3 . It is clear that
nobody lies on the optimal paths and that the proposed reallocation is incentive
compatible and hence it will be realized.

Further we can show that the PBE in Figure 4 can also be obtained as a sequential
equilibrium in the sense of Kreps - Wilson (1982). Now, it is also required that the
optimal behavioral strategies, and the beliefs consistent with these, are the limit of
a sequence consisting of completely mixed behavioral strategies, and the implied
beliefs. Throughout the sequence it is only required that beliefs are consistent with
the strategies. The latter are not expected to be optimal.

8.4 Non-implementation of REE

We show here, in the context of an economy with two agents, three states of nature
and two goods per state, that a fully revealing REE is not implementable. In fact
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we consider Example 6.1. We recall that A1 = {a, b}, A2 = {b, c}, and assume
that P1 acts first and that when P2 is to act he has heard the declaration of P1. We
have seen in Section 7 that the REE is not CBIC.

Next we show using the sequential decisions approach that the REE is not
implementable. We specify the rules for calculating payoffs, i.e. the terms of the
contract:

(i) If the declarations of the two players are incompatible, that is (c1, a2), then this
implies that no trade takes place.

(ii) If the declarations of the two players are (A1, A2) then this implies that state b
is believed. The player who believes it gets his REE allocation (4, 4) and the other
player gets the rest. So aA1A2 means that P2 has lied but P1 believes it is state b
and and gets (4, 4). P2 gets the rest under state a that is (4, 7); bA1A2 means that
both believe that it is the (actual) state b and each gets (4, 4); cA1A2 means that P2
believes it is state b and gets (4, 4) and P1 gains nothing from his lie as he gets (1,
4).

(iii) aA1a2, bA1A2, cc1A2 imply that everybody tells the truth and the contract
implements the REE allocation under state a, b, and c respectively. (bA1A2 in (ii)
and (iii) give of course an identical result).

(iv) ac1A2 implies that both lie but their declarations are not incompatible. Each
gets his REE under c and there is free disposal.

(v) cA1a2 means that both lie and stay with their initial endowments as they cannot
get the REE allocations under state a which is the intersection of A1 and a2.

(vi) bA1a2 implies that P2 misreports and P1 believes and gets his REE under a;
P2 gets the rest under b.

(vii) bc1A2 means that P1 lies and P2 believes that it is state c. P2 gets his REE
allocation under c and P1 gets the rest under b, that is the allocation (5.31, 3.7).

On the game tree of consecutive decisions, the payoffs are translated in terms of
utility. The complete optimal paths are shown in Figure 5, through heavy lines. We
assume that each player chooses optimally from his information set. Probabilities
next to the nodes of the information sets denote the players’ beliefs. Strategies and
beliefs satisfy the condition of a PBE. Our analysis shows that it is unique16. The
corresponding normalized expected payoffs of the players are U1 = 10.93 and
U2 = 12.69.

The equilibrium paths imply that REE is not implementable which matches
up with the fact that it is not CBIC. However comparing the normalized expected
utilities of the Bayesian equilibrium with those corresponding to the initial alloca-
tion we conclude that the proposed contract will be signed. On the other hand P2,
because it is not advantageous to him, stops P1 from realizing his normalized REE
utility. He ends up with U2 = 12.69 rather than U2 = 12.25.

Further, it is shown in Glycopantis et al. (2003b) that if we modify the model into
one with simultaneous decisions of the agents again the REE is not implementable.

16 Notice that as explained in the more detailed analysis, reversing the order of the play between the
agents results in more than one PBE.
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Figure 5

9 REE and weak core concepts

In view of the significance of the REE as an equlibrium concept we look in this
section closer at the relation between REE and weak core concepts, which allow for
sharing of information among the agents.17 It is this sharing of information which
makes the conditions different and therefore the comparison interesting, as REE is
a Walrasian notion. The relation between REE and the private core, in which every
agent keeps their own information, has been examined above.

We show here that for state independent utilities, no coalition of agents can block
a fully revealing REE. Therefore in this case the REE is always a subset of IWFC
and therefore it is interim “fully” Pareto optimal. However for state dependent
utility functions the REE is not necessarily in the IWFC as we show below.

We also show that in general a REE does not belong to the WFC. If it so happens
that REE does belong to this set then a slight modification of the utility functions
implies that the two sets do not overlap anymore.

9.1 REE and IWFC

First we define the cooperative concept of the IWFC concept which is conditional
on some information already obtained and shared by coalitions of agents.

17 This section uses results and statements from Glycopantis et al. (2003b).
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Definition 9.1.1. An allocation x = (x1, . . . , xn) ∈ L̄X is said to be a IWFC
allocation if

(i) each xi(·) is FI -measurable;18

(ii)
∑n

i=1 xi(ω) =
∑n

i=1 ei(ω) for all ω ∈ Ω;
(iii) there do not exist state of nature ω∗ ∈ Ω, coalition S and allocation

(yi)i∈S ∈
∏

i∈S L̄Xi
such that yi(·) − ei(·) is FS-measurable for all i ∈ S,∑

i∈S yi(ω) =
∑

i∈S ei(ω), for all ω and vi(yi|FS)(ω∗) > vi(xi|Fxi)(ω
∗)

for all i ∈ S, where Fxi denotes the information connected with xi.

The definition, (see Yannelis, 1991), implies that no coalitions of agents can
pool their own information and make each of its members better off.

Proposition 9.1.1. For state independent utility functions, a fully revealing REE
allocation belongs to the IWFC.

Proof. Let (x, p) be a fully revealing REE, so that the state of nature that has
occurred is known to everybody and x be feasible and measurable with respect to
FI . Suppose now that x is not an element of IWFC. Then there exists ω∗ ∈ Ω,
a coalition S and feasible (yi)∈S ∈

∏
i∈S L̄Xi

which is FS-measurable ∀i ∈ S,
such that

∑
i∈S yi(ω) =

∑
i∈S ei(ω) ∀ω ∈ Ω and

vi(yi|FS)(ω∗) > vi(xi|Gi)(ω∗). (19)

On the right-hand side of (6) we have thatGi = F which in this case is generated
by singletons.

We consider the two terms in relation to the Definition 9.1.1. The right-hand
side is vi(xi|Gi)(ω∗) = ui(xi(ω∗)), i.e. one single term with probability one. This
follows from the fact that x is fully revealing and therefore EGi

i (ω∗) = {ω∗}.
On the other hand the left-hand side is

vi(ω∗, yi(ω∗)) =
∑
ω′
ui(yi(ω′))qi(ω′|EFS

i (ω∗)), (20)

where in (7)

qi(ω′|EFS
i (ω∗)) =

⎧⎪⎨⎪⎩
0 : ω′ /∈ EFS

i (ω∗)

qi(ω′)
qi(EFS

i (ω∗))
: ω′ ∈ EFS

i (ω∗).

and EFS
i (ω∗) is a subset of FS on which yi is constant.

This allows us to take the utility term out of the sum19 and deduce that
ui(yi(ω∗)) > ui(xi(ω∗)). This implies that when xi was chosen yi was too expen-
sive and therefore p(ω∗)yi(ω∗) > p(ω∗)xi(ω∗) = p(ω∗)ei(ω∗) ∀ i ∈ S. Then
summing up with respect to i ∈ S we obtain

p(ω∗)
∑
i∈S

yi(ω∗)=
∑
i∈S

p(ω∗)y(ω∗)>
∑
i∈S

pi(ω∗)ei(ω∗)=p(ω∗)
∑
i∈S

ei(ω∗). (21)

18 Recall that for S ⊆ I , FS denotes the “join" of coalition S, i.e.
∨

i∈S Fi.
19 Notice that if ui(ω′, xi(ω′)) depended separately on ω′ then, in general, it would not have been

possible to take ui(ω′, yi(ω′)) out of the sum. On the other hand measurability of ui with respect to
its first argument would rescue the proof.
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Relation (21) is a contradiction to
∑

i∈S yi(ω) =
∑

i∈S ei(ω) because in order
to obtain the inequality p(ω∗)

∑
i∈S yi(ω∗) > p(ω∗)

∑
i∈S ei(ω

∗) at least one
element of the vector

∑
i∈S yi(ω) must be larger than the corresponding element

of
∑

i∈S ei(ω).

Remark 9.1.1. With state independent utilities, Proposition 9.1.1 can be proven
even if x is a partially revealing or non-revealing REE. It does not matter whether
the information of the coalition is finer or not than the one of the REE. Also with
state dependent utilities the proposition can be proven for general REE and an ap-
propriately defined WFC concept if coalitions are only allowed to form which have
the same information as REE. Then there is no need to take the utility expressions
out of the relation vi(yi|FS)(ω∗) > vi(xi|Gi)(ω∗). An interpretation of what the
proposition implies is that, under certain conditions, allowing all possible coalitions
to share their information will not block the REE allocations.

Kwasnica (1998) has discussed a related result for a different core concept
which is not interim fully Pareto optimal.

The conditions under which Proposition 9.1.1 holds are limited. We now con-
struct examples to show that it does not necessarily hold when we have state de-
pendent utilities.

In the examples below the introduction ofAgent 3 is done so that the REE satisfy
(i) in the definition of the IWFC. Alternatively, without introducing a third agent
we can argue that given a REE there exists an IWFC allocation which improves the
conditional utility of an agent given some particular state.

Example 9.1.1. There are only two, equally probable, from the point of view of
the agents, states of nature, (one can add more states to make the model richer but
this is not important), and two goods. Players 1 and 2 cannot distinguish between
states a and b. On the other hand their utility functions differ per state. Player 3 can
distinguish between all states of nature, has no initial endowments and has some
utility function. His role is to ensure that the vector x described below satisfies
condition (i) of IWFC. We turn our attention to the other players.

We are assuming the following. In state a: u1 = min{εx11, x12}, where ε > 1,
and e1=(2, 0);u2= min{x21, x22}, and e2=(0, 2). In state b: u1= min{x11, x12},
and e1=(2, 0) u2=(x21x22)c, where c > 0 will be determined later, and e2 =
(0, 2).

We construct two Edgeworth boxes and find the fully revealing REE, and hence
our vectorx, to be as follows. In statea:p1 = 0, p2 = 1; Agent 1 gets zero quantities
and Agent 2 gets everything; u1 = 0 and u2 = 2. In state b: p1 = 1, p2 = 1; every
agent gets 1 unit of each good; u1 = 1 and u2 = 1. In both states, Player 3 receives
no quantities.

We will now show that this REE is not in the IWFC. Since, when the two players
share their information, they still cannot distinguish between the two states we still
require measurability of the feasible allocation to satisfy condition (iii) of IWFC.
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The proposed allocation is that Agent 1 gets y1(a) = y1(b) = (0.75, 0.75) and
Agent 2 gets y2(a) = y2(b) = (1.25, 1.25). The utility levels are as follows. In state
a: u1 = 0.75, and u2 = 1.25 and in state b: u1 = 0.75, u2 = (1.25× 1.25)c.

We choose state a for the condition (iii) of IWFC. For agent 1 we have that
v1(y1)(a) is larger than his REE utility which is zero. Also, for sufficiently large
c, we have for agent 2 that v2(y2)(a) = (1

2 )1.25 + ( 1
2 )(1.25 × 1.25)c > u2 = 2

(REE utility under a).
As for the alternative approach, without introducing a third agent we can argue

that, given a REE, there exists an IWFC allocation which does better for some
agent. First we use the above yi allocation to show that it does better under a. Then
we can argue that there exists an IWFC allocation which for some agent does even
better in terms of utility conditioned on state a.

Example 9.1.2 (2003b). There are two, equally probable, from the point of view of
the agents, states Ω = {a, b} and three players I = {1, 2, 3}. Player 3 can detect
all states, but he has no initial endowments; his only role is to ensure that the xi

calculated below satisfy condition (i) of IWFC. Players 1 and 2 cannot distinguish
between the states.

We are assuming that in state a: u1 = x2
11x12, u2 = x2

21x
2
22, e1 = ( 9

13 ,
9
13 ),

e2 = ( 4
13 ,

4
13 ), and in state b: u1 = x0.5

11 x12, u2 = x21x22, e1 = ( 9
13 ,

9
13 ), e2 =

( 4
13 ,

4
13 ).

The REE is given by p(a)=(8, 5), x1(a)=(0.75, 0.6), x2(a)=(0.25, 0.4), and
p(b)=(5, 8), x1(b)=(0.6, 0.75), x2(b)=(0.4, 0.25).

In the IWFC definition chooseω∗=a, S={1, 2}, y1(a)=y1(b)=(0.6, 0.8), and
y2(a) = y2(b) = (0.4, 0.2).

Then v1(y1)(a)=0.454, u1(a, x1(a))=0.337, v2(y2)(a)=0.043, u2(a,x2(a))
= 0.01.

9.2 REE and WFC

Next we consider the relation between REE and the WFC in the context of a more
general model than Example 6.1 which was considered above. We find that an REE
allocation is not necessarily in the WFC.

Example 9.2.1 (2003b). For simplicity, we treat originally a case with two players,
two goods and two states. We also assume, in the beginning, that the players are,
in all states, endowed with strictly positive endowments of both goods and that for
both players all states are equally probable. We assume that all states, j ∈ Ω, are
distinguishable by the two players when they pool their information.

The normalized expected utility functions of the two players are U1 =∑
j(x

j
11)

α(xj
12)

β and U2 =
∑

j(x
j
21)

α(xj
22)

β where α, β > 0. Namely we assume
that they have identical, state independent utility functions. These assumptions can
be relaxed. In summary, the result of the analysis is that in general the REE does
not belong to the WFC.

The WFC allocations are characterized through the following problem:
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Maximize
∑

j(x
j
11)

α(xj
12)

β

Subject to ∑
j

(Sj
1 − xj

11)
α(Sj

2 − xj
12)

β = Ū2 (fixed),

0 ≤ xj
11 ≤ Sj

1, 0 ≤ xj
12 ≤ Sj

2 ∀j,

where Sj
i denotes the total quantity of Good i in state j. Note that 0 < U2 <∑

j(S
j
1)

α(Sj
2)

β .
Because of the feasibility constraints on quantities, the Lagrange theory cannot

be applied in general in order to obtain the solution. However we can comment on
the relation between REE and WFC allocations by arguing through another route.

We apply a Gorman type separation argument (see Gorman, 1959). We consider
the contract curve per state. First we consider the following problem.

Maximize (xj
11)

α(xj
12)

β

Subject to

(Sj
1 − xj

11)
α(S2 − xj

12)
β = u2

j (fixed),

0 ≤ xj
11 ≤ Sj

1, 0 ≤ xj
12 ≤ Sj

2.

The solution implies Sj
2x

j
11 = Sj

1x
j
12, which is the diagonal of the Edgeworth

box. All WFC allocations are on contract curve in each state, for otherwise we can
move to a Pareto superior point on the contract curve. It is also true that a REE,
fully revealing or not, will be on the diagonal with every agent receiving positive
quantities from both goods. This follows from the fact that otherwise, in at least
one state, the markets will not clear.

The actual solution is

xj
11 =

(
Sj

1

Sj
2

) β
α+β [

(Sj
1)

α
α+β (Sj

2)
β

α+β − (uj
2)

1
α+β

]
,

xj
12 =

(
Sj

2

Sj
1

) α
α+β [

(Sj
1)

α
α+β (Sj

2)
β

α+β − (uj
2)

1
α+β

]
.

We write (Sj
1)

α
α+β (Sj

2)
β

α+β = T j and (uj
2)

1
α+β = W j , and substitute into the

objective function to get
∑

j [T
j−W j ](α+β) which is to be maximized subject to the

constraints
∑

j u
j
2 = Ū2 and uj

2 ≥ 0 which are equivalent to
∑

j(W
j)(α+β) = Ū2

andW j ≥ 0. Considering the solution for the x′s we also have 0 ≤W j ≤ T j . So
in summary we are solving:

Maximize
∑

j [T
j −W j ]γ

Subject to ∑
j

(W j)γ = Ū2 (fixed), and

0 ≤W j ≤ T j .
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Figure 6

where γ = α+ β.

We now look at the form of the functions. Consider
∑

j(W
j)γ = 1 for any

γ > 0.
For γ = 1 this is a hyperplane. In the positive orthant, γ > 1 causes the surface to
bulge away from the hyperplane so as to enclose a convex set including the origin
(γ = 2 is the exemplary case, which is a hypersphere). Conversely for γ < 1 it
produces a surface which bulges in towards the origin.

∑
j(W

j)γ = Ū2 is similar

in shape but scaled by a factor Ū
1
γ

2 .
Finally the shape of

∑
j [T

j−W j ]γ = K (fixed) can be derived from the above.
The origin has been shifted to the point with coordinates (T j) after the surface has
been reflected along each coordinate axis.

Now we look at the solution of the overall Gorman problem. We distinguish
between:

(i) γ > 1; the constraint is concave, in the nonnegative area, with perpendicular
intersections with the axes. The indifference curves of the objective function are
convex, with nonnegative coordinates, (see Fig. 6), and increase in value as we
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move in the direction of the origin. It follows that the maximum will be at one or
both of the corner points. This means that the REE is not in the WFC.

(ii) γ < 1; in this case the constraint is convex and the indifference curves are
concave, (see Fig. 6), and increase in value as we move in the direction of the
origin. The solution is away from the corner points at a point of tangency. Even
under symmetric conditions there is no reason why the REE should be in the WFC.

(iii) γ = 1; inspection of the objective function and the constraint shows that the
WFC coincides with the linear constraint. It follows that the REE allocation is in
the WFC and this is the case in Example 6.1. However, attaching a weight to the
utility of Player 1 in one state implies a corner solution and therefore the REE is
not in the WFC.

10 Bayesian learning with cooperative solution concepts

As we indicated in the previous sections, the private core and the private value
outcomes are sensitive to changes in the private information of the agents. In this
section we sketch out how information available to the agents can change through
time.

The idea of learning introduces changes in the information structure of the
agents. We consider a DIE that extends over many periods. The agents have ini-
tially private information which reflects their own personal characteristics, i.e. the
random initial endowments and preferences. However, in each period they draw
new information from the realized core or value allocation. Hence we consider an
economy E in a dynamic framework.

One way of explaining how the agents refine their private information over time
is as follows. Suppose, for example, that the same utility functions and endowments
are repeated at each point in time. The chances are that over a long period all states
of nature will occur. Suppose now that Agent i knows exactly what this state is, say
a, but Agent j observes an element of his information partition with more than one
state. Agent j cannot distinguish between the various states in his information set.
However he can start slowly associating state a with signals which he originally
considered as unimportant or irrelevant and which now he sees coincide with the
announcement, through his private core or value allocation, of this state by Agent
i. At no stage is it assumed that the agents get together to share their information.

Let T = {1, 2, ...} denote the set of time periods and σ(eti, u
t
i) the σ-algebra

that the random initial endowments and utility function of Agent i generated at time
t. At any given point in time t ∈ T , the private information of Agent i is defined as:

F t
i = σ(eti, u

t
i, (x

t−1, xt−2, ...)) (22)

where xt−1, xt−2, ... are past periods private core or value allocations.
Relation (22) says that at any given point in time t, the private information

which becomes available to Agent i is σ(eti, u
t
i) together with the information

that the private core (value) allocations generated in all previous periods. In this
scenario, the private information of Agent i in period t+1 will beF t

i together with
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the information the private core (value) allocation generated at period t, i.e. σ(xt).
More explicitly, the assumption is that the private information of Agent i at time
t + 1 will be F t+1

i = F t
i ∨ σ(xt), which denotes the "join", that is the smallest

σ-algebra containing F t
i and σ(xt).

Therefore for each Agent i we have that

F t
i ⊆ F t+1

i ⊆ F t+2
i ⊆ ... . (23)

Relation (23) represents a learning process for Agent i and it generates a se-
quence of differential information economies

{
Et : t ∈ T

}
where now the corre-

sponding private information sets are given by {F t
i : t ∈ T}.

The agents are myopic, in the sense that they do not form expectations over the
entire horizon but only for the current period, i.e. each agent’s interim expected
utility is based on his/her current period private information. Obviously, since the
private information set of each agent becomes finer over time, the interim expected
utility of each agent is changing as well. The information gathered at a given time
t, will affect the private core (or value) outcome in periods t + 1, t + 2, .... The
example below attempts to explain the idea of learning.

Example 10.1. Consider the following DIE with two agents I = {1, 2} three
states of nature Ω = {a, b, c} and goods, in each state, the quantities of which are
denoted by xi1, xi2, where i refers to the agent. The utility functions are given by

ui(ω, xi1, xi2) = x
1
2
i1x

1
2
i2, and states are equally probable, i.e. µ({ω}) = 1

3 , for
ω ∈ Ω. Finally the measurable endowments and the private information of the
agents is given by

et1 = ((10, 0), (10, 0), (0, 0)), F1 =
{
{a, b}, {c}

}
;

et2 = ((10, 0), (0, 0), (10, 0)), F2 =
{
{a, c}, {b}

}
. (24)

The structure of the private information of the agents implies that the private core
allocation, (xt

1, x
t
2), in t = 1 consists of the initial endowments.

Notice also that the information generated in Period 2 is the full information
σ(xt

1, x
t
2) =

{
{a}, {b}, {c}, {a, b}, {a, c}, {a, b, c}, ∅

}
. It follows that the private

information of each agent in periods t ≥ 2 will be

F t+1
1 = F t

1 ∨ σ(xt
1, x

t
2) =

{
{a}, {b}, {c}

}
;

F t+1
2 = F t

2 ∨ σ(xt
1, x

t
2) =

{
{a}, {b}, {c}

}
. (25)

Now in t = 2 the agents will make contracts on the basis of the private information
sets in (25). It is straightforward to show that a private core allocation in period
t ≥ 2 will be

xt+1
1 = ((5, 5), (10, 0), (0, 0));
xt+1

2 = ((5, 5), (0, 0), (0, 10)). (26)

Notice that the allocation in (26) makes both agents better off than the one given
in (24). In other words, by refining their private information using the private core
allocation they have observed, the agents realized a Pareto improvement.
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Of course, in a generalized model with more than two agents and a continuum of
states, unlike the above example, there is no need that the full information private
core or value will be reached in two periods. The main objective of learning is
to examine the possible convergence of the private core or value in an infinitely
repeated DIE. In particular, let us denote the one shot limit full information economy
by Ē = {(Xi, ui, F̄i, ei, qi : i = 1, 2, ..., n)} where F̄i is the pooled information
of Agent i over the entire horizon, i.e. F̄i =

∨∞
i=1 F t

i .
The questions that learning addresses itself to are the following:

(i) If
{
Et : t ∈ T

}
is a sequence of DIE and xt is a corresponding private core

or value allocation, can we extract a subsequence which converges to a limit full
information private core or value allocation for Ē?

(ii) Is the answer to (i) above affirmative, if we allow for bounded rationality in
the sense that xt is now required to be an approximate, ε-private core or ε-value
allocation for Et, but nonetheless it converges to an exact private core or value
allocation for Ē?

(iii) Given a limit full information private core or value allocation say x̄ for Ē ,
can we construct a sequence of ε-private core or ε-value allocation xt in Et which
converges to x̄? In other words, can we construct a sequence of bounded rational
plays, such that the corresponding ε-private core or ε-value allocations converge to
the limit full information private core or value allocation.

The above questions have been affirmatively answered in Koutsougeras and
Yannelis (1999).

It should be noted that in the above framework it may be the case that in the
limit incomplete information may still prevail. In other words, it could be the case
that

F̄i =
∞∨

i=1

F t
i ⊂

n∨
i=1

F t
i .

Hence in the limit a private core or value allocation may not be a fully revealing
allocation of the same kind. However, if learning in each period reaches the complete
information in the limit, i.e. F̄i ⊃

∨n
i=1 F t

i the private core or value allocation is
indeed fully revealing.

Learning applied to cooperative solution concepts was first discussed in Kout-
sougeras andYannelis (1999).A generalization of their results to non-myopic learn-
ing which allows agents to discount the future can be found in Serfes (2001).

11 Concluding remarks

We have reviewed here relations between some of the main cooperative and non-
cooperative equilibrium concepts in the area of finite economies with asymmetric
information. It is precisely the asymmetry in the information of the agents which
leads to a variety of cooperative and noncooperative equilibrium concepts. It is
then appropriate that their properties be compared. As explained in Glycopantis
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and Yannelis in this volume, the example of Wilson (1978) shows that even the list
of noncooperative concepts employed is not exhaustive.

Notice that we have not examined large economies or economies with infinite
dimensional commodity spaces. There is a growing literature on such economies but
we decided to focus mainly on finite economies. This was for the sake of simplicity,
and also for focusing on conceptual issues rather than proving powerful theorems.

In modeling a DIE, we followed the partition approach. Alternative concepts
are defined depending mainly on whether the calculations are in the ex ante or
the interim state, the degree of information sharing among the agents, the free
disposability or not of goods.

A number of examples calculate in detail equilibria, which makes their compari-
son transparent. Relations are obtained and the significance of superior information
is brought out.

Given the variety of equilibrium concepts, the question arises which ones have
satisfactory properties. Two such properties are the static Bayesian incentive com-
patibility and the dynamic PBE implementability of an equilibrium. We have also
exhibited here some of the results obtained earlier which examined the connection
between these ideas.

The discussion considered both cooperative and Walrasian type equilibrium
concepts. The presentation here points out the positive association between
Bayesian incentive compatibility of a concept and its implementability as a PBE.
This investigation is wider than the Nash (1953) programme which concentrates in
providing support to cooperative, static concepts through noncooperative, extensive
form constructions.

A main conclusion is that equilibrium notions which may not be incentive
compatible, cannot easily be supported as a PBE, e.g. REE and Radner equilibrium.
On the contrary notions which are incentive compatible can be supported as a PBE,
e.g. private core and private value.

We consider the area of incomplete and differential information and its mod-
elling important for the development of economic theory. We believe that the intro-
duction of game trees, which give a dynamic dimension to the analysis by making
the individual decisions transparent, helps in the development of ideas. The parti-
tion model is, in our view, a natural way to analyze DIE and the use of game trees
provides a noncooperative foundation of the equilibrium concepts.

Appendix I: On core concepts

We construct here a table containing a number of core concepts, taken as a starting
point Yannelis (1991) and Koutsougeras and Yannelis (1993). We assume non-free
disposal and that the utility function with which comparisons will be made is the
ex ante one. First we cast the definition of a private core allocation in a form which
will facilitate the comparison with other concepts.

Definition I.1. An allocation x(ω) = (x1(ω), x2(ω), ..., xn(ω)) with xi(ω) ∈
Xi(ω) for all ω ∈ Ω and i = 1, ..., n, is a private core allocation if

(i) xi is Fi-measurable, for all i,
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(ii)
∑n

i=1 xi(ω) =
∑n

i=1 ei(ω) for all ω, and
(iii) there do not exist coalition S and allocation to S given by y(ω) =

(y1(ω), y2(ω), ..., yn(ω)) with yi(ω) ∈ Xi(ω) for al ω ∈ Ω and i ∈ S
such that
(a) yi − ei is Fi-measurable for all i,
(b)
∑

i∈S yi(ω) =
∑

i∈S ei(ω) for all ω, and
(c) vi(yi) =

∑
ω∈Ω ui(yi(ω))µ(ω) > vi(xi) =∑

ω∈Ω ui(yi(ω))ui(xi(ω))µ(ω) for i ∈ S.

We can now proceed to the following classification:

A1: If in (iii) (a) is replaced by
∧

i∈S Fi-measurable20, it is a coarse core allocation
A2: If also (i) is replaced by

∧
i∈I Fi-measurable, it is a strong coarse core allo-

cation
B1: If in (iii) (a) is replaced by

∨
i∈S Fi-measurable, it is a fine core allocation

B2: If also (i) is replaced by
∨

i∈I Fi-measurable, it is a a WFC allocation.

Therefore when we use the terms coarse or fine we are referring to the measur-
ability of yi in (iii) (a). The terms strong or weak refer to the measurability of xi

in (i).
Next we note that if F ⊆ G then x is F-measurable =⇒ x is G-measurable.

Thus if we make the σ-algebra in (i) finer, we make it easier to find a core element.
Conversely, in (iii), where we ask that a certain function should not exist, making
the σ-algebra coarser makes it easier to find a core element.

We note the relation between the sets, Fine Core (possibly ∅)⊆ Private Core⊆
Coarse Core. The latter consists of individually rational Pareto optimal allocations.
We also have that the strong coarse core is possibly empty, while the WFC exists.

We have that
∧

i∈S Fi ⊆ Fi ⊆
∨

i∈S Fi. Therefore, theoretically, we could
have nine core concepts, shown in the table below.

(i)�
(iii) ∧ Fi Fi

∨ Fi∧ Fi Strong Coarse α β
Fi Coarse Private Fine∨ Fi γ δ Weak Fine

The set inclusion sign ⊇ applies in each row of the table from left to right, and
in each column as we go down.

Note also that since WFC exists so do γ and δ. In the context of measurability
the private core concept is important. It has good properties: CBIC and it exists. It
is the smallest set which exists and is incentive compatible.

Obviously there are classifications as well, such as producing a table for free
disposal and one with interim utility functions. Some comparisons between entries
across tables can be made.

20 The “meet” is the largest σ-algebra which is contained in each Fi. It is in a sense the intersection
of these algebras.



52 D. Glycopantis and N.C. Yannelis

It is of interest to make a comparison between Definition I.1 of the private core
above, (Koutsougeras and Yannelis, 1993), and the definition below, (Yannelis,
1991), which is cast in a positive formulation.

Definition I.2. An allocationx ∈ LX is said to be an interim private core allocation
(IPC) if

(i)
∑n

i=1 xi =
∑n

i=1 ei and
(ii) for all S and all (yi)i∈S ∈

∏
i∈S LXi such that

∑
i∈S yi =

∑
i∈S ei, ∃i ∈ S

such that vi(ω, xi) ≥ vi(ω, yi) for some ω with µ(ω) > 0.

Despite the fact that in Definition I.2 interim expected utility functions were
used, one can show that IPC contains the ex ante private core in Definition I.1, i.e.
PC⊆ IPC but not the other way round.
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Summary. The meaning of exchange efficiency is examined in the context of an
economy in which agents differ in their endowments of information. Definitions of
efficiency, and of the core, are proposed which emphasize the role of communica-
tion. Opportunities for insurance are preserved by restricting communication, or in
a market system by restricting insider trading, prior to the pooling of information
for the purposes of production.

My subject is an economy in which different agents have different information. I
propose a definition of exchange efficiency and I characterize the efficient alloca-
tions. I then examine an analogous definition of the core and I demonstrate that
the core is not empty if the usual regularity conditions are satisfied. An example,
however, illustrates that a market process may fail to yield an efficient allocation.
In fact, in this example the market allocation is not even individually rational for
the agents. Also, in this example the core is empty if there are opportunities for
communication which disrupt arrangements for mutual insurance.

1. Formulation

S denotes the set of possible states. For simplicity 1 suppose that the cardinality of
S is finite. Some one state s∗ in S is the prevailing state. An event is a subset of S.
N denotes the finite set of agents. The information of the ith agent is described

by the field Fi of events which he can discern. An event E is in the field Fi iff
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he knows whether the prevailing state is in the event E or in the complementary
event S\E. For example, if agent i observes the value of a random variable yi,
then Fi is the smallest field containing the events in the inverse image of yi. The
minimal nonempty events in the field Fi form a partition of the states denoted by
PFi. Precisely one member of the partition is known by the agent to contain the
prevailing state. PFi(s) denotes the unique member of the partition containing the
state s.

The field of events discernable by every agent is the “coarse” field
∧

N F =
∩i∈NFi. By pooling their information they could discern the events in the “fine”
field

∨
N F for which P

∨
N F (s) = ∩i∈NPFi(s). More generally, the result of a

communication system (c.s.) is a collection (Hi)i∈N of fields such that Hi ⊇ Fi

for each agent and
∨

N H =
∨

N F . Communication enlarges the field of events an
agent can discern but it does not produce new information. The null c.s. is (Fi)i∈N

and the full c.s. is (
∨

N F )i∈N .
A commodity bundle is a member of the Euclidean space with coordinates

indexed by the commodities.An agent ihas for each state s a setXi(s)of commodity
bundles which are feasible for consumption. One member of Xi(s) is agent i’s
endowment ei(s) which he obtains if s is the prevailing state and he engages in
no trade. A consequence of trade is an allocation x = (xi(s)) which provides
agent i with the consumption xi(s) ∈ Xi(s) if state s prevails, provided that∑

i∈N xi(s) =
∑

i∈N ei(s). One may also require that the consumption plan xi is
measurable with respect to a field F ′′

i , namely xi(s) = xi(s̄) if s ∈ PF ′′
i (s̄). In

this case I assume that Xi and ei are F ′
i -measurable for some field F ′

i ⊇ Fi; and
that F ′′

i ⊇
∨

N F
′.

When agent i knows that the prevailing state is in the event A ∈ PFi of his
partition, or a finer event A ∈ PHi discernable from communication, he has a
relation �iA of preference between feasible consumption plans. For any coarser
event E ∈ Hi the relation xi �iA x̄i means that xi �iA x̄i for every event
A ∈ PHi in the partition for which A ⊆ E. It will suffice here to assume that
this preference relation is represented by a probability assessment (S, F ′′

i , µi) and
by an F ′

i -measurable utility function ui which assigns to each feasible consump-
tion xi(s) ∈ Xi(s) in state s a real value ui(s, xi(s)) ≡ ui[xi](s). If H is a
subfield of F ′′

i then the conditional expectation of an F ′′
i -measurable random vari-

able u defined on S is an H-measurable random variable v ≡ Ei{u|H} for which∫
E
u(s)dµi(s) =

∫
E
v(s)dµi(s) for each event E ∈ H . In particular, xi �iE x̄i

for an eventE ∈ Hi iff Ei{ui[xi]|Hi}(s) > Ei{ui[x̄i]|Hi}(s) for each state s ∈ E.
Note that the conditional expectation has a common value Ei{ui[xi]|Hi}(A) for
s ∈ A ∈ PHi if µi(A) > 0. For simplicity I assume that the measure µi assesses
a positive probability for each nonempty event in

∨
N F .

For the propositions in Sections 2–4 I impose the usual regularity assumptions
which ensure that the sets of feasible allocations and attainable utilities are compact
and convex. Namely, for each agent i and each state s the set Xi(s) of feasible
consumptions is closed, convex, and bounded below; and the utility functionui(s, ·)
defined on this set is continuous and concave.
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Table 1

Endowments (ei(s)) Allocation (xi(s))
Agent (i) PFi State (s): a b a b

1 {a}, {b} 2 0 1 1
2 {a, b} 0 2 1 1

Table 2

Endowments (ei(s)) Allocation (x, (s))
Agent (i) PFi State (s): a b c a b c

1 {a}, {b, c} 5 1 3 5 2 2
2 {b}, {a, c} 3 5 1 2 5 2
3 {c}, {a, b} 1 3 5 2 2 5

2. Efficiency

It is useful to recognize that no single definition of efficiency will suffice for all
purposes. The fact that different agents have different information must necessarily
eliminate some of the opportunities for mutual insurance. Moreover, the possibility
of communication raises the prospect that additional opportunities will be elim-
inated. My aim here is to identify that definition of efficiency which retains the
greatest opportunities for insurance subject to the limitation inherent in the agents’
information. In addition, I seek a definition of efficiency which is consistent with a
viable definition of the core.

Two simple examples illustrate the primary considerations. There is a single
desired commodity; each agent has a utility function which is independent of the
state and strictly concave, reflecting aversion to risk; and each agent assigns equal
probabilities to the states.

Example 1. There are two agents and two states. The agents’ endowments and
information are displayed in Table 1. Also shown is an allocation x which would
be a favorable arrangement for mutual insurance in the absence of a difference in
information. As it is, however, agent 1 has superior information. If the prevailing
state is s∗ = a he would surely reject the proposed allocation x. That is, the
allocation is not individually rational for agent 1, nor is any other allocation which
partially insures agent 2 against his perceived risk. Indeed, realizing this, agent 2 has
no incentive to offer or accept a contract since it could be advantageous to agent 1
only in state bwhen it is to his own disadvantage. I conclude that a useful definition
of efficiency must include the endowment as an efficient outcome. This example
illustrates the phenomenon of adverse selection which often vitiates opportunities
for insurance.

Example 2. There are three agents and three states. The agents’ endowments and
information are displayed in Table 2. As in the previous example there is an alloca-
tion which provides an equal amount (3 units) to each agent in each state but which
in each state is not individually rational for the agent with superior information.
Also shown in Table 2 is an allocation x which escapes this feature and which
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Table 3

Allocation of Claims Market Allocation
(s∗ = a) Prevailing (x115)

Agent (i) State (s): a b c state (s∗): a b c

1 666/115 0 0 666 144 225
2 225/115 0 9 225 666 144
3 144/115 9 0 144 225 666

provides complete insurance for the poorly informed agents. lf the prevailing state
is s∗ = a, then agent 2 or 3 perceives equal chances that his endowment is 1 or 3
units and therefore he prefers an insured consumption of 2 units.

Another allocation of interest is the one derived from a market for state-
contingent claims. Assume that each agent has the utility function u(s, x) = log x
and that the prevailing state is s∗ = a. Then the equilibrium prices are (pa, pb, pc) =
(1, 16/115, 25/115), where ps is the price of one unit payable in state s, and the
resulting allocation of claims is shown on the left in Table 3. The construction of
this equilibrium depends on the assumption that an agent cannot sell more claims
than his endowment and that no agent infers the prevailing state from the prevail-
ing prices. Proceeding symmetrically for each of the other two states that might
prevail yields the actual market allocation shown on the right in Table 3. A short
computation reveals that this market allocation violates individual rationality. For
instance, in the event {a, b} agent 3 is worse off with the market allocation than
with his endowment. A rational-expectations model would eliminate this difficulty,
of course, since each of the two poorly informed agents could infer the state from
the prices. In this case there would be no trade at the prices p = (1, 0, 0) when
s∗ = a, and the market allocation would be the endowment. Implicit communica-
tion via the market process preserves individual rationality but still it eliminates the
kind of favorable insurance arrangement provided by the allocation x in Table 2.
Notice that the market allocation in Table 3 could be improved by equalizing the
consumptions of the two poorly informed agents in each state.

The allocation in Table 2 is not immune to criticism. The insurance plan for
the two poorly informed agents appears to require the cooperation of the perfectly
informed agent regarding states which he knows do not prevail. The possibility of
communication raises the prospect that if s∗ = a then the coalition of agents 1 and 2
could do better by retaining their endowments, perhaps with agent 2 rewarding agent
1 for saving him the cost of insurance. These matters will be examined further when
we study the core in Section 3. I defer the question of what institutionalized process,
market or nonmarket, could achieve the allocation in Table 2.1 For now it suffices
to observe that the greatest opportunities for insurance are obtained by restricting
communication to the null c.s. I conclude, therefore, that a viable definition of

1 The allocation in Table 2 can be achieved by a market in state-contingent claims with the fixed
prices p = (1, 1, 1) if each agent is prohibited from trading in the claims for which he has perfect, or
“inside,” information; i.e., agents 1, 2, and 3 are prohibited from trading claims payable in states a, b,
and c, respectively.
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efficiency without communication should allow the allocation in Table 2 to be
efficient.

With these examples in mind I turn to a definition of efficiency. I propose that
an allocation is efficient iff in each event which every agent can discern there is no
other allocation which each agent prefers given his own information. That is, an
allocation is efficient iff there is not an event E ∈

∧
N F and another allocation x̄

such that x̄i �iE xi, namely Ei{ui[x̄i]|Fi} > Ei{ui[xi]|Fi} on E, for every agent
i ∈ N . Note that the null c.s. is imposed. The origin of the requirement that the
contingency must be recognized by every agent is evident in Example 2. There we
saw that a reallocation of the endowment may extend over states known by some
agents not to prevail.

This notion of efficiency is also called “coarse” efficiency to distinguish it
from the weaker concept of “fine” efficiency which admits the full c.s. and al-
lows E ∈ ∨N F . Thus fine efficiency excludes another allocation x̄ for which
Ei{ui[x̄i]|

∨
N F} > Ei{ui[xi]|

∨
N F} on E ∈ ∨N F for every agent i ∈ N .

An allocation which is fine inefficient on a coarse event E ∈ ∧N F is also coarse
inefficient. In this sense coarse efficiency is a strong requirement. The correspond-
ing notion of strict efficiency is slightly stronger: an allocation x is strictly ef-
ficient iff there is not an event E ∈ ∧N F and another allocation x̄ such that
Ei{ui[x̄i]|Fi � Ei{ui[xi]|Fi} on E for every agent i ∈ N , with strict preference
for at least one agent i on at least one event A ∈ PFi, A ⊆ E. I omit the obvious
generalization of the definitions of efficiency to include arbitrary communication
systems other than the null and full c.s.

For Example 1 the endowment is both strictly efficient and fine efficient. For
Example 2 the allocation in Table 2 is both strictly efficient and fine efficient. The
role of the distinction between coarse and fine events for this allocation will not
be apparent until we study the coarse and fine cores in Section 3. This distinction
is evident in the market allocation in Table 3, however. The market allocation is
fine efficient but not coarse efficient; and in fact this is true also of the endowment,
which is the market allocation resulting from rational expectations.2 We see here
that fine efficiency is compatible with the “informational efficiency” of market
processes (e.g., S. Grossman [1] or S. Grossman and J. Stiglitz [2]). In contrast,
coarse or strict efficiency emphasizes the advantages of insurance, and therefore
the disadvantages of direct or implicit communication.

The existence of efficient allocations is easily verified. Consider nonnegative
weights λi(s) for each agent i ∈ N and each state s ∈ S, and an allocation
that maximizes

∑
i∈N Ei{λiui[xi]} among the set of feasible allocations. If agent

i’s weighting function λi is Fi-measurable, and not all the weights are zero on
any coarse event in P

∧
N F , then the allocation is efficient; or if additionally all

the weights are positive, strictly efficient. Similarly, a fine-efficient allocation is
obtained from

∨
N F -measurable weights, not all zero on any event in P

∨
N F .

For the coarse-efficient allocation shown in Table 2 such a set of weights has
λi(s) = 15 if s is the state in which agent i has superior information, and λi(s) = 6
otherwise. The extreme form of “ex ante” efficiency which emphasizes insurance

2 This is proved in detail in Section 3. See Table 5.
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Table 4

Reallocation of x
Agent (i) State (s): a b c

1 5 2 + β 2 − γ
2 2 − α 5 2 + γ
3 2 + α 2 − β 5

to the exclusion of informational considerations is reflected in the allocation shown
in Table 1 for Example 1 and the similar one for Example 2: these allocations
correspond to weights which are not only Fi-measurable but in fact constant over
the whole set of states.

In most models of market processes the imputed weights are the reciprocals of
the agents’ marginal utilities of income. Strict efficiency requires, therefore, that
each agent’s marginal utility of income is measurable with respect to his informa-
tion. This is just another way of stating the requirement for optimal insurance. In
this case the insurance is against what other agents know about the prevailing state.
A market process vitiates the opportunities for this insurance. In Example 2 the
perfectly informed agent is an “insider” in the market for state-contingent claims
purchased for insurance purposes by the other two agents, and this distorts the
prices and their incomes to the evident advantage of the insider.3

Provided the utility functions are differentiable one can state the necessary
condition for an interior allocation x to be strictly efficient in terms of the marginal
rates of substitution (MRS). Considering only a single commodity and assuming
PF ′

i (s) = {s} for simplicity, agent i’s MRS between incomes in states s and
s̄ ∈ PFi(s) is MRSi(s, s̄) = vi(s̄)/vi(s), where vi(s) = u′

i[xi](s)µi({s}).
Consider a small reallocation such as the cyclic one shown in Table 4 for the
allocation of Example 2. If x is to be strictly efficient it must be for (α, β, γ) > 0
that if β/γ � MRS1(b, c) and γ/α � MRS2(c, a) so that a marginal reallocation
is not unfavorable for agents 1 and 2, then α/β � MRS3(a, b) so that it is not
favorable for agent 3. Allowing negative variations as well yields the necessary
condition for strict efficiency that MRS1(b, c) ·MRS2(c, a) ·MRS3(a, b) = 1.
In general, consider a finite cycle of states s1, ..., sK , sK+1 = s1 such that sk+1 ∈
PFi(k)(sk) for some agent i(k). Then an interior allocation is strictly efficient only
if ΠkMRSi(k)(sk, sk+1) = 1. This condition is a generalization of the equality
of agents’ MRS’s which is the familiar condition for “ex ante” efficiency in an
economy without differences in information.

A substantial part of economic theory is the consequence of the observation
that bilateral trade suffices to obtain the equality of the agents’MRS’s. Here, it
is clear that multilateral trade is necessary, though the institutionalized form that
this trading might take is ambiguous. As we saw earlier the missing ingredient of
ordinary market processes is some form of “income insurance” which enables each
agent i to achieve a marginal utility of income which is Fi-measurable, namely the
same for each state s ∈ PFi(s∗). There are now a number of well-known examples

3 See Footnote 1.
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where the absence of this ingredient has adverse effects; e.g., the study of signalling
in labor markets by M. Spence [1] and the study of screening in insurance markets by
M. Rothschild and J. Stiglitz [4]. The substance of the matter is whether institutional
arrangements to remedy these effects are possible in principle. In the next section
I examine the question by studying the core of an economy with differences in
information, and I demonstrate the affirmative answer that the core is not empty.

3. The core

In choosing a definition of the core my motive is to identify those allocations having
the property that if one is proposed then no subset of the agents has the opportunity
and incentive to opt for an alternative allocation. That is, no coalition can block the
proposed allocation. When different agents in a coalition have different information
their opportunities to take blocking actions jointly are necessarily contingent upon
events which they all can discern.

I suggest the following definition of contingent blocking. An allocation is
blocked if some coalition can enforce an alternative allocation which they pre-
fer in an event which they all can discern. Specifically, a (nonempty) coalition
M ⊆ N can enforce an allocation x̄ in an event E ∈

∧
M F , which its mem-

bers all can discern, iff
∑

i∈M x̄i(s) =
∑

i∈M ei(s) for each state s ∈ E; and if
Ei{ui[x̄i]|Fi} > Ei{ui[xi]|Fi} on E for each member i ∈ M then the proposed
allocation x is blocked. The core is then the set of unblocked allocations. Note that
this definition confines a blocking coalition to its null c.s.

This can also be called the coarse core to distinguish it from the fine core
for which a blocking coalition can also use its full c.s. If each coalition M has a
specified set C(M) of feasible communication systems then a general definition
can be phrased as follows: an allocation x is blocked iff there is a coalitionM ⊆ N
having a feasible c.s. (Hi)i∈M ∈ C(M), and eventE ∈ ∧M H which its members
can all discern using the c.s., and an alternative allocation x̄ which it can enforce
in the event E and which every member i ∈ M prefers given the information Hi

in the event E, namely Ei{ui[x̄i]|Hi} > Ei{ui[xi]|Hi} on E for each member
i ∈M .

The definition of blocking invokes three considerations, of which the first is
peculiar to an economy with differences in information among the agents. A coali-
tion can block only in an event which every member can discern using some one
of its feasible communication systems, since otherwise joint action is not possible.
Moreover it can object only with an alternative allocation which it can enforce
given that the specified event is known to obtain. And lastly, each member must
prefer the alternative allocation based on his information derived from the c.s. in
whatever finer event he knows or learns to obtain.

The requirement that a proposed allocation be unblocked is postulated as a
minimal desideratum for its stability as a candidate in a negotiating process. One
can envision that the agents negotiate the terms of an enforceable contract. Each
agent has his private information but in an institutionalized setting he may be unable
or unwilling to reveal it. The proposal of an unblocked allocation offers no coalition
an opportunity and incentive to object in any contingency. Any other allocation is
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Table 5

Alternative allocation
Agent (i) State (s): a b c

1 5 + 2ε 2 − ε 2 − ε
2 2 − ε 5 + 2ε 2 − ε
3 2 − ε 2 − ε 5 + 2ε

unlikely to be sustained against counterproposals and ultimately adopted in an event
in which a coalition can block; for, each member recognizes the possibility of the
event (and its certainty if it is discernable from their null c.s.) and together they have
an incentive to opt in favor of their alternative allocation which they can enforce.

For Example 1 the coarse and fine cores consist only of the endowment. For
Example 2 the allocation in Table 2 is in the coarse core. The market allocation in
Table 3, however, is blocked by agent 3 in the event (a, b).

The fine core for Example 2 is actually empty, as I shall now demonstrate. In
each state the perfectly informed agent and each two-agent coalition must get at
least their endowments since the full c.s. allows them to identify the prevailing
state. Thus the endowment is the only candidate for an unblocked allocation in the
fine core. But the endowment is blocked by the whole coalitionN using its null c.s.
in the whole event S by proposing the alternative allocation displayed in Table 5,
provided that ε > 0 is sufficiently small. Thus the fine core is empty for Example 2.
The apparent source of this difficulty is the conflict between the smaller coalitions’
use of communication to gain advantages, with the whole coalition’s opportunity to
provide insurance. It is true in general that the more communication is allowed the
smaller is the resulting core, but we see in this example that the tension between the
null c.s. and the full c.s. is sufficient to eliminate the core. An analogous conclusion
is obtained by M. Rothschild and J. Stiglitz [3] in their study of insurance markets
with differential information, where full communication occurs implicitly when an
insurer infers a buyer’s risk class from the type of contract he purchases.

It is easy to verify that the coarse core is never empty. The proof is obtained
by constructing another cooperative game for which the players are the pairs (i, A)
in which i ∈ N and A ∈ PFi. A player (i, A) prefers one allocation x to another
x̄ iff agent i prefers x to x̄ given Fi in the event A. The admissible coalitions are
those of the form (M,E) ≡ {(i, A)|i ∈ M , A ∈ PFi, A ⊆ E} for M ⊆ N and
E ∈ ∧M F . Such a coalition can enforce the allocation x iffM can enforce it in the
eventE. It is straightforward to verify that this newly constructed cooperative game
is a balanced game as defined by Scarf [5]. Consequently, there exists an unblocked
allocation in the ordinary core of this game. Such an unblocked allocation is also
unblocked in the economy with differential information. Thus the coarse core is
not empty.4

4 An alternative proof consists of showing that in the coarse core is an allocation resulting from a
constrained market process. For fixed prices (p(s)) which equate demands and supplies in each state,
each player (i, A) chooses a feasible consumption plan to maximize Ei{ui[xi]|Fi}(A) subject to the
budget constraint

∑
s∈A p(s)[xi(s) − ei(s)] � 0.
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The substance of this argument is merely the observation that each agent can
wear several hats in the negotiating process; or possibly he can delegate responsibil-
ity to subordinates, one for each event in his informational partition, to whom he con-
fers responsibility in that event. This approach will not work, of course, whenever
any coalition has access to a non-null c.s. In Example 1, for instance, the economy is
usefully regarded as a game among the three players (1, {a}), (1, {b}), (2, {a, b}).
It is then clear that the endowment is the only allocation in the coarse core, since
the first two players will invariably insist on getting their endowments. A similar
viewpoint in Example 2 motivates the allocation in Table 2, though it is not the only
unblocked allocation; and especially, compared to the market allocation in Table 3,
it motivates the requirement that the outcome of the game be efficient in the coarse
sense.

4. An extension

A natural objection to the definition of the coarse core is the conjecture that either
strategic considerations or the usefulness of information in production might favor
the “informational efficiency” of market processes. I conclude briefly, therefore,
with a more elaborate construction which addresses the matter to the extent that a
version of the coarse core remains nonempty.

Assume that each agent i has a set of feasible decisions which is a compact
and convex subset of a finite-dimensional Euclidean space (or more generally, a
complete separable metric space). For a coalition M a strategy dM = (dM

i (s))
specifies for each member i ∈ M a decision rule dM

i as a function of the state.
Given a strategy dM the coalitionM obtains from production the commodity bun-
dle yM (s, dM (s)) = yM [dM ](s) in state s, and each member i has the endowment
ei(s; dM (s), d−M (s)) = ei[dM , d−M ](s) depending on the strategy of the com-
plementary coalition −M = N\M . The coalition can enforce the allocation x
in an event E ∈ ∧M F iff

∑
i∈M xi[dM , d−M ](s) �

∑
i∈M ei[dM , d−M ](s) +

yM [dM ](s) for each state s ∈ E and each strategy d−M of the complementary
coalition. Note that the allocation depends upon the strategies of both coalitions.

An outcome is a pair (dN , x) consisting of a strategy for the whole coalition,
such that dN

i is
∨

N F -measurable for each agent i, and an allocation that it can
enforce in the whole event S. Such an outcome is blocked by a coalition M in an
event E ∈

∧
M F proposing one of its feasible strategies dM and an allocation x̄

which it can enforce in the event E iff for each member i ∈ M the decision rule
dM

i is
∨

M F -measurable and

Ei{ui[x̄i[dM , d−M ]]|Fi} > Ei{ui[xi[dN ]]|Fi}

on E for every strategy d−M of the complementary coalition which is
∨

N\{i} F -
measurable in each component. The core then consists of the unblocked outcomes.
(The weak measurability requirement on the complementary coalition’s strategy is
perhaps unsatisfactory. It envisions that each member of a blocking coalition trusts
only that his own information does not leak out to the complementary coalition,
since his colleagues may not have motives to withhold.)
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Table 6

Decision State: Left Right
Up 2,2 0,2

Down 0,0 4,0

Assume that the endowments ei[·] and the production functions yM [·] are each
continuous and concave, and F ′

i and
∨

M F ′-measurable, respectively. Also, if B
is a balanced collection of coalitions, namely there exist weights aM � 0 such
that

∑
i∈M∈B αM = 1 for each agent i ∈ N , and dN

i =
∑

i∈M∈B αMd
M
i , then

yN [dN ] �
∑

M∈B αMy
M [dM ]. This condition is a consequence of the concavity

and homogeneity of yN if yM [dM ] = yN [dM , 0].
The proof that there exists an unblocked outcome follows the previous argument,

supplemented by H. Scarf’s [6] construction for cooperative games in normal form.
The following example illustrates some of the features of this formulation.

Example 3. Two agents named Row and Column are to play one of two nonco-
operative games called Left and Right, each equally likely. Only Column knows
which game is to be played. Column has no decision to make but Row must choose
between two decisions Up and Down. The payoffs (in the single commodity) to
Row and Column are shown as ordered pairs in Table 6. The Nash equilibria of
this game lead Row to choose Down. This is true also if Column is allowed first
to send a message to Row, since Column’s incentive is to induce Row to choose
Up in either game. In the coarse core of the corresponding cooperative game is the
strategy which chooses Up or Down as the state is Left or Right, and which gives to
Row an insured payoff of 3 units in either case; indeed Row can let Column make
the decision to obtain an insured payoff of 1 unit in either case.

This example illustrates the legal maxim that favors vesting the better-informed
agent with the power and consequences of decisions in situations afflicted with
moral hazard. The other side of the coin, of course, is the need to insure the poorly
informed agent.
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1 Introduction

In his seminal paper, Wilson (1978) discusses the issues of exchange efficiency and
the core in the context of differential information economies. His work has attracted
a lot of attention and had widespread influence in the development of economic
theory.

In this note we offer some explanations and make comments on Wilson’s paper
which we believe will help to clarify further his ideas. In particular we discuss
two of his examples which he uses to make a number of points centered around
feasibility, efficiency and his coarse core. We assume that the reader is acquainted
with this paper. Examples and tables are numbered as they appear there. The main
point is that Wilson’s analysis and use of the term rational expectations equilibria
(REE) are not the same as in the Radner-Allen approach.

2 Explanations of Examples 2 and 3

In Example 2 we are explaining Wilson’s calculations of prices and quantities in
a market of state-contingent claims. We also point out that when Wilson uses the
term rational expectations equilibria (REE) his definition is not the same as REE
given by Radner (1979) and Allen (1981), and used in Glycopantis-Yannelis in this
volume. It is precisely the differential information of the agents which accounts for
the variety of possible equilibrium ideas.

In Example 3 we give a detailed analysis, confirming Wilson’s results, through
the interpretation of the game in a tree form. The use of extensive form games lends
itself naturally in situations where one of the players sends or does not send a signal
to the other one.

� We wish to thank A. Muir and R. Wilson for their very helpful comments and suggestions.
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Example 2. We explain here how Wilson obtains the prices (pa, pb, pc) =(
1, 16

115 ,
25
115

)
under state s∗ = a. Notice that this is not rational expectations equi-

libria and we will return to this point below. Wilson says that state a has been
chosen by nature. P1 sees a, P2 observes {a, c} and P3 the event {a, b}. However
each player will also try to sell his endowments in the remaining states because he
knows that they are valuable to somebody else.

The calculations below show how to obtain the prices pa = 1, pb = 16
115 pc =

25
115 . The agents receive price signals from the auctioneer and maximixe their interim
expected utility subject to their budget constraints. We have in effect the following
problems.

P1:
Problem

Maximize u1 = logx1a

Subject to
pax1a = 5pa + 1pb + 3pc

P2:
Problem

Maximize u2 = logx2a + logx2c

Subject to
pax2a + pcx2c = 3pa + 5pb + 1pc

P3:
Problem

Maximize u3 = logx3a + logx3b

Subject to
pax3a + pbx3b = pa + 3pb + 5pc

The agents send back to the Walrasian auctioneer their quantities demanded as
signals. The equilibrium conditions are:
For the quantities, in State a: 5pa+1pb+3pc

pa
+ 3pa+5pb+1pc

2pa
+ pa+3pb+5pc

2pa
= 9,

in State b: pa+3pb+5pc

2pb
= 9 and in State c: 3pa+5pb+1pc

2pc
= 9.

These relations are satisfied by pa = 1, pb = 16
115 , pc = 25

115 and the implied
allocation of claims is x1a = 666

115 , x2a = 225
115 , x3a = 144

115 , x1b = x2b = 0, x3b =
9, x1c = x3c = 0, x2c = 9.

We have obtained in these calculations the prices above and the Allocations of
Claims in Table III. The first column in the Market Allocation corresponds to the
first column of Allocation of claims. It says that when it is revealed that state a
has been realized, then the first column of Allocation of Claims is what is relevant.
Given the endowments in Table II we can do the calculations per prevailing state
and arrive eventually at columns b and c of Market Allocation in Table III.

The above analysis is not in the area of rational expectations in the usual sense.
First the endowments in Wilson’s formulation are not private information mea-
surable and also, which is probably more significant, we now have a function
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p : Ω → IRl per prevailing state. In REE there is only one price function defined
onΩ. Hence, although REE is itself an interim concept, here we have an alternative
interim concept.

Suppose we were to define a REE in the context of Wilson. It could go as
follows. We are looking for p : Ω → IRl such that each agent, given the element
of his information set which he observes and the signal that he receives from prices,
maximizes his interim expected utility subject to his relevant budget constraint and
such that when the state is revealed the markets clear. Now we would not insist on
any kind of measurability of the allocations.

According to the above definition (pa, pb, pc) = (1, 1, 1) is a non-revealing REE
set of prices and the Allocation in Table II is the corresponding REE quantities.
The agents rely only on their information sets and maximize interim expected
utility subject to their budget constraints without insisting on measurability of their
choices. This is consistent with the fact that the endowments are not measurable.

With respect to Wilson’s Footnote 3, what is meant there is that given prices
p = (1, 1, 1), the agents are only maximizing interim expected utility, when the
state of nature is uncertain, and otherwise they keep their endowment. The outcome
is again the Allocation in Table II. Perhaps defining a new REE notion is more
satisfactory than prohibiting traders, under some circumstances from trading.

Below Table III, Wilson refers to REE but in a different sense to the one de-
scribed above. This follows from the nature of the prices he proposes. The vector
p = (1, 0, 0) clears the market only under the condition s∗ = a. Indeed it can be
replaced by any non-negative price vector p = (1, k1, k2) with ki 	= 1 and analo-
gous prices identifying the other states. Everybody demands his own endowment.
Also, if all prices are positive and different, and again ignoring the lack of mea-
surability of the initial allocation, we have a fully revealing REE, and these initial
endowments are confirmed as an equilibrium.

Example 3. This example calculates a Nash equilibrium in the context of a normal
form game in which players have differential information. Originally the player
of the columns is not allowed to send a signal and in the second instance he can
signal to the player of the rows. The payoffs in Table VI are in a single commodity.
Agents 1 and 2 have strictly concave and increasing utility functions u1 and u2 on
this good. As there is no confusion, the payoffs in the trees below are given in terms
of the commodity.

In order to make the analysis clearer, we cast it in a tree form attaching to
“Nature”, as the third agent, the possibility to choose in the beginning between
states left (L) and right (R) with equal probabilities. We call P2 the Column player
and P1 the Row player.

The information sets are given by F1 = {{L,R}} and F2 = {{L}, {R}}. P1
cannot distinguish between L and R that nature chose, but P2 can do so.

Case 1. P2 makes no announcement.

Payoffs are determined from nature and the decision of P1 who, given the
probabilities of choices, maximizes his expected utility. The Nash equilibrium,
indicated in Figure 1, is for P1 to play d. P2 is completely passive and does nothing.
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Case 2. P2 is allowed to send a signal to P1.
We now construct Figure 2. Payoffs are determined from nature and the decision
of P1. He cannot distinguish between L and R that nature chose but can hear the
announcement of P2 who can either tell the truth or choose to lie. We consider
various possibilities of pure strategies, where the first choice of each player refers
to his first information set, from left to right:

P2, (L,R) ⇒ (u, d) for P1, not Nash;
P2, (L,L) ⇒ (d, d) for P1, Nash;
P2, (L,L) ⇒ (d, u) for P1, not Nash;
P2, (R,L) ⇒ (u, d) for P1, not Nash;
P2, (R,R) ⇒ (d, d) for P1, Nash;
P2, (R,R) ⇒ (u, d) for P1, not Nash.

One of the possible Nash equilibria is indicated on Figure 2 with heavy lines.
It can be obtained by folding up the tree to the one in Figure 3. The above confirms
the statement of Wilson that in this case also P1 will play d.

There are other Nash equilibria as well. In these P1 will always play d but
P2 can use mixed strategies as well. Furthermore all these Nash equilibria, with
appropriate probabilities (beliefs) attached to the nodes of the information sets, are
also perfect Bayesian equilibria (PBE).

In the same example Wilson says: “In the coarse core of the corresponding
cooperative game (an equilibrium) is the strategy which chooses Up or Down as
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Figure 4

the state is Left or Right, and which gives to Row an insured payoff of 3 units in
either case;...”. An interpretation is as follows.1 Cooperation allows us to discard
the payoff vectors (0, 0) and (0, 2), and eL1 = 2, eR1 = 4, eL2 = 2 and eR2 = 0
can be thought of as the players’ endowments in the single commodity. The agents
act on the basis of the “meet” of the information algebras, F1 = {{L,R}}. The
corresponding tree is shown in Figure 4. The players know the probabilities and
have to reach a decision concerning both nodes. The commodity payoff constraints
are 0 ≤ cL1 + cL2 ≤ 4 and 0 ≤ dR

1 + dR
2 ≤ 4.

The expected utilities of the players corresponding to their random endowments
are

E1 =
1
2
u1(2) +

1
2
u1(4), and E2 =

1
2
u2(2) +

1
2
u2(0)

The coarse core allocations are obtained as solutions to the problem:

1 We recall that Wilson defines the coarse core to consist of allocations which cannot be blocked by
any coalition of agents who act on the basis of the intersection of their algebras of information sets.
Wilson imposes no measurability conditions on allocations.
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Problem

Maximize E1 = 1
2u1(u) + 1

2u1(d)
Subject to

1
2
u2(u) +

1
2
u2(d) ≥ E2 (fixed)

E1 ≥
1
2
u1(2) +

1
2
u1(4) and E2 ≥

1
2
u2(2) +

1
2
u2(0).

Then there is a coarse core allocation in which P1 gets (3, 3) and P2 the allocation
(1, 1). We can see this as follows. We maximize the expected utility of one agent
subject to a given expected value for the other. A particular solution is the one
above.

We note that Example 1, which we did not discuss, illustrates the problem of
adverse selection, and requires no special interpretation.
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Summary. We introduce a new core concept for an exchange economy with differ-
ential information which is contained in the coarse core concept of Wilson (1978).
We prove the existence of (i) a core allocation for an exchange economy with dif-
ferential information and; (ii) an α-core strategy for a game in normal form with
differential information.

1. Introduction

An exchange economy with differential information consists of a finite set of agents
each of whom is characterized by a random utility function, a random initial en-
dowment, a private information set and a prior.

The purpose of this paper is to study the following questions: How does one
define the notion of the core in an exchange economy with differential information?
What is the appropriate core concept? Under what conditions an agent’s character-
istics is the core nonempty?

With finitely many states of nature, the existence of a coarse core allocation for
an economy with differential information follows easily from the well known result
of Scarf (1967), as first shown in a seminal paper by Wilson (1978). However, with
a continuum of states even if there is symmetric information (i.e., the information
set of each agent is the same) the domain of the expected utility becomes infinite
dimensional (even if there is only one good in the economy), and consequently

� On different occasions I have benefited from discussions, comments and suggestions by C.D.
Aliprantis, Kim Border, Don Brown, Baskar Chacravorti, Mark Feldman, Leo Hurwicz, Charlie Kahn,
John Ledyard, Andreu Mas-Colell, Flavio Menezes, Tom Palfrey, Ed Prescott, Aldo Rustichini, David
Schmeidler and Sanjay Srivastava. Mark. Feldman and Aldo Rustichini both independently brought to
my attention the related work of Wilson (1978). My thanks are extended to all the above individuals as
well as to a careful referee. Of course, I am responsible for any remaining shortcomings.
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Scarf’s theorem is not directly applicable. It turns out that in the presence of a con-
tinuum of states, functional analytic methods as well as several measure theoretic
results seem to be required.

The paper is organized as follows: Sect. 2 contains notation and definitions. The
model and the main results are presented in Sect. 3. Sections 4 and 5 contain the
proofs of our main theorems. Finally Sect. 6 contains some concluding remarks.

2. Notation and definitions

2.1. Notation

Rl denotes the l-fold Cartesian product of the set of real numbers R.
Rl+ denotes the positive cone of Rl.
Rl

++ denotes the strictly positive elements of Rl.
2A denotes the set of all nonempty subsets of the set A.
∅ denotes the empty set.
/ denotes the set theoretic subtraction.
If X is a linear topological space, its dual is the space X∗ of all continuous linear
functionals onX , and if p ∈ X∗, and x ∈ X the value of p at x is denoted by p ·x.

2.2. Definitions

If X and Y are sets, the graph of the set-valued function (or correspondence),
φ : X → 2Y is denoted byGφ = {(x, y) ∈ X×Y : y ∈ φ(x)}. Let (T,T, µ) be a
complete, finite measure space, andX be a separable Banach space. The set-valued
function φ : T → 2X is said to have a measurable graph ifGφ ∈ T⊗β(X), where
β(X) denotes the Borel σ-algebra onX and⊗ denotes the product σ-algebra. The
set-valued function φ : T → 2X is said to be lower measurable or just measurable
if for every open subset V of X , the set {t ∈ T : φ(t) ∩ V 	= ∅} is an element
of T. A well-known result of Debreu [(1966), p. 359] says that if φ : T → 2X

has a measurable graph, then φ is lower measurable. Furthermore, if φ(·) is closed
valued and lower measurable then φ : T → 2X has a measurable graph. A theorem
of Aumann (1967) which will be of fundamental importance in this paper tells us,
that if (T,T, µ) is a complete, finite measure space,X is a separable metric space
and φ : T → 2X is a nonempty valued correspondence having a measurable graph,
then φ(·) admits a measurable selection, i.e., there exists a measurable function
f : T → X such that f(t) ∈ φ(t)µ-a.e.

Let (T,T, µ) be a finite measure space and X be a Banach space. Follow-
ing Diestel-Uhl (1977) the function f : T → X is called simple if there exist
x1, x2, . . . , xn in X and α1, α2, . . . , αn in T such that f =

∑n
i=1 xiχαi , where

χαi(t) = 1 if t ∈ αi and χαi(t) = 0 if t /∈ αi. A function f : T → X is said to
be µ-measurable if there exists a sequence of simple functions fn : T → X such
that limn→∞ ‖fn(t) − f(t)‖ = 0 for almost all t ∈ T . A µ-measurable function
f : T → X is said to be Bochner integrable if there exists a sequence of simple
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functions {fn : n = 1, 2, ...} such that

lim
n→∞

∫
T

‖fn(t)− f(t)‖dµ(t) = 0

In this case we define for each E ∈ T the integral to be
∫

E
f(t)dµ(t) =

limn→∞
∫

E
fn(t)dµ(t).

It can be shown [see Diestel-Uhl (1977), Theorem 2, p. 45] that if f :
T → X is a µ-measurable function then, f is Bochner integrable if and only
if
∫

T
‖f(t)‖dµ(t) <∞.

It is important to note that the Dominated Convergence Theorem holds for
Bochner integrable functions. In particular, if fn : T → X , (n = 1, 2, . . . ) is a
sequence of Bochner integrable functions such that limn→∞ fn(t) = f(t)µ-a.e.,
and ‖fn(t)‖ � g(t)µ-a.e., (where g : T → R is an integrable function), then f is
Bochner integrable and limn→∞

∫
T
‖fn(t)− f(t)‖dµ(t) = 0.

For 1 � p < ∞, we denote by Lp(µ,X) the space of equivalence classes of
X-valued Bochner integrable functions x : T → X normed by

‖x‖p =
(∫

T

‖x(t)‖pdµ(t)
)1/p

.

It is a standard result that normed by the functional ‖ ·‖p above,Lp(µ,X) becomes
a Banach space [see Diestel-Uhl (1977), p. 50]. Recall that a correspondence φ :
T → 2X is said to be integrably bounded if there exists a map h ∈ L1(µ,R) such
that sup{‖x‖ : x ∈ φ(t)} � h(t)µ-a.e.

A Banach spaceX has the Radon-Nikodym Property with respect to the measure
space (T,T, µ) if for eachµ-continuous measureG : T → X of bounded variation
there exists g ∈ L1(µ,X) such thatG(E) =

∫
E
g(t)dµ(t) for allE ∈ T.A Banach

spaceX has the Radon-Nikodym Property (RNP) ifX has the RNP with respect to
every finite measure space. Recall now [see Diestel-Uhl (1977, Theorem 1, p. 98)]
that if (T,T, µ) is a finite measure space 1 � p < ∞, and X is a Banach space,
then X∗ has the RNP if and only if (Lp(µ,X))∗ = Lq(µ,X∗) where 1

p + 1
q = 1.

We will close this section by collecting some basic results on Banach lattices
[for an excellent treatment seeAliprantis-Burkinshaw (1985)]. Recall that a Banach
lattice is a Banach space L equipped with an order relation � (i.e., � is a reflexive,
antisymmetric and transitive relation) satisfying:

(i) x � y implies x+ z � y + z for every z in L,
(ii) x � y implies λx � λy for all λ � 0,
(iii) for all x, y in L there exists a supremum (least upper bound) x ∨ y and an

infimum (greatest lower bound) x ∧ y,
(iv) |x| � |y| implies ‖x‖ � ‖y‖ for all x, y in L.

As usual x+ = x∨ 0, x− = (−x)∨ 0 and |x| = x∨ (−x) = x+ +x−; we call
x+, x− the positive and negative parts of x, respectively and |x| the absolute value
of x. The symbol ‖ · ‖ denotes the norm on L. If x, y are elements of the Banach
lattice L, then we define the order interval [x, y] as follows:

[x, y] = {z ∈ L : x � z � y}.
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Note that [x, y] is norm closed and convex (hence weakly closed). A Banach lattice
L is said to have an order continuous norm if, xα ↓ 0 in L implies ‖xα‖ ↓ 0. A
very useful result which will play an important role in the sequel is that if L is a
Banach lattice then the fact that L has an order continuous norm is equivalent to
weak compactness of the order interval [x, z] = {y ∈ L : x � y � z} for every
x, z in L [see for instance Aliprantis-Brown-Burkinshaw (1989), Theorem 2.3.8,
p. 104 or Lindenstrauss-Tzafriri (1979, p. 28)].

We finally note that Cartwright (1974) has shown that if X is a Banach lattice
with order continuous norm (or equivalentlyX has weakly compact order intervals)
then L1(µ,X), has weakly compact order intervals, as well. Cartwright’s theorem
will play a crucial role in the proof of our main results.

3. Model and results

3.1. The core of an exchange economy with differential information

Let Y be a separable Banach lattice with an order continuous norm, whose dual
Y ∗ has the RNP.1 Let (Ω,F, µ) be a complete finite measure space.

An exchange economy with differential information Γ = {(Xi, ui, ei, Fi, qi) :
i = 1, 2, . . . , n} is a set of quintuples (Xi, ui, ei, Fi, qi) where,

(1) Xi : Ω → 2Y+ is the random consumption set of agent i,
(2) ui : Ω ×Xi → R is the random utility function of agent i,
(3) Fi is a (measurable) partition2 of (Ω,F) denoting the private information of

agent i,
(4) ei : Ω → Y+ is the random initial endowment of agent i, ei(·) is Fi-

measurable, Bochner integrable and ei(ω) ∈ Xi(ω) for all i, µ-a.e.,
(5) qi : Ω → R++ is the prior of agent i, (i.e., qi is a Radon-Nikodym derivative

having the property that
∫

t∈Ω
qi(t)dµ(t) = 1).

Denote byLXi the set of all Bochner integrable andFi-measurable selections from
the consumption set Xi of agent i, i.e.,

LXi
= {xi ∈ L1(µ, Y+) : xi : Ω → Y+ is Fi-measurable

and xi(ω) ∈ Xi(ω)µ-a.e}.

For each i, (i = 1, 2, . . . , n), denote byEi(ω) the event inFi containing the realized
state of nature ω ∈ Ω and suppose that

∫
t∈Ei(ω) qi(t)dµ(t) > 0 for all i. Given

Ei(ω) in Fi define the conditional expected utility of agent i, Vi : Ω × LXi → R
by

Vi(ω, xi) =
∫

t∈Ei(ω)
ui(t, xi(t))qi(t|Ei(ω))dµ(t) (3.1)

1 A basic example of a space which satisfies all these conditions is the Euclidean spaceRl. Remark 6.1
in Section 6 presents some more examples.

2 In the sequel by an abuse of notation, we will still denote by an Fi the σ-algebra that the partition
Fi generates.
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where

qi(t|Ei(ω)) =

⎧⎪⎨⎪⎩
0 if t /∈ Ei(ω)

qi(t)∫
t∈Ei(ω) qi(t)dµ(t)

if t ∈ Ei(ω).
(3.2)

We are now ready to define the central notions of the paper.

Definition 3.1.1. We say that x = (x1, x2, . . . , xn) ∈ ∏n
i=1 LXi is a core allo-

cation for Γ , if

(i)
∑n

i=1 xi =
∑n

i=1 ei, and
(ii) it is not true that there exist S ⊂ {1, 2, . . . , n} and (yi)i∈S ∈

∏
i∈S LXi

such
that

∑
i∈S yi =

∑
i∈S ei and Vi(ω, yi) > Vi(ω, xi) for all i ∈ S for µ-almost

all ω ∈ Ω (where Vi is given by 3.1).

A couple of comments are in order: Note that x ∈
∏n

i=1 LXi implies that
each xi(·) is Fi-measurable and therefore the vector x(ω) = (xi(ω), x2(ω), . . . ,
xn(ω)) ∈∏n

i=1Xi(ω) is
∨n

i=1 Fi-measurable (where
∨n

i=1 Fi denotes the join, the
smallest partition containing F1, F2, . . . Fn). Condition (i) above implies that the
markets are cleared in each state of nature, i.e.,

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω)µ-a.e.

Condition (ii) shows that no coalition of agents (while each agent in the coalition
uses his/her own private information) can redistribute their initial endowments
among themselves for any state of nature and make the conditional expected utility
of each agent in the coalition better off. Note that Condition (ii) of Definition 3.1.1)
implies the following condition:

(ii)′ It is not true that there exist S ⊂ {1, 2, . . . , n} and y : Ω → ∏
i∈S Xi, yi(·)

if
∧

i∈S Fi-measurable (where
∧

i∈S Fi denotes the meet, i.e., the maximal
partition contained in all of them) such that

∑
i∈S yi(ω) =

∑
i∈S ei(ω)µ-a.e.

and Vi(ω, yi) > Vi(ω, xi) for all i ∈ S for µ-almost all ω ∈ Ω.

The above blocking notion is the one adopted by Wilson (1978) to define his coarse
core concept.3 Note that since each yi(·) is

∧
i∈S Fi-measurable, the information is

verifiable by each member of the coalition. For instance, if we imagine that agents
negotiate the terms of a contract, then Wilson’s definition tells us that a coarse
core allocation has the property that no coalition of agents can exchange their own
information (in fact, information is verifiable by each member of the coalition) and
make each agent in the coalition better off. In other words, contracts are realizable
because information is verifiable. However, according to our Condition (ii) of Def-
inition 3.1.1, information is not necessarily verifiable by all the members of the
coalition (it is only privately verifiable). The latter makes the core smaller, i.e., any
core allocation satisfying the Definition 3.1.1 is a coarse core allocation as well.
(Recall that if yi(·) is

∧
i∈S Fi-measurable, it is also Fi-measurable; of coarse the

reverse is not true). Hence, the theorems that we will prove on the existence of core
allocations will imply the existence of coarse core allocations as well.

3 See also Kobayashi (1980) who has also used the coarse core.
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Note that if we were to narrow the set of core allocations by replacing the Fi-
measurability of yi(·) in (ii) of Definition 3.1.1 with the

∨
i∈S Fi-measurability

of y : Ω →
∏

i∈S Xi, then it is easy to construct examples which satisfy all the
assumptions of Theorem 3.1 below, but the core is empty [see Wilson (1978) or
Berliant (1990) for examples to that effect]. We are not aware of any natural set
of assumptions on utility functions and initial endowments which will guarantee
the existence of such a core. Finally, it is worth pointing out that a core notion
which allows for complete exchange of information among agents in each coalition
may not be an appropriate concept since in most applications, agents do not have
an incentive to reveal their own private information (think of situations of moral
hazard or adverse selection).

Definition 3.1.2. We say that x ∈∏n
i=1 LXi

is (interim) Pareto optimal if:4

(i)
∑n

i=1 xi =
∑n

i=1 ei, and
(ii) it is not true that there exists y ∈ ∏n

i=1 LXi
such that

∑n
i=1 yi =

∑n
i=1 ei

and Vi(ω, yi) > Vi(ω, xi) for all i for µ-almost all ω ∈ Ω (where Vi is given
by (3.1)).

Definition 3.1.3. We say that x ∈∏n
i=1 LXi is individually rational if:

(i)
∑n

i=1 xi =
∑n

i=1 ei and
(ii) Vi(ω, xi) � Vi(ω, ei) for all i and for some ω ∈ Ω (where Vi is given by (3.1)).

Finally, if the private information set of each agent, is the same (i.e., there is
symmetric information so Fi ≡ F for all i) we call any x ∈ ∏n

i=1 LXi
satisfying

(i) and (ii) of Definition 3.1.1 a symmetric core allocation for Γ .
We are now ready to state our first main result:

Theorem 3.1. Let Γ = {(Xi, ui, ei, Fi, qi) : i = 1, 2, . . . , n} be an exchange
economy with differential information satisfying the following assumptions, for
each i (i = 1, 2, . . . , n),

(a:3.1) Xi : Ω → 2Y+ is an integrably bounded, convex, closed, nonempty valued
and Fi-measurable correspondence,

(a.3.2) for each ω ∈ Ω, ui(ω, ·) is weakly continuous and integrably bounded, and
(a.3.3) for each ω ∈ Ω, ui(ω, ·) is concave.

Then a core allocation exists in Γ .

The following corollaries follow directly from Theorem 3.1.

Corollary 3.1. Let Γ = {(Xi, ui, ei, Fi, qi) : i = 1, 2, . . . , n} be an exchange
economy with differential information satisfying all the assumptions of Theorem 3.1.
Then an individually rational and Pareto optimal allocation exists in Γ .

Corollary 3.2. Let Γ = {(Xi, ui, ei, Fi, qi) : i = 1, 2, . . . , n} be an exchange
economy with symmetric information (i.e., Fi ≡ F for all i), satisfying all the
assumptions of Theorem 3.1. Then a symmetric core allocation exists in Γ .

4 A similar notion is defined by Palfrey and Srivastava (1987).
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3.2. The α-core of a game in normal form with differential information

A game in normal form with differential information B = {(Xi, ui, Fi, qi) : i =
1, 2, . . . , n} is a set of quadruples (Xi, ui, Fi, qi) where

(1) Xi : Ω → 2Y is the strategy set-valued function of player i,
(2) ui : Ω ×∏n

i=1Xi → R is the random payoff function of player i,
(3) Fi is a (measurable) partition of (Ω,F) denoting the private information of

player i, and
(4) qi : Ω → R++ is the prior of player i (i.e., qi is a Radon-Nikodym derivative

having the property that
∫

t∈Ω
qi(t)dµ(t) = 1).

For each i (i = 1, 2, . . . , n) denote by Ei(ω) the event in Fi containing the true
state of nature ω ∈ Ω and suppose that

∫
t∈Ei(ω) qi(t)dµ(t) > 0. Given Ei(ω) in

Fi define the conditional expected payoff of player i, Vi : Ω×∏n
i=1 LXi → R by

Vi(ω, x) =
∫

t∈Ei(ω)
ui(t, x(t))qi(t|Ei(ω))dµ(t), (3.3)

where qi(t|Ei(ω)) is defined as in (3.2).
Before we defne the notion of an α-core strategy for the game B we need to

introduce some notation. Denote by I the set of players {1, 2, . . . , n}. lf S ⊂ I
then (yS , xI/S) denotes the vector z in

∏n
i=1 LXi where zi = yi if i ∈ S and

zi = xi if i /∈ S.

Definition 3.2.1. We say that x ∈ ∏n
i=1 LXi = LX is an α-core strategy for B

if:

(i) lt is not true that there exist S ⊂ I and (yi)i∈S ∈
∏n

i∈S LXi such that for any
zI/S ∈∏i/∈S LXi

, Vi(ω, (yS , zI/S)) > Vi(ω, x) for all i ∈ S for µ-almost all
ω ∈ Ω (where Vi is given by (3.3)).

Note that as before x ∈
∏n

i=1 LXi implies that xi(·) is Fi-measurable and con-
sequently the vector x(ω) = (x1(ω), . . . , xn(ω)) is

∨
i∈I Fi-measurable. Condi-

tion (i) in Definition 3.2.1 indicates that no coalition of players is able to change its
strategy (while each player in the coalition uses his/her own private information)
and make the expected utility of each member in the coalition better off, no matter
what the complementary coalition chooses to do (each member in the complemen-
tary coalition is also allowed to take advantage of his/her own private information).
Following the previous definition of a coarse core allocation for an economy wich
differential information, we can define an α-coarse strategy for the game B, and
show that the set of α-coarse core strategies contains the set of α-core strategies
for the game B.

Since there is no exchange of information among players in each coalition one
may suggest that it is possible to analyze games in normal form wich differential
information (or economies with different information) in a noncooperative setting
adopting the notion of a Bayesian Nash equilibrium or correlated equilibrium.
However, the latter concepts do not yield Pareto optimal outcomes, contrary to the
core or α-core. It seems to us that selecting outcomes out of the Pareto frontier is
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an attractive property for an allocation mechanism to have. The latter makes the
core concept appealing in an economy with differential information.

We can now state our second main result.

Theorem 3.2. Let B = {(Xi, ui, Fi, qi) : i = 1, 2, . . . , n} be a game in normal
form with differential information satisfying the following assumptions for each
player i (i = 1, 2, . . . , n),

(a.3.2.1) Xi : Ω → 2Y+ is an integrably bounded, nonempty convex weakly com-
pact valued and Fi-measurable correspondence,5

(a.3.2.2) for each ω ∈ Ω, ui(ω, ·) is weakly continuous and integrably bounded,
and

(a.3.2.3) for each ω ∈ Ω, ui(ω, ·) is concave.

Then an α-core strategy exists in B.

4. Proof of Theorem 3.1

We first state the well-known core existence result of Scarf (1967) [see also Border
(1984) orYannelis (1990) for recent generalizations] which is going to play a crucial
role in the proof of Theorem 3.1. We will first need some notation.

Let E = {(Xi, ui, ei) : i = 1, 2, . . . , n} be an exchange economy, where

(1) Xi ⊂ Rl is the consumption set of agent i,
(2) ui : Xi → R is the utility function of agent i, and
(3) ei ∈ Xi is the initial endowment of agent i.

Define the set-valued function Pi : Xi → 2Xi by Pi(xi) = {y∈Xi : ui(yi) >
ui(xi)}. Scarf’s result asserts that ifXi is a nonempty, closed, convex and bounded
from below subset of Rl, ui is quasi concave and continuous (i.e., if Pi is convex
valued and has an open graph in Xi × Xi), then core allocations exist in E, i.e.,
there exists x ∈∏n

i=1Xi such that:

(i)
∑n

i=1 xi =
∑n

i=1 ei, and
(ii) it is not true that there exist S ⊂ {1, 2, . . . , n} and (yi)i∈S ∈

∏
i∈S Xi such

that
∑

i∈S yi =
∑

i∈S ei and yi ∈ Pi(xi) for all i ∈ S.

We begin the proof of Theorem 3.1 by constructing a new economy G =
{(LXi , Pi, ei) : i = 1, 2, . . . , n}, where

(i) LXi
is the consumption set of agent i,

(ii) Pi : LXi
→ 2LXi is the preference correspondence of agent i defined by

Pi(xi) = {yi ∈ LXi : Vi(ω, yi) > Vi(ω, xi) for µ-almost all ω ∈ Ω} and
(iii) ei ∈ LXi

for all i, is the initial endowment of agent i.

Note the existente of a core allocation forG implies the existence of a core allocation
for the original economy Γ = {(Xi, ui, ei, Fi, qi) : i = 1, 2, . . . , n}. Hence, all

5 The assumption that Xi(·) takes values in the positive cone of Y , is not needed for the proof of
this theorem.
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we need to show is that a core allocation exists in the economy G. To this end
we first show that for each i, LXi is closed, bounded, convex, nonempty and that
Pi : LXi → 2LXi is convex valued having a weakly open graph (i.e., the set
GPi = {(x, y) ∈ LXi × LXi : y ∈ Pi(x)} is weakly open in LXi × LXi).

Note the fact that LXi is convex, closed and bounded follows directly from
assumption (a.3.1). To prove that LXi is nonempty, recall that Xi : Ω → 2Y+ is
Fi-measurable, nonempty, closed valued and thereforeGXi

∈ Fi⊗β(Y+). By the
Aumann (1967) measurable selection theorem, we can obtain an Fi-measurable
function fi : Ω → Y+ such that fi(ω) ∈ Xi(ω)µ-a.e. Since Xi is integrably
bounded, we can conclude that fi ∈ L1(µ, Y+). Hence, fi ∈ LXi

and this proves
that LXi

is nonempty.
In order to show that for each i, Pi has a weakly open graph, we will first need

the following claim6:

Claim 4.1. For each i (i = 1, 2, . . . ) and for each ω ∈ Ω, Vi(ω, ·) is weakly
continuous.

Proof. Fix i (i = 1, 2, . . . , n) and ω ∈ Ω and let Ei(ω) be an event in Fi.
Consider the sequence {xm

i : m = 1, 2 . . . } in LXi
⊂ L1(µ, Y ), which converges

weakly to xi ∈ LXi , i.e., p · xm
i converges to p · xi for any p ∈ L∞(µ, Y ∗) =

(L1(µ, Y ))∗ (recall that Y ∗ has the RNP). Note that xm
i converges weakly to xi

is equivalent to the fact that p · xm
i χA = pχA · xm

i converges to p · xiχA =
pχA · xi for any p ∈ L∞(µ, Y ∗), A ∈ F and each condition above implies that
y∗ · xm

i χA = y∗χA · xm
i converges to y∗ · xiχA = y∗χA · xi for any y∗ ∈ Y ∗,

A ∈ F. If we show that xm
i χEi(ω) converges pointwise in the weak topology of

Xi to xiχEi(ω), then since for each ω ∈ Ω, ui(ω, ·) is weakly continuous and
integrably bounded the weak continuity of Vi(ω, ·) will follow from the Lebesgue
dominated convergence theorem. Now if Fi = {E1

i , E
2
i , . . . } is the partition of

agent i, then the fact that xm
i and xi are elements of Lxi implies that xm

i =∑∞
k=1 x

m
i,kχEk

i
, xi =

∑∞
k=1 xi,kχEk

i
, for xm

i,k, xi,k inXi and consequently we can
conclude that xm

i χEi(ω) =
∑∞

k=1 x
m
i,kχEk

i ∩Ei(ω) converges weakly to xiχEi(ω) =∑∞
k=1 xi,kχEk

i ∩Ei(ω). This completes the proof of the claim.

In view of Claim 4.1 we can now conclude that for each i, Pi has a weakly
open graph. Moreover, since for each ω ∈ Ω, ui(ω, ·) is concave so is Vi(ω, ·) and
therefore, Pi is convex valued. We will now construct a suitable family of truncated
subeconomies in a finite dimensional commodity space, each of which satisfies the
assumptions of Scarf’s theorem. Applying Scarf’s theorem, we will obtain a net
of core allocations for each subeconomy. By taking limits we will show that the
existence of a core allocation for each subeconomy implies the existence of a core
allocation for the original economy G.

Let A be the set of all finite dimensional subspaces ofL1(µ, Y+) containing the
initial endowments. For each α ∈ A define the consumption set of agent i, Lα

Xi
by

Lα
Xi

= LXi
∩α and the preference correspondence of agent i, Pα

i : Lα
Xi
→ 2LXα

i

by Pα
i (xi) = Pi(xi)∩Lα

Xi
. We now have an economy Gα = {(Lα

Xi
, Pi, ei) : i =

6 A similar result is proved in Yannelis & Rustichini (1991).
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1, 2, . . . , n} in a finite dimensional commodity space, where,

Lα
Xi

is the consumption set of agent i, (4.1)

Pα
i : Lα

Xi
→ 2LXα

i is the preference correspondence of agent i, and (4.2)

ei ∈ Lα
Xi

is the initial endowment of agent i. (4.3)

It can be easily checked that each economy Gα satisfes all the assumptions of
Scarf’s theorem and therefore there exists xα = (xα

1 , . . . , x
α
n) ∈∏n

i=1 L
α
Xi

= Lα
X

such that:
n∑

i=1

xα
i =

n∑
i=1

e1, and (4.4)

it is not true that there exist S ⊂ {1, 2, . . . , n} and (yi)i∈S ∈
∏

i∈S L
α
Xi

such that∑
i∈S

yi =
∑
i∈S

ei and yi ∈ Pα
i (xα

i ) for all i ∈ S. (4.5)

From (4.4) it follows that for each α ∈ A

0 �
n∑

i=1

xα
i =

n∑
i=)1

ei = e.

Hence for each α ∈ A the vectors xα
i lie in the order interval [0, e]. Since by

assumption order intervals in Y are weakly compact, by Cartwright’s theorem the
order interval [0, e] in

∑n
i=1 LXi

is weakly compact. Direct the set A by inclusion
so that {(xα

i , x
α
2 , . . . , x

α
n) : α ∈ A} forms a net in

∏n
i=1 LXi . Since all the vectors

xα
i lie in the order interval [0, e] which is weakly compact, the net {(xα

i , . . . , x
α
n) :

α ∈ A} has a subnet which converges weakly to some vector x1, x2, . . . , xn in
[0, e]. We will show that the vector x1, . . . , xn is a core allocation for the economy
G. Denote the convergent subnet by {(xα(m)

i , . . . , x
α(m)
n ) : m ∈M} whereM is

a set directed by “�”. Since for all m ∈ M ,
∑n

i=1 x
α(m)
i =

∑n
i=1 ei and xα(m)

i

converges weakly to xi ∈ LXi
, we conclude that

∑n
i=1 xi =

∑n
i=1 ei. We will

now complete the proof by showing that:
It is not true that there exist S ⊂ {1, 2, . . . , n} and (yi)i∈S ∈

∏
i∈S LXi

such
that ∑

i∈S

yi =
∑
i∈S

ei and yi ∈ Pi(xi) for all i ∈ S. (4.6)

Suppose that (4.6) is false, then there exist S ⊂ {1, 2, . . . , n} and (yi)i∈S ∈∏
i∈S LXi such that

∑
i∈S yi =

∑
i∈S ei and yi ∈ Pi(x) for all i ∈ S. Since xα(m)

i

converges weakly to xi and Pi has a weakly open graph, there existsm0 ∈M such
that yi ∈ Pi(x

α(m)
i ) for all m � m0 and for all i ∈ S. Choose m1 � m0 so that,

if m ≥ m1, yi ∈ Lα(m)
Xi

for all i ∈ S. Then yi ∈ Pα(m)
i (xα(m)

i ), for all m � m1
and for all i ∈ S. But this contradicts (4.5). Hence (4.6) holds and this completes
the proof of the theorem.
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5. Proof of Theorem 3.2

We begin by stating the α-core existence result of Scarf (1971) which is going to
be used in the proof of Theorem 3.2.

Let N = {(Xi, ui) : i = 1, 2, . . . , n} be a game in normal form where,

(1) Xi is a compact, convex and nonempty subset of Rl, denoting the strategy set
of player i, and

(2) ui :
∏n

i=1Xi → R is a quasi-concave function on
∏n

i=1Xi, denoting the
payoff of player i.

The strategy vector x ∈∏n
i=1Xi is said to be an α-core strategy for N if:

It is not true that there exist S ⊂ {1, 2, . . . , n} and (yi)i∈S ∈
∏

i∈S Xi such
that for any zI/S ∈∏i/∈S Xi, ui(yS , zI/S) > ui(x) for all i ∈ S.

As in the proof of Theorem 3.1 we will construct a new game B̄ = {(LXi
, Vi) :

i = 1, 2, . . . , n}, where

(a) LXi
is the strategy set of player i, and

(b) Vi : Ω×
∏n

i=1 LXi → R is the payoff function of player i (defined as in (3.3)).

It is easy to see that the existence of anα-core strategy for B̄ implies the existence of
an α-core strategy for the original game B = {(Xi, ui, Fi, qi) : i = 1, 2, . . . , n}.
Our goal is to construct a suitable family of truncated subgames in a finite dimen-
sional strategy spare, each of which satisfies all the conditions of the Scarf (1971)
theorem. Therefore we will obtain a net of α-core strategies for each subgame. As
in the proof of Theorem 3.1, operating a limiting argument we can show that the
existence of anα-core strategy for each subgame implies the existence of anα-core
strategy for the original game B. Before we start the outlined construction of the
family of truncated subgames, we need to make some observations.

Note that for each ω ∈ Ω, Vi(ω, ·) is weakly continuous (recall Claim 4.1)
and by virtue of assumption (a.3.2.3) concave on

∏n
i=1 LXi

. Moreover, note that
each LXi

is convex and nonempty. However, since Scarf’s theorem requires the
compactness of each strategy set we will need to prove the following claim which
is known as Diestel’s theorem.

Claim 5.1. The set LXi is weakly compact in L1(µ, Y ).

Proof. The proof is based on the celebrated theorem of James (1964) and
it is patterned after that Khan (1982). Note that the dual of L1(µ, Y )
is L∞(µ, Y ∗

w∗) (where w∗ denotes the w∗-topology), i.e., (L1(µ, Y ))∗ =
L∞(µ, Y ∗

w∗) [see, for instance, Tulcea-Tulcea (1969)]. Let x be an arbitrary el-
ement of L∞(µ, Y ∗

w∗). If we show that x attains its supremum on LXi
the result

will follow from James’ theorem [James (1964)]. Let,

Sup
ψi∈LXi

ψ · x = Sup
ψi∈LXi

∫
ω∈Ω

(ψi(ω) · x(ω))dµ(ω).

Note that by Theorem 2.2 in Hiai-Umegaki (1977),

Sup
ψi∈LXi

∫
ω∈Ω

(ψi(ω) · x(ω))dµ(ω) =
∫

ω∈Ω

Sup
φi∈Xi(ω)

(φi · x(ω))dµ(ω).
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For each i, define the set-valued function gi : Ω → 2Y by gi(ω) = {y ∈ Xi(ω) :
y · x = Supφi∈Xi(ω) φi · x}. It follows from the weak compactness of Xi that for
all ω ∈ Ω, gi(ω) is nonempty. For each i, define fi : Ω × Y → [−∞,∞] by
fi(ω, y) = y · x − Supφi∈Xi(ω) φ · x. lt is easy to see that for each fixed ω ∈ Ω,
fi(ω, ·) is continuous and for each fixed y ∈ Y , fi(·, y) is Fi-measurable and
hence fi(·, ·) is jointly Fi-measurable, i.e., for every closed subset V of [−∞,∞],
f−1
1 (V ) = {(ω, z) ∈ Ω × Y : z ∈ Xi(ω)} belongs to Fi ⊗ B(Y ). Since Xi is
Fi-measurable the set GXi = {(ω, x) : x ∈ Xi(ω)} is an element of Fi ⊗B(Y ).
Moreover, note that Ggi = f−1

i (0) ∩ GXi and since f−1
i (0) and GXi belong to

Fi⊗B(Y ) so doesGgi
. It follows from the Aumann measurable selection theorem

that there exists an Fi-measurable function zi : Ω → Y such that zi(ω) ∈ gi(ω)µ-
a.e. Thus, zi ∈ LXi and Supφi∈LXi

φi · x =
∫

ω∈Ω
(zi(ω) · x(ω))dµ(ω) = zi · x.

Since x ∈ L∞(µ, Y ∗
w∗) was arbitrarily chosen, we conclude that every element of

(L1(µ, Y ))∗ attains its supremum on LXi
, and this completes the proof of the fact

that LXi is weakly compact.
We are now ready to construct a suitable family of truncated subgames. To this

end let Λ be a family of all finite subsets of LXi . For each λ ∈ Λ let Lλ
Xi

denote
the closed convex hull of λ. Then each Lλ

Xi
is a compact, convex, nonempty subset

of a finite dimensional Euclidean space and
⋃

λ∈Λ L
λ
Xi

= LXi
Moreover, the set

{Lλ
Xi

: λ ∈ Λ} is directed upwards by inclusion. For each λ ∈ Λ we have a game
B̄λ = {(Lλ

Xi
, V λ

i ) : i = 1, 2, . . . , n} where,

Lλ
Xi

is the strategy set of player i, and (5.1)

V λ
i : Ω ×

n∏
i=1

Lλ
Xi
→ R is the payoff function of player i. (5.2)

Each B̄λ satisfies the assumptions of Scarf’sα-core existence theorem and therefore
there exists xλ ∈∏n

i=1 L
λ
Xi

satisfying the following property:
It is not true that there exist S ⊂ {1, 2, . . . , n} and (yi)i∈S ∈

∏n
i=1 L

λ
Xi

such
that for each zI/S ∈∏i/∈S L

λ
Xi

, V λ
i (ω, (yS , zI/S)) > V λ

i (ω, xλ) for all i ∈ S for
µ-almost all ω ∈ Ω.

Since the set Λ is directed by inclusion we have constructed a net
{(xλ

1 , x
λ
2 , . . . , x

λ
n) : λ ∈ Λ} of α-core strategies in

∏n
i=1 LXi . Since by Claim 5.1

each LXi is weakly compact so is
∏n

i=1 LXi
. Hence the net {(xλ

1 , x
λ
2 , . . . , x

λ
n) :

λ ∈ Λ} has a subset which converges weakly to (x1, x2, . . . , xn) in
∏n

i=1 LXi .
We must show that x1, x2, . . . , xn is an α-core strategy for B. Adopting a similar
argument with that used in the proof of Theorem 3.1, one can now complete the
proof of Theorem 3.2.

6. Concluding remarks

Remark 6.1. In Theorems 3.1 and 3.2, Y is assumed to be a separable Banach
lattice with order continuous norm whose dual Y ∗ has the RNP. Basic examples of
spaces which satisfy the above properties are:
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(i) the Euclidean space Rl,
(ii) the space lp (1 < p < ∞) of real sequences {an : n = 1, 2, . . . } for which

the norm ‖an‖p = (
∑∞

n=1 |an|p)1/p is finite,
(iii) the spaceLp(Ω,F, µ) (1 < p <∞) of measurable furlctions f on the measure

space (Ω,F, µ) for which the norm‖f‖p =
(∫

ω∈Ω
|f(ω)|pdµ(ω)

)1/p
is finite.

It is important to give examples of spaces that Theorems 3.1 and 3.2 do not cover:

(iv) L1[0, 1] or L1(µ), if µ is not purely atomic, c0, l∞, L∞[0, 1] and
(v) the space C(X) of continuous real-valued functions on the infinite compact

Hausdorff space X (with the supremum norm).

Recall that the spaces in (iv) and (v) do not have the RNP moreover, order intervals
are not weakly compact in L∞[0, 1] and C(X).

Remark 6.2. The separability assumption on Y was used in order to make the
Aumann measurable selection theorem applicable. The latter result was used in
several steps in the proofs of Theorems 3.1 and 3.2. The relaxation of the separability
of Y is possible. In this case however, the consumption set LXi

will be the set of
all Gel’fand integrable selections from the set-valued functionXi : Ω → 2Y ∗

, and
one will need to appeal to results on the existence of weak∗ measurable selections.

Remark 6.3. Theorem 3.1 and its corollaries can be easily extended to coalition
production economies provided that the production technology is assumed to be
balanced. The proof remains essentially unchanged.

Remark 6.4. Kahn and Mookerjee (1989), have introduced a core-like concept in
order to analyse games in normal form with differential information. Their concept
in a two-person game, coincides with the coalitional Nash equilibrium. No existence
results are given in their paper. However, it is known [see, for instance, Scarf (1971)]
that even if preferences are strictly convex and continuous the set of coalitional Nash
equilibrium strategies may be empty.

Remark 6.5. We conjecture that the core of a large finite private information econ-
omy will converge to the standard Debreu-Scarf (1963) core notion, with the approx-
imation getting finer the larger the private information economy (this will follow
from the law of large numbers provided there is some kind of independence among
agents). Hence, we can conclude that core allocations in large private information
economy will become Walrasian. We also conjecture that without the independence
assumption among agents, core allocations in a large private information economy
will characterize some kind of rational expectations equilibrium.7

7 Kobayashi (1980, p. 1647) has made a related conjecture for the syndicate problem. Moreover,
Srivastava (1984) has shown that a Wilson-type core allocation in a differential information economy
becomes a full information core allocation as the number of agents in the economy tends to infinity.
Finally, Allen (1983) has treated information as a differentiated commodity and she has shown the
equivalence of the core and the competitive equilibrium for an economy with a continuum of agents.
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Summary. We focus on the private core (Yannelis [19]) of an economy with a
finite number of agents with differential information, a continuum of states and an
infinite number of commodities. We state a nonemptiness result for the private core
and provide a proof based on a fixed-point argument.
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1 Introduction

This paper deals with the nonemptiness of the private core notion due to Yan-
nelis [19], a notion which has desirable properties (see for example Koutsougeras-
Yannelis [13]). This question has already been treated in different papers and
various frameworks commodities-states of nature, for example, by Yannelis [19],
Koutsougeras-Yannelis [13], and Allen [3].

Actually, we here consider an economy with differential information in the
framework of a finite number of agents, an infinite number of commodities and a
continuum of states of nature. Formally, the information of an agent is modelled
as a sub-σ-field of the set Ω of states of nature. If the information is incomplete, it
restricts the transactions an agent can make.

The physical commodity space is given by a Banach lattice Z, while the space
of contingent commodities is given by the set of measurable Bochner integrable

� I wish to thank Prof. J.-M. Bonnisseau for his supervision, and NicholasYannelis and the anonymous
referee for helpful comments.
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functions from Ω to Z. Hence, the consumption sets of the agents will be subsets
of the space1 L1(Z).

The preferences of each agent i are described by her/his preference correspon-
dence Pi which associates to every allocation x=(xi, x−i) of the economy the set
of allocations which are strictly preferred by her/him to xi, given the allocations
x−i of the other agents. Thus, agent’s preferences do not need to be neither tran-
sitive nor complete, and may be interdependent. Clearly, those cannot in general
be representable by utility functions. But, the general feature of the preferences
allows us to take into account particular preferences, for example, preferences de-
fined from an “expected utility" as in Allen [4] or in Koutsougeras-Yannelis [13],
or defined from a “conditional expected utility" as in Yannelis [19].

This paper’s contribution to the economics of information is technical. We
provide an alternative proof of the nonemptiness of the private core due toYannelis
[19]. Actually, the method of the proof relies on the deterministic core result of
Florenzano [11] and the Banach lattice technique of Yannelis [19]. More precisely,
the first main core existence result for an economy with differential information
using Banach space methods was proved by Yannelis [19]. The idea there was to
go to finite dimension use Scarf’s result [17] and operate a limit argument.

There is an another method of proof (Allen [3], Schwalbe [18], Page [15],
Balder-Yannelis [5]...) which consists in showing that the game derived from an
economy with differential information is balanced and appealing to Scarf’s result
[17].

In contrast, as in Lefebvre [14], the proof of the nonemptiness of the private
core rests here on a fixed-point argument following the approach of Florenzano [11]
in her proof of a finite dimensional core nonemptiness result. Precisely here, we
first construct a suitable family of abstract applications defined on suitable finite-
dimensional sets derived from the economy. Then, by a fixed-point theorem applied
to a particular correspondence defined from the primitives of the economy, we de-
duce the existence of maximal element for those applications. We thus obtain a
sequence of maximal element for each abstract application. Then by a compactness
argument, we know that the sequence of maximal element for each abstract appli-
cation converges to an attainable allocation. Finally, we show, by contraposition,
that this limit belongs to the core of the economy.

Moreover, we show that the nonemptiness results of the (interim or ex-ante)
private core given in Yannelis [19], Allen [4] and Koutsougeras-Yannelis [13] are
corollaries of our main theorem. Indeed, we here assume weakest assumptions on
the preferences, the initial endowments and the consumption sets. Hence, this paper
provides a single proof of those three nonemptiness results. It will be furthermore
noticed that the main result implies directly the nonemptiness of the coarse core
of Yannelis [19] and Koutsougeras-Yannelis [13]. Let note also that the techniques
of the proof remain valid to obtain the nonemptiness of the weak fine core of
Koutsougeras-Yannelis [13], and allow to cover the case of general information-
rules of Allen [3].

1 Confer Appendix for definition.
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Let moreover note that if the consumption sets of the agents are subsets of
L∞(IR�), there exists a short proof of the nonemptiness of the core due to Lefebvre
[14]. This proof uses a quasi fixed-point theorem in infinite-dimensional spaces
(Thm.2.1 of [14]) applied to a suitable correspondence directly defined from the
primitives of the economy. But here, we can not use this theorem and so this short
proof because of the non-metrizability of the order intervals in L1(Z).

The remainder of this paper is organized as follows. Section 2 describes the
model. An agent is specified by initial endowments of both physical commodities
and information. It then recalls the definition of the private core of an exchange
economy with differential information. Then, we state the nonemptiness result.
Section 3 presents the proof of the nonemptiness result divived into several steps.
Then, we provide an extension for production economies. Section 4 gives con-
cluding remarks. We end this paper by an appendix which contains mathematical
definitions and the proof of intermediary claims.

2 The model and the main result

We consider an exchange economy with a finite number n of consumers. We note
N = {1, . . . , n} the set of agents and N = 2N \ ∅ the family of all nonempty
subsets of N, called coalitions in the following.

The uncertainty and initial information are modelled in the usual way. The set
of states of nature is denoted by Ω, with typical element ω. Let F be a σ-field of
measurable subsets of Ω, interpreted as events. Let µ be a σ-additive probability
measure defined on (Ω,F). The initial information of the agent i∈N is described
by a sub-σ-field Fi of F.

The physical commodity space is given by a Banach lattice2 Z (in each state
ω ∈ Ω).The space of contingent commodities is given by the spaceL1(Ω,F, µ;Z)
of equivalence classes of Bochner µ-integrable3 F-measurable4 functions. Let us
denote the consumption set of the agent i by Xi ⊂ L1(Ω,F, µ;Z) and her/his
random (state dependent) initial endowment by ei(·) ∈ L1(Ω,F, µ;Z).

For allx=(xi)i∈N ∈
∏

i∈NXi,we letPi(x)⊂Xi be the set of allocations which
are strictly preferred5 to xi by the i-th consumer, given the allocations (xj)j �=i of
the other consumers. Thus, agent’s preferences do not need to be neither transitive
nor complete, and may be interdependent.

The exchange economy with differential information that we consider is thus
described by the collection E = (Xi, ei, Pi,Fi)n

i=1.

2 Definition and basic results are given in appendix.
3 Definition and basic results are given in appendix.
4 Usually, we write µ-measurable instead of F-measurable, with µ a measure on (Ω,F) (see [9],

[10]). But, writing the measurability with respect to the σ-field is here more suitable since in the following
we will encounter notions of measurability with respect to particular sub-σ-fields of F.

5 This above framework, describing the tastes of the consumers, encompasses the case where the i-th
consumer has a preference relation �i which is a binary relation on Xi. In this latter case, we associate
to �i for all x ∈ ∏

k∈N Xk, the preferred set Pi(x) = {x′
i ∈ Xi | xi ≺i x′

i} where the strict
preference relation ≺i is defined by xi ≺i x′

i if [xi �i x′
i and not x′

i �i xi].
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2.1 Definition of the core

Before defining the private core of an exchange economy with differential infor-
mation, it is necessary to define firstly the set of allocations of the economy which
are attainable, and secondly, the notion of improvness. Obviously, attainable allo-
cations must be at least physically attainable-Condition (1) below, but must also
depend on the information-Condition (2), here described by the agent’s individual
informations (Fi)i∈N .

Definition 2.1 The allocationx∗=(x∗
i )i∈N∈

∏
i∈NXi is attainable for the economy

E if

(1)
∑

i∈N x
∗
i (ω) =

∑
i∈N ei(ω) µ-a.e.,

(2) for every i∈N, x∗
i − ei is Fi-measurable.

We denote by A the set of the attainable allocations of the economy E .

Definition 2.2 The allocation x∗ = (x∗
i )i∈N ∈ ∏i∈NXi is improved upon by

the coalition S ∈ N if there exists (xi)i∈S ∈ ∏
i∈S Xi such that xi ∈

Pi(x∗) for every i∈S and

(1S)
∑

i∈S xi(ω) =
∑

i∈S ei(ω) µ-a.e.,
(2S) for every i∈S, xi − ei is Fi-measurable.

The private core of the economy E , noted C(E), is the set of attainable allocations
that no coalition can improve upon.

In other words, an attainable allocation belongs to the private core C(E) if it is
not possible for agents to join a coalition, reallocate their endowments among
themselves -Condition (1S) (while each member of the coalition uses his/her own
private information -Condition (2S)), and obtain a strictly preferred allocation for
each member of the coalition.

2.2 The nonemptiness result

For every coalition S∈N , we define the set A(S) of attainable allocations of the
coalition S as follows

A(S) =

{
(xi)i∈S ∈

∏
i∈S

Xi

∣∣∣∣∣ (1S)
∑

i∈S xi(ω) =
∑

i∈S ei(ω) µ− a.e.
(2S) ∀ i ∈ S, xi − ei is Fi −measurable

}
.

Note that the set A of the attainable allocations of the economy E is in fact the
setA(N). Let endow the space L1(Ω,F, µ;Z) by the weak topology σ(L1, L∞).
Now, in addition to the fact that Z is a Banach lattice, we posit the following
assumptions which describe the general framework of this paper, and then state the
main result.

Assumption C1 [Consumption side] For all i∈N,
• Xi⊂L1(Ω,F, µ;Z) is convex;
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• [irreflexivity] for all x=(xi)i∈N∈A, xi /∈ coPi(x)6;
• [open lower sections] for all z ∈ Xi, the set P−1

i (z) = {x ∈∏k∈N Xk | z ∈
Pi(x)} is weakly open in

∏
k∈N Xk.

Assumption C2 [Compactness] A is weakly compact.

Assumption S [Survival assumption] For all i ∈ N,A({i}) 	= ∅.

Let remark that Assumption S implies the nonemptiness of the sets A(S) for all
S∈N and so of the set A=A(N).

Moreover, let note that if, for all i∈N Pi is representable by an utility function
Ui : Xi → IR, i.e. Pi(x) := {x′

i ∈ Xi | Ui(x′
i) > Ui(xi)}, for all x=(xi)i∈N ∈∏

i∈NXi, then assuming that Pi has open lower sections is equivalent to assume
that Ui is weakly upper semicontinuous.

Let also note that Yannelis [19] and Koutsougeras-Yannelis [13] consider a
stronger assumption than C1 since this implies that the preference correspondences
Pi have a weakly open graph.

Theorem 2.1 Under Assumptions C1, C2 and S, the private core C(E) of the ex-
change economy with differential information E = (Xi, ei, Pi,Fi)n

i=1 is nonempty.

3 Proof of Theorem 2.1: C(E) �= ∅

We will here construct a suitable family of abstract applications on finite-
dimensional commodity spaces, each of which has a maximal element. We will
then obtain a net of maximal element for each application. By taking limits we
will show that the existence of maximal element for each application implies the
existence of a core allocation for the economy E = (Xi, ei, Pi,Fi)n

i=1.To simplify
the notations, we note L1 for L1(Ω,F, µ;Z) in the following. We now give the
proof of Theorem 2.1.
For every x=(xi)i∈N∈

∏
i∈NXi, we define the preferred set PS(x) as follows

PS(x) =
∏
i∈S

Pi(x) =

{
(zi)i∈S ∈

∏
i∈S

Xi | zi ∈ Pi(x),∀i ∈ S
}
.

Let remark that one has

C(E) = {x ∈ A | ∀S∈N ,A(S) ∩ PS(x) = ∅}.

For every x∈A, we note I(x) the set of coalitions which can improve upon the
attainable allocation x, formally

I(x) = {S∈N | A(S) ∩ PS(x) 	= ∅}.

Let then remark that x∈A belongs to C(E) if and only if I(x) = ∅.
6 We denote coE the convex hull of the set E.
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3.1 Abstract applications

For each S ∈N , let consider an element aS =(aS,i)i∈S of A(S)⊂ (L1)cardS . To
simplify the notations, we will note ai for a{i},i ∈ A({i}) for all i ∈ N, in the
following. Now let F be the set of finite-dimensional subspaces of L1 containing
the initial endowments {ei, i∈N} and the set {aS,i | S∈N , i∈S}.

Let fix F ∈F . Let endow the finite-dimensional space F with the topology
induced by the topology of L1. For each i∈N, let define the set XF

i := Xi ∩ F,
and the correspondence PF

i :
∏

i∈N X
F
i → 2XF

i by PF
i (x) := Pi(x) ∩

F, and PF
S (x) :=

∏
i∈S P

F
i (x) = [

∏
i∈S Pi(x)] ∩ F cardS . Remark that one has

for all S ∈N ,A(S)∩F cardS ⊂ ∏i∈S X
F
i . For every x ∈ A ∩ Fn, let define the

set IF (x) by

IF (x) = {S ∈ N | [A(S) ∩ F cardS] ∩ PF
S (x) 	= ∅}.

Lemma 3.1 For each F ∈F , there exists xF ∈A ∩ Fn such that IF (xF ) = ∅.
The proof of Lemma 3.1, given in Section 3.2, is divided into three steps and rests
on a fixed-point argument.

3.2 Proof of Lemma 3.1

3.2.1 Preliminaries

Let fix F ∈F .We let

∆ =

⎧⎨⎩λ = (λS)S∈N ∈ IRN
+ |

∑
{S∈N|i∈S}

λS = 1, ∀ i∈N

⎫⎬⎭ ,
Σ =

{
µ = (µS)S∈N ∈ IRN

+ |
∑
S∈N

µS = 1

}
.

We now define the correspondence φ from [A ∩ Fn]×∏S∈N [coA(S) ∩ F cardS]
×∆×Σ to itself7 (to which we will apply a fixed-point theorem) as follows

φ(x, z, λ, µ) = φ1(x, z, λ, µ)×
∏

S∈N
φ2

S(x, z, λ, µ)×φ3(x, z, λ, µ)×φ4(x, z, λ, µ),

with
φ1(x, z, λ, µ) = {(ϕ1

i (x, z, λ, µ))i∈N}
where ϕ1

i (x, z, λ, µ) =
∑

{S∈N|i∈S} λSzS,i, for i∈N ;

φ2
S(x, z, λ, µ) = [coA(S) ∩ F cardS] ∩ coPF

S (x), for each S∈N ;

φ3(x, z, λ, µ) = {λ̄ ∈ ∆ | µ · λ̄ = maxδ∈∆ µ · δ};

φ4(x, z, λ, µ) = {µ̄ ∈ Σ | µ̄S = 0,∀S /∈ IF (x)}.
7 We denote coE the convex strongly closed hull of the set E ⊂(L1)r with r integer.
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3.2.2 The fixed-point argument

Lemma 3.2 φ satisfies the assumptions of Theorem 4.4 of [12].

Proof of Lemma 3.2. • It is easily seen that∆ andΣ are convex and compact subsets
of the finite-dimensional Euclidean space IRN . The set Σ is obviously nonempty.
And the set ∆ contains the vector λ=(λS)S∈N defined by λ{i} =1 for all i∈N
and λS =0 if cardS > 1.

•The setA∩Fn is a nonempty, convex and compact subset of a finite-dimensional
space, sinceA contains (ai)i∈N where ai∈A({i})∩F for all i∈N, and is a convex
and weakly compact subset of (L1)n (see Claim 5.1 Appendix).

• The set
∏

S∈N [coA(S) ∩ F cardS ] is a nonempty, convex and compact subset
of a finite-dimensional space. Indeed, for all S∈N , the set coA(S) ∩ F cardS is a
nonempty, convex and compact subset of a finite-dimensional space, since the set
coA(S) contains aS = (aS,i)i∈S ∈ F cardS , and is a convex and weakly compact
subset of (L1)cardS (see Claim 5.2 Appendix).

• The mapping φ1 is clearly a continuous mapping from [A ∩ Fn] × ∏S∈N
[coA(S) ∩ F cardS ] × ∆ × Σ to Fn (hence as a correspondence it is lower
semicontinuous with convex values). It remains to check that φ1 ([A ∩ Fn] ×∏

S∈N [coA(S) ∩ F cardS ]×∆×Σ)⊂A∩Fn.But, sinceφ1 is continuous andA∩
Fn is compact, it suffices to show that φ1([A∩Fn]×∏S∈N [coA(S) ∩ F cardS ]×
∆ × Σ) ⊂ A ∩ Fn. Now, since φ1 is linear in the second variable (i.e. z) and
A is convex, it is sufficient to show φ1([A ∩ Fn] × ∏S∈N [A(S) ∩ F cardS ] ×
∆ × Σ) ⊂ A ∩ Fn. Let then consider (x, z = (zS)S∈N , λ, µ) ∈ [A ∩ Fn] ×∏

S∈N [A(S) ∩ F cardS ]×∆×Σ, and let show that x∗=(x∗
i )i∈N := φ1(x, z, λ, µ)

belongs toA∩Fn.For all i∈N, x∗
i =ϕ1

i (x, z, λ, µ) =
∑

{S∈N|i∈S} λSzS,i belongs

to the convex setXF
i since zS,i ∈ XF

i , for allS∈N and λ ∈ ∆.Hence, x∗ belongs
to
∏

i∈NX
F
i =(

∏
i∈N Xi)∩Fn. It then remains to check that x∗∈∏i∈N Xi satis-

fies the conditions of the definition ofA. Let then fix S∈N . Since zS = (zS,i)i∈S

belongs to A(S) one has: (1S)
∑

i∈S zS,i(ω) =
∑

i∈S ei(ω) µ − a.e.; and (2S)
for all i∈S, zS,i − ei is Fi-measurable. Hence, it holds:
(1) From (1S), we obtain for µ-almost ω∈Ω,∑

i∈N

x∗
i (ω) =

∑
i∈N

∑
{S∈N|i∈S}

λSzS,i(ω) =
∑
S∈N

λS

∑
i∈S

zS,i(ω)

=
∑
S∈N

λS

∑
i∈S

ei(ω)=
∑
i∈N

⎛⎝ ∑
{S∈N|i∈S}

λS

⎞⎠ ei(ω)=
∑
i∈N

ei(ω),

since λ belongs to ∆.
(2) For allS∈N , for all i ∈ S, (zS,i−ei) is Fi-measurable. We then deduce that for
all i∈N, x∗

i−ei isFi-measurable since we havex∗
i−ei = (

∑
{S∈N|i∈S} λSzS,i)−

ei =
∑

{S∈N|i∈S} λS(zS,i − ei).
• Let fix S ∈ N . The correspondence φ2

S is clearly convex valued. To show that
φ2

S is lower semicontinuous, it is sufficient to show that it has open lower sections
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(confer [20]). Indeed, for every z̄S ∈ coA(S) ∩ F cardS ,

(φ2
S)−1(z̄S)=

{
(x, z, λ, µ) ∈ [A ∩ Fn]×

∏
S∈N

[coA(S) ∩ F cardS ]×∆×Σ |

z̄S ∈ coPF
S (x)

}

=

{
(x, z, λ, µ) ∈ [A ∩ Fn]×

∏
S∈N

[coA(S) ∩ F cardS ]×∆×Σ |

z̄S,i ∈ coPF
i (x),∀i ∈ S

}
=[A ∩ Fn] ∩ [∩i∈S(coPF

i )−1(z̄S,i)]×
∏

S∈N
[coA(S) ∩ F cardS ]

×∆×Σ

is an open subset of [A ∩ Fn]×∏S∈N [coA(S) ∩ F cardS ]×∆×Σ, since from
Assumption C1, for all i∈N, Pi and so PF

i and coPF
i have open lower sections

(confer [20]).

• The correspondence φ3 is clearly convex and compact valued. And it is upper
semicontinuous from the Maximum Theorem (Berge 1959 [6]) and the fact thatΣ
is a nonempty convex compact subset of IRN .
• The correspondence φ4 is clearly convex valued. To show that it is lower semi-
continuous, it is sufficient to show that it has open lower sections. Indeed, for every
µ̄ ∈ Σ, one has

(φ4)−1(µ̄) =

{
(x, z, λ, µ) ∈ [A ∩ Fn]×

∏
S∈N

[coA(S) ∩ F cardS ]×∆×Σ |

µ̄ ∈ φ4(x, z, λ, µ)

}
=
{
x ∈ A ∩ Fn | µ̄S = 0,∀S /∈ IF (x)

}
×
∏

S∈N
[coA(S) ∩ F cardS ]×∆×Σ.

To show it is open in [A∩Fn]×
∏

S∈N [coA(S) ∩ F cardS ]×∆×Σ, it is equivalent
to show that its first componentΩ = {x∈A∩Fn | µ̄S = 0,∀S /∈ IF (x)} is open
in A ∩ Fn. Indeed, let x̄ ∈ Ω, we notice that

x̄ ∈ νx̄ = {x ∈ A ∩ Fn | IF (x̄) ⊂ IF (x)} ⊂ Ω,

and the proof will be complete if we show that νx̄ is a neighborhood of x̄. But
S ∈ IF (x̄) if and only if there exists z̄S ∈ [A(S)∩F cardS ]∩PF

S (x̄),or equivalently
[x̄ ∈ US := [A ∩ Fn] ∩ [∩i∈S(PF

i )−1(z̄S,i)], with z̄S ∈ [A(S) ∩ F cardS ]]. This
latter set US is open in A ∩ Fn, since from Assumption C1, Pi and so PF

i have
open lower sections. One easily checks that for every x ∈ US , one has S ∈ IF (x).



An alternative proof of the nonemptiness of the private core 95

Hence, for every x in the open set U = ∩S∈IF (x̄)US , one has IF (x̄) ⊂ IF (x),
and so U ⊂ νx̄. Finally, x̄ ∈ U ⊂ νx̄ ⊂ Ω. This ends the proof of Lemma 3.2. ��

3.2.3 The end of the proof of Lemma 3.1

From Lemma 3.2 and Theorem 4.4 of [12], there exists (xF , zF = (zF
S )S∈N , λF ,

µF ) ∈ [A ∩ Fn]×∏S∈N [coA(S) ∩ F cardS]×∆×Σ such that

(1) xF = φ1(xF , zF , λF , µF ),
or equivalently
(1′) xF

i =
∑

{S∈N|i∈S} λ
F
S z

F
S,i, for each i ∈ N ;

(2) ∀ S ∈N , zF
S ∈ [coA(S)∩F cardS ] ∩ coPF

S (xF ) or [coA(S)∩F cardS] ∩
coPF

S (xF ) = ∅,
which implies
(2′) ∀S ∈ IF (xF ), zF

S ∈ [coA(S) ∩ F cardS] ∩ coPF
S (xF );

(3) λF ∈ φ3(xF , zF , λF , µF ) (since φ3(xF , zF , λF , µF ) 	= ∅);

(4) µF ∈ φ4(xF , zF , λF , µF ) or φ4(xF , zF , λF , µF ) = ∅,
or equivalently
(4′) [µF

S = 0,∀S /∈ IF (xF )] or [IF (xF ) = ∅].

We will now show that xF ∈A∩Fn satisfies IF (xF ) = ∅. Let us suppose, on the
contrary that IF (xF ) 	= ∅. From (1′), we have

for every i∈N, xF
i =

∑
{S∈N|i∈S}

λF
S z

F
S,i.

Claim 3.1 There exists i∈N such that λF
S = 0 for every S /∈IF (xF ), i∈S.

Consequently, from Claim 3.1, it holds for some i∈N,

xF
i =

∑
{S∈N|i∈S}

λF
S z

F
S,i =

∑
{S∈IF (xF )|i∈S}

λF
S z

F
S,i.

From (2′), one has

co{zF
S,i | S∈IF (xF ), i∈S} ⊂ coPF

i (xF ) ⊂ coPi(xF ).

Thus, since λF belongs to ∆, from the two above assertions we deduce that xF
i ∈

coPi(xF ) which contradicts the irreflexivity on Pi (Assumption C1). This ends the
proof of Lemma 3.1. ��
Proof of Claim 3.1. Since IF (xF ) 	= ∅, from Assertion (4′) one has µF

S = 0, for
every S /∈ IF (xF ).Assertion (3) can be rewritten equivalently by saying that λF

is a solution of the following linear programming problem

maximize
∑
S∈N

µF
SλS = µF · λ
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(fi · λ =)
∑

{S∈N|i∈S}
λS = 1, ∀i ∈ N,

λS ≥ 0, ∀S ∈ N ;

where fi =(fi,S)S∈N ∈ IRN is the vector defined by fi,S =1 if i∈S and fi,S =0
if i /∈S. From Kuhn and Tucker’s Theorem, there exist multipliers αi∈ IR, i∈N,
such that

µF −
∑
i∈N

αifi ≤ 0, λF ≥ 0, and

(
µF −

∑
i∈N

αifi

)
· λF = 0,

or equivalently such that, for all S ∈ N

µF
S −

∑
i∈N

αifi,S = µF
S −

∑
i∈S

αi ≤ 0, λF
S ≥ 0, and

(
µF

S −
∑
i∈S

αi

)
λF

S = 0.

We first remark that for every j ∈ N,αj ≥ 0. Indeed, let j ∈ N and choose
S = {j} ∈ N , then since µF belongs to Σ, from above we get 0 ≤ µF

{j} ≤ αj .

Now, since µF belongs to Σ, there exists SF ∈N such that µF
SF > 0. From the

Kuhn and Tucker Conditions we get
∑

j∈SF αj ≥ µF
SF > 0, and hence there

exists i ∈ SF such that αi > 0. We end the proof by showing that, for each
S /∈IF (xF ), i∈S, one has λF

S = 0. In view of the Kuhn and Tucker’s Conditions,
it is sufficient to show that µF

S −
∑

j∈S αj < 0. Since S /∈IF (xF ), from (4′) we
know that µF

S = 0. Recalling that for every j ∈ N we have αj ≥ 0, we obtain
µF

S −
∑

j∈S αj ≤ −αi < 0. This ends the proof of Claim 3.1. ��

3.3 The end of the proof of C(E) 	= ∅

From Lemma 3.1, for each F ∈F , there exists xF =(xF
1 , . . . , x

F
n )∈A ∩ Fn⊂A

such that IF (xF ) = {S∈N | [A(S) ∩ F cardS ] ∩ PF
S (xF ) 	= ∅} is empty.

Now the collection F , ordered by inclusion, is directed. Since A is weakly
compact, by passing to subnets if necessary, we can assume that (xF )F∈F weakly
converges to some vector x̄∈A.We now show that x̄ belongs to C(E), i.e. I(x̄)=
{S ∈N | A(S) ∩ PS(x̄) 	= ∅} is empty. By contraposition, let suppose that there
exists S∈N and (xi)i∈S∈A(S) ∩ PS(x̄). Since for all i∈N, xF

i converges to x̄i,
and Pi has (weakly) open lower sections, there exists F0 ∈ F such that F ⊃ F0
implies (xi)i∈S ∈PS(xF ). Choose F1 ⊃F0 such that (xi)i∈S ∈A(S) ∩ F cardS ,
for all F ⊃F1. Then, it holds that (xi)i∈S ∈ [A(S) ∩ F cardS ]∩PF

S (xF ) for each
F ∈F , F ⊃F1. This implies that IF (xF ) is nonempty, this is a contradiction. This
ends the proof of Theorem 2.1. ��
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3.4 An extension to the production economies

To describe the production sector of the economy, we use a similar approach to
the one developed by Boehm [7]. Each coalition S ∈ N has a production set
YS ⊂ L1(Ω,F, µ;Z). The set YS will reflect all features which are related to the
ability of coalition S to make certain net output bundles available to the members
of S through a joint action. Apart from purely technological determinants reflecting
the technical knowledge of the coalition S, YS will also be determinated by organi-
zational and institutional features inherent to the coalition S.Hence, for the general
case, the technology of the economy will be given by the collection of nonempty
subsets T = (YS)S∈N of the commodity space L1(Ω,F, µ;Z). The coalitional
production economy with differential information that we consider is described by
the collection ET = ((Xi, ei, Pi,Fi)n

i=1, T ).

Definition 3.1 The allocationx∗=(x∗
i )i∈N∈

∏
i∈NXi is attainable for the coalition

S∈N if there exists a production plan yS∈YS such that

(1S)
∑

i∈S x
∗
i (ω) =

∑
i∈S ei(ω) + yS(ω) µ-a.e.,

(2S) for every i ∈ S, x∗
i − ei is Fi-measurable,

(3S) yS is (∨i∈SFi)-measurable8.

We denote by AT (S) the set of the attainable allocations of the coalition S. As
previously, the set AT of the attainable allocations of the economy ET is the set
AT (N) of the attainable allocations of the grand coalition N.

Since the choice of a production plan is considered as a joint or collective decision,
it seems to be natural that the production plans for a coalition have to be compatible
with the pooled information of all the agents of the coalition-Condition (3S) above.

Now, as in Definition 2.2, the allocation x∗=(x∗
i )i∈N∈

∏
i∈NXi is improved upon

by the coalition S∈N if there exists (xi)i∈S∈AT (S) such that xi∈Pi(x∗) for all
i∈S.

Hence, an attainable allocation belongs to the core C(ET ) of the coalitional
production economy with differential information ET , if it is not possible for agents
to join a coalition, reallocate their endowments among themselves (while each
member of the coalition uses his/her own private information-Condition (2S)) or
use those for production (while the coalition uses the pool of the information of its
member-Condition (3S)) and obtain a strictly preferred allocation for each member
of the coalition.

We now give the assumption which describes the technology and establish the
nonemptiness result. Since the below assumptions do not implyAT (S) 	=∅, for all
S∈N , we consider in the following the set S :={S∈N |AT (S) 	=∅}.

Assumption P [Production side]

• YN ⊂L1(Ω,F, µ;Z) is convex;

8 For all S ∈ N , the term ∨i∈SFi denotes the “join", i.e., the minimal sub-σ-field (or partition)
containing all Fi.
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• [balancedness] the technology TS :=(YS)S∈S is balanced, i.e. for every bal-
anced 9 family β of coalitions of S and associated weights (λS)S∈β , one has∑

S∈β λSYS ⊂ YN .

Theorem 3.1 If the coalitional production economy ET = ((Xi, ei, Pi,Fi)n
i=1, T )

satisfies Assumptions C1,C2,S and P, then the core C(ET ) is nonempty.

Proof of Theorem 3.1. Recall that one has C(ET ) = {x ∈ AT | ∀S∈S,
AT (S) ∩ PS(x) = ∅}. Consequently, the attainable allocation x ∈ AT belongs
to C(ET ) if and only if I(x) = ∅ with I(x) = {S ∈ S | AT (S) ∩ PS(x) 	= ∅}.
Now, it suffices to adapt the proof of Theorem 2.1. In fact, it consists essentially
in showing that the correspondence φ1 of Section 3.2.1 satisfies φ1([AT ∩ Fn]×∏

S∈S [AT (S) ∩ F cardS ] ×∆ × Σ) ⊂ AT ∩ Fn which comes from Assumption
P. ��

4 Concluding remarks

4.1 Related literature

We will now show how we can obtain the results of Allen ([4] Prop.6.2),
Koutsougeras-Yannelis ([13] Thm.3.1) and Yannelis ([19] Thm.3.1) as corollaries
of our Theorem 2.1.

Firstly, it is clear that Definition 2.2 coincides with Definition 6.1 in Allen [4],
Definition 3.1.1 in Yannelis [19] and Definition 3.1 in Koutsougeras-Yannelis [13]
(who assume that ei is Fi-measurable). Indeed, we have to consider for all i∈N
the consumption set Xi := {xi ∈ L1(Ω,F, µ;Z+) | xi(ω) ∈Xi(ω) µ − a.e.}10

where Z+ is the positive cone of Z and Z has an order continuous norm; and
the preference correspondence Pi :

∏
i∈N Xi → Xi defined from the (ex-ante or

interim) expected utility11.
Secondly, we assume weakest assumptions on the preferences (Pi)i∈N , the

initial endowments (ei)i∈N and the consumption sets (Xi)i∈N than those of the
above nonemptiness results. Indeed, let fix i∈N.

Firstly, the convexity ofXi comes from the fact that the correspondencesXi(·) :
Ω→2Z+ are convex valued.

Moreover, Pi is convex valued. It comes from the concavity of the utility
ui(ω, ·) : Xi → IR for each ω ∈ Ω in Yannelis [19] and in Allen [4], and of the
utility ui :Z+→ IR in Koutsougeras-Yannelis [13]. Hence, by the definition of Pi,
it then holds that for all x=(xi)i∈N ∈A, xi /∈ coPi(x) = Pi(x).

9 The family β ⊂ S of coalitions is balanced if for each S ∈ β there exists λS ≥ 0, such that∑
{S∈β|i∈S} λS =1, for all i∈N.

10 In Allen [4], one has Z = IR� and Xi(ω) = [0,
∑

k∈N ek(ω)].
11 More precisely, with the notations of the authors we have for all x∗ = (x∗

i )i∈N ∈∏
i∈N Xi:

- Pi(x∗) := {xi ∈ Xi | Vi(ω, xi) > Vi(ω, x∗
i ), µ − a.e.} in Yannelis [19];and

- Pi(x∗) := {xi ∈ Xi | ∫
ui(xi(ω); ω)dµ(ω) >

∫
ui(x∗

i (ω); ω)dµ(ω)} in Koutsougeras-Yannelis
[13] and in Allen [4].
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Now, Pi has open lower sections. Indeed, in Allen [4] it comes from the fact
that ui : IR�

+×Ω → IR is concave and upper-semicontinuous on IR�
+, and µ-

integrably bounded on Xi×Ω (via Prop.3.2 of [4]). And since in Yannelis [19]
for each ω ∈Ω the utility ui(ω, ·) is weakly continuous and integrably bounded,
and in Koutsougeras-Yannelis [13] the utility ui is continuous integrably bounded
and concave, it holds that Pi has a weakly open graph and so open lower sections.
Hence, Assumption C1 is satisfied.

Furthermore, the set Xi is strongly closed. It is obvious in Allen [4]. And it
comes from the fact that the correspondences Xi(·) :Ω→ 2Z+ are closed valued
in Yannelis [19] and Koutsougeras-Yannelis [13] (see Lemma 5.1 of Appendix).
Now, the convex and strongly closed set Xi is clearly bounded from below by
0 ∈ L1(Ω,F, µ;Z). Hence, by Lemma 5.2 of Appendix,A is weakly compact. So
Assumption C2 is satisfied.

Endly, Assumption S is satisfied since for each i ∈N, the initial endowment
ei belongs to Xi and so to A({i})= {xi∈Xi | xi(ω) = ei(ω) µ − a.e. and xi−
ei is Fi−measurable}.

4.2 Other concepts of core

Let note that, with the techniques of the proof of Theorem 2.1, we may also prove the
nonemptiness of the coarse core and the weak fine core of an exchange economy
with differential information as defined in Koutsougeras-Yannelis [13]. Indeed,
let consider the initial informations (Fi)i∈N as partitions of Ω, and choose the
consumption sets Xi and the preference correspondences Pi as defined in Section
4.1 for the link with the private core of [13].

Then, we obtain the coarse core (Definition 3.2 [13]) if for each S 	=N, we
replace Condition (2S) of the setA(S) by: (2S′) for all i ∈ S, xi−ei is (∩i∈SFi)-
measurable. Now since, the private core is a subset of the coarse core, the assump-
tions of the nonemptiness results of the private core and the coarse core are exactly
the same, and the nonemptiness result of the private core (Theorem 3.1 [13]) is a
corollary of Theorem 2.1 (confer Section 4.1), it holds that the nonemptiness result
of the coarse core (Theorem 3.2 [13]) is a corollary of Theorem 2.1.

Now, we obtain the weak fine core (Definition 3.3(i′) [13]) by replacing for
all S∈N , Condition (2S) in A(S) by: (2S′) for every i∈S, xi − ei is (∨i∈SFi)-
measurable. One may then check that the proof of the nonemptiness ofC(E) (Section
3) remains valid with the above sets A(S). Furthermore, the assumptions of the
nonemptiness result of the weak fine core (Theorem 3.3 [13]) (which are exactly
the same than in Theorem 3.1 [13]) imply Assumptions C1,C2,S of Theorem 2.1
(confer Section 4.1). Consequently, we may thus provide a nonemptiness result of
the weak fine core with weakest assumptions, and an alternative proof based on a
fixed point argument.



100 I. Lefebvre

Let furthermore remark that the techniques allow also to obtain the nonemptiness
of the core defined from general information-rules due to Allen [3]. The proof of
Theorem 2.1 remains valid 12.

5 Appendix

5.1 Mathematical definitions

• Let (Ω,F, µ) be a finite measure space and Z be a Banach space. Follow-
ing Diestel-Uhl (1977) [9], a function f : Ω → Z is called simple if there ex-
ist x1, x2, . . . , xk in Z and E1, E2, . . . , Ek in F such that f =

∑k
i=1 xiχEi

,
where χEi(ω) = 1 if ω ∈ Ei and χEi

(ω) = 0 if ω /∈ Ei. Then, the integral∫
Ω
f(ω)dµ(ω) is defined by

∫
Ω
f(ω)dµ(ω) =

∑k
i=1 xiµ(Ei); and for eachE∈F,

the integral
∫

E
f(ω)dµ(ω) is defined by

∫
E
f(ω)dµ(ω) =

∑k
i=1 xiµ(Ei ∩ E).

A function f : Ω → Z is called µ-measurable if there exists a sequence of sim-
ple functions fn : Ω → Z such that limn→+∞ ‖fn(ω) − f(ω)‖ = 0 for µ-
almost all ω ∈ Ω. A µ-measurable function f : Ω → Z is called Bochner in-
tegrable if there exists a sequence of simple functions fn : Ω → Z such that
limn→∞

∫
Ω
‖fn(ω)− f(ω)‖dµ(ω) = 0. In this case, for each E∈F, the integral∫

E
f(ω)dµ(ω) is defined by

∫
E
f(ω)dµ(ω)=limn→∞

∫
E
fn(ω)dµ(ω).

Theorem (Thm.2 p.45 of Diestel-Uhl [9]) A µ-measurable function f :Ω→Z is
Bochner integrable if and only if

∫
Ω
‖f(ω)‖dµ(ω) <∞.

For 1 ≤ p < ∞, we note Lp(Ω,F, µ;Z) the space of equiva-
lence classes of µ-Bochner integrable functions f : Ω → Z such that
‖f‖p = (

∫
Ω

(‖f(ω)‖Z)pdµ(ω))1/p

< ∞. Normed by the functional ‖.‖p defined above, Lp(Ω,F, µ;Z) is a Banach
space (see Diestel-Uhl [9]).

• We will close this section by collecting some basic results on Banach lattices
(for an excellent treatment see Aliprantis-Burkinshaw [1]). Recall that a Banach
lattice is a Banach space L equipped with an order relation≥ (i.e.,≥ is a reflexive,
antisymmetric and translative relation) satisfying the below conditions (1)–(4):

(1) for all x, y∈L, x≥y implies x+ z≥y + z for every z∈L;
(2) for all x, y∈L, x≥y implies αx≥αy for every α≥0;
(3) for all x, y∈L, there exist a supremum (least upper bound) x∨y and an infimum

(greatest below bound) x∧y;
As usual we define x+ = x ∨ 0, x− = (−x) ∨ 0, |x| = x ∨ (−x) ≡ x+ + x−; we
call x+, x− respectively the positive and negative parts of x, and |x| the absolute
value of x. The symbol ‖ · ‖ denotes the norm on L. Then,
(4) |x| ≥ |y| implies ‖x‖ ≥ ‖y‖ for all x, y∈L.

12 It can be found in a previous version of this paper entitled “A general nonemptiness result of the
core of a production economy with asymmetric information" in Cahiers de la MSE, Université Paris 1,
France 1999.
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If x, z are elements of the Banach lattice L, we define the order interval [x, z]
as follows: [x, z] := {y∈L |x≤y≤z}. Note that [x, z] is norm closed and convex
(hence weakly closed).

A Banach lattice L is said to have an order continuous norm if, xn ↓ 013 in
L implies ‖xn‖ ↓ 0. If L is a Banach lattice then, the fact that L has an order
continuous norm is equivalent to the weak compactness of the order interval [x, z]
for every x, z ∈ L (see for instance Thm.2.3.8 of Aliprantis-Brown-Burkinshaw
[2]).

We endly recall Cartwright’s Theorem [8]: IfZ is a Banach lattice with an order
continuous norm, then the order intervals of L1(Ω,F, µ;Z) are weakly compact.

5.2 Intermediary results

Claim 5.1 A contains (ai)i∈N ∈
∏

i∈N A({i}) and is a convex and weakly compact
subset of (L1)n.

Proof of Claim 5.1. First recall that A = A(N). The set A obviously contains the
allocation (ai)i∈N ∈

∏
i∈N Xi, where ai ∈A({i}) for all i ∈N. Moreover, A is

also convex from the convexity of Xi for all i∈N, and because the operation of
taking convex combinations preserves equality (1) and measurability (2). Endly,A
is weakly compact by Assumption C2. ��
Claim 5.2 For all S ∈ N , coA(S) is a convex and weakly compact subset of
(L1)cardS .

Proof of Claim 5.2. Fix S∈N . Let recall that one has:

A(S) =

{
(xi)i∈S ∈

∏
i∈S

Xi

∣∣∣∣∣ (1S)
∑

i∈S xi(ω) =
∑

i∈S ei(ω) µ− a.e.
(2S)∀ i ∈ S, xi − ei is Fi −measurable

}
.

Let first show that A(S) is a subset of the projection of A⊂ (L1)n on (L1)cardS ,
noted pS(A). Indeed, let us consider (xi)i∈S in A(S). Then, one has (1S)∑

i∈S xi(ω) =
∑

i∈S ei(ω) µ-a.e.; (2S) for all i ∈ S, xi− ei is Fi- measur-
able.
Let now consider the allocation (x′

i)i∈N ∈ ∏i∈N Xi defined by x′
i :=xi if i∈S,

and x′
i∈A({i}) if i /∈S, i.e. satisfying x′

i =ei µ-a.e. and x′
i−ei is Fi-measurable.

We then obtain from above: (1)
∑

i∈N x
′
i(ω) =

∑
i∈S xi(ω) +

∑
i/∈S ei(ω) =∑

i∈N ei(ω)for µ-almost ω∈Ω; and (2) for all i∈N, x′
i − ei is Fi-measurable.

This means that (x′
i)i∈N belongs to A ⊂

∏
i∈N Xi. Consequently, (xi)i∈S =

(x′
i)i∈S = pS((x′

i)i∈N ) belongs to pS(A). Endly, since (xi)i∈S ∈ A(S) is taken
arbitrary, it finally holds A(S) ⊂ pS(A).

Now, since A is convex and weakly compact, it holds that pS(A) is convex
and weakly compact, so weakly closed and then strongly closed. Hence, one then
has coA(S) ⊂ pS(A). Now, since coA(S) is convex and strongly closed in the

13 The notation xn ↓ x means that xn is decreasing (formally, whenever q ≥ p implies xq ≤ xp; in
symbols, xn ↓) and inf xn = x both hold.
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locally convex space (L1)cardS , it is weakly closed (see Thm.3.12 of [16]). Finally,
coA(S) is weakly compact as a weakly closed subset of the weakly compact set
pS(A). ��

Lemma 5.1 Let Z be a Banach space and (Ω,F, µ) a measure space with µ a
σ-additive measure on (Ω,F). If G :Ω→ Z is a closed valued correspondence,
then the set X = {g ∈L1(Ω,F, µ;Z) | g(ω)∈G(ω) µ − a.e.} is strongly closed
(i.e. for the L1 norm topology).

Proof of Lemma 5.1. To simplify the notations, we note L1 for L1(Ω,F, µ;Z) in
the following. Let consider a sequence of functions (gn) of X which converges
in L1 to ḡ ∈ L1. Then, by Theorem III.3.6 of [10], (gn) converges to ḡ in µ-
measure. Hence, by Corollary III.6.3 of [10], (gn) admits a subsequence (gφ(n))
which converges to ḡ µ-uniformly, and so ponctually µ-almost everywhere. Thus,
one has for µ-almost ω ∈ Ω, gφ(n)(ω)→ ḡ(ω)(n→∞). But moreover, one has
for all n∈ IN, gφ(n)(ω)∈G(ω) µ-a.e., where G(ω) is closed. Hence, it holds for
µ-almost ω∈Ω, ḡ(ω)∈G(ω). This finally means that ḡ belongs toX, and implies
that X is strongly closed. ��

Lemma 5.2 Let Z be a Banach lattice with an order continuous norm14. In an
exchange economy with differential information E=(Xi, ei, Pi,Fi)n

i=1 let us sup-
pose that for all i ∈ N, Xi ⊂ L1(Ω,F, µ;Z) is convex, bounded from below15

and strongly (i.e. for the L1 norm topology) closed. Then, the set A of attainable
allocations of E is a weakly compact subset of (L1(Ω,F, µ;Z))n.

Proof of Lemma 5.2. To simplify the notations, we note L1 for L1(Ω,F, µ;Z).
For all i∈N, since Xi is bounded from below, let consider bi ∈ L1 such that for
all xi ∈ Xi, xi(ω) ≥ bi(ω) µ− a.e. Recall that one has

A =

{
(xi)i∈N ∈

∏
i∈N

Xi

∣∣∣∣∣ (1)
∑

i∈N xi(ω) =
∑

i∈N ei(ω) µ− a.e.
(2) ∀ i∈N, xi − ei is Fi −measurable

}
.

Firstly, the setA is clearly convex sinceXi is convex for all i∈N and because the
operation of taking convex combinations preserves equality (1) and measurability
(2). Now, from its definition and since for all i ∈N, Xi is strongly (i.e., for the
L1 norm topology) closed in the locally convex space L1, the set A is strongly
closed in the locally convex space (L1)n. Therefore, the convex set A is also
weakly closed (see Thm.3.12 of [16]). Moreover, it is easily checked that one
has A ⊂∏i∈N Ii where for all i ∈ N, Ii is the order interval of L1 defined by
Ii :=[bi,

∑
i∈N ei−

∑
{j∈N |j �=i} bj ]. Furthermore from Cartwright’s Theorem [8],

14 Basic examples of Banach lattices Z with an order continuous norm are:
- the Euclidean space IR�;
- the space lp (1 < p < ∞) of real sequences (an)n≥1 for which the norm ||an||p =
(
∑∞

n=1 |an|p)1/p is finite;
- the vector space Lp(ν) (1 ≤ p < ∞) of real-valued ν-measurable functions f on X such that∫

X |f |pdν < ∞, where (X, σ, ν) is a measure space.
(see Aliprantis-Burkinshaw [1])

15 This means that there exists g ∈ L1(Ω,F, µ; Z) such that for all f ∈ Xi, f(ω) ≥ g(ω) µ−a.e.
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sinceZ is a Banach lattice with an order continuous norm, it holds that Ii is weakly
compact. This finally implies that A is weakly compact as a weakly closed subset
of the weakly compact set

∏
i∈N Ii. ��
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Summary. We provide necessary and sufficient conditions for weak
(semi)continuity of the expected utility. Such conditions are also given for
the weak compactness of the domain of the expected utility. Our results have
useful applications in cooperative solution concepts in economies and games with
differential information, in noncooperative games with differential information
and in principal-agent problems.

1 Introduction

Recent work on cooperative solution concepts in economies and games with
differential information (e.g. Yannelis [25], Krasa-Yannelis [16], Allen [2,3],
Koutsougeras-Yannelis [17], Page [22]) has necessitated the consideration of con-
ditions that guarantee the (semi)continuity of an agent’s expected utility.1

Specifically, in this paper (Ω,F , P ) is a probability space, representing the
states of the world and their governing distribution, (V, ‖ · ‖) a separable Banach
space of commodities, andX : Ω → 2V a set-valued function, prescribing for each
state w of the world the setX(w) of possible consumptions. We define the set L1

X

of feasible state contingent consumption plans to consist of all Bochner integrable
a.e. selections of X , that is, the set of all x ∈ L1

V such that

x(ω) ∈ X(ω) a.e. in Ω.

As usual, L1
V stands for the (prequotient) set of all Bochner-integrable V -valued

functions on (Ω,F , P ); the L1-seminorm on this space is defined by

‖x‖1 :=
∫

Ω

‖x(ω)‖P (dω).2

� Work done while visiting the Department of Economics, University of Illinois at Urbana-
Champaign.

1 This problem also arises naturally in principal-agent problems (see for example Page [19, 21])
and Kahn [14], as well as in noncooperative games with differential information (see for example,
Yannelis-Rustichini [27]).
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LetU : Ω×V → [−∞,+∞) be a given utility function. Then the expected utility
IU (x) of a consumption plan x ∈ L1

X is given by

IU (x) :=
∫

Ω

U(ω, x(ω))P (dω),

assuming that this integral exists. Clearly, if for each ω ∈ Ω the function U(ω, ·) is
norm-continuous and ifU is integrably bounded, then theL1-seminorm-continuity
of IU would follow directly from Lebesgue’s dominated convergence theorem [11].
However, the correspondingL1-compactness ofL1

X , on which IU is defined, is only
found under quite heavy conditions, even whenX has only finite sets as its values:

Example 1.1. Consider for (Ω,F , P ) the unit interval cum Lebesgue measure.
Let the consumption set X(ω) be {−1,+1} for all ω. Then the sequence (xk) of
Rademacher functions xk : [0, 1] → {−1,+1}, defined by

xk(ω) := sgn(sin(2πkω)),

forms a sequence of consumption plans that does not contain any subsequence
which converges in L1-seminorm; obviously, this implies that the set L1

X cannot
be compact for the L1-seminorm. Indeed, if such a subsequence did exist, the
corresponding limit consumption plan would have to be a.e. equal to zero (note
that

∫
B
xk → 0 for every interval B := [α, β]; start by observing that when

α, β ∈ [0, 1] have finite binary expansions this is trivial). But since ‖xk‖1 =∫
[0,1] |xk(w)|dω = 1 for all k, the L1-norm of the limit consumption plan would

have to be equal to 1 at the same time.
Thus, in such situations the attainment of a maximum of the expected utility is

not guaranteed. To this end stronger continuity conditions (viz. weak continuity in
the second variable) must be imposed onU . The corresponding continuity found for
IU in this way is weak continuity. At the same time, imposing weak compactness
upon the values of X yields weak compactness of the set L1

X (Diestel’s theorem
[26]). Hence, in this situation attainment of the maximum of IU is guaranteed.

The purpose of this paper is to investigate the necessary and sufficient conditions
for the following properties:

• weak and strong (semi)continuity of IU on L1
x,

• weak and strong closedness and weak compactness of L1.

In view of recent work on cooperative and noncooperative solution concepts in
economies and games with differential information, as well as in principal-agent
problems, an answer to the above question is of fundamental importance. For this
enables us to prove – via the usual forms of analysis – the existence of value and
core allocations in economies with differential information, as well as the existence
of a correlated equilibrium in games with differential information. The techniques
employed in this paper are mostly based on classical developments in the calculus
of variations and optimal control theory.

2 Since all principal results hold modulo sets of measure zero, one could alternatively work with the
usual equivalence class structure. One consequence of choosing for the prequotient setup is, of course,
that the L1-norm is traded in for its seminorm analogue.
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This paper is organized as follows: First, we state our principal results (Sect. 2),
and their economic applications (Sect. 3). Our mathematical tools, their proofs, as
well as all other proofs have been collected in Section 4. Some notation to be used
below is as follows: V ∗ stands for the topological dual space of (V, ‖ · ‖). As usual
‖·‖∗ stands for the dual norm onV ∗ [i.e.,‖x∗‖∗ := sup{〈x, x∗〉 : x ∈ V, ‖x‖ ≤ 1},
where 〈x, x∗〉 := x∗(x).

2 Main results

Let us observe that the probability space (Ω,F , P ) can always be decomposed
into an atomless part Ω1 and a countable union Ω2 of atoms. Let U : Ω × V →
[−∞,+∞) be a given utility function, which we suppose to be F × B(V )-
measurable; here B(V ) stands for the Borel σ-algebra on (V, ‖ · ‖). The expected
utility functional IU on L1

V is given by

IV (x) :=
∫

Ω

U(ω, x(ω))P (dω),

where we use the following convention regarding the integration of any measurable
function φ : Ω → [−∞,+∞] :

∫
φ :=

∫
φ+ −

∫
φ−, with +∞− +∞ := −∞.

Let X : Ω → 2V be a given set-valued function; we imagine the consumption set
X(ω) to comprise all feasible (e.g., budgetary) consumption plans under the state
of nature ω. The graph of X is supposed to be F × B(V )-measurable. We define
the set L1

X of all integrable state contingent consumption plans by

L1
X := {x ∈ L1

V : x(ω) ∈ X(ω)P -a.e. in Ω}.

We distinguish between strong and weak (semi)continuity of the expected utility
functional IU on L1

X . The first kind of continuity is with respect to the seminorm
‖ · ‖1 (see Sect. 1), and the second kind of continuity is with respect to the weak
topology σ(L1

V ,L∞
V ∗ [V ]), restricted to L1

x. Here L∞
V ∗ [V ] stands for the set of all

functions p : Ω → V ∗ that are bounded [i.e., supω∈Ω ‖p(ω)‖∗ < +∞ and V -
scalarly measurable [i.e., ω → 〈x, p(ω)〈 is F-measurable for every x ∈ V ]. It
is well-known that L∞

V ∗ [V ] is the dual of (L1
V , ‖ · ‖1)[12, V I]). Recall also that

σ(L1
V ,L∞

V ∗ [V ]) is defined as the weakest topology onL1
V for which all functionals

x �→
∫

Ω

〈x(ω), p(ω)〉P (dω), p ∈ L∞
V ∗ [V ],

are continuous. In other words, this is the weakest topology that one could define for
the consumption plans so that at least all the very simple utility functions of the type
Up(ω, x) := 〈x, p(ω)〉, p ∈ L∞

V ∗ [V ], one would have the corresponding expected
utility functionals IUp(x) depend continuously upon the consumption plan variable
x. With the same topologies in mind, we can also distinguish between strong and
weak closedness of the set L1

X of consumption plans. Similarly, on the commodity
space V we make a distinction between the weak topology σ(V, V ∗) and the strong
norm-topology (however, the corresponding σ-algebras on V coincide). Thus, we
shall be considering two weak topologies and two strong topologies, respectively
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on the space L1
V (and/or its subsets) and on the space V (and/or its subsets); from

the context the reader can always deduce which space is intended.
The following nontriviality hypothesis will be adopted in this entire section:

there exists at least one x̄ ∈ L1
X with −∞ < IU (x̄).

Of course, this hypothesis is extremely mild: it only prevents a completely trivial
situation. On some occasions we shall require the only slightly more restrictive
strict nontriviality hypothesis

there exists at least one x̄ ∈ L1
X with −∞ < IU (x̄) < +∞,

but when this reinforcement is needed, it will always be stated explicitly.
Our first result concerns a necessary and sufficient condition for the weak

closedness of the set L1
X of integrable consumption plans:

Theorem 2.1. The following statements are equivalent.

i. X(ω) is convex and closed a.e. in Ω1, and weakly closed a.e. in Ω2.3

ii. L1
X is weakly closed.

By Mazur’s theorem the adjective “closed” for a convex subset of V can be
interpreted equivalently as weakly closed and as strongly closed; hence “convex
and closed” above needs no further specification.

Our second result is similar in nature, but now the strong closedness of the set
of integrable consumption plans is addressed:

Theorem 2.2. The following statements are equivalent.

i. X(ω) is strongly closed a.e. in Ω,
ii. L1

X is strongly closed.

In this connection it is useful to recall the following related result which has to
do with weak compactness of the set of integrable consumption plans. The necessity
part comes from [15, Thm. 3.6]; the sufficiency part in the above result – frequently
referred to as Diestel’s theorem – is better known (see for instance [26]). It has been
refined in [8], using K-convergence, a Cesaro-type of pointwise convergence (for
arithmetic averages).

Theorem 2.3 (Klei). Suppose that the set L1
X of integrable consumption plans is

relatively weakly compact. Then

X(ω) is relatively weakly compact a.e. in Ω.

The converse implication holds also, provided that X is integrably bounded.

Recall here that the multifunction X is said to be integrably bounded if for
some ψ ∈ L1

R
sup

x∈X(ω)
‖x‖ ≤ ψ(ω) a.e. in Ω.

3 Such condensed formulations are used throughout: we mean to say that for P -almost every ω ∈ Ω1
the set X(ω) ⊂ V is convex and closed, etc.
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Note that this additional condition is essential for the sufficiency part, as is shown
by the following counterexample.

Example 2.4. Consider Ω := (0, 1), equipped with the Borel σ-algebra and the
Lebesgue measureP . DefineX(ω) := [0, 1/ω]. Then the the sequence (xk) ∈ L1

X ,
defined by xk(ω) := 1/ω if 1/k ≤ ω < 1, and xk(ω) := 0 otherwise, does not
have a convergent subsequence, since it is not even uniformly integrable.

Corollary 2.5. Suppose that the setL1
x of integrable consumption plans is weakly

compact. Then

X(ω) is convex and weakly compact a.a. in Ω1,

X(ω) is weakly compact a.e. in Ω2.

The converse implication holds also, provided that X is integrably bounded.

Proof. Combine Theorems 2.1 and 2.3. ��

It is interesting to observe that for the strong topologies the counterpart to the
above result fails as far as the sufficiency part is concerned [15, p. 316], even if V =
R (the necessity part has an analogue [15, Prop. 3.12]). Next, we occupy ourselves
with necessary conditions for weak upper semicontinuity and weak continuity of
the expected utility.

Theorem 2.6. Suppose that the expected utility IU is weakly upper semicontinuous
and that the set L1

X of all integrable consumption plans is weakly closed. Suppose
also that for each of the countably many atoms A ⊂ Ω2 there exist constants
MA,KA > 0 such that

U(ω, ·) ≤ KA +MA‖ · ‖ on X(ω) a.e. in A.

Then

i. U(ω, ·) is concave and upper semicontinuous on the convex closed set X(ω)
a.e. in Ω1,

ii. U(ω, ·) is weakly upper semicontinuous on the weakly closed set X(ω) a.e. in
Ω2.

Corollary 2.7. Suppose that the expected utility IU is weakly continuous and that
the set L1

x of all integrable consumption plans is weakly closed. Suppose also that
for each of the countably many atoms A ⊂ Ω2 there exists contains MA,KA > 0
such that

|U(ω)| ≤ KA +MA‖ · ‖ on X(ω) a.e. in A.

Then, under the strict nontriviality hypothesis,

i. U(ω, ·) is affine and continuous on the convex closed set X(ω) a.e. in Ω1,
ii. U(ω, ·) is weakly continuous on the weakly closed set X(ω) a.e. in Ω2.
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The corresponding sufficient conditions for weak upper semicontinuity and
weak continuity of the expected utility are as follows:

Theorem 2.8. Suppose that a.e. in Ω1

X(ω) is convex and closed,

U(ω, ·) is concave and upper semicontinous on X(ω),

and
U(ω, ·) ≤ ψ(ω) +M‖ · ‖

for someM > 0 and ψ ∈ L1
R. Suppose further that a.e. in Ω2

X(ω) is weakly closed,

U(ω, ·) is weakly upper semicontinuous on X(ω).

Then IU is weakly upper semicontinuous on the weakly closed set L1
X .

Corollary 2.9. Suppose that a.e. in Ω1

X(ω) is convex and closed,

U(ω, ·) is affine and continuous on X(ω),

and
|U(ω, ·)| ≤ ψ(ω) +M‖ · ‖

for someM > 0 and ψ ∈ L1
R. Suppose further that a.e. in Ω2

X(ω) is weakly closed,

U(ω, ·) is weakly continuous on X(ω).

Then IU is weakly continuous on the weakly closed set L1
X .

For strong continuity of the expected utility we have the following characteri-
zation:

Theorem 2.10. Suppose that there exists a constantM > 0 and ψ ∈ L1
R such that

U(ω, ·) ≤ ψ(ω) +M‖ · ‖ on X(ω) a.e. in Ω.

Then the following statements are equivalent:

i. U(ω, ·) is strongly upper semicontinuous on the strongly closed set X(ω) a.e.
in Ω2,

ii. L1
X is strongly closed and IU is strongly upper semicontinuous on L1

X .

Corollary 2.11. Suppose that there exist a constantM > 0 and ψ ∈ L1
R such that

|U(ω, ·)| ≤ ψ(ω) +M‖ · ‖ on X(ω) a.e.in Ω2.

Then, under the strict nontriviality hypothesis, the following statements are equiv-
alent:

i. U(ω, ·) is strongly continuous on the strongly closed set X(ω) a.e. in Ω,
ii. L1

X is strongly closed and IU is strongly continuous on L1
X .
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3 Applications

3.1 Market games with differential information

Consider an exchange economy with differential information E = {(Xi, Ui,
Fi, ei, P ) : i ∈ I}, I := {1, ..., n}, where

i. Xi : Ω → 2V is a multifunction prescribing agent i’s potential consumption
sets [i.e., Xi(ω) is i’s potential consumption set in state ω ∈ Ω],

ii. Ui : cΩ × V → R is the state dependent utility function of agent i,
iii. Fi is a sub σ-algebra of (Ω,F)) denoting the private information of agent i

about the state of nature,
iv. ei : Ω → V is the initial endowment of agent i, where ei isFi-measurable and

ei(ω) ∈ Xi(ω)P -a.e.,
v. P is a probability measure on Ω representing the common probability beliefs

of the players concerning states of nature.

Suppose that for the economy E the following assumptions hold for each i ∈ I:

Xi(ω) is convex, nonempty and weakly compact a.e. in Ω, (3.1)

Xi is integrably bounded, (3.2)

Ui(ω, ·) is concave and upper semicontinuous on Xi(ω) a.e. in Ω, (3.3)

Ui is integrably bounded from above. (3.4)

Note that if the commodity space V is assumed to be a Banach lattice with an order
continuous norm (which implies that the order intervals are weakly compact [1]),
then it is reasonable to assume that the state contingent consumption setXi(ω) of
each agent i is contained in the order interval [0, e(ω)]; where e(ω) :

∑
i∈I(ω).

In this case we may replace (3.1)–(3.2) with simple integrable boundedness of
ei for each agent i.

We will now indicate how our results can be used to prove the existence of a
Shapley value allocation for an exchange economy with differential information
(see for example [16]). For this one associates with the economy E the following
game with side-payments: for each collection λ := {λ1, ..., λn} of nonnegative
weights λi,

∑n
i=1 λi = 1, define the side payment game (I, Vλ) according to the

following rule: for each coalition S ∈ 2I , let

Vλ(S) := sup
x

∑
i∈S

λi

∫
Ω

Ui(ω, xi(ω))P (dω),

where the supremum is taken over all x := (xi)i∈S , xi ∈ L1
Xi

, subject to∑
i∈S

xi(ω) =
∑
i∈S

ei(ω) a.e. in Ω.

Here L1
Xi

stands for the collection of all xi ∈ L1
V (Ω,Fi, , P ) such that xi is

Fi-measurable and xi(ω) ∈ Xi(ω) a.e. in Ω.
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First, let us verify that the supremum above is actually attained, by the Weier-
strass theorem. By Theorem 2.3 each L1

Xi
is weakly compact, i ∈ S; hence, so is

their product. Since x �→
∑

i∈S xi is obviously weakly continuous, we conclude
that the above supremum is taken over a weakly compact set. Since eachUi satisfies
the conditions in Theorem 2.8, each IUi is weakly upper semicontinuous, i ∈ S;
hence, so is their sum. This proves the attainment of the supremum in the defini-
tion of the Shapley value of the game (I, Vλ). The above existence problem arises
naturally if one wants either to prove the existence of a Shapley value allocation
in an exchange economy with differential information or to show that a TU market
game in characteristic function form is well-defined for such an economy (see for
instance [25] or [2,3]).

We now examine an application to the core of an exchange economy with
differential information. Following Yannelis [25], the private core of E is defined
as follows. The vector x ∈ Πn

i=1L1
Xi

is said to be a private core allocation for E if

i.
∑n

i=1 xi =
∑n

i=1 ei,
ii. there does not exist S ⊂ I and (yi)i∈S ∈ Πi∈SL1

Xi
such that

∑
i∈S yi =∑

i∈S ei and IUi(yi) > IUi(xi) for all i ∈ S.

Following Shapley-Shubik [24], we may convert the economy E to a market game
(V, I) as follows: Define V : 2I → Rn by

V (S) =

{
z ∈ R|S| : zi ≤ IUi(xi), xi ∈ L1

Xi
, i ∈ S,

∑
i∈S

xi =
∑
i∈S

ei

}
;

here |S| stands for the number of elements in S. For S ∈ I , clearly the set V (S) is
convex, nonempty and bounded from above. In view ofTheorem 2.8 the function IUi

is weakly upper semicontinuous; hence, V (S) must be closed. Hence, the market
game (V, I) is balanced, and has therefore a nonempty core (Scarf’s theorem [23]).
Standard arguments can now be applied to show that nonemptiness of the core
of the game (V, I) implies nonemptiness of the core of the economy E . Related
arguments have been employed by Allen [3] to show nonemptiness of the private
core of an economy with a finite-dimensional commodity space. Using the K-
compactness of theL1

Xi
(as introduced in [8, Corollary 4.2]) and the sequential weak

upper semicontinuity of expected utilities IU , Page [22] has shown that the market
game (V, I) corresponding to an exchange economy with an infinite dimensional
commodity space is well-defined and balanced, and hence has a nonempty core.

3.2 Principal-agent contracting games with adverse selection

Consider a principal-agent contracting game G = {T,X,U1, U2, P,Q}, where

i. (T, T ) is a measurable space of agent types,
ii. X : Ω → 2V prescribes the potential payoffs in each state of nature (i.e.,X(ω)

is the set of potential contract payoffs in state ω ∈ Ω),
iii. U1 : T×Ω×V → R is the principal’s utility function, type and state dependent,
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iv. U2 : T × Ω × V → R is the agent’s utility function, again type and state
dependent,

v. P is a probability measure on Ω, representing the principal’s and the agent’s
common beliefs concerning states of nature,

vi. Q is a probability measure on T , representing the principal’s probability beliefs
concerning agent types.

Suppose that for the game G the following assumptions hold:

the σ-algebra F is countably generated, (3.5)

X(ω) is convex, nonempty and weakly compact a.e. in Ω, (3.6)

X is lower measurable and integrably bounded. (3.7)

As a consequence, L1
X forms the set of all (measurable) state contingent contracts.

Also, we require:

for each t ∈ T,U1(t, ω, ·) is concave and upper semicontinuous on

X(ω) a.e. in Ω, (3.8)

for each t ∈ T,U2(t, ω, ·) is affine and continuous on

X(ω) a.e. in Ω (3.9)

U1 is product measurable and integrably bounded from above with respect to

P ×Q. (3.10)

U2 is product measurable and integrably bounded with respect to

P ×Q. (3.11)

Note that (3.10)–(3.11) must be understood as follows: there existP×Q-integrably
functions γ1, γ2 : T ×Ω → R with

sup
x∈V

U1(t, ω, x) ≤ γ(t, ω) in T ×Ω

and

sup
x∈V

|U2(t, ω, x)| ≤ γ(t, ω) in T ×Ω.

If the agent is of type t ∈ T and the principal and agent enter into the contract
x ∈ L1

X , then

IU1(t, x) :=
∫

Ω

U2(t, ω, x(ω))P (dω).

is the principal’s expected utility, while the type t agent’s expected utility is given
by

IU2(t, x) :=
∫

Ω

U2(t, ω, x(ω))P (dω).

By Corollary 2.9, IU2(t, ·) is weakly continuous on L1
X for each t ∈ T , and by

assumption (3.8) above, IU2(t, ·) is also affine on L1
X for each t ∈ T . Finally, IU2
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is T × Bw-measurable on T × L1
X , where Bw denoes the Borel σ-algebra for the

weak topology on L1
V .

A contract mechanism is a mapping ξ : T → L1
X from agent types into the set

of contracts. Let Ξ denote the set of all (T ,Bw)-measurable contract mechanism.
The principal’s contracting problem, with adverse selection, is now given by

sup
ξ∈Ξ

J(ξ) :=
∫

T

IU1(t, ξ(t))Q(dt) (3.12)

subject to

IU2(t, ξ(t)) ≥ IU2(t, ξ(t
′)) for all t, t′ in T, (3.13)

IU2(t, ξ(t)) ≥ 0 for all t in T. (3.14)

Verbally, this contracting problem can be described as follows: The principal
chooses a mechanism ξ ∈ Ξ . Given the mechanism ξ chosen by the principal,
the agent responds by making a report to the principal concerning his/her type. If a
type t agent reports his/her type as t′ (i.e., the agent lies about his/her type), then the
principal and agent enter into contract ξ(t′) ∈ L1

X . Constraints (3.13) are incentive
compatibility constraints; they guarantee that the mechanism chosen by the prin-
cipal induces truthful reporting by the agent, and constraints (3.14), the individual
rationality constraints, guarantee that the mechanism chosen by the principal is
such that, given truthful reporting by the agent, it is rational for the agent – no
matter what his/her type – to enter into a contract with the principal. LetΞ0 denote
the set of all ξ ∈ Ξ satisfying (3.13)–(3.14); it is trivial to verify that Ξ0 is convex.

In order to guarantee that there exists at least one mechanism inΞ0, the following
nontriviality hypothesis is sufficient:

there exists an x̄ ∈ L1 such that IU2(t, x̄) ≥ 0 for all t ∈ T.

Indeed, then the corresponding constant mechanism belongs to Ξ0. Using the gen-
eral existence result of [9], to which the above properties precisely apply, one can
then conclude the existence of an optimal contract mechanism for the principal
(the proof in [9] still depends heavily on theK-convergence results of [8], and thus
follows essentially the same line of proofs as [21, 20], but uses the equivalence
result in [10, III.2] for compact-valued multifunctions to obtain a slightly better
result).

4 Mathematical preliminaries and proofs of the main results

In this section we develop the tools to be used in deriving the main results of this
paper. Let f : Ω × V → [−∞,+∞] be a given function, which we suppose to be
F × B(v)-measurable. We define the integral functional If : L1

V → [−∞,+∞]
by

If (v) :=
∫

Ω

f(ω, v(ω))P (dω),
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using the opposite of the integration convention introduced in Section 2: for anyF-
measurable function φ : Ω → [−∞,+∞] we still set

∫
φ :=

∫
φ+−

∫
φ−, but this

time with +∞−+∞ := +∞. Sometimes we shall wish to restrict considerations to
a particular integration domainB ⊂ Ω. We then define IB

f : L1
V (B) → [−∞,+∞]

by obvious restriction:

IB
f (v) :=

∫
B

f(ω, v(ω))P (dω).

Throughout this section the following truly minimal nontriviality hypothesis will
be in force:

there exists at least one v̄ ∈ L1
V with If (v̄) < +∞.

We start out by giving necessary conditions for weak lower semicontinuity of If in
the presence of atomlessness. Of course, any necessary condition for strong lower
semicontinuity automatically qualifies as a necessary condition for weak lower
semicontinuity (but not conversely). The following result, as well as its proof, can
be found in [18] (as shown here, the fact that V is finite-dimensional in [18], does
not affect the validity of the result in our present context).

Lemma 4.1. Assume that (Ω,F , P ) is atomless4. Suppose that If is strongly lower
semicontinuous on L1

V . Then there exist a constantM > 0 and a function ψ ∈ L1
R

such that

f(ω, ·) ≥ ψ(ω)−M‖ · ‖ on V a.e. in Ω. (4.1)

Proof. Suppose that (4.1) does not hold. Then for arbitrary n ∈ N the function
ψ : Ω → [−∞,+∞], defined by

ψm(ω) := inf
x∈V

[f(ω, x) + n‖x‖].

and measurable by [10,III.39], satisfies∫
Ω

ψndP = −∞.

Note here that ψn(ω) ≤ f+(ω, v̄(ω) + n‖v̄(ω)‖, and by virtue of the nontriviality
hypothesis the right side forms a P -integrable function. By the fact that (Ω,F , P )
is atomless, we can find a measurable partition of Ω, all whose n components
have P -measure P (Ω)/n. Now for at least one such component, which we denote
by An ∈ F , it must be true that

∫
An
ψdP = −∞, by the above. Hence also∫

An
(ψn + 1)dP = −∞, and this implies in turn that

∫
Bn

(ψn + 1)−dP = +∞,
where Bn is defined as the set of those ω ∈ An for which ψn < −1. By definition
of the latter integral, there exists and integrable function sn : Bn → R, 0 ≤ sn ≤

4 I.e. assume that the purely atomic part Ω2 is a null set.
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(ψn + 1)− on Bn (e.g., a step function), such that in :=
∫

Bn
sndP ≥ 1. Setting

φn := −i−1
n sn now gives

P (Bn) ≤ P (An) = P (Ω)/n,
∫

Bn

φndP = −1,

0 ≥ φn ≥ −i−1
n (ψn + 1)− ≥ −(ψn + 1)− = ψn + 1 on Bn.

The last inequality guarantees that for every ω ∈ Bn the set

{x ∈ V : f(ω, x) + n‖x‖ ≤ φn(ω)}
is nonempty. So by the Von Neumann-Aumann measurable selection theorem
[10,III.22] there exists a F-measurable function vn : Bn → V such that for a.e. ω
in Bn

f(ω, vn(ω)) + n‖vn(ω)‖ ≤ φn(ω).

Now either (i)
∫

Bn
‖vn‖dP ≤ n−1 or (ii)

∫
Bn
‖vn‖dP > n−1. In case (i) we set

Cn := Bn, and in case (ii) atomlessness guarantees the existence of a measurable
subsetCn ofBn with

∫
Cn
‖vn‖dP = n−1. OutsideCn we set vn := v̄. In this way

we end up with

‖vn − v̄‖1 ≤
∫

cn

(‖vn‖+ ‖v̄‖)dP ≤ 1
n

+
∫

Bn

‖v̄‖dP.

In view of P (Cn) ≤ P (Bn) ≤ n−1, this shows that the sequence (vn) converges
in ‖ · ‖1 to v̄. But by the above

If (vn) ≤
∫

Ω\Cn

f(·, v̄(·))dP +
∫

Cn

(φn − n‖vn‖)dP.

By (i)–(ii) above it is easy to see that, either way, the second integral on the right is
at most −1. This means lim infn If (vn) ≤ If (v̄)− 1, so that a contradiction with
the lower semicontinuity hypothesis has been reached. ��

Thus, we see that for atomless (Ω,F , P ) the most obvious condition for the
integral functional If to be nowhere−∞, is, at the same time, a necessary condition
for its strong semicontinuity. In Example 4.4 below we show that atomlessness is
essential for this finding.

We shall now discuss some results which specifically address weak lower semi-
continuity. Let us denote the duality between L1

V and its dual L∞
V ∗ [V ] (cf. Sect. 2)

by

≺ v, p �:=
∫

Ω

〈(v(ω), p(ω)〉P (dω).

The following result is well-known; for generalizations, see [13, 18, 7]. It shows
that weak lower semicontinuity of If forces the integrand not only to be lower
semicontinuous in the second variable, but convex as well. Here atomlessness is
again an essential ingredient, as borne out by Example 4.4 below.

Proposition 4.2. Assume that (Ω,F , P ) is atomless. Suppose that If is weakly
lower semicontinuous on L1

V . Then
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i. If is convex on L1
v .

ii. f(ω, ·) is convex and lower semicontinuous on V a.e. in Ω.

Proof. i. Consider the epigraph E of If [5, p. 11], defined by

E := {(v, α) ∈ L1
V ×R : α ≥ If (v)}.

Clearly, E is a closed set for the product of the weak topology (on L1
V ) and the

ordinary topology (on R), as a consequence of the hypothesis. We must prove that
E is a convex set. To do so, we first establish the following convexity criterion: E
is convex if and only if for every finite subset {p1, ..., pN}, N ∈ N, of the dual
space L∞

V ∗ [V ] one has that

C := {(≺ v, p1 �, ...,≺ v, pN �, α) : (v, α) ∈ E} (4.2)

is a convex subset of RN+1. Indeed, for arbitrary 0 < λ < 1, (v, α), (v′, α′) ∈ E,
we have to check that (w, γ) := λ(v, α) + (1− λ)(v′, α′) belongs to E, viz., that
If (w) ≤ γ. If this were not true, then, by closedness ofE, there would be a weakly
open subset W of L1

V , containing w, and a δ > 0 such that (v, α) /∈ E whenever
v ∈ W and γ − δ < α < γ + δ. By definition of the basis of the weak topology,
there exists a finite collection {p1, ..., pN} ⊂ L∞

V ∗ [V ] for some N ∈ N, such that
for every v ∈ L1

V

| ≺ v − w, pi � |〈1, i = 1, ..., N, implies v ∈W.
Let C be the convex set of (4.2). Evidently, by convexity, the N + 1-vector with
coordinates ≺ w, pi �, i = 1, ..., N , and last coordinate γ, belongs to C. By
definition of C, this means that there exists (ṽ, α̃) ∈ E such that ≺ ṽ, pi �=≺
w, pi �, i = 1, ..., N and α̃ = γ. But then the above implies ṽ ∈W and (ṽ, α̃) /∈ E.
This contradiction proves the validity of the convexity criterion. Next, it is easy to
establish that all sets C of the form (4.2) are indeed convex: Let 0 < λ < 1 and
(v, α), (v′, α′) ∈ E be arbitrary. Then for (w, γ) := λ(v, α) + (1 − λ)(v′, α′) to
belong toC it is enough to verify the existence of some ṽ ∈ L1

V with≺ ṽ, pi �=≺
w, pi �, i = 1, ..., N and If (ṽ) ≤ γ. By Liapunov’s theorem (which we may
invoke because (Ω,F , P ) is assumed to be atomless) there exists a measurable
subset B of Ω such that∫

B

(〈v, p1〉, ..., 〈v, pN 〉, f(·, v(·)), 〈v′, p1〉, ..., 〈v′, pN 〉, f(·, v′(·))dP

= λ(≺ v, p1 �, ...,≺ v, pN �, If (v),≺ v′, p1 �, ...,≺ v′, pN �, If (v′)).

(Note that If (v), If (v′) ∈ R by Lemma 4.1 and by If (v) ≤ α, If (v′) ≤ α′).
Then setting ṽ := v on B and ṽ′ := v′ on the complement of B gives the desired
integrable function. This establishes the convexity ofE, which immediately implies
convexity of If .

ii. By i, If is a convex semicontinuous function onL1
V . Moreover, we find If > −∞

(by Lemma 4.1) and If (v̄) < +∞ (by nontriviality). By a well-known result from
convex analysis this implies

I∗∗
f (v) = If (v) for all v ∈ L1

V ,
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where it should be recalled that

I∗∗
f (v) := sup

p∈L∞
V ∗ [V ]

[≺ v, p � −I∗
f (p)]

with

I∗
f (p) := sup

v∈L1
V

[≺ v, p � −If (v)]

define two successive instances of Fenchel conjugation. Now as a consequence
of decomposability [10, p. 197] of L1

V and L∞
V ∗ [V ] – a formalization of the fact

that these spaces are both rich in measurable functions – and the Von Neumann-
Aumann measurable selection theorem one has the following integral functional
representation [10, VII.7]:

I∗∗
f (v) = If∗∗(v) :=

∫
Ω

f∗∗(ω, v(ω))P (dω).

Here

I∗∗(ω, x) = sup
x∗∈V ∗

[〈x, x∗〉 − f∗(ω, x∗)]

with

f∗(ω, x∗) := sup
x∈V

[〈x, x∗〉 − f(ω, x)]

denote two successive Fenchel-conjugations with respect to the second argument.
It should be kept in mind that for every ω ∈ Ω

f∗∗(ω, ·) is the convex lower semicontinuous hull of f(ω, ·).

lt follows therefore that If (v) = If∗∗(v) for all v ∈ L1
V . By decomposability of

L1
V , the nontriviality hypothesis and Lemma 4.1 we may apply [6, Thm. B.2]. This

implies that

f(ω, ·) = f∗∗(ω, ·) a.e. in Ω.

This finishes the proofs. ��
We shall now obtain a characterization of strong lower semicontinuity of If ,

which will play an essential role in our study of the necessary conditions for weak
lower semicontinuity on atoms; this result is valid for a general finite measure space.

Proposition 4.3. Suppose that there exist a constant M > 0 and ψ ∈ L1
R such

that

f(ω, ·) ≥ ψ(ω)−M‖ · ‖ on V a.e. in Ω.

Then the following statements are equivalent:

i. f(ω, ·) is strongly lower semicontinuous on V a.e. in Ω,
ii. If is strongly lower semicontinuous on L1

V .
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Proof. ii ⇒ i: From the given inequality for f it follows that

If (v) ≥
∫

Ω

ψdP −M‖v‖1 for all v ∈ L1
V .

Hence, it follows by lower semicontinuity of If that for every v ∈ L1
V

If (v) = sup
n∈N

inf
w∈L1

V

[n‖v − w‖1 + If (w)].

This follows by [4, p. 391]. In view of the nontriviality hypothesis and the decom-
posability of L1

V (already used in the proof of Proposition 4.2) it follows by [6,
Thm. B.1] (or by mimicking the proof of [10, Theorem VII.7]) that

If (v) = sup
n∈N

∫
Ω

inf
y∈V

[n‖(ω)− y‖+ f(ω, y)]P (dω).

Note that, by our given inequality for f , the monotone convergence theorem can
be invoked, giving

If (v) =
∫

Ω

f̄(ω, v(ω))P (dω), (4.3)

where we define

f̄(ω, x) := sup
n∈N

inf
y∈V

[n‖x− y‖+ f(ω, y)].

By the given inequality for f and easy ad hoc inspection (cf. [4, p. 391]) it follows
from this definition that for a.e. ω

f̄(ω, ·) is the strongly lower semicontinuous hull of f(ω, ·).

By the nontriviality hypothesis and (4.3) it follows from [6, Thm. B.2] that

f(ω, ·) = f̄(ω, ·) a.e. in Ω,

giving i.

i ⇒ ii: Let (vk) be an arbitrary sequence in L1
V such that ‖vk − v0‖1 → 0. Let

γ := lim infk If (vk). Then for some subsequence (vki) we shall actually have
γ = limi If (vki

). By [4, 2.5.3] there exists a further subsequence of (vki
), say

(vkj ), such that for a.e. ω

lim
j→∞

‖vkj
(ω)− v0(ω)‖ = 0.

Therefore, Fatou’s lemma gives

γ+M‖v0‖1 = lim
j

∫
Ω

[f(ω, vkj
(ω))+M‖vkj

(ω)‖]P (d(ω) ≥ If (v0)+M‖v0‖1

(the integrand in the middle expression is minorized by the integrable function
ψ(ω)). This shows the validity of ii. ��
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Note the similarity of our proofs of Proposition 4.2 and of the necessity part of
the above result.A much more complicated, hybrid version of both results was given
in [6], in connection with certain classical notions in the calculus of variations.

Even though Proposition 4.3 captures the semicontinuity aspect of its counter-
part Proposition 4.2, there can be no question of emulating the convexity aspect
of Proposition 4.2 or the boundedness feature of Lemma 4.1 if atomlessness is no
longer satisfied:

Example 4.4. Let (Ω,F , P ) be the purely atomic measure space consisting of the
singleton {ω̃}withP ({ω̃}) = 1. Consider asV the separable Banach space formed
by all continuous real-valued functions on the unit interval [0,1]; the norm on V
is the usual supremum norm. Define f(ω̃, x) := −[x(0)]2; this is evidently a non-
convex function. However, if vl → v0 weakly, then (equivalently) vl(ω̃) → v0(ω̃)
weakly in V . Now V ∗ is known to be identifiable with the set of all bounded signed
Borel measures on [0,1]; in particular, V ∗ contains the point probability concen-
trated at 0. This immediately implies the convergence of If (vl) = f(ω̃, vl(ω̃)) to
If (v0) = f(ω̃, v0(ω̃)). Thus, If is weakly continuous, but f(ω, ·) is neither convex
– let alone affine – nor does it obey the lower bound in Lemma 4.1.

Necessary conditions for weak lower semicontinuity of If take on a particularly
easy form on atoms. We shall see how Proposition 4.3 plays an auxiliary role in
connection with the following lemma:

Lemma 4.5. LetA be an atom of (Ω,F , P ). Then every function v : Ω → V which
is measurable with respect to F and B(V ) is constant a.e. on A. More generally,
every multifunction which has strongly closed values and for which gphΓ :=
{(ω, x) ∈ Ω×V : x ∈ Γ (ω)} is F ×B(V )-measurable, is equal to a constant set
a.e. on A.

Proof. Let (xj) be a sequence in V which is strongly dense. For arbitrary j ∈ N,
the function

φj : ω �→ dist(xj , Γ (ω)) := inf
x∈Γ (ω)

‖x− xj‖

is measurable by [10,III.30]. By an elementary property of measurable, real-valued
functions on atoms, φjmust be a.e. constant onA for every j. It remains to observe
that when two strongly closed subsetsC,D of V satisfy dist(xj , C) = dist(xj , D)
for all j, then C = D. ��
Proposition 4.6. Let A be an atom of (Ω,F , P ). Suppose that IA

f is weakly lower
semicontinuous on L1

V (A) and that there exist constantsM,K > 0 such that

f(ω, ·) ≥ K −M‖ · ‖ on V a.e. in A.

Then

f(ω, ·) is weakly lower semicontinuous on V a.e. in A.
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Proof. A fortiori, IA
f is strongly lower semicontinuous on L1

V (A), so by Proposi-
tion 4.3.

f(ω, ·) is strongly lower semicontinuous on V a.e. in A. (4.4)

Therefore, the multifunction Γ : Ω → 2V ×R, defined by

Γ (ω, ·) := {(x, λ) ∈ V ×R : λ ≥ f(ω, x)},

satisfies all conditions of Lemma 4.5. lt follows that there exist a null set N and a
closed set C ⊂ V ×R such that Γ (ω) = C for all ω ∈ −A\N . lt thus follows that
there exists a strongly lower semicontinuous function g : V → (−∞,+∞] such
that

f(ω, ·) = g for all ω ∈ A\N. (4.5)

It remains to show that g is also weakly lower semicontinuous. To this end, let (xl)
be a generalized sequence weakly converging to x0 in V . Define, correspondingly,
vl ∈ L1

V (A) by vl(ω) := xl; then (vl) converges weakly inL1
V (A) to v0, so we get

P (A)g(x0) =
∫

A

f(ω, v0(ω))P (dω) ≤ lim
l

inf
∫

A

f(ω, vl(ω))P (dω)

= P (A) lim
l

inf g(xl),

thanks to lower semicontinuity of IA
f . ��

The pattern emerging from the aforegoing results is as follows: (a) in the pres-
ence of atomlessness, weak lower semicontinuity of the integral functional is as-
sociated with lower semicontinuity and convexity of the integrand (in the second
variable); (b) on atoms this is associated with weak lower semicontinuity of the in-
tegrand (without convexity). This impression is confirmed by the following result.

Proposition 4.7. Assume that (Ω,F , P ) is atomless. Suppose that a.e. in Ω

f(ω, ·) is convex and lower semicontinuous on V,

and

f(ω, ·) ≥ ψ(ω)−M‖ · ‖ on V

for some constant M > 0 and ψ ∈ L1
R. Then If is weakly lower semicontinuous

on L1
V .

Proof. The integral functional If is strongly semicontinuous (by Proposition 4.3)
and convex (obvious). Therefore, it must also be weakly lower semicontinuous
(Mazur’s theorem [5, 1.3.5]). ��
Remark 4.8. Combining Lemma 4.1 and Proposition 4.2.ii, we observe that the
converse of the implication in Proposition 4.7 is also valid.

On atoms, on the other hand, the situation is even simpler:
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Proposition 4.9. Let A be an atom of (Ω,F , P ). Suppose that

f(ω, ·) is weakly lower semicontinuous on V a.e. in A.

Then the integral functional IA
f is weakly lower semicontinuous on L1

V (A).

Proof. Note first that a fortiori

f(ω, ·) is strongly lower semicontinuous on V a.e. in A.

So we can repeat the part of the proof of Proposition 4.6 leading from (4.4) to (4.5).
Using the notation introduced there, we get for every v ∈ L1

V (A)

IA
f (v) =

∫
A

f(ω, v(ω))P (dω) = P (A)g(x),

where x stands for the a.e. constant value taken by v on the atom A (Lemma 4.5),
and where g is weakly lower semicontinuous. The proof is now easily finished.

��
Proof of Theorem 2.1. ii⇒ i: Define the F × B(V )-measurable function fX :
Ω × V → {0,+∞} by setting fX(ω, x) := 0 if x ∈ X(ω) and fX(ω, x) := +∞
if not. Clearly, the integral functional I := IfX

is as follows: I(v) = 0 if v ∈ L1
X

and I(v) = +∞ if not (note in particular that I(x̄) < +∞ by the nontriviality
hypothesis). Therefore, weak closedness of L1

X is equivalent to I being weakly
lower semicontinuous on L1

V . Because of the obvious identity

I(v) =
∫

Ω1

fX(ω, v(ω))P (dω) +
∫

Ω2

fX(ω, v(ω)P (dω) =: I1(v) + I2(v),

we see that this is equivalent to having I1 weakly lower semicontinuous onL1
V (Ω1)

and I2 on L1
V (Ω2) separately. By Proposition 4.2 (note that fX ≥ 0) the semicon-

tinuity of I1 implies

fX(ω, ·) is convex and lower semicontinuous for a.e. ω ∈ Ω1,

which in turn is precisely equivalent to the first part of i. Also, semicontinuity of I2
on L1

V (Ω2) implies that on every atom A which is part of Ω2 (note that fX ≥ 0)

fX(ω, ·) is weakly lower semicontinuous on A,

by virtue of Proposition 4.6. Since Ω2 is the countable union of such atoms, this
finishes the proof of i.

i⇒ ii: fX now cearly satisfies the conditions of Proposition 4.7 on Ω1 and Propo-
sition 4.9 on Ω2. Therefore, I is weakly lower semicontinuous; in view of what
was said about I := IfX

above, this implies ii. ��
Proof of Theorem 2.2. Define fX and I := IfX

as in the proof of the previous
theorem. Then the result follows directly from Proposition 4.3. ��
Proof of Theorem 2.6. By Theorem 2.1 we already know the stated facts about the
valuesX(ω). Define theF×B(V )-measurable function f : Ω×V → [−∞,+∞]
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as follows: set f(ω, x) := −U(ω, x) if x ∈ X(ω) and f(ω, x) := +∞ if not. Then
If equals −IU on L1

X (by the integration conventions) and +∞ on L1
V \L1

X [note
how the switch in sign precisely explains the difference in integration conventions
and nontriviality hypotheses between Sects. 2 and the present one!]. It follows
directly from the hypotheses that If is weakly lower semicontinuous on L1

V , so by
splitting If over the atomless partΩ1, and its complementΩ2, as done in the proof
of Theorem 2.1, and successively applying Propositions 4.2 and 4.6, we find that
for a.e. w ∈ Ω1,

f(ω, ·) is convex and lower semicontinuous on V, (4.6)

and for a.e. ω ∈ Ω2

f(ω, ·) is weakly lower semicontinuous on V.

In view of the already established properties of X(ω), the former is equivalent to

U(ω, ·) is convex and lower semicontinuous on X(ω),

and the latter to

U(ω, ·) is weakly lower semicontinuous on X(ω). ��
Proof of Theorem 2.8. Define f as in the previous proof. Then our conditions
guarantee that Propositions 4.7 and 4.9 may be applied. In view of the already
established weak closedness of L1

X (Theorem 2.1), the desired weak continuity of
−IU , follows from the nature of If , established in the previous proof. ��
Proof of Theorem 2.10. The proof essentially consists of an application of Propo-
sition 4.3 to the function f used in the previous two proofs. Details are left to the
reader. ��
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Summary. We provide an alternative proof of the existence of core allocations in
exchange economies with differential information and infinite dimensional com-
modity spaces. We also identify a critical feature of information sharing rules that
ensures nonemptiness of the core. In essence, the only condition we require on the
sharing rules is that profitable “insider trading” be prohibited. In the absence of
insider trading, balancedness is guaranteed and core nonemptiness follows.
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1 Introduction

There are three main notions of the core for market games induced by exchange
economies with differential information: the coarse core and the fine core, intro-
duced by Wilson (1978), and the private core, introduced byYannelis (1991).1 Each
of these core notions corresponds to assumptions made concerning the extent to
which the potential information available to coalition members is shared and used in
trading within the coalition. In the coarse core, it is assumed that only the potential
information common to all coalition members is used in trading, while in the fine
core, it is assumed that all potential information available to coalition members is
used in trading. By contrast, in the private core, it is assumed that coalitional trad-
ing takes place via bargaining, based only upon each coalition member’s potential
private information (i.e., without information sharing).

� I thank Dan Acre, Erik Balder, Myrna Wooders, and Nicholas Yannelis for helpful comments. This
paper is a greatly revised version of my paper entitled, “A Variational Problem Arising in Market Games
with Differential Information,” written in August of 1991

1 The coarse core and fine core are problematic (i.e., existence and ex post incentive compatibility
problems arise – see Koutsougeras and Yannelis (1993)). In order to remedy these difficulties, Yannelis
(1991) introduced the private core as well as refinements of the coarse and fine cores.
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Allen (1991, 1992), recognizing that certain features of information sharing
were common to all the sharing arrangements described above, developed the no-
tion of an abstract sharing rule. She showed that when sharing rules are appropriately
specified coalitional utility opportunity sets are determined and a game in charac-
teristic form is naturally defined. With certain conditions on the sharing rules, Allen
established the nonemptiness of the core of the derived game. Moreover, nonempti-
ness of the coarse core, the fine core, and the private core follow as special cases
of Allen’s result.

In this paper, we extend Allen’s approach to include infinite dimensional com-
modity spaces and we identify a critical feature of sharing rules implying the
nonemptiness of the core. In essence, the only condition we require on the sharing
rules is that profitable “insider trading” be prohibited. The no-insider-trading con-
dition rules out the formation of informationally advantaged small trading groups,
so that profitable trades by small groups due to superior information are not possi-
ble. In fact, this is precisely the meaning of Allen’s boundedness condition (Allen
(1991), p. 21). The intuition, then, behind our results as well as Allen’s is that
small and intermediate size coalitions are not “too powerful” relative to the grand
coalition.

Core nonemptiness for exchange economies with differential information and
infinite dimensional commodity spaces is particularly interesting for financial
models. For example, in asset trading models differential information is an essential
ingredient and “commodity spaces” are naturally infinite dimensional, consisting
of financial assets with time and state contingent payoffs (e.g., continuous-time
asset return processes, see Duffie and Huang (1985)). Yannelis’ (1991) introduced
an exchange model that permits infinite dimensional commodity spaces. In his
model, information sharing arrangements are those consistent with the private and
coarse cores. Using a limit argument, Yannelis establishes nonemptiness for these
core concepts. Yannelis also remarks that the fine core may be empty. An example
by Koutsougeras and Yannelis (1993, Sect. 5.3) bears out this remark. From our
analysis we can conclude that the fine core is empty precisely because information
sharing arrangements are such that there is an opportunity for insider trading.

FollowingYannelis (1991), we assume that the commodity space is a Banach lat-
tice with order continuous norm. This assumption allows us to prove core nonempti-
ness in a direct manner using K-compactness. As is the case with Allen’s results,
the nonemptiness of the coarse core, the fine core, and the private core follow as
special cases of our results.

We shall proceed as follows. In Section 2, we present basic ingredients and
technical details, and we show that, under any set of information sharing rules,
a coalition’s feasible set of trades is K-compact. In Section 3, we show that the
NTU market game in characteristic form is well-defined, and we show that a core
allocation exists – provided the information sharing rules prohibit insider trading.
In Section 4, we show that by making specific assumptions concerning the nature
of information sharing rules, we obtain the three main core notions: the coarse core,
the fine core, and the private core.
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2 Preliminaries

2.1 Elements of the model

Consider an exchange economy populated bym agents, indexed by i = 1, 2, ...m.
Let 2I denote the set of all coalitions (or nonempty subsets) of agents, where
I = {1, 2, ...m}. Suppose the commodity space is given by a Banach lattice Y
with positive cone Y+ and order continuous norm ‖ · ‖ (the terminology here is
the same as that found in Yannelis (1991)). Suppose also that the uncertainty in
the economy is given by the probability space (Ω,F, µ), where F is a σ-field of
payoff relevant events and µ a probability measure representing each agent’s ex
ante probability beliefs concerning the events in F (the fact that all agents have
the same probability beliefs is not essential for the analysis). Finally, suppose that
the set of all possible vectors of state-contingent consumption (or payoffs) is given
by L1(Ω,F, µ;Y ), the space of equivalence classes of Y -valued, F-measurable,
Bochner integrable functions, x(·) : Ω → Y , normed by

‖x‖1 =
∫

Ω

‖x(ω)‖dµ(ω).

L1(Ω,F, µ;Y ) is a Banach space under the norm ‖·‖1 (see Diestel and Uhl (1977),
p. 50).

For each agent i ∈ I , we have the following:
Fi, a sub-σ-field of F summarizing the ith agent’s initial private information

about payoff relevant events.

Yi(·): Ω → 2Y+ , a random set-valued mapping specifying for each state of
nature, the ith agent’s consumption set. We will assume that for each
ω ∈ Ω, Yi(ω) ⊂ Y+ is nonempty, convex, and sequentially weakly
closed.

ei(·): Ω → Y+, the ith agent’s random initial endowment. We will assume that
ei(·) is Fi-measurable and Bochner integrable and that ei(ω) ∈ Yi(ω)
a.e. [µ].

ui(·, ·): Ω × Y → R, the ith agent’s random utility function. We will assume
that
(i) ui is F ×B+-measurable, where B+ denotes the Borel σ-field in

Y+ generated by the relative weak topology in Y+,
(ii) for each ω ∈ Ω, ui(ω, ·) is concave and sequentially weakly upper

semicontinuous on Y+.
(iii) ui(·, ·) is integrable bounded from above. Thus, for some ξ(·) ∈

L1(Ω,F, µ;R), ui(ω, y) ≤ ξ(ω) on Ω × Y .

We will denote by Γ any exchange economy with differential information sat-
isfying the assumptions above.

2.1.1. Remarks If the positive cone Y+ is metrizable for the weak topology, then
for each ω ∈ Ω, ui(ω, ·) is sequentially weakly upper semicontinuous on Y+ if and
only if ui(ω, ·) is weakly upper semicontinuous on Y+ (Munkres (1975), p. 128).
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2.2 Information sharing and feasible trades

Now consider an exchange economyΓ with initial private information (Fi)i∈I , and
suppose information sharing is specified via a set of rules {Fi(S) : i ∈ S, S ∈ 2I},
where Fi(S) is the σ-field of payoff relevant events (i.e., the information) made
available to agent i in coalition S. These information sharing rules can arise in
many ways and take many forms. For example, coalition members, i ∈ S, could
pool their resources (or be required to pay a fee for membership) and purchase
observations of payoff relevant random variables which generate the conditioning
σ-fields Fi(S). Alternatively, coalition members could simply share their initial
private information, (Fi)i∈S . For example, in the terminology of Wilson (1978),
there could be coarse information sharing: for i ∈ S,Fi(S) =

⋂
i∈S Fi where⋂

i∈S Fi is the largest σ-field common to all the σ-fields Fi – or there could be
fine information sharing: for i ∈ S,Fi(S) = σ(

⋃
i∈S Fi) where σ(

⋃
i∈S Fi) is the

smallest σ-field containing all the σ-fields Fi.
We will make two assumptions concerning information sharing by coalitions

in the economy Γ :

(A-1) Honest reporting: As in Wilson (1978) and Kobayashi (1980), we shall as-
sume that “...members of a coalition release their private information [to the
coalition] honestly...” [Kobayashi (1980), p. 1639], where the agent’s private
information is represented by his initial σ-field Fi.

Assumption (A-1) is implicit in the work of Yannelis (1991), Koutsougeras and
Yannelis (1993), and Allen (1991, 1992).

(A-2) No insider trading: We shall also assume that the information sharing rules
{Fi(S) : i ∈ S, S ∈ 2I}, are such that for each coalition S ∈ 2I ,

Fi ⊂ Fi(S) ⊂ Fi(I) for i ∈ S.
(A-2) is similar to Allen’s (1991) assumption that information is bounded. Under
(A-2), information sharing is such that no agent is made informationally worse off
by joining a coalition and membership in the grand coalition makes available to
the individual agent more information than does membership in any subcoalition.
The condition, Fi(S) ⊂ Fi(I) for i ∈ S and S ∈ 2I , rules out the possibility of
informationally advantaged subcoalitions, and therefore, eliminates insider trading.
As we shall see below, (A-2) guarantees balancedness and therfore nonemptiness
of the core.

2.3 K-compactness of feasible trades

2.3.1. Definitions
(i) K-convergence. A sequence of functions {xn, (·)}n ⊂ L1(Ω,F, µ;Y ) is said
toK-converge a.e. [µ] to a function xˆ(·)L1(Ω,F, µ;Y ), if for each subsequence
{xnk(·)}k of {xn(·)}n there is a µ-null set N ∈ F (i.e., µ(N) = 0) such that for
the sequence of function {xk(·)}k, where

xk(·) ≡ (1/k)[xn1(·) + ...+ xnk(·)],
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{xk(ω)}k ⊂ Y converges weakly to xˆ(ω) ∈ Y for every ω ∈ Ω\N . The function
xˆ(·) is referred to as aK-limit of the sequence {xn(·)}n.

(ii) K-compactness. A subset Φ of L1(Ω,F, µ;Y ) is said to be relatively K-
compact [µ] if every sequence in Φ contains a subsequence which K-converges
a.e. [µ] to some xˆ(·) ∈ L1(Ω,F, µ;Y ). Φ is said to be K-compact [µ] if every
sequence in Φ contains a subsequence which K-converges a.e. [µ] to some xˆ(·)
in Φ.

2.3.2. Remarks The following Theorem due to Diaz (1994) relates relative
K-compactness to relative weak compactness:
Assume Y ∗ has the Radon-Nikodym property and let Φ be a (norm) bounded
subset of L, (Ω,F, µ;Y ). Then, Φ is weakly relatively compact if and only if
Φ is uniformly integrable and every sequence {xn(·)}n in Φ has a subsequence
{xnk(·)}k such that {xk(·)}k converges weakly a.e. [µ] (where again xk(·) ≡
(1/k)[xn1(·) + ...+ xnk(·)]).

Thus, given that Y ∗ has the Radon-Nikodym property, if Φ a bounded subset
of L, (Ω,F, µ, Y ) is uniformly integrable and relativelyK-compact [µ], then Φ is
weakly relatively compact.

For any coalition S ∈ 2I in exchange economy Γ with initial private informa-
tion (Fi)i∈I and information sharing rules {Fi(S) : i ∈ S, S ∈ 2I}, the feasible
set of trades, Φ(S), is given by the set of all S-tuples (xi(·))i∈S such that

(i) xi(·) is Fi(S)-measurable, xi(ω) ∈ Yi(ω) a.e. [µ], and
(ii) ∑

i∈S

xi(ω) =
∑
i∈S

ei(ω) a.e. [µ] (2.1)

2.3.3 Theorem (K-compactness of Φ(S))
For any coalition S in economy Γ , Φ(S) is nonempty, convex, andK-compact [µ].

Proof. Φ(S) is nonempty since (ei(·))i∈S is in Φ(S), and Φ(S) is clearly convex.
For each ω ∈ Ω, define

B(ω) =

{
x ∈ Y : 0 ≤ x ≤

∑
i∈I

ei(ω)

}
.

Observe that for any S-tuple (xi(·))i∈S in Φ(S), xi(ω) ∈ B(ω) a.e. [µ] for each
i ∈ S. Moreover, observe that:

(i) For each ω ∈ Ω and x ∈ B(ω), |x| ≤ |
∑

i∈I ei(ω)|, and since Y is a Banach
lattice, this implies that ‖x‖ ≤ ‖

∑
i∈I ei(ω)‖(|x| = x+−x−). Thus, since the

initial endowment functions, ei(·), are Bochner integrable, the multifunction
B(·) is integrably bounded.

(ii) For each ω ∈ Ω, B(ω) is equal to the order interval [0,
∑

i∈I ei(ω)]. Thus,
since the Banach latticeY has order continuous norm,B(ω) is weakly compact
for each ω ∈ Ω (see Aliprantis, Brown, and Burkinshaw (1990)).
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Now let {(xin(·))i∈S}n be a sequence inΦ(S). Observe that for alln, xin(ω) ∈
B(ω) a.e. [µ] for i ∈ S. Given observation (ii) above, we have for each i ∈ S

{xin(ω)}n is relatively weakly compact a.e. [µ],

and by observation (i), we have for each i ∈ S

{xin(·)}n ⊂ L1(Ω,Fi(S), µ;Y ),

and

sup
n

∫
Ω

‖xin(ω)‖dµ(ω) < +∞.

By Theorem B in Balder (1989), there is a subsequence {(xink(·))i∈S}k of
{(xin(·))i∈S}n such that for each i ∈ S, {xink(·)}k K-converges a.e. [µ] to
a K-limit xˆi(·) ∈ L1(Ω,Fi(S), µ;Y ). Clearly,

∑
i∈S xˆi(ω) =

∑
i∈S ei(ω)

a.e. [µ], and since Yi(ω) is nonempty, convex, and sequentially weakly closed
xˆi(ω) ∈ Yi(ω) a.e. [µ]. Thus, the S-tuple (xˆi(·))i∈S is in Φ(S). ��
2.3.4 Remarks lt follows from a generalization of Diestel’s Theorem that, for any
coalition S, Φ(S) is also weakly compact (see Balder (1990)).

3 Nontransferable utility (NTU) game

3.1 Characteristic form

A cooperative nontransferable utility (NTU) game in characteristic form consists
of a set of agents I = {1, 2, ...,m} and a set-valued mapping V (·) defined on 2I

with nonempty, closed values in Rm such that V (I) is bounded from above and
V (∅) = {0}.

3.1.1 Definition For the market economy Γ, V (·) is defined as follows: for any
coalition S ∈ 2I(w1, w2, ..., wm) ∈ V (S) if and only if there exists an S-tuple of
Y -valued functions (xi(·))i∈S in Φ(S) (see (2.1)) such that for i ∈ S,

wi ≤
∫

Ω

ui(ω, xi(ω))dµ(ω).

3.1.2 Theorem (The induced NTU game is well-defined)
The set-valued mapping V (·), defined above, is such that V (I) is bounded from
above, and for any coalition S ∈ 2I , V (S) is nonempty, convex, and closed.

Proof. Clearly, V (I) is bounded from above. To prove the rest of the result we
need to show that V (I) is nonempty, convex, and closed. Obviously, V (I) 	= ∅.
Moreover, since ui(ω, ·) is concave for each i and ω, it is clear that V (I) is convex.

Now let {(w1n, ..., wmn)}n ⊂ V (I) and {(x1n(·), ..., xmn(·))}n ⊂ (Φ(I) be
such that

(i) limn win = w∗
i for each i, and

(ii) win ≤
∫

Ω
ui(ω, xin(ω))dµ(ω) for each i and n.
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Since Φ(I) is K-compact [µ], we can assume without loss of generality that
{(x1n(·), ..., xmn(·))}nK-converges a.e. [µ] to some (xˆ1(·), ..., xˆm(·)) ∈ Φ(I).
Moreover, since for each i ∈ I , ui(·, ·) is integrably bounded from above and
ui(ω, ·) concave and sequentially weakly upper semicontinuous on Y+, by Corol-
lary 2.2 of Balder (1990),

limsup
n

∫
Ω

ui(ω, xin(ω))dµ(ω) ≤
∫

Ω

ui(ω, xˆi(ω))dµ(ω) for each i ∈ I.

Given (i) and (ii) above,

w∗
i ≤

∫
Ω

ui(ω, xˆi(ω))dµ(ω) for each i ∈ I.

Thus, (w∗
1 , ..., w

∗
m) ∈ V (I). ��

Thus by Theorem 3.1.2, V (·) defines an NTU market game in characteristic
form for the exchange economy Γ .

3.2 The NTU core of the market game

3.2.1 Definition Anm-tuple (x1(·), ..., xm(·)) is said to be a NTU core allocation
for Γ given initial private information {F1, ...,Fm} and information sharing rules
{Fi(S) : i ∈ S, S ∈ 2I} if the following conditions hold:

(i) (x1(·), ..., xm(·)) ∈ Φ(I),
(ii) there does not exist a coalition S and an S-tuple (yi(·))i∈S contained in Φ(S)

such that for i ∈ S∫
Ω

ui(ω, yi(ω))dµ(ω) >
∫

Ω

ui(ω, xi(ω))dµ(ω).

3.2.2 Theorem (Nonemptiness of the NTU core)
Suppose there is honest reporting, so that [A-1] holds. Then an NTU core allocation
exists for any exchange economy Γ with initial private information {F1, ...,Fm}
and information sharing rules {Fi(S) : i ∈ S, S ∈ 2I} satisfying the no-insider-
trading condition, [A-2].

Before giving a proof, we need to recall the following notions from Scarf (1967).
Let Λ ⊂ 2I be a balanced collection of coalitions with weights {λS : S ∈ Λ}.
An NTU game (I, V (·)) is said to be balanced if

⋂
S∈Λ V (S) ⊂ V (I) for every

balanced collection of coalitions Λ.
The importance of the NTU notion of balancedness is made clear by the fol-

lowing classic result:

Scarf’s Theorem. A balanced NTU game (I, V (·)) has a core.

In order to show that an NTU core allocation exists for Γ , it suffices to show
that the induced game in characteristic form, (I, V (·)), is balanced.
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Proof of Theorem 3.2.2. Let Λ be a balanced collection of coalitions with weights
{λS : S ∈ Λ} and let (w1, ..., wm) ∈ V (S) for each coalition S ∈ Λ. Thus, for
each S ∈ Λ, there is an S-tuple (xiS(·))i∈S ∈ Φ(S) such that

wi ≤
∫

Ω

ui(ω, xiS(ω))dµ(ω) for i ∈ S. (*)

Now, for each i ∈ I define zi(·) =
∑

S∈Λ,S⊃{i} λSxiS(·). By inequality (*)
and the concavity of the ui(ω, ·), we have for each i ∈ I

wi =
∑

S∈Λ,S⊃{i}
λSwi ≤

∑
S∈Λ,S⊃{i}

λS

∫
Ω

ui(ω, xiS(ω))dµ(ω)

≤
∫

Ω

ui(ω, zi(ω))dµ(ω). (**)

By the no-insider-trading condition, zi(·) is Fi(I)-measurable for all i ∈ I , and
given the convexity of Yi(ω) for all i ∈ I and ω ∈ Ω, zi(ω) ∈ Yi(ω) a.e. [µ].
Finally, for all ω ∈ Ω∑

i∈I

zi(ω) =
∑
S∈Λ

∑
i∈S

λSxiS(ω) =
∑
S∈Λ

λS

∑
i∈S

xiS(ω),

and since (xiS(·))i∈S ∈ Φ(S),∑
S∈Λ

λS

∑
i∈S

xiS(ω) =
∑
S∈Λ

λS

∑
i∈S

ei(ω)

=
∑
i∈I

ei(ω)
∑

S∈Λ,S⊃{i}
λS

=
∑
i∈I

ei(ω) a.e. [µ].

Thus,
∑

i∈I zi(ω) =
∑

i∈I ei(ω) a.e. [µ], and we can conclude that

(zi(·))i∈I ∈ Φ(I).

Thus, by inequality (**), (w1, ..., wm) ∈ V (I), and hence the NTU game (I, V (·))
induced by Γ is balanced. By Scarf’s Theorem and Theorem 3.1.2, an NTU core
allocation exists for Γ . ��

4 Discussion

By making specific assumptions concerning the nature of information sharing rules
{Fi(S) : i ∈ S, S ∈ 2I}, we can obtain the three main core notions: the coarse core,
the fine core, and the private core. Consider a market economyΓ with initial private
information {F1, ...Fm} and information sharing rules {Fi(S) : i ∈ S, S ∈ 2I}.

The private coreYannelis (1991): IfFi(S) = Fi for all i ∈ S andS ∈ 2I , so that
information is not shared within any coalition, then the NTU core of Γ is called the
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private core. Notice that if the information sharing rules, {Fi(S) : i ∈ S, S ∈ 2I},
are specified in this way, then the no-insider-trading condition is satisfied, and we
can conclude via Theorem 3.2.2 that the private core is nonempty (Allen (1992)
refers to this core notion as the private information core).

The coarse core Wilson (1978): lf for the grand coalition, Fi(I) = Fi for all i ∈ I ,
while Fi(S) =

⋂
i∈S Fi, (i.e., the largest σ-field common to all the σ-fields Fi,

for i ∈ S) for each possible blocking coalition S ∈ 2I , then the NTU core of Γ
is called the coarse core (see Yannelis (1991)). Again notice that if the information
sharing rules, {Fi(S) : i ∈ S, S ∈ 2I}, are specified in this way, then the no-
insider-trading condition is satisfied, and we can conclude via Theorem 3.2.2 that
the coarse core is nonempty.

The fine core Wilson (1978): lf for the grand coalition, Fi(I) = Fi for all i ∈ I ,
while for each possible blocking coalition S ∈ 2I , Fi(S) = σ(

⋃
i∈S Fi) (i.e.,

the smallest σ-field containing all the σ-fields Fi, for i ∈ S), then the NTU core
of Γ is called the fine core (see Yannelis (1991)). Now notice that if the infor-
mation sharing rules, {Fi(S) : i ∈ S, S ∈ 2I}, are specified in this way, then
the no-insider-trading condition fails to hold and the fine core may be empty. This
is the case because for any potential blocking coalition S, the Banach space of
state contingent consumption functions L1(Ω,Fi(S), µ;Y ) is larger than the space
L1(Ω,Fi(I), µ;Y ) for all i ∈ S (see Koutsougeras and Yannelis (1993) for an ex-
ample). One way around this problem is to assume that Fi(I) = σ(

⋃
i∈I Fi), so

that the no-insider-trading condition is restored. Thus, if the information sharing
rules, {Fi(S) : i ∈ S, S ∈ 2I}, are modified in this way, we can conclude via The-
orem 3.2.2 that the core is nonempty. lf we assume that Fi(I) = σ(

⋃
i∈I Fi), then

the resulting core notion corresponds to the weak fine core notion in Koutsougeras
and Yannelis (1993).
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Summary. We introduce a new core concept, called the two-stage core, which
is appropriate for economies with sequential trade. We prove a general ex-
istence theorem and present two applications of the two-stage core: (i) In
asset markets economies where we extend our existence proof to the case of
consumption sets with no lower bound, in order to capture the case of ar-
bitrary short sales of assets. Further, we show that the two-stage core is non
empty in the Hart (1975) example where a rational expectations equilibrium
fails to exist. (ii) In differential information economies where we provide
sufficient conditions for the incentive compatibility of trades. Namely, that
no coalition of agents can misreport the true state and provide improvements
to all its members, even by redistributing the benefits from misreporting.

JEL Classification Number: D5.

1 Introduction

The standard Arrow-Debreu model of an exchange economy can be ex-
tended to account for uncertainty, by using the idea of contingent plans. In
the standard scenario, agents are assumed to plan trades which are contin-
gent upon the occurrence of uncertain events, in a way so that their expected
payoff is maximized. The cooperative allocation of risks can be developed
along the same line, by considering coalitions of agents who coordinate their
contingent plans in order to achieve mutual benefits.

However, the dynamic nature of the uncertainty model allows for the
possibility of transient formation of coalitions. In such a case, the benefits
that a coalition can secure for its members are not well defined, because they

� This paper is an extract from my Ph.D thesis at the University of Illinois at Urbana-
Champaign. I am grateful to Professors Wayne J. Shafer and Nicholas C. Yannelis for their
patience, encouragement and useful advise. My thanks are also extended to Professors
R. Anderson, S. Krasa, J-F. Mertens, H. Polemarchakis and A. Villamil for enlightening
discussions.



depend on the behavior of its members in periods where they do not coop-
erate. In particular, the prospect of sequential formation of coalitions in-
troduces a mutual dependency, between the ex ante and the ex post trading
possibilities among groups of agents. In this way, the ex ante (ex post)
benefits that a coalition can secure for its members becomes conditional on
the ex post (ex ante) activities of its members. These issues trace back to Gale
[5] and to Repullo [14], which discuss alternative core notions for economies
with a sequence of markets. We leave it to the reader to consult the above
sources for a discussion of several problems, associated with the core in a
sequential framework. It’s worth pointing out that the transient formation of
coalitions, introduces non cooperative elements into the analysis. In other
words, a game cannot be purely cooperative in such a framework.

In this paper we introduce an alternative core notion, called the two-stage
core, that takes into account the possibility of temporary cooperation. The key
ideas involved in the two-stage core are as follows: Within each coalition
agents make future trades only if they are enforceable, i.e., a coalition may
have a limited horizon. For example, if no future trades are enforceable then
agents trade only in current commodities. Also we take the conservative point
of view that a coalition blocks at some point in time only if it can secure
improvements for its members in any possible consequence of a deviation. Our
core notion can be easily specified in the asset market and the differential
information contexts, which provide a natural environment for our analysis.

So far, the incomplete asset markets literature has addressed extensively
the basic issues regarding the existence, optimality and regularity of com-
petitive equilibria1. In general, rational expectations equilibria are not effi-
cient, so the cooperative approach in these models seems to have been
neglected. As a result there has been no counterpart of the core in an in-
complete asset markets setting. In this paper we will show that the core in
such a framework is quite interesting. As it is shown in Duffie-Shafer [4], in
the asset markets framework competitive equilibria exist in a generic sense,
i.e., competitive equilibria exist in all but a negligible set of economies. One
exceptional case where a competitive equilibrium fails to exist is the Hart
(1975) example. We show in the sequel that the core notion which we in-
troduce here is non empty in that example. This suggests that the bargaining
approach can be used to study the allocation of risks, in cases where com-
petitive markets fail to do so. In order to capture the case of arbitrary short
sales, we show the existence of the core for the case of consumption sets with
no lower bounds. We do this by imposing conditions on the structure of
preferences as in Page [11] and in Werner [16] for the existence of competitive
equilibria. Our result is of independent interest, since it does not rely on the
existence of competitive equilibria.

In differential information economies alternative core notions were in-
troduced in Wilson [17] and in Yannelis [18]. However, in the model employed
so far in the study of cooperative concepts in differential information econo-

1 We refer the reader to Magill-Shafer [10] for an excellent survey of this literature.
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mies, there is no trading round after uncertainty is resolved. As a result, agents
end up consuming the ex ante contracted allocations. Optimality in that model
is understood to be in a constrained sense and refers to the ex ante (or interim)
trades only. In this paper we proceed one step further and allow for a trading
round ex post. In our model individuals engage in state contingent trades
under differential information, but have the opportunity to retrade (or re-
contract) after uncertainty is resolved. Thus, in contrast to the existing liter-
ature, we provide a core notion that gives rise to fully optimal allocations.
Viewed from this perspective the core notion we introduce here characterizes
the decisions of individuals both before and after some learning of the true
state has occurred. We employ the specification of the two-stage core for
differential information economies to address some incentive considerations.
Specifically, since there is an ex post trading round, after misreporting a state
individuals have the opportunity to redistribute among themselves the benefits
from misreporting2. We provide sufficient conditions that guarantee the in-
centive compatibility of trades under asymmetric information. In this way, we
conclude that our core notion characterizes outcomes that are incentive
compatible in addition to being fully optimal.

Our analysis is organized as follows: In section two we develop the formal
model. In section three we define a core notion appropriate for models with
sequential trade and provide an existence result. Next, in section four we
define the core of an asset markets economy as a specification of the two-
stage core and demonstrate that in the Hart (1975) example the core is non
empty. In section five we apply the two-stage core to a differential infor-
mation economy and derive an incentive compatibility result. Section six
features an example where we calculate two-stage core allocations and il-
lustrate our incentive compatibility results. Some concluding remarks follow
in section seven. Finally, we have collected most of the proofs along with the
mathematical apparatus used in this paper in three appendices, that consti-
tute sections eight, nine and ten.

2 The model

Consider an economy in two periods with uncertainty in the second period.
There is a finite set of agents, denoted by I � �1� 2� 3� � � � � n�� that engage in
sequential trade as follows. Before a state of nature is realized (ex ante)
individuals arrange for state contingent deliveries of commodities. In the
second period, after the realization of a state of nature (ex post), the con-
tracted deliveries take place and agents may engage in further trades of
commodities3.

2 Allocations which are immune to such kind of strategic disclosure of information have been
termed strongly incentive compatible in Krasa-Yannelis [8].
3 Notice that in this framework there are no endowments and thus no consumption in the first
period. Hence, agents are only concerned with allocating their second period endowments. This
is done for simplicity in the exposition and involves no loss of generality.
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Formally, let � be the set of all possible states of nature. The uncertainty
in the model is described by the triple (��F� �) where F is the family of all
possible events (a �-field of subsets of �) and � is a probability distribution
on the events in F. We will take the commodity space in each state to be
Y � �l

�
4. Let L1��� Y � be the space of equivalence classes of (Bochner) int-

egrable functions x � � � Y (see Appendix I).
An economy is defined as the pair �E�R� with E � ��Xi� ui� ei� �� � i � I�

where:

(i) Xi: � � 2Y the consumption set;
(ii) ui : �	 Y � � the utility function;
(iii) ei � � � Y � ei��� � Xi��� a.e. and ei is (Bochner) integrable, the ran-

dom initial endowment;
(iv) � the prior5 of agent i.

and R � �Ri 
 L1��� Y � � i � I� is a collection of restrictions that may apply
in the first period trades of each individual in this economy6.

Define for each i � I , the consumption set of agent i in the second period
as :

LXi � �x � L1��� Y � � x��� � Xi��� a�e���

The consumption set of each individual i � I in the first period is defined
as :

LR
Xi
� LXi �Ri�

The expected utility of agent i is given by :

vi�x� �
�

ui��� x����d����� for x � LR
Xi

�

A trading plan (or strategy) for agent i is a pair �x1� x2� � LR
Xi
	 LXi i.e., a

pair consisting of an ex ante and an ex post trade. One may think of ex ante
trades taking the form of state contingent contracts. For the moment we will
treat ex ante trades in this way. Alternatively first period state contingent
trades could be in the form of asset trading. In our application to asset
markets we will describe ex ante trades in terms of portfolios of assets.

3 The two-stage core

Consider the case where agents arrange, subject to restrictions, state con-
tingent deliveries of commodities, through coalitional bargaining. Once a
state has been formed, agents carry out the appropriate trades, and treating

4 The analysis can be extended to hold for more general consumption spaces.
5 Although we have considered the same prior for all agents, we may also allow for different
priors as in Yannelis [18].
6 For the moment we will treat R in an abstract way and save further specification of its nature
for later sections.
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the resulting allocation as their new endowment they bargain anew the ex-
change of commodities in that state. The set of core outcomes in such a
situation should be a collection of ex ante and ex post bargaining outcomes
that cannot be improved upon by any coalition.

A coalition may reject either a proposed ex ante trade, or a proposed
allocation of commodities ex post. Therefore, the relevant core notion should
account for possible deviations of coalitions in either period. Notice that
since we will consider all possible coalitions of agents in both periods we
allow the possibility that agents may not be committed to adhere ex post with
a coalition that was formed ex ante.

To begin with, ex post core allocations are easy to characterize using the
usual core notion for an exchange economy, pointwise for each � � �.

Definition 3.1 Given x� �
�
i�I

LR
Xi

let C�E� x�� denote the following set of allo-

cations: x �
�
i�I

LXi such that

(i)
�

i�I

xi��� �
�

i�I

x�i��� �� a�e�

(ii) For �� a�e� � � S � I and y �
�

i�S

Xi��� such that
�

i�S

yi �
�

i�S

x�i���

and ui��� yi� � ui��� xi���� for all i � S�

i.e., C�E� x�� is the set of statewise core allocations resulting from a given ex
ante trade x�.

We now turn to characterize the set of ex ante trades. Since trade is
sequential, ex ante trades have to be evaluated on the basis of the final
allocation they give rise to. This is the key idea behind the following defi-
nition.

Definition 3.2 A two period trading plan �x1� x2� �
�
i�I

LR
Xi
	
�
i�I

LXi is in the
two-stage core if the following are true

(i)
�

i�I

x1
i ��� �

�

i�I

ei��� �� a�e� x2 � C�E� x1�

(ii) � � S � I and y �
�

i�S

LR
Xi

so that
�

i�S

yi��� �
�

i�S

ei��� �� a�e�

and vi�yi� � vi�x2
i � for all i � S�

The first requirement states that the ex ante contracted allocation (i.e., x1)
must be feasible and that the ex post allocation is a core allocation for the
given ex ante trade. The second requirement is that it must not be possible
for a coalition to arrange ex ante trades among its members, that would give
them a higher expected utility than the given ex post allocation (i.e., x2). In
particular, (ii) precludes the possibility of ex ante trades feasible for a co-
alition in which all members of the coalition improve upon the given ex post
allocation in every individually rational outcome that would follow in each
state.
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Notice that at no point in this definition the utility of x1 per se matters.
According to definition 3.2 when a two period agreement �x1

� x2� is proposed,
the crucial matter in accepting the ex ante trade (i.e., x1) is not its payoff but
rather the payoff of the final allocation which will follow that (i.e., x2). The ex
ante trade x1 is crucial to the extend that it rationalizes x2 as an irrefutable
allocation in each state. The interpretation of definition 3.2 is the following.
When a coalition considers alternative ex ante trades the final allocation is
not predictable because it depends on the ex ante trades of the comple-
mentary coalition. The two-stage core takes the conservative point of view
that a coalition blocks an ex ante trade, only if it can secure improvements to
its members, for any possible (that is, individually rational) scenario that
might follow as a consequence of a deviation. In this regard the two-stage
core describes bargaining outcomes where agents cannot predict the ex post
trades that will follow after an ex ante trade is agreed upon. In view of this
uncertainty the best that an individual or a coalition can do, is to maximize
the minimal expected payoff of a first period trade (the worst case scenario of
each member). From a coalitional point of view, the blocking notion (ii) says
that it should not be possible for a coalition to increase the minimal expected
payoffs of all its members at the same time.

We now turn to the main result of this section. The following theorem
demonstrates that core allocations in the sense of definition 3.2 always exist
under standard assumptions.

Theorem 3.3. Let �E�R� be an economy that satisfies the following conditions:
(a.3.1) Xi is a convex, closed and F measurable correspondence.

(a.3.2) u� ��� x� is integrally bounded, F measurable, and u� ��� �� is continuous
and concave on Y .
(a.3.3) for each i � I �Ri is a closed, convex set containing the initial endow-
ments7.

Then a two-stage core allocation for this economy exists.

Proof. See Appendix II.

By way of proof of theorem 3.3 we arrive at the following useful con-
clusion.

Remark 3.4. Notice that the proof of the above theorem suggests a natural
procedure through which two-stage core allocations can be reached. First
agents reach a restricted core allocation and then treating this allocation as
the new endowment, negotiate an unrestricted core allocation. However, it
should be noted that the allocations formed by the procedure just described,
are not the only two-stage core allocations. In particular if �x1

� x2� is a two-
stage core allocation x1 need not be a first period core allocation.

7 Any set of linear restrictions gives rise to closed convex sets. The requirement that the
endowment of each agent satisfies the restrictions imposed on this agent’s ex ante trades, i.e.
(a�3�3�, merely guarantees that there is voluntary trade.

140 L. C. Koutsougeras



4 Incomplete asset markets economies

In order to specify the two-stage core for the incomplete asset markets
framework a few qualifications are necessary. First, we have to specify the ex
ante choice space of individuals in terms of portfolios of assets, since in this
framework ex ante agreements take the form of asset trades. Second, we
must allow for the possibility that agents can go arbitrarily short in asset
trading. In order to do this we must allow for consumption sets which are not
bounded below, as some agents may promise to deliver a very large quantity
of a commodity in some states and then plan to take some of it back if one of
these states occur. In this case agents can certainly promise to deliver an
infinite amount of a commodity and extensions of the two-stage core to the
case of arbitrary short sales require the use of consumption sets with no
lower bound. We will provide here a basic result that shows the existence of
core allocations in an economy with unbounded consumption sets.

To this end in this section we will take Y � �l to be the consumption set
of each individual in each state. Consider the case where agents arrange ex
ante trades using a finite number of securities which are available in the first
period. A (real) asset is a mapping r � � � Y and we will require that
r � L1��� Y �. In other words an asset r is a promise of a return r���, contin-
gent upon the realization of a state of nature. Let �rk�

m
k�1 summarize the

assets available in the economy—we will refer to this collection as the asset
structure. An asset trade (or a portfolio of assets) is a vector �i � �m, where
�k

i specifies the number of the kth asset that agent i holds. If �k
i � 0 (re-

spectively �k
i � 0) then agent i demands (supplies) the kth asset. Upon real-

ization of a state an individual holding a portfolio �i � �m commands the net

commodity bundle given by ei��� �
�m

k�1
�k

i � rk���� Given an asset structure the

allocations that can be contracted in the first period are those that can be
attained through trade of the existing assets. In this section we specify R in
the definition of the economy in section 2 as follows. For each i � I let
Ri � sp�rk�

m
k�1� We can specify now an asset markets economy as a pair

�E� �rk�
m
k�1	�

In the presence of asset markets with an incomplete structure, the first
period consumption set of each agent i � I can be specified as follows:

LA
Xi
� LXi� x � L1��� Y � � x 
 ei � sp�rk�

m
k�1

� �

i.e., the allocations attainable through the exchange of assets.
A remark is in order regarding the incompleteness of the asset structure.

Asset markets in this setup can be incomplete in the sense that the asset
structure does not allow for full diversification of trades across states. Notice
that, in general, full diversification requires a number of assets at least equal
to ��� � l� In particular, for any number of real numeraire assets with
independent returns across states does not allow for complete spanning of LXi .

Now, we can define the choice space of each agent in terms of the port-
folio choices available to them in the first period as follows:
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L�i � �i � �m
� ei �

�m
k�1

�k
i � rk��� � LA

Xi

� �

Notice that L�i has no lower bound.
Using L�i in place of LR

Xi
in definition 3.2 we derive the core of an asset

markets economy as a specification of the two-stage core. In particular, we
have the following definition of the core of an asset market economy.

Definition 4.2 A collection of two period trading plans ��� x� �
�
i�I

L�i �
�
i�I

LXi

is in the core of an asset market economy if

(i)
�
i�I

�i � 0� x � C�E� ��

(ii) � 	 S 
 I and � �
�
i�S

L�i so that
�
i�S

�i � 0 and

vi ei �
�m
k�1

�k
i � rk

� �
� vi�xi� for all i � S�

As in the original definition of the two-stage core (i) requires that the
asset trades are feasible and the final commodity allocation is a statewise core
allocation for the given asset trades and (ii) requires that no coalition of
agents can improve over the final allocation by trading assets among
themselves. It can be shown that requirement (ii) is equivalent to the fol-
lowing statement:

�ii�� � 	 S 
 I and � �
�
i�S

L�i so that
�
i�S

�i �
�
i�S

�i and

vi ei �
�m
k�1

��k
i � �k

i � � rk

� �
� vi�xi� for all i � S�

This last statement �ii�� gives rise to an alternative interpretation of its
equivalent statement �ii�. Namely, that no coalition of agents can improve
over the final allocation x by redistributing assets among its members. In
other words no group of agents can improve over the final commodity al-
location by reallocating the asset gains and liabilities among the members of
the group.

The following theorem asserts the existence of core allocations for an
economy as the one above. Notice that in view of remark 3.4 we need to
show that core allocations in the ex ante sense exist. The same argument can
be used to show the existence of core allocations in each state.

Define for each i � I wi: L�i  �, as wi��� � vi�ei �
�m
k�1

�k
i � rk�, (i.e. the

utility function induced on portfolios from the consumption of their returns).
Notice that since ui��� �� is continuous and concave on Y �wi��� is continuous
and concave on L�i .

Also, define Pi � L�i  2L�i as Pi��� � �� � L�i � wi��� � wi��i��� Since
wi��� is concave we have that Pi��� is convex valued. Let O�Pi��� denote the
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recession cone of Pi���(see Appendix I). We will adopt the following as-
sumption:

[P] For each S � I we have: If � �
�

i�S

L�i with
�

i�S

�i � 0

and �i � 0 � O�Pi�0� for all i� then it must be �i � 0 for all i � S�

This type of assumption has appeared in the literature in many different
ways, and is generally referred to as limited arbitrage condition. The one we
use here, drawn from Page [11], restricts the structure of the preferences
existing in the economy rather than individual preferences per se. It guar-
antees that no subset of agents could engage in unbounded and mutually
improving trades of assets. Similar conditions have appeared elsewhere such
as in Werner [16], in the study of competitive equilibria in a general equi-
librium model with unbounded consumption sets. Lately, similar results on
the core have appeared in Chichilnisky [3] and in Page-Wooders [12].

We are now ready to state the following theorem.

Theorem 4.3. Let � � ��L�i � wi� 0� � i � I�� be an economy where wi��� is
continuous and concave on L�i for each i � I and preferences in the economy
satisfy [P]. Then the core of the economy in non empty.

Proof. See Appendix III.

4.1 Application: The Hart (1975) example

Hart (1975) has provided an example, where a competitive equilibrium fails
to exist. We demonstrate in this section that the two-stage core is non empty
in that example. Our study of the Hart (1975) example is motivated by the
observation that the structure of preferences there satisfies all the assump-
tions of theorem 4.3. The utility functions in that example are defined in the
non-negative orthant only, so that indifference curves of both agents are
bounded below. Clearly, if indifference curves are bounded below then the
recession cone of the preferred set is the non-negative orthant. Thus, the
recession cones of the preferred sets of both agents in that example are the
same and each one is contained in a half space. Therefore, [P] is satisfied.
According to theorem 4.3 a two-stage core allocation should exist in this
example and indeed this is the case. In order to see this consider Hart’s (1975)
original example which, for convenience, we reproduce below.

There are two states of nature � � �a� b� each one occurring with the
same probability. In each state there are two commodities available. The
asset structure consists of two securities with returns summarized by the
following matrix:

a b
r1 �1� 0� �1� 0�
r2 �0� 1� �0� 1�
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There are two agents I � �i� j� with preferences represented by:

vi�xi� yi� � 23�2�xi�a��
1�2 � �yi�a��

1�2 � 23�2�xi�b��
1�2

� �yi�b��
1�2 for agent i

vj�xj� yj� � �xj�a��
1�2 � 23�2�yj�a��

1�2 � �xj�b��
1�2

� 23�2�yj�b��
1�2 for agent j�

Finally, the endowments of the agents in each state are summarized by the
matrix below:

a b
ei �5�2� 50�21� �13�21� 1�2�
ej �1�2� 13�21� �50�21� 5�2�

In order to find a two-stage core allocation for this example, by remark 3.4
we need to calculate a first period core allocation and then treating this
allocation as the new endowment, calculate a statewise core allocation. We
will establish here that a first period core allocation exists for the asset trades.
After that a statewise core allocation is only a matter of calculations.

To this effect let �z1
i � z

2
i � and �z1

j � z
2
j � denote the portfolio holdings of agents

i and j respectively. We solve the following problem:

max 23�2�5�2 � z1
i �

1�2 � �50�21 � z2
i �

1�2 � 23�2�13�21 � z1
i �

1�2

� �1�2 � z2
i �

1�2 � �1�2 � z1
j�

1�2 � 2�3�13�21 � z2
j�

1�2

� �50�21 � z1
j�

1�2 � 23�2�5�2 � z2
i �

1�2

s.t z1
i � z1

j � 0 and z2
i � z2

j � 0

This problem has the solution z1
i � �z1

j � 0�4270 z2
i � �z2

j � �0�4270. Fi-
nally, it can be checked that the allocation:

a b
�xi� yi� �5�2 � 0�4270� 50�21 � 0�4270� �13�21 � 0�4270� 1�2 � 0�4270�
�xj� yj� �1�2 � 0�4270� 13�21 � 0�4270� �50�21 � 0�4270� 5�2 � 0�4270�

is individually rational for both agents. In particular, we have:

vh�xh� yh� � 9�3998 � 8�9476 � v�eh� for h � i� j�

Thus, a first period core allocation exists. From this point on it is easy to
calculate a statewise core allocation using as endowments the allocation just
calculated. By remark 3.4 the resulting pair will be a two stage core alloca-
tion.

5 Differential information economies

An alternative case for the restrictions on the first period trades is the
presence of differential information. In this case agents confine themselves to
state contingent trades, which are verifiable by using the information avail-
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able to them. For example, given two states � and �� an agent would not
accept a trade in � which is different than the trade in ��, unless he/she can
distinguish between the two states using the information available to him/
her.

Formally, for each i � I let Fi, where ��ui� ei� � Fi, be a countably
generated sub-�-field of F, denoting the private information of agent i. We
can specify now the informational constraint of each agent as follows:

for each i � I �Ri � �x � � � Y � x is Fi 	 measurable
�

The first period consumption set of each agent i � I can be specified as
follows:

LP
Xi
� LXi � �x � � � Y � x is Fi 	 measurable


In this case, we have the following extension of the core notion developed
in Yannelis [18].

Definition 5.1. A collection of two period trading plans �x1� x2� �
�

i�I LP
Xi
��

i�I LXi is in the private two-stage core if

(i)
�

i�I

x1
i ��� �

�

i�I

e1
i �����	 a�e� x2 � C�E� x1�

(ii)  � S � I and y �
�

i�S

LP
Xi

so that
�

i�S

yi��� �
�

i�S

e1
i �����	 a � e� and

vi�yi� � vi�x2
i � for all i � S�

The information available to each agent or each coalition may depend on
a communication structure available in the economy. By appropriate speci-
fications of the informational restrictions of each individual or groups of
individuals one may obtain the natural extensions of the fine and coarse core
versions developed in Wilson [17].

Notice that in the private version of the two-stage core agents face
‘asymmetric’ restrictions in their trades. It is for this reason that in economies
where ex ante trades are arranged through assets, this version of the two-
stage core corresponds to the case of restricted participation in asset markets
studied in Balasko-Cass-Siconolfi [2]. Indeed, the presence of differential
information provides reasonable grounds for restricted participation in asset
markets as we conclude in the following section.

5.1 Incentive compatibility

One might wonder why in the presence of differential information agents
would confine themselves to trades compatible with their private information
only, instead of pooling their information. The answer to this question is
based on incentive considerations. Specifically, if an agent agrees to make
trades contingent on states that he/she cannot distinguish, then it might be
possible for another agent or group of agents to strategically misreport the
state to their advantage. Our objective in this section is to examine the
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possibility of strategic revelation of the state in differential information
models. We first provide a definition of coalitionally incentive compatible two
period trades.

In the following definition for each � � � we denote by Ei��� the event in
the information set of agent i, that contains �.

Definition 5.1.1. A two period allocation �x1
� x2� �

�
i�I

LR
Xi
�
�
i�I

LXi is incentive

compatible if for �� a�e� it is not true that there exist S � I and yi �
�
i�S

Xi���
so that

(i) �� �
�

i ��S

Ei���

(ii)
�

i�S

yi �
�

i�S

	ei��� 
 x1
i ��

�� � ei��
���� and ui��� yi� � ui��� x2

i ����

for all i � S

Requirement (i) says that individuals not in the coalition S should not be
in a position to distinguish between the true state and the false one an-
nounced by the coalition S. In other words the coalition S can misreport the
state � without being detected by agents not in the coalition. Condition (ii)
models the idea that misreporting the state does not enable members of the
coalition S to achieve an allocation that improves all the members of the
coalition, upon the allocation that they would receive by revealing the true
state. This definition has the flavor of the core in that it requires that no
coalition can cheat in an ‘undetectable’ way and attain a feasible allocation
that improves all its members i.e., there is group compatibility of incentives.
The underlying principle to definition 5.1.1 is that the incentive to misreport
a state arises from the possible benefits resulting for the members of the
‘cheating’ coalition. Incentive compatibility requires the truthful revelation
of the state to be a dominant strategy i.e., truthful revelation of the state
must be a strategy which is at least as advantageous as any false an-
nouncement of the state. Thus, definition 5.1.1 precludes the possibility that
the members of a coalition can misreport the state, receive the ex ante trades
that have been agreed upon for the misreported state and make improve-
ments by engaging in transactions ‘under the table’.

The incentive compatibility criterion presented above, is referred to as
strong coalitional incentive compatibility in Krasa-Yannelis [8]. However, no
existence result is provided there for this notion of incentive compatibility. It is
quite different than the incentive compatibility criterion appearing in Kout-
sougeras-Yannelis [7]. In the above papers the model considered does not
allow for trades in the second period, after a state is announced. Agents agree
ex ante in state contingent deliveries and do not meet again ex post for spot
trades. Thus, in the incentive compatibility criteria developed in the above
papers there is no room for retrading after misreporting the state that has
occurred. We differ in the following important aspect: We allow for spot trades
after agents make the ex ante promised deliveries, so we need to evaluate
incentives with respect to the allocation after spot trades have taken place.
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We need to secure first that incentive compatible allocations exist. Next,
notice that even though an outcome may guarantee the compatibility of
incentives it need not be optimal. The following theorem and its corollary
show the existence of allocations that are both fully optimal and incentive
compatible.

Theorem 5.1.2. Let �x1
� x2� �

�
i�I

LP
Xi
�
�
i�I

LXi be a collection of two period

trading plans, where
�
i�I

x1
i ��� �

�
i�I

ei��� � � a � e and x2 � C�E� x1�. Then,

�x1
� x2� is an incentive compatible allocation.

Proof. Suppose not, then for a set A � �, where ��A� � 0, we have that for
each � � A there exist S � I ��� � � and y �

�
i�S

Xi��� with �� �
�
i 	�S

Ei���
�
i�S

yi �
�
i�S

ei��� � x1

i ��
�� � ei�����, and ui��� yi� � ui��� x2

i ���� for all i � I �

Since
�
i�I

x1
i ��� �

�
i�I

ei��� � � a � e. we have
�
i�I

x1

i ��� � ei���� � 0
� � a � e�
Hence, for each � � A

�
i�S 
x

1
i ��� � ei���� � �

�
i 	�S 
x

1
i ��� � ei�����

By measurability of the net trades and the fact that �� �
�
i	�S

Ei��� we have

�
�

i 	�S


x1
i ��� � ei���� � �

�

i 	�S


x1
i ��

�� � ei��
����

It follows then that
�

i�S


x1
i ��� � ei���� �

�

i�S


x1
i ��

�� � ei��
����

Thus,
�

i�S

yi �
�

i�S

ei��� � x1
i ��

�� � ei��
��

� �

�
�

i�S

ei��� � x1
i ��� � ei���

� �

�
�

i�S

x1
i ����

However, this last equality along with ui�yi��� � ui��� x2
i ���� for all i � S

imply that x2 is blocked for each � � A, a contradiction to x2 � C�E� x1�. �
The following corollary follows directly from definition 3.2.

Corollary 5.1.4. A private two-stage core allocation is an incentive compat-
ible core allocation.

Remark 5.1.5. Theorem 5.1.2 only requires that x2 � C�E� x1� i.e. that x2 is in
the core � � a�e., given a feasible and Fi-measurable ex ante trade x1. Thus
theorem 5.1.2 will still hold for any equilibrium outcome in the second period
that is in the core for � � a�e. In particular if x2 is a Walrasian allocation
� � a�e., it will be incentive compatible in the sense of definition 5.1.1.
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Remark 5.1.6. It should be noted that definition 5.1.1 and Theorem 5.1.2
apply also for the case where ex ante trades are made through assets. A
different incentive compatibility criterion in the context of incomplete asset
markets is developed in Younés [20]. In that paper the author studies in-
centives in a competitive environment and addresses the incentive compat-
ibility properties of competitive equilibria.

This incentive compatibility result can be viewed as a justification for the
restriction of the first period trades to those that are compatible with the
private information available to each agent. This justification is based on the
incentive structure that this kind of asset trades generate. The use of private
information is a sufficient condition for incentive, compatibility. On the other
hand we emphasize at this point that it is not necessary i.e., there may be
other information sharing rules for which incentive compatible trades in the
sense discussed here exist. However, as we demonstrate below by means of an
example, even with very simple information structures, there are incentive
problems in any information sharing rule that involves (complete or partial)
pooling of information.

Certainly, one could imagine that the ex ante contingent trades are made
through the exchange of assets and the asset structure may or may not be
complete. In that case one only needs to express the first period trades in
terms of portfolios of assets, without altering the validity of the analysis. In
an asset market economy with differential information, theorem 5.1.2 pro-
vides a case for restricted participation in asset markets as in Balasko-Cass-
Siconolfi [2]. One may argue that in the presence of differential information
agents may choose to restrict themselves to portfolios with privately verifi-
able returns, because in this way they avoid being cheated by a misreport of
the state that occurs, according to theorem 5.1.2. In other words individuals
restrict themselves to asset trades that guarantee the compatibility of in-
centives after a state is realized.

6 Example

In this section we present an example of an economy which is characterized
by differential information in addition to an incomplete asset market struc-
ture. The purpose here is to demonstrate the incentive compatibility results
discussed in section 5.1. The presence of incomplete asset markets in this
example merely simplifies calculations. Specifically, we consider an economy
which is summarized as follows:

There are three states of nature � � �a� b� c� each one occurring with the
same probability. In each state there are two commodities available. The
asset structure consists of three securities with returns summarized by the
following matrix:

a b c
r1 �1� 0� �0� 0� �0� 0�
r2 �0� 0� �1� 0� �0� 0�
r3 �0� 0� �0� 0� �1� 0�
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There are three agents I � �j� k� l� with preferences represented by

uh��� xh���� yh���� � �xh��� � yh����1�2� for h � j� k� l� and � � a� b� c�

The endowments of the agents in each state are summarized by the matrix
below

a b c
ej �10� 4� �10� 4� �0� 4�
ek �10� 1� �0� 4� �10� 1�
el �0� 0� �0� 0� �0� 0�

The private information of each agent is Fj � ��a� b�� �c���Fk �
��a� c�� �b��� and F1 � ��a�� �b� c���

It can be verified that the following is a security-consumption private core
allocation

� x�a� x�b� x�c�
agent j ��2��2� 5� �12� 3� �13�2� 26�5� �13�2� 13�4�
agent k ��5� 2��5� �9�2� 9�8� �7�2� 14�5� �7�2� 7�4�
agent l �7� 0� 0� �7�2� 7�8� �0� 0� �0� 0�

First notice that in this allocation no group of agents can, or would like to
misreport state (a) whenever it occurs: Suppose that state (a) has occurred.
Then the coalition �j� l� can instead report that state (c) has occurred. In that
case agents j and l receive the returns (15,4) and (0,0) respectively. After
some tedious calculations, which we omit, it can be verified that the following
relations cannot hold simultaneously.

xj 	 xl � 15� yj 	 yl � 4 �feasibility�
�xj � yj�1�2 �

���������
12�3



and �xl�yl�1�2 �

����������������
7�2�7�8

�
�dominance�

A similar argument establishes that the same holds if the coalition �k� l�
claimed that the state is (b). This demonstrates that the security-commodity
trade in the core allocation above is, according to definition 5.1.1, incentive
compatible.

Paradoxically, as a result of the asset trade in the first period, due to the
agents’ j and k desire for risk diversification agent 1 ends up holding a
portfolio with positive returns and hence positive consumption in state ( a),
although this agent started with zero endowments. Agent l acts as an in-
termediary between agents j and k and as a result of this agent l ends up
holding a portfolio with positive returns. This result reveals an important
aspect of restricted participation in asset markets, not accounted for in
Balasko-Cass-Siconolfi [2], i.e., that the two-stage core rewards agents with
privileged access to asset markets that can intermediate among agents with
restricted access to asset markets.

In order to make the contrast clear suppose that agents j and k make state
contingent trades which are measurable with their pooled information. Then
they will both have full information. An asset-commodity core allocation
calculated in this case is the following (weight i’s utility by 1/3, j’s by 2/3 and
maximize the sum of the expected utilities)
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� x�a� x�b� x�c�
agent j �0��8� 5� �13� 13�4� �7�2� 14�5� �13�2� 13�4�
agent k �0� 8��5� �7� 7�4� �13�2� 26�5� �7�2� 7�4�
agent l �0� 0� 0� �0� 0� �0� 0� �0� 0�

Suppose that (a) occurs but �k� l� announce that the state is (b) instead, in
which case this coalition receives the aggregate bundle (18, 1). Then notice
that this coalition can achieve the allocation:

�xk� yk� � �17� 3�4�

�xl� yl� � �1� 1�4�

Notice now that xk � xl � 18� yk � yl � 1� �xk�yk�
1�2 � 7�2� �xl�yl�

1�2 � 0�
To recap: Agent k can ‘make it worth’ to agent l, so that they jointly

announce (b) rather than (a) that has truly occurred.
Finally notice that in this case, once information has been pooled, the

privileged access of agent l in asset markets disappears and this agent ends
up with zero consumption.

7 Concluding remarks

We believe that the study of cooperative concepts in a sequential setting is
interesting because the extensions of these concepts in dynamic models are
not straightforward. A dynamic framework allows the possibility of transient
cooperation which in turn leads to situations where cooperative and non
cooperative elements coexist. In this paper we have introduced a core notion
for economies with sequential trade. The notion we discussed here is based
on the principle that coalitions block only when they can make trades which
are improving in any consequence that may follow. This makes blocking
rather difficult. However, one can construct a variety of core concepts by
employing different blocking notions, based on how individuals may percieve
the future consequences of a deviation. This will be the topic of a different
paper. Our approach can be used as a basis to develop other cooperative
solution concepts for sequential games.

The possibility of temporary cooperation arises in cases where agents
cannot arrange trades for all current and future contingent commodities at
once. This is the case in incomplete asset markets and in differential infor-
mation models. It turns out that the core has some interesting properties
when applied to this class of models. However, restrictions on state contin-
gent forward trades arise naturally in a large variety of fields in economics
and finance, ranging from simple insurance or wage contracts up to inter-
national financial markets. The core notion presented in definition 3.2 above,
is general enough to capture any kind of constraints (regional, institutional
etc.) that one may wish to incorporate in an economic model. Hence, the
underlying idea of the two-stage core developed in this paper, can be applied
to a wide variety of economies with uncertainty and limited risk diversifi-
cation. This makes our approach look promising in further applications.
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Another interesting aspect of our analysis is that it may be useful in
understanding the nature of the incompleteness of the asset structure. One
may argue that in the presence of differential information agents may confine
themselves to portfolios with returns that are privately verifiable because in
this way the compatibility of the incentives to actually carry out the pre-
committed trades is guaranteed. This results in agents trading only a subset
of the assets available. Moreover, the example presented here has obvious
implications regarding the role of intermediation. Our example reveals how
intermediation arises due to restricted participation in asset markets, which
directly corresponds to our model. Restricted participation gives rise to ar-
bitrage opportunities in the sense that an agent with zero endowments but
privileged access to some asset markets ends up with positive consumption,
simply by intermediating in the asset trades of the other agents.

Further work on the theoretical context could involve the study of con-
vergence properties of the core notion presented here. This is interesting
because, as we showed here, the asset market version of our core notion
exists in cases where rational expectations equilibria do not exist. This is also
interesting for the differential information case because we would be able to
study which, if any, of the complications arising from the presence of dif-
ferential information persist in the limit.

8 Appendix I

In this section we have collected some preliminary mathematical facts that
will be used in our proofs. Let X � Y be two sets. The graph of a correspon-
dence, f � X � 2Y is defined as Gf � ��x� y� � X � Y � y � f �x��� Let �T � �� ��
be a complete, finite measure space and X be a separable Banach space. Let
B�X � denote the Borel �-algebra of X i.e. the smallest �-algebra containing
all the open subsets of X . The correspondence � � T � 2X is said to have a
measurable graph if G� � ��B�X �. We say that � � T � 2X is lower mea-
surable if for every open V 	 X we have that �t � T � ��t� 
 V �� �� � �� It is
a known result that if � � T � 2X has a measurable graph then it is lower
measurable. Further, if � � T � 2X is lower measurable and closed valued
then it has a measurable graph. A well known result by Aumann that will be
useful to us states that if �T � �� �� is a complete finite measure space, X is a
separable metric space and � � T � 2X is non empty valued and has a
measurable graph, then there exists a measurable function f � T � X such
that f �t� � ��t�, t-a.e.

A function f � T � X is called simple if there exist x1� x2� x3� � � � � xn in X
and a1� a2� a3� � � � � an in T such that f �

�n
i�1 xi  �ai

where �ai
� 1 for t � ai

and �ai
� 0 for t �� ai� A function g � T � X is called measurable if there is a

sequence of simple functions gn � T � X such that limn�� �gn�t� � g�t�� � 0
t-ae. A measurable function f � T � X is called Bochner integrable if there
exists a sequence of simple functions gn � T � X such that
limn��

�
�gn�t� � f �t��d��t� � 0. In such a case the integral of f is defined to

be
�

f �t� � limn��

�
gn�t�d��t�� We will denote by L1��� X � the space of
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equivalence classes of Bochner integrable functions f � T � X which is
normed by �f � �

�
�f �t��d��t�� It is a known result that L1���X � normed in

this way is a Banach space.
We turn now to introduce some elementary facts about the recession

cones of convex sets. A standard reference for this part is Rocafellar [13]. Let
C � �m be a non empty convex set. We say that C recedes in the direction D
if C includes all the half-lines in the direction D, that start at points of C, i.e.
C recedes in the direction of y if and only if for every x � C and
	 � 0� x	 	y � C� The set of all vectors y � �m in the direction of which C
recedes is referred to as the directions of recession of C, denoted as O	�C�.
Theorem 8.1 in Rockafellar establishes that O	�C� is a convex cone con-
taining the origin, called the recession cone of C. In fact O	�C� can be
thought of as the largest cone contained in C. Another fact that we use in the
sequel is that if C � �m is a non empty convex set then O	�riC� � O	�clC�
(Rockafellar [13] corollary 8.3.1, pp. 63). Moreover, for an arbitrary col-
lection A of closed convex sets with non empty intersection we have
O	�

�

i�A
Ci� �

�

i�A
O	�Ci�. Finally, for a non empty convex set C � �m we have

that C is bounded if and only if O	�C� � 0. With these preliminaries out of
the way we now proceed to the proofs of our results.

9 Appendix II

For the proof of theorem 3.3 we will make use of the following proposition:

Proposition 9.1. There is a measurable function x � � � Y I such that
x � C�E� x�.

Before we start with the proof of proposition 9.1 some notation and
elementary facts are in order. For each S � I let Y S be the �S�-fold Cartesian
product of Y . Define FS � �
 Y I � 2Y S

as FS��� x� � �y � Y S
�

�

i�S
yi �

�

i�S
ei����. Moreover, define Pi � �
 Y I � 2Y for each i � I as Pi��� x� �

�y � Y � ui��� y� � ui��� xi����� (the preference correspondence of each

agent) and PS �
�

i�S Pi (the preferred set of each coalition). Let now

BS � �
 Y I � 2Y S
be defined as BS��� x� � PS��� x�  FS��� x��

Lemma 9.2. The correspondence BS is lower measurable.

Proof. Given y � Y define the functions f i
y � �
 Y I � � by

f i
y��� x� � ui��� y� � ui��� xi����

for each i � I . Since ui��� �� is continuous on Y and ui��� x� is measurable on
�� we have that ui��� �� is jointly ��ui� �B�Y � measurable. Thus, we conclude
that f i

y��� is measurable ��ui� �B�Y � for each y � Y .
Notice now that Pi��� x� � �y � Y � f i

y��� x� � 0�� Hence for each y � Y
we have that
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�f i
y�
�1�0��� � ���� x� � �� Y I

� f i
y��� x� � 0�

� ���� x� � �� Y I
� y � Pi��� x�� �1�

From the measurability of f i
y�	� we conclude that

���� x� � �� Y I
� y � Pi��� x�� � ��ui� 
B�Y I�

Therefore, ���� x� � �� Y I
� y � PS��� x�� � �

�
i�S

��ui�� 
B�Y I�. Next given

y � YS define for each S � I � gS
y ��� Y I �  by gS

y ��� x���
�
i�S

yi�
�
i�S

ei����Y ,

where � 	 �Y is the norm of Y . We have that gS
y �	� is measurable �

�
i�S

��ei��


B�Y I� for each y � Y S . Notice now that FS��� x� � �y � Y S
� gS

y ��� x� � 0��

Therefore, for each y � Y S we have ���� x� � �� Y I
� y � FS��� x�� �

�
�
i�S

��ei�� 
B�Y I�. Let now V be an open subset of Y S and D a countable

dense subset of Y S . We have

���� x� � �� Y I
� BS��� x�

�
V �� ��

� ��� x� � �� Y I
� y � BS��� x�� y � V

� �
� ��� x� � �� Y I

� d � BS��� x�� d � D
� �

� ��� x� � �� Y I
� d � PS��� x�� d � D

� �
�

��� x� � �� Y I
� d � FS��� x�� d � D

� �
�

�
d�D

���� x� � �� Y I
� d � PS��� x��

� �

� �
d�D

���� x� � �� Y I
� d � FS��� x��

� �

Thus, we can conclude that

���� x� � �� Y I
� BS��� x�

�
V �� �� � �

�
i�S

��ui� ei�� 
B�Y I� �

We are ready now to proceed with the proof of proposition 9.1.

Proof of Proposition 9.1. For each S � I define

CS��� � �x � FI��� � PS��� x�
�

FS��� x� � ��

and let C��� � �S�ICS���.
By the lemma above the correspondence BS��� x� � PS��� x�� FS��� x� is
lower measurable. Thus, the set
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���� x� � �� Y I
� BS��� x� � �� � ���� x� � �� Y I

� BS��� x�
�

Y S �� ��c

� ���� x� � �� Y I
� x � CS����

� GCS

is �
�
i�S

��ui� ei�� 	 �Y I�-measurable. We conclude then that the correspon-

dence C��� � 
S�ICS��� has a measurable graph. By Scarf’s theorem [15],
C��� is also non empty valued for each � � �. Thus, by the Aumann
measurable selection theorem there exists a measurable function x � � � Y I

such that x��� � C��� � a�e� �

Proof of Theorem 3.4. Recall that the set consists of allocations that are
statewise in the core. Notice that for each � � � all the conditions of Scarf’s
theorem [15], for the existence of core allocations are satisfied. Hence by
appealing to that theorem for each � � �, we can establish that for each
x �
�
i�I

LR
Xi

. Therefore, it suffices to show the existence of x1 �
�
i�I

LR
Xi

that

satisfies (ii) in definition 3.3. From claim 5.1 in Yannelis [18] we know that
LXi is a weakly compact set. By (a.3.3) LR

Xi
is a weakly compact set as well.

The economy � � ��LR
Xi
� vi� ei� � i � I� satisfies all the conditions of

theorem 3.1 in Yannelis [18], thus there is an allocation x1 �
�
i�I

LR
Xi

so that
�
i�S

x1
i ��� �

�
i�S

ei��� � a�e�, and also � �S � I and y �
�
i�S

LR
Xi

so that
�
i�S

yi��� �
�
i�S

ei��� � a�e� and vi�yi� � vi�x1
i �, for all i � S. By proposition

9.1 above there exists a measurable function x2 � C�E� x1�. We claim that
�x1� x2� is a two-stage core allocation for the original economy.

To start with �x1� x2� satisfies condition (i) in definition 3.3. Suppose by way
of contradiction that for some S � I and y �

�
i�S

LR
Xi

we have
�
i�S

yi��� �
�
i�S

ei��� � a�e� and vi�yi� � vi�x2
i �, for all i � S. However, x2 � C�E� x1� is

individually rational so for �-ae we have ui��� x2
i ���� � ui��� x1

i ����� Thus,
we have vi�x2

i � � vi�x1
i � for all i � I . But then vi�yi� � vi�x2

i � � vi�x1
i � for all

i � S which is a contradiction. �

10 Appendix III

In this section we show how the analysis of the two-stage core can be ex-
tended to allow for arbitrary short sales in the first period. Notice that we
only need to establish the existence of first period core allocations. Statewise
core allocations in the second period exist by Scarf’s theorem. Finally by
remark 3.4, pairs of allocations that are in the core in each period are two-
stage core allocations. Thus, it suffices to prove the existence of first period
core allocations when there is no lower bound on L�i . The following lemma is
the key to the proof of our existence theorem.
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Lemma 10.1. [P] implies that for every coalition S � I the set of feasible and
individually rational allocations is bounded.

Proof. Suppose that assumption [P] is true.
Define F S � �� �

�
i�S

L�i �

�
i�S

�i � 0�. Rewrite [P] as
�
i�S

O�Pi�0� � F S � �0�

for each S � I . Given � � F S we have :

�� 	� � F S
�		 
 0 �

�

i�S

�i � 	
�

i�S

�i � 0�		 
 0

�
�

i�S

�i � 0

� � � F S �2�

Thus, F S � O�F S . Moreover we have O��
�
i�S

Pi�0�� �
�
i�S

O�Pi�0�� Hence,

[P] implies that O��
�
i�S

Pi�0�� � O�F S � �0�� By corollary 8.3.3 in Rockafellar

[13], we have that O���
�
i�S

Pi�0�� � F S  � �0�� Finally, by theorem 8.4 in

Rockafellar we conclude that �
�
i�S

Pi�0�� � F S is bounded. �
We now turn to the existence proof of core allocations with unbounded

short sales.

Proof of Theorem 4.3. Denote by I the family of all non empty subsets of I .
Let �I �V� be the exchange game derived from the economy
� � ��L�i � wi� 0� � i � I�� where V � I ����I�

is defined as follows:

V��S� � �t � ��I �
� For each i � S� ti � wi��i�

for some � �
�

i�S

L�i s.t.
�

i�S

�i � 0�

Notice that the value functions of this game, need not be bounded above.
Consider now a new game (I�V�� where:

V��S� ��t � ��I �
� For i � S� ti � wi��i� for some � �

�

i�S

L�i

s.t.
�

i�S

�i � 0� wi��i� 
 wi�0��

Notice that V��N�� �S�I intV��S� �V�N�� �S�I intV�S�
i.e. Core�I �V�� � Core�I �V�. Therefore, it suffices to show that the core of
�I �V�� is non empty. Since [P] is satisfied we have by lemma 4.4 that the
value functions V���� are bounded above and it can be verified that they
satisfy all the other conditions in Scarfs theorem (see Aliprantis et al [1]), i.e.
they are non empty, closed and comprehensive. Furthermore, since L�i is
closed and convex and wi��� is continuous and concave it follows that the
game is balanced. Therefore, all the conditions of Scarf’s theorem are sat-
isfied and we can conclude that the core of �I �V� is non empty, which
completes the proof. �
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The above proof illuminates the essence of the cone condition [P] (as well
as some related cone conditions) for the existence of the core: It helps recover
the boundedness of the value functions that is lost when one removes the
lower bounds of the consumption sets.
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Summary. A condition is given that is equivalent to balancedness of all NTU-
games derived from an exchange economy with asymmetric information when
endowments are variable. The condition is applicable to the ex-ante model with ex-
pected utilities, but also to the more general model ofArrow-Radner type economies
without subjective probabilities. Differences in the interpretation of measurability
assumptions between these two models are discussed, and another model with in-
formation consistent utility functions is developed in which the result would also
hold.
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economy with asymmetric information.
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1 Introduction

The standard Arrow-Debreu model of an exchange economy can be extended to
account for uncertainty by differentiating the commodities over the states of nature,
as first proposed already by Debreu [4] in Chapter 7 of his ’Theory of Value’. This
approach has been extended to account for asymmetric information in a seminal
paper by Radner [11,12], using economies where agents possess different informa-
tion. It is assumed, that an agent can carry out only such trades that are compatible
with his information structure.

After this development in the fifities and sixties, the seventies and eighties
saw a growing literature on Rational Expectations Equilibrium (REE), which is a
natural extension of Arrow-Debreu’s deterministic model of Walrasian equilibrium

� I thank two anonymous referees whose comments led to an improvement of the paper.
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to a differential information framework. However, prices in a fully revealing REE
are not able to reflect the informational asymmetries of agents. This left room for
criticism and further work.

A new literature emerges from the work of Wilson [15], who considers the core
of an economy with differential information. Wilson considered the problem of how
agents within a coalition share information. He gave two different scenarios, corre-
sponding to the notion of fine core (pooling information) and coarse core (use only
common information) of an economy with asymmetric information structure. He
uses an interim core concept, where agents engage in coalitional negotiations after
receiving their private information. For both core notions problems with existence
and incentive compatibility arise, so that this approach was not pursued further for
some time.

In the early nineties, the core was reconsidered.Yannelis [16] considered a new
information sharing concept based on measurability constraints, and thus intro-
duced the private core. This core concept exists under quite general assumptions,
and it is coalitionally Bayesian incentive compatible, as shown in Koutsougeras-
Yannelis [7]. Furthermore, it rewards the better informed agents, and it provides
sensible outcomes in some situations where REE fails too exist. Allen [1–3] carries
the development further, by introducing more general information sharing rules.
Recently, Einy et al. [5] have shown a core equivalence theorem for large economies.

In one of her mentioned articles, Allen [3] considers the ex-ante core, where
agents have to form coalitions before the true state of the world is revealed to them.
She allows for arbitrary communication systems rather than fine or coarse commu-
nication. This raises the question to find conditions on the communication system
that assure nonemptiness of the ex-ante core. In this paper such a condition is given.
It turns out to be an equivalent to balancedness of all NTU-games derived from the
exchange economy with asymmetric information when endowments are viewed
as variable. Moreover, the condition is applicable to the model without expected
utility, as introduced in Schwalbe [14]. Most articles consider agents’ preferences
derived from state-dependent preferences by taking expectations with respect to
some subjective probability measure over the states of the world. However, such a
description of preferences is not necessary. As Debreu [4] explains in Chapter 7 of
his ’Theory of Value’, and as is the case in Radner [11], preferences under uncer-
tainty can be formulated without referring to probabilities. The case of expected
utility functions is then included in this more general approach.

The analysis is organized as follows: In Section 2 the formal model is developed
and the core concepts are defined. Section 3 contains the results and some examples
to illustrate the relation of the new condition with other conditions. In Section 4
a discussion is included on measurability assumptions and how the implications
of these differ for the models with and without expectations. Some concluding
remarks follow in Section 5.

2 Preliminaries

In this section the relevant definitions for the notion of an exchange economy with
asymmetric information are given. Two different alternatives are considered, one,
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where the agents have state-dependent utility functions and priors, and another
one, where the utility function is defined on the state-commodity space altogether.
The state-dependent utility case includes the expected utility model with finitely
many states of the world as in Allen [3]. The case of a utility function avoiding the
usage of expected utility by defining the utility function on the state-commodity
space appears in Schwalbe [14]. There, balancedness for all exchange economies
with asymmetric information is shown. But this holds only if one assumes the
feasible allocations for the economy to be determined on the maximum amount of
information available, that is, the information an agent would have if all coalitions
could be formed simultaneously. Here, I will only assume that agents can use the
information available to them in the grand coalition. This seems less artificial, and
is in agreement with the expected utility model of Allen [3].

2.1 Information

LetΩ be the finite set of states of the world. Let P∗ be the set of partitions ofΩ. A
P ∈ P∗ is called an information set. The interpretation is that states contained
in an element S ∈ P cannot be distinguished under that information set. For each
ω ∈ Ω denote by P(ω) the element of the partition P that contains ω.

An information set P̃ is called finer thanP , if every element of P̃ is contained
in an element of P . P is then called coarser than P̃ .

LetN be a finite set of agents. Each agent has an initial endowment of informa-
tion, described byPi ∈ P∗. Then forming coalitions the information of agents may
change, e.g. due to communication. Let PS

i be the information that agent i ∈ S
has if the coalition S is formed. Throughout I assume that P{i}

i = Pi. A collection
(PS

i )i∈S,S⊂N is called a communication system.

Pm
i :=

∨
S�i

PS
i :=

{⋂
S�i

PS
i (ω)|ω ∈ Ω

}
is the maximum amount of information of agent i. Checking that Pm

i ∈ P∗ is
straightforward.

An information set P generates a σ-algebra σ(P). A communication system
(PS

i )i∈S,S⊂N is called nested if σ(PS
i ) ⊂ σ(PT

i ) or equivalently PS
i ⊂ σ(PT

i )
for all i ∈ S ⊂ T . It is called bounded if σ(PS

i ) ⊂ σ(PN
i ) for all i ∈ S ⊂ N .

Information restricts the possible net trades of an agent. He cannot trade different
amounts on events that he cannot distinguish. Formally this is captured by the
following. Let P be the information the agent has. Then his trades of k goods are
limited to the following set of functions

XP := {x|x : Ω → Rk and x is σ(P)-measurable}.

Hence, x ∈ XP if and only if x is constant on elements of P . The characteristic
function of the set Ω, denoted by

χΩ : Ω → R

: ω �−→ 1,
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is in XP for every P in a one good economy for example. When there are k > 1
goods

χΩ

⎛⎜⎜⎜⎝
1

...

1

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

∈Rk

is inXP for everyP . I will denoteXPS
i

byXS
i andXPm

i
byXm

i . Then, if S = {i}
I will writeXi. CallXP the set of informationally feasible trades underP ,XS

i

the set of informationally feasible trades of agent i in coalition S and
∏

i∈S X
S
i

the set of informationally feasible trades of the coalition S.

2.2 Exchange economies with asymmetric information

An exchange economy with asymmetric information E is given by

1. a finite set of agents N = {1, 2, . . . , n},
2. a finite set Ω of states of the economy,
3. the initial endowments ei : Ω → Rk for every agent i ∈ N ,
4. the communication system (PS

i )i∈N,S⊂N ,
5. the utility functions ui : (Rk)Ω → R for every agent i ∈ N or
5.’ state-dependent utility functions u′

i : Ω ×Rk → R and strictly positive
subjective probabilities µi(ω) > 0.

When using 5 I will write

E = (N,Ω, (ei, ui, (PS
i )i∈S⊂N )i∈N )

and speak of themodel without expectations, when using 5′ I will write

E = (N,Ω, (ei, u′
i, µi, (PS

i )i∈S⊂N )i∈N )

and speak of the expected utility model.
A vector of net trades (zi)i∈S satisfying ei+zi ≥ 0 for all i ∈ S and

∑
i∈S zi =

0 is called physically feasible for the coalition S ⊂ N .
Moreover, for the results in this paper it is necessary to assume that

6. the utility functions are quasiconcave in (Rk)Ω

6.’ the state-dependent utility functions u(ω, ·) are concave in Rk.

By taking expectations

ui(xi) := Eµiu
′
i(ω, xi(ω)) :=

∑
ω∈Ω

µi(ω)u′
i(ω, xi(ω)),

it becomes clear, that the expected utility model with concave state-dependent util-
ities is really a subclass of the model without expectations. In Allen [3] it was
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assumed, that the state-dependent utility functions be concave, which is reflected
here in assumption 6’. The proofs in the more general case of assumptions 5 and
6 demand only quasiconcavity of the utility function. As the integral of concave
functions is concave, this encompasses the case of state-dependent concave utili-
ties. Nothing similar can be said about the case of state-dependent quasi-concave
utilities, since the integral of quasiconcave functions need not be quasiconcave.

Here no assumptions are made with respect to measurability of initial endow-
ments or state-dependent utility functions. It might be regarded as unreasonable,
to have initial endowments or utility functions that contain more information than
any of the information partitions the agent has in the coalitions of the game. For the
decision to form coalitions and trade in these coalitions the information contained
in endowments and utility seems essential, and therefore it might be argued that
the agent has to know it. I will discuss these matters in Section 4.

2.3 The core

AnNTU -game in characteristic function form is a correspondence V : 2N \
{∅} → RN satisfying

1. V (S) is nonempty and closed for S 	= ∅,
2. if x ∈ V (S) and y ∈ RN is such that yi ≤ xi for all i ∈ S then y ∈ V (S),
3. for every i ∈ N there is an mi ∈ R with V ({i}) = {x ∈ RN |xi ≤ mi}, and
V (N) ∩ {x ∈ RN |xi ≥ mi ∀i ∈ N} is nonempty and compact.

A collection of coalitions B ⊆ 2N \ {∅} is balanced if there are positive real
numbers λS for every S ∈ B such that

∑
S∈B:i∈S λS = 1 for every i ∈ N . An

NTU-game V is balanced if
⋂

S∈B V (S) ⊆ V (N) for every balanced collection
B. Scarf [13] has proved that if V is balanced, then it has a nonempty core.

The NTU -game associated with the expected utility model is defined by

V eu
E

(S) = {x ∈ RN ; there exists (zi)i∈S ∈
∏

i∈S X
S
i such that

ei + zi ≥ 0,
∑

i∈S zi = 0

and xi ≤ Eµiui(ω, (ei + zi)(ω))}
for each coalition S 	= ∅.

Allen [3] shows that this defines indeed an NTU-game. Let int(X) denote the
interior of a setX ⊆ RN with respect to the usual topology on RN . The expected
utility core of the exchange economy with asymmetric information is then defined
to be the NTU-core of the associated NTU-game:

Ceu(E) := C(V eu
E

) = V eu
E

(N)\
⋃

∅�=S⊂N

int(V eu
E

(S)).

The NTU -game associated with the model without expectations is defined
by

VE(S) = {x ∈ RN ; there exists (zi)i∈S ∈
∏

i∈S X
S
i such that

ei + zi ≥ 0,
∑

i∈S zi = 0

and xi ≤ ui(ei + zi)}
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for each coalition S 	= ∅.
The core of the exchange economy with asymmetric information is then

defined to be the NTU-core of the associated NTU-game:

C(E) := C(VE) = VE(N)\
⋃

∅�=S⊂N

int(VE(S)).

3 Balancedness of the market games with asymmetric information

Schwalbe [14] defines themaximum information of an agent i as the informa-
tion Pm

i he could gain by joining all coalitions simultaneously. His set of feasible
allocations E for the whole economy then consists of all physically feasible al-
locations (xi)i∈N ∈ ∏i∈N X

m
i . That makes the set E large enough to assure

balancedness of the associated market game with asymmetric information for any
communication system. As there are no obvious reasons for using this notion of
maximum information, I will give here another condition to assure balancedness
based on the sets XS

i , and use PN
i , rather than Pm

i , for the whole economy. Note
that Pm

i = PN
i if the communication system is bounded.

I give an example to show that the condition contained in Allen [3], to guarantee
(total) balancedness of the associated market game in the expected utility model,
is not correct, and then present an alternative that is applicable to both models.

The following definitions are taken from Allen [3].

Definition 1. The communication system (PS
i )i,S is essentially nested if for all

i ∈ N and all coalitions S and T such that i ∈ S ⊆ T ⊆ N , ifΩ′ ⊂ Ω is such that
0 < µi(Ω′) < 1 where Ω′ ∈ σ(PS

i ), and Ω′ = Ω1 ∪ Ω2 ∪ . . . ∪ ΩL, L ≥ 1 for
some disjoint Ωl ∈ PS

j(l) with j(l) ∈ S \ {i}, l = 1, . . . , L, then Ω′ ∈ σ(PT
i ) and

each Ωl ∈ σ(PT
j(l)). The communication system (PS

i )i,S is essentially bounded if
the condition above holds for T = N .

Obviously essentially nested implies essentially bounded. Furthermore, nested
implies essentially nested and bounded implies essentially bounded. Now the claim
in Allen [3] is, that essential nestedness is equivalent to total balancedness of the as-
sociated market games with varying utilities and endowments, and essential bound-
edness is equivalent to balancedness. I give a counterexample to show that this is
not so. The game specified will be essentially nested, but not balanced, hence con-
stituting a counterexample to both claims.

Example 2. Let there be five agents N = {1, 2, 3, 4, 5}, 4 states Ω = {1, 2, 3, 4}
and prior µi(ω) = µ(ω) = 1

4 for all i ∈ N . The communication system is given by

PS
1 = {{1, 2}, {3, 4}} 1 ∈ S, |S| ≤ 4

PS
2 = {{1, 4}, {2, 3}} 2 ∈ S, |S| ≤ 4

PS
3 = {{1, 3, 4}, {2}} 3 ∈ S, |S| ≤ 4

PS
4 = {{1, 2, 3}, {4}} 4 ∈ S, |S| ≤ 4

PS
5 = {Ω} 5 ∈ S, |S| ≤ 4



Balancedness and the core in economies with asymmetric information 163

and PN
i = {Ω}̇ for all i ∈ N . This communication system is obviously essentially

nested, asΩ′ ⊂ Ωwith 0 < µi(Ω′) < 1,Ω′ ∈ σ(PS
i ), andΩ′ = Ω1∪Ω2∪. . .∪ΩL

for some disjoint Ωl ∈ PS
j(l) with j(l) ∈ S \ {i}, l = 1, . . . , L, does not exist for

any i ∈ S ⊆ N .
Now consider the following one good economy

e1 = (1, 1, 0, 0) , u1 : Ω ×R, u(ω, x) = χ{1,2}(ω)x+ 3χ{3,4}(ω)x,

e2 = (0, 1, 1, 0) , u2 : Ω ×R, u(ω, x) = χ{2,3}(ω)x+ 3χ{1,4}(ω)x,

e3 = (0, 0, 0, 0) , u3 : Ω ×R, u(ω, x) = x,

e4 = (0, 0, 0, 1) , u4 : Ω ×R, u(ω, x) = x,

e5 = (1, 1, 1, 1) , u5 : Ω ×R, u(ω, x) = x.

There will be no exchange of goods in the grand coalition as only {∅, {Ω}}-
measurable trades are allowed there and so only agent 5 could possibly trade as
all others have a state with 0 endowment. So the unique candidate for the core is
the utility vector (ui(ei))i∈N arising from the initial endowment e. The expected
utility is then

u1(e1) =
1
2

u2(e2) =
1
2
,

u3(e3) = 0,

u4(e4) =
1
4
,

u5(e5) = 1.

Consider the coalition S = {1, 2, 3, 4}. The net trades

z1 =
(
−1,−1,

1
2
,
1
2

)
,

z2 =
(

1
2
,−1,−1,

1
2

)
,

z3 =
(

0, 1
1
2
, 0, 0

)
,

z4 =
(

1
2
,
1
2
,
1
2
,−1
)
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are informationally and physically feasible and lead to the following expected utility

u1(e1 + z1) =
3
4
> u1(e1) =

1
2

u2(e2 + z2) =
3
4
> u2(e2) =

1
2
,

u3(e3 + z3) =
3
8
> u3(e3) = 0,

u4(e4 + z4) =
3
8
> u4(e4) =

1
4
,

and hence there is a deviation to the utiliy vector (ui(ei))i∈N . So the core is empty
and the game cannot be balanced.

Remark 3. The restriction of information in the grand coalition to {Ω}might seem
strong. But the essential idea is only that net trades that are possible in a subcoalition
are removed in the grand coalition and hence deviations of this subcoalition become
possible. Thus, the assumption PN

i = {Ω} is only made for simplicity.

The idea behind the condition of essential nestedness/boundedness was that the
possibility of net trades is not only tied to physical feasibility, but also to infor-
mational feasibility. Hence, not all combinations of physically feasible net trades
have to be considered as possible deviations. I propose the following definition that
captures this idea better than essentially nestedness/boundedness.

Definition 4. The communication system (PS
i )i,S is trade nested if for all coali-

tions S ⊆ T ⊆ N and all (zj)j∈S ∈
∏

j∈S X
S
j with

∑
j∈S zj = 0, it holds that

(zj)j∈S ∈
∏

j∈S X
T
j . The communication system (PS

i )i,S is trade bounded if the
condition above holds for T = N .

Clearly, the system in Example 2 is neither trade nested nor trade bounded.
Now I claim the following for the model without expectations.

Theorem 5. Fix the number of goods k and the finite sets Ω and N arbitrarily.
Consider all exchange economies with asymmetric information and with these
parameters fixed. As endowments and utilities vary, all NTU market games with
asymmetric information are totally balanced if and only if (PS

i )i,S is trade nested.

Proof. Necessity: Suppose that the communication system (PS
i )i,S is not trade

nested. Then one can construct an exchange economy with asymmetric information
that is not totally balanced, as follows. By assumption there are coalitions S ⊂ T
and (zj)j∈S ∈ ∏j∈S X

S
j such that

∑
j∈S zj = 0 and (zj)j∈S /∈ ∏j∈S X

T
j .

Consequently there is an agent ĵ ∈ S such that zĵ /∈ XT
j . Now let K be large

enough to ensure that

z̃j := zj −KχΩ

⎛⎜⎝1
...
1

⎞⎟⎠ < 0
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for all j ∈ S, j 	= ĵ. Then put ej := −z̃j for all j ∈ S, j 	= ĵ and ej := 0 for all
j ∈ N \ S and for j = ĵ. Let the utility functions of the agents j 	= ĵ be the zero-
functions and for agent ĵ let uĵ(x) := 1

|Ω|
∑

ω∈Ω

∑k
m=1 xm(ω). I show that the

subgame (T, V ) is not balanced. Consider the balanced collection B := {S, T \S}
with constant weight function χB. Obviously

V (T \ S) = {x ∈ RT |xi ≤ 0 for all i ∈ T \ S}.

The best that ĵ can get in coalition S is the sum of all the initial endowments of the
others

z̃ĵ :=
∑

j∈S,j �=ĵ

ej = −
∑

j∈S,j �=ĵ

z̃j = −
∑

j∈S,j �=ĵ

zj + (|S| − 1)K

⎛⎜⎜⎜⎝
1

...

1

⎞⎟⎟⎟⎠χΩ

= zĵ + (|S| − 1)K

⎛⎜⎜⎜⎝
1

...

1

⎞⎟⎟⎟⎠χΩ > 0.

So z̃ĵ is PS
ĵ

measurable and

uĵ(z̃ĵ) =
1
|Ω|

∑
ω∈Ω

k∑
m=1

z̃ĵm(ω) > 0.

As uj is the zero function for j 	= ĵ we have

V (S) = {x ∈ RT |xi ≤ 0 for all i ∈ S \ {ĵ} and xĵ ≤ uĵ(z̃ĵ)}.

Hence⋂
B∈B

V (B) = {x ∈ RT |xi ≤ 0 for all i ∈ T \ {ĵ} and xĵ ≤ uĵ(z̃ĵ)}.

But on the other hand, as (zj)j∈S /∈ ∏j∈S X
T
j one has also that (z̃j)j∈S /∈∏

j∈S X
T
j . Furthermore, as z̃ĵ = e(T ) :=

∑
j∈T ej and e(T \ S) = 0, any

physically feasible vector of net trades (z′
j)j∈T ∈

∏
j∈T X

T
j leads to a utility for

agent ĵ that is strictly less than uĵ(z̃ĵ). So the balancedness condition

V (T ) ⊇
⋂

B∈B
V (B)

is violated in the subgame (T, V ). This shows that the game (N,V ) is not totally
balanced.

Sufficiency: To show total balancedness of the derived game (N,V ), it has to be
shown that every subgame (T, V ), T ⊆ N is balanced, i.e. V (T ) ⊇

⋂
B∈B V (B)
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holds for every balanced collection B of subsets of T . So let B be an arbitrary bal-
anced collection of subsets ofT with weights γ : B → (0, 1]. Letx ∈

⋂
B∈B V (B).

For everyB ∈ B one has x ∈ V (B), and hence there are by definition of V (B) net
trades zB

i , i ∈ B, that are informationally and physically feasible in the coalitionB
such that xi ≤ ui(ei + zB

i ) for all i ∈ B. Extend (zB)i∈B to a vector of net trades
in the grand coalition T of the subgame by putting zB

i := 0 for all i ∈ T \B. The
communication system is trade nested so (zB

i )i∈T ∈ ∏i∈B X
T
i , and as 0 ∈ XT

i

this implies (zB
i )i∈T ∈

∏
i∈T X

T
i . Moreover

∑
i∈T z

B
i =

∑
i∈B z

B
i = 0. Conse-

quently (zB
i )i∈T is an informationally and physically feasible vector of net trades

in T . Now let zi :=
∑

B∈B,B�i γ(B)zB
i =

∑
B∈B γ(B)zB

i for every i ∈ T . As it
follows easily that the setsXT

i are convex and contain the zB
i for everyB ∈ B one

obtains that also zi ∈ XT
i , i.e. (zi)i∈T is informationally feasible in the coalition

T . It is clear that ei + zi ≥ 0 for all i ∈ T so∑
i∈T

zi =
∑
i∈T

∑
B∈B

γ(B)zB
i =

∑
B∈B

γ(B)
∑
i∈T

zB
i

=
∑
B∈B

γ(B)
∑
i∈B

zB
i = 0

shows that (zi)i∈T is also physically feasible. Quasiconcavity of the utility functions
now implies that for all i ∈ T

ui(ei+zi) = ui

(
ei+
∑
B∈B

γ(B)zB
i

)
=ui

⎛⎝ ∑
B∈B,B�i

γ(B)ei+
∑

B∈B,B�i

γ(B)zB
i

⎞⎠

= ui

⎛⎝ ∑
B∈B,B�i

γ(B)(ei + zB
i )

⎞⎠ ≥ min
B∈B,B�i

{ui(ei + zB
i )}

≥ xi,

so x ∈ V (T ), and that shows V (T ) ⊇ ⋂B∈B V (B) for all subgames (T, V ) and
balanced collections B of subsets of T . Hence the derived game is totally balanced.

��

Corollary 6. Fix the number of goods k and the finite sets Ω and N arbitrarily.
Consider all exchange economies with asymmetric information and with these
parameters fixed. As endowments and utilities vary, all NTU market games with
asymmetric information are balanced if and only if (PS

i )i,S is trade bounded.

Proof. For necessity and sufficiency set T = N in the corresponding parts of the
proof of Theorem 5. ��

Corollary 7. Fix the number of goods k and the finite sets Ω and N arbitrarily.
Consider all exchange economies with asymmetric information and with these
parameters fixed. As endowments and utilities vary, all NTU market games with
asymmetric information are
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(i) balanced if and only if (PS
i )i,S is trade bounded and

(ii) totally balanced if and only if (PS
i )i,S is trade nested.

Proof. The expected utility case is a subclass of the other model recovered by taking
ui : (Rk)Ω → R to be the expected utility functions∑

ω∈Ω

µi(ω)ui(ω, x(ω))

for all i ∈ N . ��

As balancedness implies that the core of the NTU-game is not empty and total
balancedness implies that the core of all subgames is not empty one obtains another
corollary.

Corollary 8. Fix the number of goods k and the finite sets Ω and N arbitrarily.
Consider all exchange economies with asymmetric information and with these
parameters fixed. As endowments and utilities vary, a sufficient condition for all
exchange economies with asymmetric information to have a non-empty core is trade
boundedness of the communication system. A sufficient condition for all subgames
to have a non-empty core is trade nestedness of the communication system.

Note that the game constructed in the proof of Theorem 5 to show that nest-
edness is also a necessary condition has a non-empty core. In fact zero utility for
every agent, corresponding to no trade, is in the core. So the corollary cannot state
equivalence of nonemptiness of the core (subcores) and boundedness (nestedness).

Obvously, nestedness (boundedness) of the communication system implies
trade nestedness (boundedness).

To see that the conditions of trade nestedness and trade boundedness are really
weaker than nestedness and boundedness of the communication system, consider
the following example.

Example 9. Let there be three agents N = {1, 2, 3} and 4 states Ω = {1, 2, 3, 4}.
The communication system given by

PS
1 = {{1}, {2}, {3, 4}} 1 ∈ S, |S| ≤ 2,

PS
2 = {{1, 2, 3}, {4}} 2 ∈ S,
PS

3 = {{1, 2, 4}{3}} 3 ∈ S.

PN
1 = {{1, 2}, {3, 4}},

is trade nested but not nested. This is easily seen, as any physically feasible trades
that agent 1 can make must necessarily be constant on the set {1, 2}.

On the other hand trade nestedness (boundedness) is stronger than essentially
nestedness (boundedness) in the expected utility model.

Theorem 10. Any trade nested (bounded) communication rule is essentially nested
(bounded).
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Proof. Let the communication system (PS
i )i,S be trade nested. Fix arbitrary i, S

and T such that i ∈ S ⊆ T ⊆ N . Suppose there is Ω′ ⊂ Ω such that 0 <
µi(Ω′) < 1 where Ω′ ∈ σ(PS

i ), and Ω′ = Ω1 ∪Ω2 ∪ . . . ∪ΩL for some disjoint
Ωl ∈ PS

j(l) with j(l) ∈ S \ {i}, l = 1, . . . , L. If such sets Ω′, Ωl do not exist for
any combination of i, S and T the communication system is by definition trivially
essentially nested. If they exist put zi = −χΩ′ , zj(l) = χΩl

and zj = 0 for all j ∈
S \({i}∪{j(l); l = 1 . . . L}). Then (zj)j∈S ∈

∏
j∈S X

S
j and

∑
j∈S zj = 0 hence

by trade nestedness (zj)j∈S ∈
∏

j∈S X
T
j . But this implies that Ω′ ∈ σ(PT

i ) and
eachΩl ∈ σ(PT

j(l)).As i, S andT were arbitrary this shows that the communication
system is essentially nested. The boundedness case follows by specialising T to the
grand coalition N . ��

4 Discussion of measurability assumptions

As far as the initial endowment is concerned, an assumption such that every in-
formation partition PS

i , i ∈ S ⊆ N is finer than the information contained in the
initial endowment ei, i.e. the coarsest partitionP that makes ei σ(P)−measurable,
seems reasonable. After all, an agent must know his initial endowment for planning
his net trade, hence he can use that information in every coalition. Observation of
the initial endowments by the agents would not be necessary anymore if one would
use utility functions defined on the net trades z rather than the commodity bundle
ei + z, and assign infinitely low utility −∞ to net trades where ei + z /∈ (Rk

+)Ω .
In detail, one switches in the general model from ui : (Rk)Ω → R to

ũi : (Rk)Ω → R

: z �−→
{
ui(ei + z) if ei + z ≥ 0

−∞ otherwise

}
,

and in the expected utility model from ui : Ω × Rk → R to

ũi : Ω × Rk → R

: (ω, z) �−→
{
ui(ω, ei(ω) + z) if ei(ω) + z ≥ 0

−∞ otherwise

}
.

Note that quasiconcavity of utility functions is not disturbed by this switch. However
the “penalty restriction”,

ei + z /∈ (Rk
+)Ω ⇒ ũi(ei + z) = −∞,

on the utility functions that can be used is imposed. Now an agent plans his net trade
and observes and outcome in R or RΩ , depending on which model is used. Assume
an agent observes an outcome of−∞ in the model without expectations. He could
then infer that ei + z ≥ 0 is violated. But as he can only trade constant on states he
cannot discern he will not be able to find out which state(s) lead to infinitely low
utility, and therefore he can gain no information that he does not already have.
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Unfortunately, in the expected utility model the agent observes a vector of
outcomes, and if these differ he can still gain information. Measurability of the
outcome vector (ũi(ω, z(ω)))ω∈Ω ∈ RΩ plays also a role here. As decisions in
this paper are based on the expected utility of that outcome vector one can easily
withdraw from a thorough a discussion of these matters by opting for the usage of
the model without expectations to circumvent these problems. But in general for
state-dependent utility it might be useful to use state-dependent utility functions
that depend also on the information partition the agent is using. That makes sense
if the agent has to know his utility function to decide. Utility at some state ω
and information partition P must then equal utility in the nondiscernable states
ω′ ∈ P(ω). A definition of a state-dependent utility function would then be

ũ : Ω × (Rk)Ω × P∗ → R,

such that the outcome vector (ũ(ω, x,P))ω∈Ω isP−measurable for all x ∈ (Rk)Ω

that are informationally feasible, i.e x−ei isP−measurable. In the expected utility
model given here this could be reached by letting the utility function ũ atP ∈ P∗ be
a version of the conditional expected utility of the state-dependent utility function
u : Ω × Rk → R. To be precise, let

ũ(ω, x,P) =
1

µ(P(ω))

∑
ω′∈P(ω)

µ(ω′)u(ω′, x(ω′)).

Moreover, it might be argued that subjective probabilites should also reflect
information. That could easily be incorporated by taking information dependent
subjective probabilities µ̃(·,P), that are consistent in the sense that they arise from
an underlying probability measure µ independent of the information partition, i.e.

µ̃ : Ω × P∗ → R

: (ω,P) �−→ µ(P(ω))
|P(ω)| .

Obviously ũ and µ̃ at a particularP reveal no more information than is contained
in P already. Furthermore, this replacement does not change the expected utility
function in the expected utility model, as may be seen from∑

ω∈Ω

µ̃(ω,P)ũ(ω, x(ω),P) =
∑
ω∈Ω

1
|P(ω)|

∑
ω′∈P(ω)

µ(ω′)u(ω′, x(ω′))

=
∑
ω∈Ω

∑
ω′∈P(ω)

1
|P(ω′)|µ(ω′)u(ω′, x(ω′))

=
∑
S∈P

|S|
∑
ω∈S

1
|S|µ(ω)u(ω, x(ω))

=
∑
ω∈Ω

µ(ω)u(ω, x(ω)).
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Summarizing, agent i now plans in a particular coalition S a net trade z that
is PS

i −measurable, observes a utility outcome (ũ(ω, ei + z,PS
i ))ω∈Ω that is

also PS
i −measurable, and uses that outcome to take expectation under an also

PS
i −measurable subjective probability µ(·,PS

i ). So the expected utility model of
Allen [3] can be rewritten, with an additional restriction on the used utility functions,
to reveal no information to the agent at the planning stage.

All results in this paper would remain valid, if one would transform an ex-
change economy modeled without or with expectations in the way suggested in
this section. What can be said in general for an exchange economy arising from
this new framework, but not having an underlying representation in the model with
or without expectations, is left open here.

Another approach would be to view the information contained in PS
i as the

information one is allowed to use for trading, and any additional information con-
tained in the initial endowment or utility vectors is information that is e.g. insider
information, and hence trading based on this information is forbidden. Page [10] in-
terprets the boundedness restriction on a communication system into that direction,
calling it ’no insider trading’. Pooling information may be impossible to certain
degrees as well which would lead to coarser information in larger coalitions.

5 Conclusion

In this paper a condition on the communication system was given to assure bal-
ancedness of all NTU-games derived from an asymmetric exchange economy, when
endowments are variable. The NTU-games can be derived in an ex-ante setting
without using state-dependent utility and subjective probabilities. The condition
remains valid in the ex-ante expected utility core. It provides an alternative to the
condition given in Allen [3]. Possible extensions are to consider trade bounded-
ness in an interim core concept or to study implications for value or equilibrium
concepts. Various results are already available for special communication systems
leading to the weak fine, fine and private core. Einy, Moreno and Shitovitz [5], for
example, show that with a continuum of traders and ’irreducibility’ of the economy
the set of equilibrium allocations in the sense of Radner [11,12] coincides with
the private core of Yannelis [16]. Moreover, they show that such an equilibrium
allocation exists.

The existence of private and fine value allocations in an ex-ante sense was
established in Krasa-Yannelis, [8] and [9]. They also argued that there are problems
with the coarse value. Again one might consider arbitrary communication systems
and investigate whether trade boundedness leads to an existence result for the value.
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Summary. We study the core and competitive allocations in exchange economies
with a continuum of traders and differential information. We show that if the econ-
omy is “irreducible”, then a competitive equilibrium, in the sense of Radner (1968,
1982), exists. Moreover, the set of competitive equilibrium allocations coincides
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1 Introduction

The purpose of this paper is to study the properties of core and competitive alloca-
tions in large exchange economies with differential information. Radner (1968 and
1982) introduces a model of an exchange economy with differential information in
which every trader is characterized by a state dependent utility function, a random
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initial endowment, an information partition, and a prior belief. In this framework,
traders arrange contingent contracts for trading commodities before they obtain any
information about the realized state of nature. Radner (1968) extends the notion
of Arrow-Debreu competitive equilibrium to this model. In the definition of com-
petitive equilibrium (in the sense of Radner), the information of an agent places
a restriction on his feasible trades (i.e., his budget set): better information allows
for more contingent trades (i.e., enlarges the agent’s budget set). Thus, in a Rad-
ner competitive equilibrium better informed agents are generally, ceteris paribus,
better off (and they are never worse off) than those with worse information; i.e., a
competitive equilibrium rewards the information advantage of a trader.

We consider two period Radner-type economies with a finite number of states of
nature and a continuum of traders. In these economies there is uncertainty about the
state of nature. In the first period traders arrange contracts that may be contingent
on the realized state of nature in the second period. Consumption takes place in the
second period. We provide a straightforward extension to these economies of the
notion of Radner competitive equilibrium, and examine conditions that guarantee
its existence. Also we study the set of core allocations in these economies. It is
well known that in perfectly competitive economies (that is, when no individual
can affect the overall outcome) with complete information the core coincides with
the set of competitive allocations (see, e.g., Aumann, 1964). In an economy with
differential information, the set of allocations that a coalition can block depends
upon the initial information and the communication opportunities of the members
of the coalition. Thus, several alternative notions of core can be considered.

Yannelis (1991) introduces the notion of private core, and shows that under ap-
propriate assumptions the private core of an economy is non-empty. In the private
core the set of feasible allocations for a blocking coalition must involve a net trade
of each member of the coalition that is measurable with respect to his informa-
tion partition. The private core has some interesting properties: Koutsougeras and
Yannelis (1993) show that if there is a finite number of traders, the private core is
coalitionally incentive compatible – see Section 4 in Koutsougeras and Yannelis
(1993). Also the private core rewards the information advantage of a trader – see
Section 5 in Koutsougeras and Yannelis (1993), and the discussion below.

Koutsougeras and Yannelis (1993), see also Allen (1991), introduce the notion
of weak fine core, a version of Wilson’s (1978) fine core, and showed that this
core is non-empty. In the definition of the weak fine core blocking net trades are
measurable with respect to the joint partition of all the members of the coalition,
but in addition all net trades are measurable with respect to the joint partition of all
the traders.

In our context, the private core is the appropriate notion of core when the traders
have no access to any communication system, and therefore cannot exchange infor-
mation. The weak fine core is the appropriate notion of core when the traders have
access to a communication system that allows them to fully share their information,
and under the maintained assumption of perfect competition (that is, assuming that
individuals are also “small” from the point of view of information). We study the
relations of these cores and the set of competitive allocations in the economies
described above, with a continuum of traders and differential information.
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First we establish conditions under which a Radner competitive equilibrium
exists: we show that if an economy is irreducible, and if the traders’ utility func-
tions are continuous and increasing, then an equilibrium exists. The existence of
competitive equilibrium in economies with a continuum of traders and complete
information was studied in Aumann (1966) and Hildenbrand (1970). We establish
existence of equilibrium using general results from Hildenbrand (1974). The irre-
ducibility condition was introduced by Mckenzie (1959) for exchange economies
with a finite number of traders, and it has been extended to economies with a con-
tinuum of traders by Hildenbrand (1974). It expresses the idea that the endowment
of every coalition, if added to the allocation of the complementary coalition, can
be used to improve the welfare of every member of the complementary coalition.
We show that an economy is irreducible if, for example, the initial endowment of
every trader is strictly positive at each state of nature.

Next we show that if an economy is irreducible, then the private core of the
economy coincides with the set of Radner competitive equilibrium allocations.
Thus, private core allocations reward the information advantage of a trader. We
provide simple examples which show that this result may not hold for reducible
economies. For the weak fine core, we show that under mild assumptions it coincides
with the set of competitive allocations of an associated symmetric information
economy. This associated economy is identical to the original economy, except
for the traders’ information, which is the joint information of all the traders in the
original economy. Specifically, this result holds if the traders’ utility functions are
continuous and strictly increasing, and if for every trader there is a state of nature
at which his initial endowment is non-zero. Moreover, the result holds whether or
not the economy is irreducible.

Thus, whereas private core allocations reward the information advantage of a
trader, when the possibility of sharing information is introduced the information
advantage is worthless; e.g., if two traders A and B have identical characteristics,
except that A is better informed than B (i.e., A’s information partition is finer than
B’s) then in a private core allocation trader A may be better off than trader B; in
a weak fine core allocation, however, both traders are equally well off (because a
weak fine core allocation is a competitive allocation of the associated symmetric
information economy). (In sharp contrasts to this result, Einy, Moreno and Shitovitz
(1999) have shown that the weak fine bargaining set contains allocations that are
not competitive in the associated symmetric information economy, which suggests
that the weak fine bargaining set discriminates in favor of better informed agents.)

The paper is organized as follows. In Section 2 we describe the model. In
Section 3 we discuss the existence of competitive equilibrium (in the sense of
Radner). In Section 4 we prove the equivalence between competitive and private
core allocations. Finally, in Section 5 we establish the equivalence of the weak fine
core and the set of competitive allocations of the associated symmetric information
economy.
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2 The model

We consider a Radner-type exchange economy E with differential information (e.g.,
Radner, 1968, 1982). The commodity space is l

+.The space of traders is a measure
space (T,Σ, µ), where T is a set (the set of traders),Σ is a σ-field of subsets of T
(the set of coalitions), and µ is a non-atomic measure onΣ. The economy extends
over two time periods, τ = 0, 1. Consumption takes place at τ = 1. At τ = 0 there
is uncertainty over the state of nature; in this period traders arrange contracts that
may be contingent on the realized state of nature at τ = 1. There is a finite space of
states of nature, denoted byΩ.At τ = 1 traders do not necessarily know which state
of nature ω ∈ Ω actually occurred, although they know their own endowments,
and may also have some additional information about the state of nature. We do
not assume, however, that traders know their utility function (see below).

The information of a trader t ∈ T is described by a partitionΠt ofΩ.We denote
byFt the field generated byΠt. Ifω is the true state of the economy at τ = 1, trader t
observes the member ofΠt which contains ω. Every trader t ∈ T has a probability
measure qt on Ω which represents his prior beliefs. The preferences of a trader
t ∈ T are represented by a state dependent utility function, ut : Ω ×  l

+ →  
such that for every (t, x) ∈ T ×  l

+, the mapping (t, x) → ut(ω, x) is Σ × B
measurable, where ω is a fixed member of Ω, and B is the σ-field of Borel subsets
of  l

+. If x is a random bundle (i.e., a function fromΩ to  l
+) we denote by ht(x)

the expected utility from x of trader t ∈ T. That is

ht(x) =
∑
ω∈Ω

qt(ω)ut(ω, x(ω)).

An assignment is a function x : T × Ω →  l
+ such that for every ω ∈ Ω the

function x(·, ω) is µ-integrable on T. There is a fixed initial assignment e; e(t, ω)
represents the initial endowment density of trader t ∈ T in the state of natureω ∈ Ω.
We assume that for almost every t ∈ T the function e(t, ·) is Ft-measurable.

Throughout the paper we use the following notations. For two vectors x =
(x1, . . . , xl) and y = (y1, . . . , yl) in  l we write x ≥ y when xk ≥ yk for all
1 ≤ k ≤ l, x > y when x ≥ y and x 	= y, and x ! y when xk > yk for all
1 ≤ k ≤ l.

3 Competitive equilibrium

In this section we extend Radner’s (1982) definition of competitive equilibrium to
our model (see Radner, 1982, Sect. 3.4), and discuss conditions under which its
existence can be guaranteed. Throughout the rest of the paper, an economy E is an
atomless economy with differential information as described in Section 2.

A private allocation for an economy E is an assignment x such that

(3.1) for almost all t ∈ T the function x(t, ·) is Ft-measurable, and
(3.2)

∫
T

x(t, ω)dµ ≤
∫

T
e(t, ω)dµ for all ω ∈ Ω.
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A price system is a non-zero function p : Ω →  l
+. Let t ∈ T and let Mt be

the set of all Ft-measurable functions from Ω to  l
+. For a price system p, define

the budget set of t by

Bt(p) =

{
x | x ∈Mt and

∑
ω∈Ω

p(ω) · x(ω) ≤
∑
ω∈Ω

p(ω) · e(t, ω)

}
.

A competitive equilibrium (in the sense of Radner) for an economy E is a pair
(p,x) where p is a price system and x is private allocation such that

(3.3) for almost all t ∈ T the function x(t, ·) maximizes ht on Bt(p), and

(3.4)
∑

ω∈Ω p(ω) ·
∫

T
x(t, ω)dµ =

∑
ω∈Ω p(ω) ·

∫
T

e(t, ω)dµ.

A competitive allocation is a private allocation x for which there exists a price
system p such that (p,x) is a competitive equilibrium.

In the literature, condition (3.2) in the definition of a private allocation is written
usually with (strict) equality; see, e.g., Radner (1968), Krasa and Yannelis (1994),
Allen (1997). Here we follow Radner (1982) who noted that the total amount to be
disposed of might not be measurable with respect to the information partition of
a single agent. Einy and Shitovitz (1999) provide an example of an economy with
differential information which has a competitive equilibrium, but if the inequality
(3.2) in the definition of a private allocation is replaced with an equality, then
the economy does not have a competitive equilibrium where all prices are non-
negative–see Example 2.1 in Einy and Shitovitz (1999). Condition (3.4) ensures
that in a competitive equilibrium if a commodity is in excess supply its price is
zero. This condition is redundant as it is implied by Walras’ Law, which is satisfied
in our framework. Nevertheless we include it to facilitate comparison to Radner’s
(1982) definition.

A function u :  l
+ →  is (strictly) increasing if for all x, y ∈  l

+, (x > y)
x! y implies u(x) > u(y).

Throughout the paper we will often refer to the following conditions.

(A.1) For every ω ∈ Ω we have
∫

T
e(t, ω)dµ! 0.

(A.2) For almost all t ∈ T and for every ω ∈ Ω, the function ut(ω, ·) is continuous
and increasing on  l

+.
(A.3) Irreducibility: for every private allocation x and for every two disjoint coali-
tions T1, T2 ∈ Σ such that µ(T1) > 0, µ(T2) > 0, and T1 ∪ T2 = T, there exists
an assignment y such that y(t, ·) ∈Mt for almost all t ∈ T2, and such that
(A.3.1) ht(y(t, ·)) > ht(x(t, ·)) for almost all t ∈ T2, and
(A.3.2) for all ω ∈ Ω:

∫
T1

e(t, ω)dµ+
∫

T2
x(t, ω)dµ ≥

∫
T2

y(t, ω)dµ.

Condition (A.3), Irreducibility, was introduced in McKenzie (1959) for economies
with a finite number of traders, and was extended for atomless economies by Hilden-
brand (see Hildenbrand, 1974, pp. 143, 214). It expresses the idea that the endow-
ment of every coalition is desired. Our definition is a variant of Hildenbrand’s
(1974).

Proposition 3.1. Assume that an economyE satisfies assumption (A.2). If for almost
every t ∈ T and all ω ∈ Ω we have e(t, ω) ! 0, then E satisfies Condition (A.3)
(Irreducibility).
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Proof Assume that e(t, ω) ! 0 for almost every t ∈ T and all ω ∈ Ω. Let x be
a private allocation in E , and let T1, T2 ∈ Σ be two disjoint coalitions such that
µ(T1) > 0 and µ(T2) > 0, and T1 ∪ T2 = T. Then for all ω ∈ Ω we have∫

T1

e(t, ω)dµ! 0.

Let a ∈  l
+ be such that µ(T2)a! 0, and such that for all ω ∈ Ω we have∫

T1

e(t, ω)dµ ≥ µ(T2)a.

Define y : T ×Ω →  l
+ by

y(t, ω) =
{

0 t ∈ T1,
x(t, ω) + a t ∈ T2.

Then for all t ∈ T2, y(t, ·) ∈Mt. Since for almost all t ∈ T and allω ∈ Ω, ut(ω, ·)
is increasing, we have

ht(y(t, ·)) > ht(x(t, ·)),

for almost all t ∈ T2. From the choice of a it is clear that (A.3.2) holds for x and
y. ��

A quasi equilibrium for the economy E is a pair (p,x),where p is a price system
and x is a private allocation, such that

(3.5) for almost all t ∈ T, either
∑

ω∈Ω p(ω) · e(t, ω) = 0, or the function x(t, ·)
maximizes ht on Bt(p), and

(3.6)
∑

ω∈Ω p(ω) ·
∫

T
x(t, ω)dµ =

∑
ω∈Ω p(ω) ·

∫
T

e(t, ω)dµ.

Proposition 3.2. If an economy E satisfies conditions (A.1)− (A.3), then every
quasi equilibrium of E is a competitive equilibrium.

Proof Proposition 3.2 is a direct consequence of Proposition 1 in Hildenbrand
(1974), p. 214, when for t ∈ T the consumption sets are Mt, the utility functions
are ht, and the production sets are ( l

−)Ω . ��

Theorem A. If an economy E satisfies assumptions (A.1) − (A.3) then it has a
competitive equilibrium.

Proof First note that our definition of quasi equilibrium is a special case of Hilden-
brand’s (1970, 1974) definition of quasi equilibrium for a coalition production
economy where for t ∈ T the consumption sets areMt, the utility functions are ht,
and the production sets are ( l

−)Ω (see Hildenbrand, 1970, Sect. 2, p. 611). There-
fore by Theorem 2 in Hildenbrand (1970), an economy E has a quasi equilibrium.
Moreover, by Proposition 3.2 any quasi-equilibrium of E is a competitive equilib-
rium of E . ��
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The following corollary is a direct consequence of Proposition 3.1 and Theo-
rem A.

Corollary 3.3. If an economy E satisfies (A.1), (A.2), and in addition for every
ω ∈ Ω and almost all t ∈ T we have e(t, ω) ! 0, then E has a competitive
equilibrium.

4 The private core

In this section we extend the definition of private core introduced inYannelis (1991)
to our economy, and show that under conditions (A.1)−(A.3) the set of competitive
allocations of the economy coincides with the set of private core allocations.

An assignment x is a private core allocation for the economy E if
(4.1) x is a private allocation, and
(4.2) there do not exist a coalition S ∈ Σ and an assignment y such that

(4.2.1) µ(S) > 0,
(4.2.2) y(t, ·) is Ft-measurable for all t ∈ S,
(4.2.3)

∫
S
y(t, ω)dµ ≤

∫
S
e(t, ω)dµ for all ω ∈ Ω, and

(4.2.4) ht(y(t, ·)) > ht(x(t, ·)) for almost all t ∈ S.
The private core of an economy E is the set of all private core allocations of E .
Proposition 4.1. Every competitive allocation of an economy E is a private core
allocation of E .

Proof Proposition 4.1 is a special case of Proposition 2 in Hildenbrand (1974),
p. 216. ��

Theorem B. Under assumptions (A.1)− (A.3) the set of competitive allocations
of an economy E coincides with the private core of E .

Proof By Proposition (4.1) it suffices to show that every private core allocation in
E is a competitive allocation. Let x be a private core allocation in E . By Theorem
1 in Hildenbrand (1974), p. 216, there is a price system p such that (p,x) is a
quasi equilibrium for E . By Proposition 3.2 we obtain that (p,x) is a competitive
equilibrium for E . ��

The following corollary is a direct consequence of Proposition 3.1 and Theo-
rem B.

Corollary 4.2. If an economy E satisfies (A.1), (A.2), and in addition for every
ω ∈ Ω and almost all t ∈ T we have e(t, ω) ! 0, then the set of competitive
allocations of E coincides with the private core of E .

We now give an example of an atomless “reducible” economy (i.e., it does not
satisfy Condition (A.3)) with complete information satisfying (A.1) and (A.2)
which has a non-empty core, but does not have a competitive equilibrium. Also this
example shows that the private core may not satisfy the Equal Treatment Property
when the economy is “reducible.”
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Example 4.3. Consider an atomless economy E in which the space of traders is
([0, 2],B, λ),where B is the σ-field of Borel subsets of [0, 2] and λ is the Lebesgue
measure. Traders have complete information, and the commodity space is  2

+.
Every trader t ∈ T1 = [0, 1] has an initial endowment e(t) = (1, 0) and utility
function u1(x, y) = x, whereas each trader t ∈ T2 = (1, 2] has initial endowment
e(t) = (1, 1) and utility function u2(x, y) = y.The core of the economy E consists
of all allocations x such that

ut(x(t)) =
{
α(t) t ∈ T1,
1 t ∈ T2,

where α : T1 →  + is an integrable function such that α(t) ≥ 1 for almost all
t ∈ T1, and

∫
T1
α(t)dλ ≤ 2. It is easy to see that every core allocation in E is a

quasi equilibrium allocation with price system p = (0, 1). However, the economy
E does not have a competitive equilibrium. It is worth noticing that the core of this
economy contains allocations that do not have the Equal Treatment Property.

In the following example we consider a reducible economy (i.e., it does not
satisfy Condition (A.3)) with asymmetric information in which the utility functions
of the traders are strictly increasing and strictly concave. The economy does not
have a competitive equilibrium, although its private core is non-empty (it consists
of the initial assignment).

Example 4.4. Consider an atomless economy E in which the space of traders
is ([0, 2],B, λ), where B is the σ-field of Borel subsets of [0, 2] and λ is the
Lebesgue measure. The commodity space is  2

+, and the space of states of na-
ture is Ω = {ω1, ω2} . The information partition of every trader t in the interval
T1 = [0, 1] is Π1 = {{ω1} , {ω2}} , his prior belief is q1 = (1

2 ,
1
2 ), his initial en-

dowments are e(t, ω1) = (1, 0) and e(t, ω2) = (0, 1), and his utility functions are
ut(ω, (x, y)) =

√
x+

√
y for all ω ∈ Ω. The information partition of every trader

t in the interval T2 = (1, 2] is Π2 = {{ω1, ω2}} , his prior belief is q2 = ( 1
2 ,

1
2 ),

his initial endowments are e(t, ω1) = e(t, ω2) = (1, 1), and his utility function is
ut(ω, (x, y)) =

√
x+

√
y, for all ω ∈ Ω. It is easy to see that the economy does not

have a competitive equilibrium. However, the unique private core allocation is the
initial assignment e. Note that (p, e), where p(ω1) = (0, 1) and p(ω2) = (1, 0), is
a quasi equilibrium for E .

5 The weak fine core

In this section we extend to our model the definition of “weak fine core” introduced
by Koutsougeras and Yannelis (1993) (see also Allen, 1991), and we prove an
equivalence theorem for this notion of core.

We first note that since Ω is a finite set, there is a finite number of different
information partitions. Let us be given an economy E , and denote byΠ1, . . . , Πn

the n distinct information partitions of the traders. For every 1 ≤ i ≤ n, let Fi be
the field generated by Πi, and let

Ti = {t ∈ T | Ft = Fi} .
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We assume that for every 1 ≤ i ≤ n the set Ti is measurable and µ(Ti) > 0. If
I ⊂ {1, . . . , n} is a non-empty set, we denote by

∨
i∈I Fi the smallest field which

contains each Fi, i ∈ I. If S ∈ Σ is a coalition with µ(S) > 0, we denote

I(S) = {i | 1 ≤ i ≤ n and µ(S ∩ Ti) > 0} .

An assignment x for the economy E is called a weak fine core allocation if
(5.1) for almost all t ∈ T the function x(t, ·) is

∨n
i=1 Fi-measurable;

(5.2) for every ω ∈ Ω,
∫

T
x(t, ω)dµ ≤

∫
T

e(t, ω)dµ;
(5.3) there do not exist a coalition S ∈ Σ and an assignment y such that

(5.3.1) µ(S) > 0,
(5.3.2) y(t, ·) is

∨
i∈I(S) Fi-measurable for almost all t ∈ S,

(5.3.3)
∫

S
y(t, ω)dµ ≤

∫
S
e(t, ω)dµ for all ω ∈ Ω, and

(5.3.4) ht(y(t, ·)) > ht(x(t, ·)) for almost all t ∈ S.
The weak fine core of E is defined as the set of all weak fine core allocations of E .

We now introduce the following condition.

(A.4) If A ∈ ∨n
i=1 Fi is non-empty, then qt(A) > 0 for almost all t ∈ T.

We denote by E∗ an economy identical to E except for the information fields
of the traders, which for all t ∈ T is taken to be F∗

t =
∨n

i=1 Fi. Note that the
information in E∗ is symmetric.

In the proof of the following proposition we use a result of Vind (1972), see also
Proposition 7.3.2. in Mas-Colell (1985), which asserts that in atomless economy
(see Aumann, 1964) if an allocation is blocked, then the blocking coalition can
be chosen with a measure which is arbitrarily close to the measure of the grand
coalition.

Proposition 5.1. Assume that an economy E satisfies (A.1), (A.2) and (A.4), and
in addition for almost all t ∈ T and for every ω ∈ Ω the function ut(ω, ·) is strictly
increasing. Then the weak fine core of E coincides with the private core of E∗.

Proof It is clear that every private core allocation in E∗ is a weak fine core allocation
of E . We prove the converse. Let Π =

∨n
i=1Πi (i.e., Π is the smallest partition

of Ω that refines each Πi). Denote Π = {A1, ..., Ak}, and let X be the set of all
members of ( l

+)Ω which are
∨n

i=1 Fi-measurable. Then every member of X is
constant on every Aj , 1 ≤ j ≤ k. Let the function α : X →  kl

+ be defined by
α(x) = x̂, where for 1 ≤ j ≤ k, x̂j = x(ωj) for some ωj ∈ Aj . Note that α
is a one to one mapping from X onto  kl

+ . For every t ∈ T we define a function
ĥt :  kl

+ →  by ĥt(x̂) = ht(α−1(x̂)). Then ĥt is continuous, and by (A.4) it is

strictly increasing. Consider now the complete information atomless economy Ê
in which the space of traders is (T,Σ, µ), the commodity space is  kl

+ , the initial
assignment is ê, where ê(t) = α(e(t, ·)) for all t ∈ T, and the utility function
of trader t is ĥt. Let y be a weak fine core allocation of E . Assume, contrary
to our claim, that y is not a private core allocation of E∗. For every t ∈ T let
ŷ(t) = α(y(t, ·)). Then ŷ is not in the core of the economy Ê . Therefore by the
Theorem of Vind (1972), there exists a coalition S ∈ Σ and an assignment ẑ in
Ê such that µ(S) > µ(T )−min{µ(T1), ..., µ(Tn)},

∫
S
ẑ(t)dµ ≤

∫
S
ê(t)dµ, and
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ĥt(ẑ(t)) > ĥt(ŷ(t)) for almost all t ∈ S. For every t ∈ T let z(t, ·) = α−1(ẑ(t)).
Then for every ω ∈ Ω we have∫

S

z(t, ω)dµ ≤
∫

S

e(t, ω)dµ.

Since µ(S) > µ(T )−min{µ(T1), ..., µ(Tn)}, we have I(S) = {1, 2, . . . , n} and
thus for all t ∈ T, z(t, ·) is

∨
i∈I(S) Fi-measurable.

For almost all t ∈ S we have

ht(z(t, ·)) = ĥt(ẑ(t)) > ĥt(ŷ(t)) = ht(y(t, ·)),

which contradicts the assumption that y is a weak fine core allocation of E . ��

Lemma 5.2. Assume that an economy E satisfies the assumptions of Proposition
5.1, and in addition for almost every t ∈ T there is ω ∈ Ω such that e(t, ω) 	= 0.
Then the economy E∗is irreducible, i.e., it satisfies condition (A.3).

Proof Let x be a private allocation in E∗, and let T1, T2 be two disjoint coalitions
inΣ such that T = T1 ∪T2, and µ(T1) > 0, µ(T2) > 0. For every (t, ω) ∈ T ×Ω
let

y(t, ω) =
{

0 t ∈ T1,
x(t, ω) + 1

µ(T2)

∫
T1

e(t, ω)dµ t ∈ T2.

Then for every t ∈ T, y(t, ·) is
∨n

i=1 Fi-measurable. Since ut(ω, ·) is strictly
increasing for almost all t ∈ T and all ω ∈ Ω, and 1

µ(T2)

∫
T1

e(t, ω)dµ > 0 for
some ω ∈ Ω, it follows from (A.4) that for almost every t ∈ T2

ht(y(t, ·)) > ht(x(t, ·)).

Moreover, for all ω ∈ Ω we have∫
T1

e(t, ω)dµ+
∫

T2

x(t, ω)dµ =
∫

T2

y(t, ω)dµ.

Therefore E∗ is irreducible. ��

Theorem C. Assume that an economy E satisfies the assumptions of Lemma 5.2.
Then the weak fine core of E coincides with the set of competitive allocations of E∗.

Proof The proof follows directly from Proposition 5.1, Lemma 5.2 and Theorem
B. ��

We conclude with the following proposition.

Proposition 5.3. If an economy E satisfies the assumptions (A.1), (A.2), and in
addition for every ω ∈ Ω and almost all t ∈ T, e(t, ω) ! 0, then the weak fine
core of E coincides with the set of competitive allocations of E∗.

Proof The proof is the same as that of Theorem C, noticing that E∗ is irreducible
and the Theorem of Vind (1972) holds under the assumptions of Proposition 5.3.

��
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Summary. If the allocations of a differential information economy are defined
as incentive compatible state-contingent lotteries over consumption goods, com-
petitive equilibrium allocations exist and belong to the (ex ante incentive) core.
Furthermore, any competitive equilibrium allocation can be viewed as an element
of the core of the n-fold replicated economy, for every n. The converse holds under
the further assumption of independent private values but not in general, as shown
by a counter-example.
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1 Introduction

In a standard exchange economy – with complete information – competitive equi-
librium allocations exist and belong to the core. Furthermore, in the replicated
economy, the core has the “equal treatment" property and shrinks to the set of com-
petitive allocations as the number of replicas gets large (Debreu and Scarf [8]). In
this paper, we investigate possible extensions of these classical results in differential
information economies.

When the individuals do not share the same information, various concepts of
competitive equilibrium are conceivable ( e.g., Walrasian equilibrium, rational ex-
pectations equilibrium) but the corresponding allocations need not be incentive
compatible. In order to take incentives into account, we use a notion of competitive
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equilibrium which is very similar to the one introduced by Prescott and Townsend
[27] [28], and further analyzed by Cole [6], Minelli and Polemarchakis [25], and
Kehoe, Levine and Prescott [21] among others.

We consider a finite exchange economy in which every individual’s utility pos-
sibly depends on all individuals’ information. Our model is thus different from the
one of Prescott and Townsend, who focus on the case of “private values".

The main idea behind Prescott and Townsend’s approach is that individuals
trade state-contingent lotteries over the initial consumption goods. This guarantees
that the consumption set (i.e. the set of incentive compatible random bundles) of
every individual is convex, which is not necessarily true if one restricts attention to
deterministic state-contingent allocations. Once the objects of trade are viewed as
incentive compatible state-contingent lotteries over the original goods, competitive
equilibria can be defined in the usual way, by understanding feasibility as expected
feasibility and constructing prices of lotteries as expectations of original goods
prices.

We first establish the existence of such competitive solutions (Proposition 1).
This result is not an immediate consequence of Prescott and Townsend’s analysis
since our model is not a particular case of theirs. More importantly, our proof is
direct, while they use successive discrete approximations of the underlying econ-
omy.

We then show that any competitive allocation defined above belongs to the ex
ante incentive core of the economy (Proposition 2). Again, the literature contains
several concepts of core for differential information economies (see, e.g., Allen
[1], [2], [3], [4], Demange and Guesnerie [9], Einy, Moreno and Shitovitz [10],
[11], [12], Hahn and Yannelis [17], Holmström and Myerson [19], Ichiishi and
Idzik [20], Koutsougeras and Yannelis [23], Lee and Volij [24], Page [26], Vohra
[33] , Volij [34], Wilson [35], Yannelis [38], ... and Forges [13] for a survey)). We
are interested in incentive compatible core allocations, namely incentive compat-
ible feasible allocations with the property that no coalition can propose a feasible
incentive compatible allocation which improves the expected utility of all its mem-
bers1. Allen [2], [4] and Vohra [33] defined the ex ante incentive core by relying
on deterministic state-contingent allocations. Vohra [33] showed that this set might
be empty. As illustrated in Forges [13] and Forges and Minelli [14], lotteries play
a crucial role for the non-emptiness of the ex ante incentive core. In this paper, we
use a core notion in which allocations are defined exactly as in the above competi-
tive equilibria. Our concept is close to the “modified incentive compatible" core of
Allen [2].

The natural next step is to investigate the relationship between the competitive
equilibria and the ex ante incentive core in replica economies. We replicate the basic
economy as in Gul and Postlewaite [16]. More precisely, we construct successive
independent copies of the economy and we require that every individual’s utility
only depends on the information of the individuals who belong to the same copy.
In this model, incentive compatibility constraints matter even if the economy is

1 Koutsougeras and Yannelis [23] show that private core allocations are incentive compatible in a
certain sense. The main difference between their approach and ours is that coalitions have a potentially
larger set of objections here.
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replicated many times. We prove (in Proposition 3) that the replication of any
competitive allocation belongs to the core of any replicated economy, which is a
standard stage toward an equivalence theorem.

The framework of replicas also allows us to make precise the fact that, thanks
to the law of large numbers, average feasibility is essentially equivalent to almost
sure feasibility in sufficiently large economies (Proposition 4). Hence, the issue of
the possible emptiness of the ex ante incentive core disappears in sufficiently large
economies.

The converse of Proposition 3, which would lead to an analog of Debreu and
Scarf’s theorem, does unfortunately not hold in general economies with differential
information as we considered up to now. We illustrate this on a simple example
in which the equal treatment property fails. In order to recover equal treatment,
we strengthen our assumptions by requiring that the utility of every individual
only depends on his own information ("private values"). In this case, we establish
(Proposition 5) that core allocations in every replicated version of the economy are
competitive allocations.

The paper follows the steps described above. The basic economy and solution
concepts are described in Section 2. The next section contains the results on the
finite economy (Propositions 1 and 2). Section 4 is devoted to general replicated
economies (Propositions 3 and 4) while Section 5 deals with replicated economies
with private values.

2 Basic economy and solution concepts

We consider an exchange economy with finitely many individuals, i ∈ I and finitely
many commodities, l ∈ L. Types of an individual are ti ∈ T i, a finite set. States are
t ∈ T = ×iT

i. The probability distribution on states is q ∈ ∆(T ). For every i, the
initial endowment of individual i, ei ∈ RL

++, does not depend on the realized state.
The total endowment is e =

∑
i e

i. For every i, and every t, the utility function of
individual i over consumption in state t is ui(t, ·) : RL

+ → R, a continuous, weakly
monotonic function2.

Following Prescott and Townsend [27] [28], we allow individuals to trade state-
contingent lotteries on consumption. Fix a compact subsetC = {c ∈ RL | 0 ≤ c ≤
b} of RL, with b ! 2e. The commodity space is the space L(C) = (M(C))T of
type contingent signed measures on C, endowed with the product weak topology.
We denote by ∆(C) ⊂ M(C) the space of probability measures, or lotteries, on
C. A bundle for individual i is xi : T → ∆(C). The utility of individual i from
bundle xi is:

U i(xi) =
∑

t

q(t)
∫

C

ui(t, c)dxi(c | t).

A bundle xi is incentive compatible for individual i if, for all ti and ri ∈ T i we
have:∑

t−i

q(t−i | ti)
∫

C

ui(t, c)dxi(c | t) ≥
∑
t−i

q(t−i | ti)
∫

C

ui(t, c)dxi(c | ri, t−i).

2 If x � y then ui(x) > ui(y).
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The consumption set of individual i isXi, the set of incentive compatible bundles
for individual i. The endowment of individual i is an element of Xi if we identify
ei with the corresponding (degenerate) lottery in L(C).

The basic economy is E = {I, L, (T i, Xi, U i, ei)i∈I , q}.

An allocation, x = (xi)i∈I ∈ X = ×iX
i, specifies an incentive compatible

state-contingent lottery for every individual. Feasibility is defined on average, across
states and realizations of the lotteries3. An allocation is feasible if:∑

i

∑
t

q(t)
∫

C

cdxi(c | t) ≤
∑

i

∑
t

q(t)
∫

C

cdei(c | t) = e

The set of feasible allocations is F ⊂ X .

State-contingent measures over consumption are priced by the average amount
of resources they use. For a given vector p ∈ RL

+ of commodity prices, the price of
y ∈ L(C) is

πp(y) =
∑

t

q(t)
∫

C

∑
l

plcldy(c | t)

An equilibrium is a couple (p, x) of a price and an allocation such that:

– For all i, πp(xi) ≤ πp(ei)
– For all i, for all y ∈ Xi,

U i(y) > U i(xi) ⇒ πp(y) > πp(ei)

– x ∈ F

An allocation x is an equilibrium allocation if there exists a price p such that
(p, x) is an equilibrium. The set of equilibrium allocations of E is W(E).

A quasi-equilibrium is a couple (p, x), with p 	= 0, such that:

– For all i, πp(xi) = πp(ei)
– For all i, for all y ∈ Xi,

U i(y) ≥ U i(xi) ⇒ πp(y) ≥ πp(ei)

– x ∈ F

An allocation x is a quasi-equilibrium allocation if there exists a price p such
that (p, x) is a quasi-equilibrium. The set of quasi-equilibrium allocations of E is
Q(E).

A coalition is B ⊂ I \ {∅}, a nonempty subset of I . For every coalition B, let
tB = (ti)i∈B and TB = ×i∈BT

i. The trades of individual i, when he takes part in

3 Average feasibility is justified in large economies by the law of large numbers. See Proposition 4
for a precise result in this vein.
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coalition B, depend only on the information of the members of the coalition, i.e.
they belong to the set

Xi
B = {xi ∈ Xi | xi(t) = xi(tB , t′I\B) for all t ∈ T, t′I\B ∈ TI\B}.

Notice that, with this notation,Xi = Xi
I . For trades inXi

B , we write xi(tB) as
a shortcut for xi(tB , t′I\B), for all t′I\B ∈ TI\B . A coalitionB blocks the allocation

x if there exist bundles (yi), for i ∈ B, such that :

a) For all i ∈ B, yi ∈ Xi
B

b) For all l, ∑
i∈B

∑
tB∈TB

q(tB)
∫

C

cldy
i(c | tB) ≤

∑
i∈B

eil

c) For all i ∈ B, U i(yi) ≥ U i(xi), with strict inequality for at least one i ∈ B.

An allocation (x) has the core property if it is feasible, and there does not exist
a coalition that blocks it4. The core of E, C(E), is the set of allocations that have
the core property.

3 Existence

Proposition 1 Q(E) 	= ∅

Proof The set F ⊂ X is non empty because it contains (ei)i∈I , compact because
it is a closed (weak topology) subset of the compact space L(C)I , and convex
because it is defined by linear inequalities.

For every λ ∈ ∆(I), define Wλ(x) =
∑

i λ
iU i(xi). The problem MaxFWλ

has a solution xλ, because Wλ is a sum of continuous (weak topology) functions,
and F is non-empty and compact.

Define the Lagrangean Lλ : X × RL
+ → R by Lλ(x, p) = Wλ(x) −∑

l pl(
∑

i

∑
t q(t)

∫
C
cldx

i(c | t)−
∑

i e
i
l)=Wλ(x)−

∑
i[πp(xi)−πp(ei)]. From

the saddle point theorem (see for example Theorem 8.B.I in Duffie [7], p. 77), there
exists pλ such that (xλ, pλ) is a saddle point of Lλ. For all x ∈ X , and all p ∈ RL

+:

Lλ(x, pλ) ≤ Lλ(xλ, pλ) ≤ Lλ(xλ, p).

For every individual i, if, for some xi ∈ Xi,U i(xi) ≥ U i(xi
λ), then πpλ

(xi) ≥
πpλ

(xi
λ). Indeed, if we fix xj = xj

λ for all j 	= i, the first inequality in the saddle
point condition implies that, for all xi ∈ Xi:

λiU i(xi
λ)− λiU i(xi) ≥ πpλ

(xi
λ)− πpλ

(xi) (∗)

We want to show that pλ 	= 0. For every i, let the feasible consumption set of
individual i, F i = ProjXiF , be the subset of his consumption set which contains
bundles that are part of feasible allocations for the economy. Let i be an individual
with λi > 0. Such an individual exists, because λ ∈ ∆(I). At a saddle point,

4 We shall comment on this definition in Remark 2.
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individual i is not satiated. Indeed, consider the bundle 2e which, in all states, puts
all weight on 2e ∈ C. The degenerate lottery 2e is an element of Xi, and we have
U i(2e) > U i(xi) for all xi ∈ F i, in particular for xi

λ. If pλ = 0, inequality (∗) for
individual i gives U i(xi

λ) ≥ U i(xi), for all xi ∈ Xi, a contradiction. Given that
pλ 	= 0, we can restrict prices to lie in ∆(L).

Consider the correspondence ψ × φ of F × ∆(L) × ∆(I) into itself defined
component-wise by:

ψ(x, p) = {λ ∈ ∆(I) | λi = 0 if πp(xi) > πp(ei)}

φ(λ) = {(x, p) ∈ F ×∆(L) | (x, p) is a saddle point of Lλ}

The correspondence ψ×φ is non-empty, compact, convex-valued and upper hemi-
continuous, and thereby admits a fixed point, (x̂, p̂, λ̂) by Glicksberg [15] theorem.

To show that (x̂, p̂) is a quasi-equilibrium, it is enough to prove that, for all i,
πp̂(x̂i) = πp̂(ei). We first show that, for all i, πp̂(x̂i) ≤ πp̂(ei). Indeed, suppose
that for some i πp̂(x̂i) > πp̂(ei), then the definition of ψ implies λi = 0, and,
from (∗), πp̂(x̂i) ≤ πp̂(ei), a contradiction. But, from the saddle point conditions,∑

i πp̂(x̂i − ei) = 0, so that, for all i, πp̂(x̂i) = πp̂(ei). ��

Lemma 1 Q(E) ⊂ W(E)

Proof Consider a quasi equilibrium (x̂, p̂). For all i, πp̂(x̂i) = πp̂(ei) > 0. Indeed,
πp̂(ei) =

∑
l p̂le

i
l , and, for all i, this is positive because p̂ ∈ RL

+ \ {0}, and
ei ∈ RL

++. If (x̂, p̂) was not an equilibrium, for some i ∈ I , and some xi ∈ Xi,
we would have U i(xi) > U i(x̂i) and πp̂(xi) = πp̂(ei). But this would lead to
a contradiction. Indeed, the lottery that puts all weight on 0 in every state is an
element of Xi and individual i would prefer a convex combination between this
lottery and xi, which contradicts that (x̂, p̂) is a quasi-equilibrium. ��

Lemma 2 W(E) ⊂ Q(E)

Proof Consider an equilibrium (x̂, p̂). For all i, πp̂(x̂i) = πp̂(ei). Indeed, agent
i strictly prefers the lottery that puts all weight on 2e in every state, which is an
element ofXi, to any lottery in his feasible consumption setF i. Ifπp̂(x̂i) < πp̂(ei),
individual i can take a convex combination between this lottery and x̂i, zλ = λ2e+
(1−λ)x̂i; forλ > 0,U i(zλ) > U i(xi) while, forλ small enough,πp̂(zλ) < πp̂(ei),
which contradicts that (x̂, p̂) is an equilibrium. The same argument shows that it
cannot be the case that, for some i and some xi ∈ Xi, U i(xi) = U i(x̂i) and
πp̂(xi) < πp̂(ei). ��

Remark 1. The usual argument to show that an equilibrium is also a quasi-
equilibrium requires local non satiation, which fails in our setting, due to the com-
pactness of the consumption set. The argument in Lemma 2 uses the fact that, at
any feasible allocation, the individual is not satiated.

Proposition 2 C(E) 	= ∅
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Proof We show that W(E) ⊂ C(E).
Let (x̂, p̂) be an equilibrium for the economy E. If x̂ 	∈ C(E) there exists

a coalition B, and bundles (yi), for i ∈ B, such that conditions a, b and c are
verified.

FromU i(yi) ≥ U i(x̂i), using Lemma 2 and the definition of quasi equilibrium
it follows that, for all i ∈ B, πp̂(yi) ≥ πp̂(x̂i) = πp̂(ei). For the individuals for
whom U i(yi) > U i(x̂i), the definition of equilibrium implies πp̂(yi) > πp̂(ei).
Summing over all i ∈ B and using the definition of πp̂:∑

l

p̂l

∑
i∈B

∑
t

q(t)
∫

C

cldy
i(c | tB) =

∑
l

p̂l

∑
i∈B

∑
tB∈TB

q(tB)
∫

C

cldy
i(c | tB)

>
∑

l

p̂l

∑
i∈B

eil

a contradiction. ��

Remark 2. We use a weak notion of blocking: it is enough for a coalition to
find a deviation such that nobody is worse off and somebody strictly better off.
This allows us to prove an equal treatment property (see Section 5). In the more
standard definition, a deviation must lead to a strict improvement for everybody in
the coalition. Under complete information, if the utility functions are continuous
and monotonic, the two notions are equivalent: one can always find transfers from
the individual who are made strictly better off to the others in such a way that
everybody is strictly better off in the end. In our setting this is no longer true: it may
be impossible to design the transfers in a way that respects incentive compatibility.
The core for which we have shown non-emptiness is thus contained in the core
defined with the stronger notion of blocking. Allen [2] introduced a version of the
latter concept under the name “modified incentive compatible core" and showed its
non-emptiness by relying on Scarf [30]’s theorem.

4 Replica economies

In then-times replicated economy, individuals are (i, k) ∈ In = I×{1, 2, . . . , n}.
Consumption goods are l ∈ L.

For every i, all the copies of i have the same set of types, T i,k, a copy of T i. The
set of states is thus the product of n copies of the set of states in the basic economy,
T̄n = ×kTk, with Tk a copy of T , and we assume that the probability distribution
over T̄n is q̄n = ×kqk, the independent product of the probability distributions over
types in every replica, qk = q.

For every i, all the copies of i have the same (state independent) initial endow-
ment, ei,k = ei ∈ RL

++. The total endowment is
∑

(i,k) e
i,k = ne. Following Gul

and Postlewaite [16], we assume that the utility of each individual depends only
on the types of other individuals in the same replica: for every (i, k), and every
t̄n ∈ T̄n, the utility function of individual (i, k) over consumption in state t̄n is:

ui,k(t̄n, ·) = ui(tk, ·)
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The objects of trade are state contingent lotteries overC.A bundle for individual
(i, k) is xi,k : T̄n → ∆(C). The lotteries in replica k may thus depend on the real-
ized types in other replicas. The commodity space is the spaceLn(C) = (∆(C))T̄n ,
endowed with the (product) weak topology. The utility for individual (i, k) of bun-
dle xi,k is:

U i,k(xi,k) =
∑
t̄n

q̄n(t̄n)
∫

C

ui(tk, c)dxi,k(c | t̄n).

A bundle xi,k is incentive compatible for individual (i, k) if, for all tik and
rik ∈ T i

k we have:∑
(tj)j �=k

Πj �=kqj(tj)
∑
t−i
k

qk(t−i
k | tik)

∫
C

ui(tk, c)dxi,k(c | t̄n) ≥

≥
∑

(tj)j �=k

Πj �=kqj(tj)
∑
t−i
k

qk(t−i
k | tik)

∫
C

ui(tk, c)dxi,k(c | (rik, t−i
k , (tj)j �=k))

The consumption set of individual (i, k) isXi,k, the set of incentive compatible
bundles for individual (i, k). The endowment of individual (i, k) is an element of
Xi,k.

The n-times replicated economy is En = {In, L, (T i,k, Xi,k, U i,k, ei,k)(i,k)∈In ,
q̄n}

An allocation, x = (xi,k)(i,k)∈In , specifies a state-contingent lottery for every
individual. An allocation is feasible in En if:∑

i,k

∑
t̄n

q̄n(t̄n)
∫

C

cdxi,k(c | t̄n) ≤ ne

A coalition is B ⊂ In \ {∅}, a nonempty subset of In. For every coalition B,
let tB = (ti,k)(i,k)∈B and TB = ×(i,k)∈BT

i,k.
The trades of individual (i, k), when he takes part in coalition B, depend only

on the information of the members of the coalition, i.e. they belong to the set

Xi,k
B ={xi,k∈Xi,k | xi,k(t̄n)=xi,k(tB , t′In\B) for all t̄n∈T̄n, t

′
In\B ∈ TIn\B}

For trades inXi,k
B , we write xi,k(tB) as a shortcut for xi,k(tB , t′I\B), for all t′I\B ∈

TIn\B . A coalition B blocks the allocation x if there exist bundles (yi,k), for
(i, k) ∈ B, such that :

a’) For all (i, k) ∈ B, yi,k ∈ Xi,k
B

b’) For all l, ∑
(i,k)∈B

∑
tB∈TB

q̄n(tB)
∫

C

cldy
i,k(c | tB) ≤

∑
(i,k)∈B

eil

c’) For all (i, k) ∈ B, U i,k(yi,k) ≥ U i,k(xi,k), , with strict inequality for at least
one (i, k) ∈ B.
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An allocation x has the core property if it is feasible, and there does not exist a
coalition that blocks it. The core of En, C(En), is the set of allocations that have
the core property.

The following lemma says that, for every incentive compatible bundle for in-
dividual (i, k), there exists a utility equivalent incentive compatible bundle that
only depends on types in replica k. For all k, let Ik = I × {k} be the coalition of
individuals who belong to replica k.

Lemma 3 For all xi,k ∈ Xi,k, there exists yi,k ∈ Xi,k
Ik

such that U i,k(yi,k) =
U i,k(xi,k).

Proof For all t̄n ∈ T̄n, let yi,k(t̄n) =
∑

(tj)j �=k
Πj �=kqj(tj)xi,k(tk, (tj)j �=k) =

yi,k(tk).
The result follows by simple substitution if one notices that, for all tik and

rik ∈ T i
k:

∑
(tj)j �=k

Πj �=kqj(tj)
∑
t−i
k

qk(t−i
k | tik)

∫
C

ui(tk, c)dxi,k(c | rik, t−i
k , (tj)j �=k) =

∑
t−i
k

qk(t−i
k | tik)

∫
C

ui(tk, c)dyi,k(c | rik, t−i
k ).

��

An allocation x in the basic economy E can be identified with an allocation
in En if we let xi,k(t̄n) = xi(tk), for all (i, k) ∈ In and all t̄n ∈ T̄n. Lemma 3
allows us to show that:

Proposition 3 For every n, W(E) ⊂ C(En)

Proof Let (x̂, p̂) be an equilibrium for the economy E, and suppose x̂ 	∈ C(En).
Then there exists a coalition B ⊂ In, and bundles (yi,k), for (i, k) ∈ B, such

that conditions a′, b′ and c′ hold.
For all k, let Bk = B ∩ Ik. Using Lemma 3, we can assume, without loss of

generality, that yi,k ∈ Xi,k
Bk

, i.e. that the bundle of each individual only depends on
the types of members of the coalition who also belong to his replica. Thus, with some
abuse of notation, yi,k ∈ Xi. But then, by the same argument as in Proposition 2,
U i,k(yi,k) ≥ U i,k(x̂i,k) implies πp̂(yi,k) ≥ πp̂(ei), and U i,k(yi,k) > U i,k(x̂i,k)
implies πp̂(yi,k) > πp̂(ei).

Summing over all (i, k) ∈ Bk and using the definition of πp̂:

∑
l

p̂l

∑
(i,k)∈Bk

∑
tBk

qk(tBk
)
∫

C

cldy
i,k(c | tBk

) >
∑

l

p̂l

∑
i∈Bk

eil

If we now sum over all k ∈ {1, 2, . . . , n}, we obtain a contradiction. ��
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In the basic economy, the equilibrium allocation x̂ is feasible on average. By
appealing to the law of large numbers, we will show that, if we let n tend to infinity,
the allocation x̂ in the replicated economy converges to an allocation which is
almost surely feasible.

Let x = (xi,k)(i,k)∈In be a feasible allocation in En. Together with q, x in-
duces a probability distribution Pq,x over T̄n × CIn

. Let us denote the (random)
consumption of individual (i, k) as ci,k and the total consumption in replica k as
zk, namely:

zk =
∑
i∈I

ci,k

The average total consumption across replicas is then5:

z̄n =
1
n

n∑
k=1

zk

Observe that x is feasible if Eq,xz̄
n ≤ e, and that x is feasible almost surely if

z̄n ≤ e Pq,x - a. s.
Let ε > 0 and δ > 0. We say that x is (ε, δ)-feasible in En iff:

Pq,x(z̄n ≤ e+ ε) ≥ 1− δ

Proposition 4 For every ε > 0, and every δ > 0 there exists N such that for all
n ≥ N , if x ∈ W(E), then x is (ε, δ)-feasible in En.

Proof Let us fix ε > 0 and δ > 0. Let x ∈ W(E). As above, x induces an allocation
inEn, for every n. The associated sequence (zk)k≥1 is i.i.d. and average feasibility
implies that Eq,xz̄

n ≤ e.
By the law of large numbers, there exists N such that, for all n ≥ N :

Pq,x(| z̄n − Eq,xz̄
n |≤ ε) ≥ 1− δ

��

Let us define Cε,δ(En) exactly as C(En) except that we require all feasible
allocations to be (ε, δ)-feasible as well. Coalitions have thus less objections in
Cε,δ(En) than in C(En). Hence, by Proposition 3 and Proposition 4 we have:

Corollary 1 For all ε > 0, and all δ > 0 there exists N such that for all n ≥ N ,
Cε,δ(En) 	= ∅.

5 In a usual model, the consumption of every individual is deterministic and independent of the
replica to which he belongs, ci,k(t̄n) = ci(tk). In this case, we recover the standard expression:

z̄n =
∑

t

Nn(t)
n

z(t)

where Nn(t) is the number of replicas in which tk = t, and z(t) =
∑

i ci(t).
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5 Convergence

In the case of exchange economies with complete information, Debreu and Scarf [8]
prove that every allocation which is in the core of all replicas must be a competitive
equilibrium of the basic economy. Even with the restricted notion of replication we
have chosen, this need not always be true.

Example: As our basic economy E we take the two-person two-good economy in
Kreps [22]. Individuals are I = {1, 2}, and we denote the two goods by c and m
respectively. There are two possible states in the economy, which coincide with the
possible types of individual 1, T = T 1 = {s, s′}, with q(s) = q(s′) = 0.5. In state
t = s, s′, the utility function of individual 1 is u1(t) = a(t)lnc(t) +m(t), while
the utility of individual 2 is u2(t) = b(t)lnc(t) + m(t), with a(s) = b(s′) = 1
and a(s′) = b(s) = 2. The initial endowment does not depend on the state, and is
the same for both individuals, ei(t) = e = (1.5, 1). The two individuals are thus
ex-ante identical, but the realized type of individual 1 determines ex-post which of
the two has a higher utility from consumption of the first good. When we introduce
lotteries we take the support C = {(c,m) ∈ R2 | 0 ≤ c ≤ b1, 0 ≤ m ≤ b2}, with
b1 > 6, b2 > 4.

Consider the allocation x̂ defined by (ĉ1, m̂1)(s) = (ĉ2, m̂2)(s′) = (1, 1.5)
and (ĉ1, m̂1)(s′) = (ĉ2, m̂2)(s) = (2, 0.5). If we restrict attention to deterministic
state-contingent allocations, x̂ is (ex ante) Pareto-optimal. Furthermore, it is easy
to check that it is also incentive compatible and individually rational. In particular,
each individual obtains a gain from trade equal to U i(x̂i)− U i(e) = 0.085.

To show that x̂ ∈ C(E), we only have to check that x̂ is Pareto-optimal even
when we allow for state-contingent lotteries.

If this were not the case, one could find a feasible allocation y = (yi)i=1,2,
yi ∈ ∆(C)T such thatU i(yi) ≥ U i(x̂i), i = 1, 2, with at least one strict inequality.
But then the deterministic allocation which gives to each individual the expected
value of the lottery in each state would be feasible and would dominate x̂.

If we modify x̂ by requiring an additional transfer of τ ≤ 0.085 units of good 2
from individual 2 to individual 1 in each state, we maintain incentive compatibility
and individual rationality, and we obtain an allocation x̃which also belong to C(E).

We will show that (x̂, x̃) belongs to the core C(E2) of the two fold replicated
economy.

The only coalition which might possibly object is the one formed by individual
1 in the first replica and individual 2 in the second replica. But, in this coalition,
if individual 1 must be guaranteed U1(x̂1), individual 2 cannot get more than his
reservation utility U2(e).

To see this, consider the allocation x̄ defined by (c̄1, m̄1)(s) = (1, 1.5),
(c̄1, m̄1)(s′) = (2, 0.5), (c̄2, m̄2)(s) = (1.5, 0.5), (c̄2, m̄2)(s′) = (1.5, 1.5). In-
dividual 1 obtains the same bundle as in x̂, while individual 2, whose utility does
not depend on the type of individual 1, obtains the same quantity of good 1 in both
states. This allocation is incentive compatible and individually rational. Further-
more, if one restricts attention to deterministic allocations, x̄ maximizes the sum
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of expected utilities in the coalition, namely it solves the problem of maximizing:

[lnc1(s) +m1(s)] + [2lnc1(s′) +m1(s′)] +
[
3
2
lnc2(s) +m2(s)

]
+
[
3
2
lnc2(s′) +m2(s′)

]
under the feasibility constraints:

c1(s) + c2(s) + c1(s′) + c2(s′) ≤ 6
m1(s) + m2(s) +m1(s′) +m2(s′) ≤ 4

Notice that, by construction, U1(x̄1) = U1(x̂1), so that x̄ is also a solution
of the problem of maximizing individual 2’s expected utility under feasibility and
the additional constraint that individual 1’s obtains at least U1(x̂1). By the same
argument as above, nothing changes when we allow for lotteries. Hence, individual
2’s utility cannot exceed U2(x̄2) = U2(e), as claimed. ��

As the example makes clear, the dependence of the utility of a given individual
on the types of other individuals in his replica creates an “informational externality",
and equal treatment may fail at a core allocation.

In the special case of private values this externality is not present, and one may
hope to proceed as in Debreu and Scarf [8].

Consider the basic economy E = {I, L, (T i, Xi, U i, ei)i∈I , q}. From now on
we make the assumption of independent private values (IPV), i.e., we assume that
q = ×iq

i, qi ∈ ∆(T i), and ui(t, ·) = ui(ti, ·). The replicated economy En is
obtained from E exactly like in Section 4, but of course now the utility of each
individual only depends on his own type and the fact of belonging to one replica
or another is of no consequence.

By an argument similar to the one in Lemma 3 we can prove that any level
of utility achievable by individual (i, k) with an incentive compatible mechanism
which depends on the information of all individuals in the replicated economy can
also be achieved by an incentive compatible mechanism which depends only on his
own information6:

Lemma 4 Under IPV, for all xi,k ∈ Xi,k, there exists yi,k : T i → ∆(C) such
that yi,k ∈ Xi and U i,k(yi,k) = U i,k(xi,k).

The next Lemma states that at an allocation in the core of the replicated economy,
all the replicas of an individual must obtain the same level of utility. Private values
are crucial to the result. In general, even with our very special replication process,
the lemma does not hold as shown in the previous example.

Lemma 5 Under IPV, ifx ∈ C(En), then, for all (i, k) and (i, h) ∈ In,U i(xi,k) =
U i(xi,h).

6 Under IPV, we thus recover, without loss of generality, the private measurability assumptions
introduced by Yannelis [38]. However, observe that Lemma 4 would not hold if we did not consider
random, average feasible, allocations
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Proof Take x ∈ C(En), and assume the proposition is false. Without loss of gen-
erality, for all (i, k) ∈ In:

U i(xi,1) ≤ U i(xi,k)

and there exists (1, h) ∈ In such that:

U1(x1,1) < U1(x1,h).

By Lemma 4, without loss of generality, for all (i, k), xi,k : T i → ∆(C), and
xi,k ∈ Xi. Consider then the coalition formed by individuals in the first replica, I1,
and define an allocation for this coalition by yi,k(ti) = yi(ti) = 1

n

∑n
k=1 x

i,k(ti).
As a convex combination of elements ofXi, yi ∈ Xi, for all i. Furthermore, (yi)i∈I

is feasible for the coalition I1. Indeed, from feasibility of x in En :∑
i

∑
k

∑
ti
k

qi(tik)
∫

C

cdxi,k(c | tik) ≤ ne

∑
i

∑
ti

qi(ti)
1
n

∑
k

∫
C

cdxi,k(c | ti) ≤ e

By the linearity of the utility function, we have, for all i, U i(yi) ≥ U i(xi,1), and
for i = 1, U1(y1) > U1(x1,1). This contradicts the fact that x ∈ C(En). ��

A stronger notion of equal treatment requires that all replicas of the same
individual receive exactly the same bundle: for all (i, k) ∈ In, xi,k = xi. Let
C∗(En) ⊂ C(En) denote the set of core allocations in which all replicas of each
individual i are treated equally in this stronger sense. Lemma 5 allows us to as-
sociate to every allocation in x ∈ C(En) an allocation y ∈ C∗(En) defined by
yi(ti) = 1

n

∑n
k=1 x

i,k(ti) which is indifferent to x, in utility, for every individual.
From now on we thereby restrict attention to C∗(En) which we identify with a sub-
set ofL(C)I . From the proof of Proposition 3 we know thatW(E) ⊂ ∩n≥1C∗(En).
The next Proposition provides the opposite implication.

Proposition 5 Under IPV, ∩n≥1C∗(En) ⊂ W(E)

Proof Consider an allocation x ∈ ∩n≥1C∗(En). For all i ∈ I , define the set of
incentive compatible net trades which are strictly preferred to xi:

ψi
x = {z ∈ L(C) | U i(z + ei) > U i(xi), z + ei ∈ Xi}

For all i, ψi
x 	= ∅. It is enough to consider z = 2e − ei, where we have

identified 2e with the corresponding (incentive compatible) degenerate lottery. By
monotonicity of ui, and feasibility of x, U i(2e) > U i(xi) for all i.

Let Co(∪iψ
i
x) denote the convex hull of the set ∪iψ

i
x and define the set A as

follows:

A = {a ∈ RL | ∃z ∈ Co(∪iψ
i
x),
∑

t

q(t)
∫

C

cdz(c | t) = a}
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The set A is non-empty and convex. We now show that it does not contain any
strictly negative vector: A ∩RL

−− = ∅.
If this was not the case, given that the sets ψi

x are convex (by the linearity
of U i), one could find ẑ with ẑ =

∑
i α

iẑi, αi ≥ 0 and
∑

i α
i = 1, such that

U i(ẑi + ei) > U i(xi), ẑi + ei ∈ Xi and∑
t

q(t)
∑

i

αi

∫
C

cdẑi(c | t) << 0

Given that this inequality is strict, without loss of generality αi can be taken to be

rational, αi = βi

n for some integers n and βi ≤ n. Let us then form a coalition
S with βi copies of each individual i. Consider the allocation which gives to each
copy of i in the coalition the bundle ŷi = ẑi +ei. By construction, for all i, ŷi ∈ Xi

and U i(ŷi) > U i(xi). Moreover, the preceding inequality implies feasibility:∑
t

q(t)
∑
i∈S

∫
C

cdŷi(c | t) =

∑
t

q(t)
∑

i

βi

∫
C

cdẑi(c | t) +
∑

i

βiei =

n
∑

t

q(t)
∑

αi

∫
C

cdẑi(c | t) +
∑

i

βiei <<
∑

i

βiei

This contradicts the fact that x ∈ C∗(En).
By the separating hyperplane theorem, there exists p ∈ RL \ {0} such that

Inf{pa | a ∈ A} ≥ Sup{pb | b ∈ RL
−−}. The boundedness of A implies that

p ≥ 0 so that Sup{pb | b ∈ RL
−−} = 0.

We show that (p, x) is an equilibrium for the economy E. Consider individual
i, and suppose that for some yi ∈ Xi, U i(yi) > U i(xi). Let then zi = yi − ei.
Clearly, zi ∈ ψi

x, so that, by definition ai =
∑

t q(t)
∫

C
cdzi(c | t) ∈ A. But then,

from the separation argument, pai ≥ 0, i.e.,∑
t

q(t)
∫

C

∑
l

plcldy
i(c | t) ≥

∑
l

ple
i
l

πp(yi) ≥ πp(ei)

An argument entirely analogous to the one in Lemma 1 shows that the last inequality
is strict. It remains to show that, for all i, πp(xi) ≤ πp(ei). Consider the bundle
zλ = λ2e + (1 − λ)xi; for λ > 0, U i(zλ) > U i(xi), so that, by the previous
argument, πp(zλ) ≥ πp(ei). Letting λ tend to zero we obtain πp(xi) ≥ πp(ei) for
all i, which, combined with the feasibility of x, leads to πp(xi) = πp(ei). ��

We can thus state the following equivalence result:

Corollary 2 Under IPV, ∩n≥1C∗(En) = W(E)
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6 Concluding remarks

We end up with a brief comment on some papers which, as the present one, study the
core in large exchange economies with differential information. Allen [4] deduces
the non-emptiness of approximate ex ante incentive cores in replica economies
from results of Shubik and Wooders [32] and Wooders [35], but does not establish
relationships between core allocations and competitive ones. The main difference
between Allen’s approach and ours is that, in general, unless the IPV assumption is
made, Gul and Postlewaite [16]’s replicas do not satisfy one of the basic assump-
tions in Shubik and Wooders [32] and Wooders [36], namely that all replicas of a
given agent are “substitutes" for each other. Indeed, in Gul and Postlewaite [16]’s
replicated economy, the information of an agent plays a completely different role
in his own replica and in the other ones.

Serrano, Volij and Vohra [31] do not consider the same replicas as in Gul and
Postlewaite [16] either. They replicate a finite economy with asymmetric infor-
mation in such a way that all replicas of a given agent have exactly the same
information. Hence, in their model, incentive compatibility is not an issue in the
replicated economy. Another difference with the present paper is that they study
Wilson [35]’s coarse core, in which the coalitions make objections at the interim
stage (see also Forges [13] and Vohra [33]). They show that the coarse core does ot
converge to any set of price equilibrium allocations considered in the literature.

Allen [5] considers deterministic allocations in an atomless exchange economy.
She imposes incentive compatibility constraints which are stronger than in the
present paper. By relying on an equilibrium existence theorem of Yamazaki [37],
she establishes the non-emptiness of the core.

Einy, Moreno and Shitovitz [10], [11]’s basic model is similar to Allen [5]’s
one, but they further assume private values and do not require any form of in-
centive compatibility. In [10], they establish the equivalence between competitive
allocations in the sense of Radner [29] and Yannelis [38]’s private core. In [11],
they introduce the ex post core and prove its equivalence with rational expectations
equilibria.
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1 Introduction

The purpose of this paper is to study the relationship between the core and com-
petitive allocations in economies with asymmetric information. This extends the
analysis of uncertainty, as introduced in Chapter 7 of Debreu’s ‘Theory of Value’
[3]. There, uncertainty is incorporated into theArrow-Debreu theory by introducing
a finite set of states of the world, and viewing the commodities as differentiated
by state. Still, every agent is assumed to possess the same full information set, i.e.
there are no states that cannot be distinguished. This analysis is extended by Radner
[10,12], to cover the case of private information. Every agent is assigned a partition
of the set of states of the world, with the interpretation that the sets in the partition
contain those states which cannot be distinguished by the agent. A trade of an agent

� I thank an anonymous referee whose comments led to an improvement of the paper.
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then has to be compatible with his information, that is, he cannot act differently
on states that he cannot distinguish, or mathematically, his net trades have to be
measurable with respect to the σ-algebra generated by his information partition.
Radner [10] extends the notion of Arrow-Debreu competitive equilibrium to this
model. Trades are contingent contracts before information about the realized state
of nature is obtained. Information cannot be communicated and restricts the budget
sets of the agents. A Radner competitive equilibrium rewards the better informed
trader in the sense that his budget set is larger, thus he will in general be better off.

From the core perspective, the incorporation of information structures into the
core dates back to Wilson’s seminal paper [13]. However, with the core, there is
more to be considered than just private information. One can devise an information
structure to be parametrized not only by the agent space but also by the coalitions
that an agent can be in. Private information would then be the case, where an agent’s
information does not change, regardless of the coalition he belongs to. But a lot of
other cases are imaginable, e.g. agents pooling their information, leading to a situa-
tion in which superset coalitions have more information and the grand coalition has
full information. Such a fine information system, and others, as the coarse, strong
coarse and weak fine information system, have been the subject of various papers,
investigating the existence of core allocations. As a starting point to this literature
one can consider, apart from Wilson’s work of course, the papers of Yannelis [14]
and Allen [2]. The frameworks given there have to be carefully distinguished under
the aspect that, in Yannelis [14], an allocation is preferred to another by an agent
if its expected utility over every single set in the information partition (mathemati-
cally the conditional expected utility vector) is greater. This is often referred to as
an interim concept. Allen [2] on the contrary considers an ex-ante concept, where
an allocation is preferred to another if the expected utility is greater. Of course if
an allocation is preferred in Yannelis [14], it will be preferred also in Allen [2], but
not vice versa, making the ex-ante core a subset of the interim core. Note, however,
that as pointed out yet again in the inspiring work of Debreu’s Theory of Value [3],
the usage of (conditional) expected utility, requiring a probability measure over
the states of the world and state-dependent utilities, is not essential. Instead one
can consider a utility function which maps the state-commodity space to the reals.
This function could be the outcome of taking expectation over states, but this only
shows that this model is able to incorporate the expected utility case. Recently, the
existence of ex-ante core allocations in this general context has been adressed by
Maus [9], providing a condition on the information partitions, which is equivalent
to nonemptiness of the core with asymmetric information, when endowments are
variables. This result will be used here to investigate the question of equal treat-
ment in the core and the existence of an adapted version of the Radner competitive
equilibrium. The core reflects the veto power of any coalition. The recent paper by
Hervés-Beloso, Moreno-García and Yannelis [6] characterizes Radner Equilibria
by using the veto power of the grand coalition only. They show that an allocation
is a Radner equilibrium if and only if it can not be blocked by the grand coalition
in every economy obtained by perturbing the original endowments in the direction
of the equilibrium candidate.
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The list of contributions on the relationship between Radner equilibrium and
ex-ante core concept with asymmetric information comprises two other recent pa-
pers by Einy, Moreno and Shitovitz [4,5], working with a continuum of agents.
In [4] they show that in an ex-ante model, if the economy is ‘irreducible’, then a
Radner equilibrium exists and the set of Radner competitive equilibrium allocations
coincides with the private core. It is also shown, that the weak fine core corresponds
to competitive equilibria of an economy, where the symmetric information of the
agents is their pooled private information. In the other paper [5] they show that in
an interim model the fine core is a subset of the ex-post core, and consequently
every fine core allocation is a selection from the equilibrium correspondence of
the associated family of full information economies. Differences with the work
presented here are manifold. First of all the core is defined here without referring to
expected utility and prior beliefs. Secondly the concept is strictly ex-ante. Thirdly
the set of agents is finite, though agents are replicated to get to the core convergence
result. Fourth, the communication system is not specified. Last but not least, no free
disposability of commodities is assumed. As pointed out already in a footnote by
Radner [12], p.945, the disposed commodities may not be measurable with respect
to the information of any single trader, making free disposability objectionable. In
the presented paper, resource feasibility will be considered as denoting strict equal-
ity of the sum of the allocated commodities and the sum of the initial endowments.
This complicates the existence of an equilibrium considerably, since existence re-
sults from the theory of production economies such as employed in Radner [12]
or Einy, Moreno and Shitovitz [4] cannot be used. The reason for that is that the
proofs of these existence results rely on the assumption that production sets have a
nonempty relative interior. In a pure exchange economy that assumption translates
into disposability of at least part of the endowments. Therefore, these existence
results are not applicable, and a number of other, partly new results is necessary.
These results are the existence result for the core from [9], a result extending equal
treatment of agents of the same type in replicated economies to the case of the
core with asymmetric information, and a result on the connection between quasi-
competitive Radner equilibria and the cores of the replicated economies. All of
these results are also of interest on their own.

The paper is organized as follows. In Section 2 the formal model is described
along with the definition of core and competitive (quasi-)equilibrium. Section 3
discusses the relationship between competitive (quasi-)equilibrium allocations and
core allocations in large economies. To arrive at an existence result for equilib-
ria, further investigation of ‘equal treatment in the core’ is necessary, which is
dealt with in Section 4. Then Section 5 establishes existence of an competitive
quasi-equilibrium, and introduces some conditions under which this turns into an
existence result for competitive equilibria.

2 Preliminaries

Throughout, R+ is the set {x ∈ R|x ≥ 0}, and x > y for vectors or matrices means
that every entry in x strictly exceeds the corresponding entry in y. When a constant
c ∈ R is written in a place where a matrix or vector is expected, it is understood
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to be the matrix or vector where all entries have the value c. A product of matrices
or vectors px in the same space is understood to be the sum of the products of the
matching entries, i.e. the scalar product (matrices have to be interpreted as vectors
for this).

2.1 Information

Let Ω be the finite set of states of the world. Let P∗ be the set of partitions of Ω.
A P ∈ P∗ is called an information set. The interpretation is that states contained
in an element S ∈ P cannot be distinguished under that information set. For each
ω ∈ Ω denote by P(ω) the element of the partition P that contains ω.

LetN be a finite set of agents. Each agent has an initial endowment of informa-
tion, described byPi ∈ P . When forming coalitions the information of agents may
change, e.g. due to communication. Let PS

i be the information that agent i ∈ S
has if the coalition S is formed. Throughout I assume that P{i}

i = Pi. A collection
(PS

i )i∈S,S⊂N is called a communication system.
A communication system is called private if PS

i = Pi for all S # i, i.e. the
information does not change.

An information set P generates a σ-algebra σ(P).
Information restricts the possible net trades of an agent. He cannot trade different

amounts on events that he cannot distinguish. Formally this is captured by the
following. Let P be the information the agent has. Then his trades of k goods are
limited to the following set of functions

XP := {x|x : Ω → Rk and x is σ(P)-measurable}.

Hence, x ∈ XP if and only if x is constant on elements of P . Thus, x : Ω → Rk

can be identified with x : P → Rk, where x(A) is the constant value on A. The
characteristic function of any set B ∈ P, denoted by

IB : Ω → Rk,

: ω �−→
{

1, if ω ∈ B
0, if ω /∈ B ,

is in XP for every P for example. I will denote XPS
i

by XS
i and if S = {i} I will

write Xi. Call XP the set of informationally feasible trades under P , XS
i the set

of informationally feasible trades of agent i in coalition S and
∏

i∈S X
S
i the set of

informationally feasible trades of the coalition S.

Definition 1. The communication system (PS
i )i,S is trade bounded if for all coali-

tions S ⊆ N and all (zj)j∈S ∈ ∏j∈S X
S
j with

∑
j∈S zj = 0, it holds that

(zj)j∈S ∈
∏

j∈S X
N
j .

Informally speaking, this assures that every net trade possible in a subcoalition
remains possible in the grand coalition.
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2.2 Exchange economies with asymmetric information

An exchange economy with asymmetric information E is given by

1. a finite set of agents N ,
2. a finite set Ω of states of the economy,
3. the initial endowments ei : Ω → Rk

+ for every agent i ∈ N ,
4. the communication system (PS

i )i∈S,S⊂N ,
5. and utility functions ui : Rk×Ω

+ → R for every agent i ∈ N .

A vector of net trades (zi)i∈S satisfying ei+zi ≥ 0 for all i ∈ S and
∑

i∈S zi =
0 is called physically feasible for the coalition S ⊆ N . An allocation for a coalition
S in an economy E is a function x : S → (Rk)Ω such that the net trades xi − ei
are informationally and physically feasible for this coalition. In this paper vectors
x ∈ Rk×Ω

+ are identified in the natural way with the space of functionsx : Ω → Rk
+.

Furthermore, the following spaces of utility functions will be relevant:

Umo := {u : Rk×Ω
+ → R| u is strictly increasing,

i.e. y ≥ x, y 	= x⇒ u(y) > u(x)},

Uqc := {u : Rk×Ω
+ → R| u is quasiconcave},

Umo
co,0 := {u : Rk×Ω

+ → R| u is concave and u(0) = 0} ∩ Umo,

Umo
qc := Uqc ∩ Umo and

C(Rk×Ω
+ ) := {u : Rk×Ω

+ → R| u is continuous}.

2.3 The core

An NTU-game in characteristic function form is a correspondence V : 2N \{∅} →
RN satisfying

1. V (S) is nonempty and closed for S 	= ∅,
2. if x ∈ V (S) and y ∈ RN is such that yi ≤ xi for all i ∈ S then y ∈ V (S),
3. for every i ∈ N there is an mi ∈ R with V ({i}) = {x ∈ RN |xi ≤ mi}, and
V (N) ∩ {x ∈ RN |xi ≥ mi ∀i ∈ N} is nonempty and compact.

The NTU-game associated with an exchange economy E is defined by

VE(S) = {x ∈ RN ; there exists (zi)i∈S ∈
∏

i∈S X
S
i such that

ei + zi ≥ 0,
∑

i∈S zi = 0

and xi ≤ ui(ei + zi)}
for each coalition S 	= ∅. The core of this NTU-game is given by

C(VE) := VE(N)\
⋃

∅�=S⊆N

int(VE(S)).
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The core of the exchange economy with asymmetric information consists of all
allocations for the grand coalition, resulting in a utility vector in the core of the
associated NTU-game, i.e.

C(E) := {x ∈ RN×k×Ω |x−e is an allocation for N and (ui(xi))i∈N ∈ C(VE)}.

So C(E) comprises all allocations x for the grand coalition to which no coalition
S ⊆ N has a deviation, i.e. an allocation yS for that coalition such that ui(yS

i ) >
ui(x) for all i ∈ S.

The following existence result for the core from [9] will be of use.

Theorem 2. Let E be an exchange economy with asymmetric information and trade
bounded communication system. Assume that ui ∈ Uqc for all i ∈ N . Then the
NTU-core of VE is not empty.

2.4 Competitive allocations

The information that an agent can use in a competitive allocation is assumed to be
PN

i . This assumption could be viewed as implying that in a competitive equilibrium
allocation the same communication takes places as in the grand coalition. Relations
between core allocations and competitive allocations can in general not be expected
if the measurability constraints for core allocations and competitive allocations are
different.

A price system is a function p : Ω → Rk, p 	= 0.Agents make contracts for the
delivery of contingent commodities as in Chapter 7 of Debreu’s Theory of Value
[3], i.e. before the state of the world is revealed to them. Payments are made for
contingent delivery and irrevocable even if another state of the world is realized.
Additionally every agent’s trades are restricted by his information.

A price system contains the information

σ(p) :=
⋂
{A|A σ-algebra on Ω, p A-measurable}.

It could be argued that agents i such that σ(PN
i ) 	= σ(p) can observe information

from prices posted to them. This leads to rational expectations equilibria, see for ex-
ample Allen [1] and Radner [11]. Here we assume that agents observe private price
signals, which then reveal no information to them. This is achieved by the following
construction. Let p be a price system. For an information partition P the price sys-
tem that can be seen under P is given by (p(A))A∈P , where p(A) :=

∑
ω∈A p(ω).

Every agent observes (possibly different) futures prices, namely (p(A))A∈PN
i

, cor-
responding to his possible trading activities.Another way to view this, is to consider
average prices p̃, which are different per agent, and are given by

p̃(ω) :=
1

|P(ω)|
∑

ω̃∈P(ω)

p(ω̃).



Exchange economies with asymmetric information 209

Under both viewpoints an agent having information P cannot gain information
from the prices seen, as these are σ(P)-measurable. Furthermore, any information-
ally feasible trading activity z ∈ XP incurs the same cost under both viewpoints,
as can be seen from

zp̃ =
∑
ω∈Ω

z(ω)p̃(ω)

=
∑
A∈P

∑
ω∈A

z(ω)
1

|P(ω)︸ ︷︷ ︸
=A

|
∑

ω̃∈P(ω)

p(ω̃)

=
∑
A∈P

z(A)
∑
ω∈A

1
|A|
∑
ω̃∈A

p(ω̃)

=
∑
A∈P

z(A)
∑
ω̃∈A

p(ω̃)

=
∑

z(A)p(A).

Note that if we assume that the price system p is set by a Walrasian auctioneer
who knows the information that agents have, then we can assign also the task of com-
puting the private price signals for the agents to him. The least information that the
Walrasian auctioneer has to have then is the partitionsPN

i for any agent i ∈ N.Thus
the information PW that the auctioneer has will satisfy σ(PW ) ⊇ σ(

⋃
i∈N PN

i )
and this information constraints price vectors set by the auctioneer to be σ(PW )-
measurable. However, as we shall see, this constraint holds automatically for the
price systems that we construct in our proofs. These correspond to separating hy-
perplanes of σ(

⋃
i∈N PN

i )-measurable sets of allocations, so they can be chosen to
be σ(

⋃
i∈N PN

i )-measurable themselves. In the end σ(
⋃

i∈N PN
i )-measurability

of price systems is used in Lemma 17 and in Corollary 18, but anywhere in this pa-
per it is not required. Another question, that arises if we assume that the auctioneer
receives signalsPN

i from the agents is, whether agents, either individually or coali-
tionally, can manipulate the price the Walrasian auctioneer chooses by transmitting

another information partition PN

i such that σ(PN

i ) ⊆ σ(PN
i ) to the auctioneer.

This question is not adressed here. So, when thinking of prices as set by an auc-
tioneer, it is assumed implicitly that either agents are honest or their information
can be verified costlessly by the auctioneer.

Example 3. Imagine that there are three states of the world Ω = {1, 2, 3}, which
indicate the quality of a commodity (say 1 is good, 2 is medium,3 is bad). Now,
compare two agents having information partitions {{1, 2}, {3}} and {{1}, {2, 3}}
respectively (the first agent can screen for bad quality and the second agent for
good quality). Assume that a price system for that commodity is given by p =
(3, 2, 1). Then the first agent observes the price vector (5, 1), where 5 is the price
for contingent delivery of a unit amount in state 1 and 2, and the second agent
observers the price vector (3, 3), where 3 is the price for contingent delivery of a
unit amount in states 2 and 3. If both agents were interested in buying only good
quality, that would be cheaper for agent 2, as agent 1 has to buy the medium quality
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bundled with the good quality. Instead, if the good and the medium quality were
appreciated similarly by the agents, the advantage would be on the side of agent
1. The average price systems here are given by (2 1

2 , 2
1
2 , 1) and (3, 1 1

2 , 1
1
2 ) for the

first and the second agent respectively.♦

For a price system p define the budget set of an agent i ∈ N by

Bi(p) =

⎧⎨⎩x ∈ Rk×Ω
+ |x− ei ∈ XN

i and
∑

A∈P N
i

∑
ω∈A

p(ω)(x(ω)− ei(w)) ≤ 0

⎫⎬⎭
=

⎧⎨⎩z + ei ∈ Rk×Ω
+ |z ∈ XN

i and
∑

A∈P N
i

p(A)z(A) ≤ 0

⎫⎬⎭
The budget set contains all contingent allocations that the agent can afford under
the given price system and that result from informationally feasible net trades. Now
the definition of a competitive equilibrium can be stated.

Definition 4. A competitive equilibrium for an economy E is a pair (p, x), where
p 	= 0 is a price system and x is an allocation such that xi maximizes ui on Bi(p)
for all i ∈ N . A competitive allocation is an allocation x, for which there exists a
price system p such that (p, x) is a competitive equilibrium.

As mentioned in the introduction, the model considered here is able to incor-
porate models which use an expected utility function derived from integration of
state-dependent utilities with respect to a prior on states. This can be used to argue
that Definition 4 covers the notion of Radner equilibrium [10] for pure exchange
economies with private information, and that Corollary 18 is also an existence re-
sult for Radner equilibrium.A standard assumption made when considering Radner
equilibrium, is that initial endowments are measurable with respect to the informa-
tion of the agents in the grand coalition, i.e. that ei ∈ XN

i for all i ∈ N. The reason
that this is not assumed here is that some of the results, e.g. about the relationships
between core and equilibrium, do not need this assumption. However, in the exis-
tence result of Corollary 18, there is the condition that the initial endowments of an
agent should be measurable with respect to the information that the agent uses in
any coalition that he is in, i.e. ei ∈

⋂
S�iX

S
i . Letting information be private, i.e.

XS
i = XN

i = X
{i}
i for all i ∈ N and S # i, this is just the private measurability of

initial endowments assumed in Radner equilibrium. Hence, Corollary 18 turns into
an existence result for Radner equilibria in pure exchange economies with private
information that meet the assumptions of the corollary. This demands that expected
utility as derived from taking expectations in the Radner setting is quasiconcave,
strictly monotone and continuous. This is met for example if the prior is strictly
positive, and state-dependent utilities are concave, monotone and continuous. This
is usually assumed when dealing with existence of Radner equilibrium, e.g. already
in the original paper of Radner [10].

Next the weaker notion of competitive quasi-equilibrium is defined.
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Definition 5. A competitive quasi-equilibrium for an economy E is a pair (p, x)
where p 	= 0 is a price system and x is an allocation such that xi maximizes ui on
Bi(p) whenever inf pXN,≥0

i := inf{px|x ∈ XN
i , x ≥ 0} < pei.

Obviously, every competitive equilibrium is also a competitive quasi-
equilibrium. There is no difference between these two equilibrium notions if
inf pXN,≥0

i < pei for all i ∈ N . When utility functions are strictly increasing,
these definitions imply that (p(A))A∈PN

i
≥ 0 in any competitive quasi-equilibrium

and (p(A))A∈PN
i
> 0 in any competitive equilibrium. Hence, in that case one has

de facto 0 = inf pXN,≥0
i and the condition inf pXN,≥0

i < pei could be replaced
by 0 < pei (positive income).

3 Competitive and core allocations in large economies

In this section sufficient conditions on the communication system are given such
that the replica theorem holds. So first of all the replica economies En, n ∈ N, are
defined.

Definition 6. Let E = (N,Ω, (ei, ui, (PS
i )i∈S,S⊂N )i∈N ) be an exchange econ-

omy with asymmetric information. The n− th replica

En = (Nn, Ω, (ẽi, ũi, (P̃S
i )i∈S,S⊂Nn)i∈Nn), n ∈ N,

is the exchange economy with asymmetric information, where the set of agents is
Nn := N × {1, . . . , n} and for an agent (i, j) ∈ Nn one puts

1. ẽ(i,j) := ei
2. ũ(i,j) := ui

3. P̃S
(i,j) := Ppr1(S)

i , where pr1 is the projection on the first coordinate.

So the information that agents can use in a coalition in the replica economy
depends only on the type of the agents in that coalition and not on the total number
of agents of a type in the coalition. Denote the agents of a given type i ∈ N , which
are present in a coalition S ⊂ Nn, by

pri(S) := {j|1 ≤ j ≤ n and (i, j) ∈ S}.

Theorem 7. Let E be an exchange economy with asymmetric information. Assume
that ei ∈ XN

i and ui ∈ Umo ∩ C(Rk×Ω
+ ) for all i ∈ N . If x ∈ RN×k×Ω is

such that xn =
∏n

j=1 x ∈ C(En) for all n ∈ N, then x is a competitive quasi-
equilibrium allocation. Moreover the price system p decentralizing x can be chosen
σ(
⋃

i∈N PN
i )-measurable.

Proof. Note that if the initial endowments ei are PN
i −measurable, then not only

the net trades (zi)i∈N leading to a competitive equilibrium or core allocation are
PN

i −measurable, but also the final allocation (ei + zi)i∈N . Let x be such that
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xn ∈ C(En) for alln ∈ N. It has to be shown, that there is a price system p ∈ Rk×Ω

such that for any agent i ∈ N either inf pXN,≥0
i = pei, or xi maximizes ui on

Bi(p).

H(i) := ({y ∈ Rk×Ω
+ |u(y) > u(xi)} − {ei}) ∩XN

i

is the set of all net trades z, where agent i ∈ N prefers ei + z to xi, and which are
informationally feasible for the agent in the grand coalition. Denote by co(A) the
convex hull of A ⊂ Rk×Ω and by IB the characteristic function of B ⊆ Ω. Let

X− :=

⎧⎨⎩z ∈ Rk×Ω |z = −
∑
i∈N

∑
P∈PN

i

αi,P IP , αi,P > 0

⎫⎬⎭ .

I claim that

co

(⋃
i∈N

H(i)

)
∩X− = ∅.

Suppose on the contrary that there is some z ∈ co(⋃i∈N H(i)) ∩X−, then

z =
∑
a∈A

λaya, where A ⊂ N ,
∑
a∈A

λa = 1, λa > 0, ya ∈ H(a),

and z = −
∑
i∈N

∑
P∈PN

i

αi,P IP , αi,P > 0.

It suffices to construct a contradiction to xn ∈ C(En) for all n ∈ N for the case
where the λa are rational. In this case let n be so large that ra := nλa ≤ n is a
natural number for every a ∈ A. Define an allocation x∗ for the coalition

S := {(a, j)|1 ≤ j ≤ ra and a ∈ A} ∪ {(i, n+ 1)|i ∈ N}

in the economy En+1 by

x∗
(a,i) := ea + ya (1 ≤ i ≤ ra, a ∈ A) and

x∗
(i,n+1) := xi + n

∑
P∈PN

i

αi,P IP (i ∈ N).

This allocation is informationally feasible for S, as P̃S
(i,j) := Ppr1(S)

i = PN
i .

Every member of S prefers his bundle in x∗ to that in xn+1. Furthermore, x∗ is
also physically feasible for S, as∑

i∈S

x∗
i =

∑
a∈A

∑
1≤i≤ra

x∗
(a,i) +

∑
i∈N

x∗
(i,n+1)

=
∑
a∈A

(raea + raya) +
∑
i∈N

⎛⎝xi + n
∑

P∈PN
i

αi,P IP

⎞⎠
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=
∑
a∈A

raea + n
∑
a∈A

λaya︸ ︷︷ ︸
=z

+ x(N)︸ ︷︷ ︸
=e(N)

+ n
∑
i∈N

∑
P∈PN

i

αi,P IP

︸ ︷︷ ︸
=−z

=
∑
a∈A

raea + e(N) + nz − nz

= e(S).

Therefore, x∗ is a deviation in En+1 of the coalition S to the allocation xn+1 ∈
C(En+1), a contradiction.

Now, as

co

(⋃
i∈N

H(i)

)
∩X− = ∅,

co

(⋃
i∈N

H(i)

)
is convex and

X− is open and convex,

there is by a version of the separation theorem for convex sets, a p ∈ Rk×Ω , p 	= 0,
such that

pz ≥ 0 if z ∈ co
(⋃

i∈N

H(i)

)

and pz ≤ 0 if z ∈ X−.

This p can be chosen to be σ(∪i∈NPi)-measurable, as any z ∈ co(⋃i∈N H(i)) ∪
X− will per se, viewed as a function from Ω to Rk, be σ(∪i∈NPi)-measurable.
To show that (x, p) is a competitive quasi-equilibrium, I will need that the price
system (p(A))A∈PN

i
, that can be seen by any agent under his information partition

PN
i in the grand coalition, is nonnegative. Assume to the contrary that there is an
A ∈ PN

ĩ
for some ĩ ∈ N such that p(A) < 0. Let z ∈ X− be given by αĩ,A = K

and αi,P = 1 otherwise. Then

pz = p

⎛⎝−∑
i∈N

∑
P∈PN

i

αi,P IP

⎞⎠ = −
∑
i∈N

∑
P∈PN

i

αi,P (pIP )

= −
∑
i∈N

∑
P∈PN

i

αi,P pP = −

⎛⎝∑
i∈N

∑
P∈PN

i ,i �=ĩ∨P �=A

pP

⎞⎠−Kp(A)

= C −Kp(A)
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where the constant C is independent of K, and p(A) < 0. Therefore choosing K
larger than C

p(A) will make pz positive, contradicting z ∈ X−. So (p(A))A∈PN
i
≥ 0

for any i ∈ N , implying that inf pXN,≥0
i = 0 for any i ∈ N . It remains to be shown

that xi maximizes ui on Bi(p) when 0 = inf pXN,≥0
i < pei. So suppose there is

a y ∈ Bi(p) such that ui(y) > ui(xi). Then y − ei ∈ H(i) ⊂ co(∪i∈NH(i)),
which together with y ∈ Bi(p) implies that py = pei. As the income of the agent is
positive, y is PN

i −measurable, and p(A) ≥ 0 for all A ∈ PN
i , it can be concluded

from

0 < pei = py =
∑
ω∈Ω

p(ω)yi(ω) =
∑

A∈PN
i

∑
ω∈A

p(ω)yi(ω) =
∑

A∈PN
i

p(A)yi(A)

that there must be some A ∈ PN
i such that yi(A) > 0 and p(A) > 0. So, by

lowering consumption equally in the states contained inA, a nonnegative sequence
of yn converging to y can be obtained such that pyn < pei for all n ∈ N, i.e.
yn − ei /∈ H(i). But then ui(yn) ≤ ui(xi), as yn is not in H(i). Since the
utility functions ui are assumed to be continuous this implies ui(y) ≤ ui(xi), a
contradiction to ui(y) > ui(xi). So xi indeed maximizes ui onBi(p) when agents
have positive income. This concludes the proof that (x, p) is a quasi-equilibrium
of the economy E. ��

The next example shows that the PN
i -measurability of the initial endowments

cannot be dropped from the assumptions. The underlying reason is that an agent
cannot use all of his initial endowment when trading, due to the measurability
restrictions on net trades. However, when his income is calculated that is done
by valuing the whole initial endowment, leading to higher demand than what can
actually be achieved by trading. Thus, one could circumvent these restrictions of
ei ∈ XN

i by defining the income of the agents in another way, taking into account
only the parts of the initial endowments which can really be used for trading. When
allocations have to be nonnegative as in this paper, this would be endowments e′i
such that e′ij(ω) := minω′ ∈Pi(ω) eij(ω

′) for all ω ∈ Ω and commodities j.

Example 8. Consider a private information economy with 3 agents i ∈ N =
{1, 2, 3}, one commodity and three statesΩ = {1, 2, 3}. Let the initial endowments,
the (private) information and the utility functions be

e1 := (2, 1, 2), P1 := {{1, 2}, {3}}, u1 := x1 + x2 + 3x3,

e2 := (2, 0, 2), P2 := {{1, 3}, {2}}, u2 := x1 + 3x2 + x3,

e3 := (0, 2, 2), P3 := {{2, 3}, {1}}, u3 := 3x1 + x2 + x3.

The net trades

z1 = (−1,−1, 4),
z2 = (−2, 3,−2),
z3 = (3,−2,−2),



Exchange economies with asymmetric information 215

lead to the core allocation

x =

⎛⎝1 0 6
0 3 0
3 0 0

⎞⎠ ∈ C(E).

Obviously, one has that xn ∈ C(En) for all n ∈ N. Nevertheless, x is not
a competitive quasi-equilibrium allocation. To see this, consider first the case
where every agent has positive income, i.e. ei + zi maximizes ui. Note that
p = (p1, p2, p3) ≥ 0, as the prices seen by an agent have to be nonnegative and
{3} ∈ P1, {2} ∈ P2, {1} ∈ P3. Then one calculates from the budget equations
pzi = 0 (these have to hold if ei + zi maximizes ui), that the price vector would
have to be p = (p1, p1, 1

2p1). As p 	= 0 we must have p > 0. The budget set of
agent 1 becomes {(x1, x2, x3)|x− e1 ∈ X1 and px = pe1 = 4p1 > 0}. But then
the unique maximizer of u1 on this budget set is (0, 0, 8) 	= x1. Hence, x cannot be
a competitive quasi-equilibrium in this case, because agent 1 has positive income
4p1. On the other hand, if there is an agent with zero income, one can distinguish
three cases.

1. pe1 = 0 ⇒ 2p1 + p2 + 2p3 = 0
p≥0⇒ p = 0, a contradiction.

2. pe2 = 0 ⇒ 2p1 + 2p3 = 0
p≥0⇒ p1 = p3 = 0

p�=0⇒ p2 > 0 ⇒ pe3 = 2p2 >
0 ⇒ x3 = (3, 0, 0) maximizes u3 on B3(p), a contradiction as p1 = 0.

3. pe3 = 0 ⇒ 2p2 + 2p3 = 0
p≥0⇒ p2 = p3 = 0

p�=0⇒ p1 > 0 ⇒ pe2 = 2p1 >
0 ⇒ x2 = (0, 3, 0) maximizes u2 on B2(p), a contradiction as p2 = 0.♦

The next theorem points out that under trade boundedness of the communica-
tion system any equilibrium allocation x is also in the core. Trade boundedness
here assures that all possible deviations of subcoalitions S ⊂ N from x are also
informationally feasible in the grand coalition. They are therefore excluded from
the budget sets of the agents in S not for informational infeasibility, but because
they cannot be afforded.

Theorem 9. Let E be an exchange economy with asymmetric information and trade
bounded communication system. If x is a competitive equilibrium allocation, then
x ∈ C(E).

Proof. Let (x, p) be a competitive equilibrium of E. Suppose that x /∈ C(E).
As x − e is informationally feasible for the grand coalition that can only be if
(ui(xi))i∈N ∈ intV (S) for a coalition ∅ 	= S ⊆ N , which means that there is an
allocation yS such that ui(yS

i ) > ui(xi) for all i ∈ S. As (yS
i −ei)i∈S ∈

∏
i∈S X

S
i

and
∑

i∈S(yS
i −ei) = yS(S)−e(S) = 0, (yS

i −ei)i∈S is under trade boundedness
also informationally feasible in the grand coalition. Thus,

ui(yS
i ) > ui(xi) =⇒ yS

i /∈ Bi(p) =⇒ pyS
i > pei

for all i ∈ S. Summing up, that leads to
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∑
i∈S py

S
i >

∑
i∈S pei

⇐⇒ pyS(S) > pe(S)

=⇒ yS(S) 	= e(S)

a violation of physical feasibility. Hence, x ∈ C(E). ��

Again trade boundedness is a vital assumption. Otherwise economies are easily
constructed, where {e} is a competitive equilibrium, but the core is empty, due to
the fact that trading is only possible in strict subcoalitions of N .

If x is a competitive equilibrium allocation in E, then it is straightforward that
xn is a competitive equilibrium allocation in the replica economy En. This shows
that for competitive equilibria the only if part of Theorem 7 holds in economies
with a trade bounded communication system.

Corollary 10. Let E be an exchange economy with asymmetric information and
trade bounded communication system. If x is a competitive equilibrium allocation
then xn ∈ C(En) for all n ∈ N.

4 Equal treatment

One way to derive an existence result for competitive allocations in the case of full
information (or only one state of the world) requires to show that agents of the
same type are treated ’equally’ in the core. Then a compactness argument and a
version of Theorem 7 are used to show that a subsequence of the mean allocations
xn := 1

n

∑n
j=1 x·,j , xn ∈ C(En), converges to a competitive equilibrium. Equal

treatment ensures that (xn)n ∈C(En), and thus xn ∈ C(E). I want to use a similar
approach in Section 5. However, when trying to carry over the proof of the equal
treatment property a problem arises. The enforcement of equal treatment in all core
allocations relies on the possibility to redistribute parts of the mean allocation of
one own’s type to all agents of the other types, making them better off. Under the
measurability constraints on the net trades imposed by informational feasibility,
this can no longer be guaranteed for arbitrary communication systems. In fact, the
following simple example shows a situation, where unequal treatment is present in
the core, exactly for the described reason.

Example 11. Consider a private information economy with 3 agents i ∈ N =
{1, 2, 3}, one commodity and three statesΩ = {1, 2, 3}. Let the initial endowments,
the (private) information and the utility functions be

e1 := (1, 1, 0), P1 := {{1, 2}, {3}}, u1(x) := x1 + x2 + 10x3,

e2 := (1, 0, 1), P2 := {{1, 3}, {2}}, u2(x) := x1 + 10x2 + x3,

e3 := (1, 1, 1), P3 := {{2, 3}, {1}}, u3(x) := 10x1 + x2 + x3.

The net trades

z(1,1) = z(1,2) = (−1,−1, 2),
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z(2,1) =
(
−1,

2
10
,−1
)
, z(2,2) =

(
−1,

38
10
,−1
)

z(3,1) = z(3,2) = (2,−1,−1),

lead to the allocation

x =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 2
0 0 2
0 2

10 0
0 38

10 0
3 0 0
3 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

The agents of type 2 are not treated equally in this allocation. Nevertheless, this
allocation is in C(E2). To see this, note that clearly x is informationally and
physically feasible. Suppose, contrary to x ∈ C(E2), that there is a coalition
S ⊂ N ×{1, 2}, S 	= ∅, and an allocation y for S such that ui(y(i,j)) > ui(x(i,j))
for all (i, j) ∈ S.

The first step is to show that S 	= N × {1, 2}. The allocation x := 1
2 (xi1 +

xi2)i∈N can easily be seen to be inC(E), as any agent gets the complete endowment
of the resource which he prefers most. Now, if S = N ×{1, 2}, then y := 1

2 (yi1 +
yi2)i∈N is an allocation for N and the linearity of the utility functions causes y to
be a deviation to x in the economy E, contradicting x ∈ C(E).

The next step is to see that pr1(S) = N . Otherwise only agents of the same
type can trade with each other, which will not give them the possibility to deviate.
So S 	= N × {1, 2} and pr1(S) = N .

As S 	= N × {1, 2} the inital endowment of the coalition S satisfies e(S) ≤
(5, 4, 4). Assume for the moment that there are two agents of type 3 in the coalition
S. Then u3(y(3,1)) + u3(y(3,2)) > 30 + 30 = 60 and, as the utility function u3 is
linear and monotone, u3(y(3,1)) + u3(y(3,2)) = u3(y(3,1) + y(3,2)) ≤ u3(e(S)) ≤
u3(5, 4, 4) = 58, a contradiction. Hence, without loss of generality S ⊆ N ×
{1, 2}−{(3, 2)}. This implies e(S) ≤ (5, 3, 3). By similar arguments one can now
continue to show that S ⊆ N × {1, 2} − {(1, 2), (2, 2), (3, 2)}, which together
with pr1(S) = N implies that S = {(1, 1), (2, 1), (3, 1)}.

The final step is now to show that there is no allocation y = (y(1,1), y(2,1), y(3,1))
for the coalition S = {(1, 1), (2, 1), (3, 1)} which is a deviation, i.e. that satisfies
u1(y(1,1)) > 20, u1(y(2,1)) > 2 and u1(y(3,1)) > 30. The problem of finding such
an allocation y can be rewritten in the following way. The allocation y satisfies

y =

⎛⎝1 + z11 1 + z12 z13
1 + z21 z22 1 + z23
1 + z31 1 + z32 1 + z33

⎞⎠ .
Informational feasibility requires that z11 = z12, z21 = z23 and z32 = z33. Physical
feasibility requires that z31 = −z11−z21, z32 = −z12−z22 and z13 = −z23−z33.
Combining this one obtains

y =

⎛⎝ 1 + z11 1 + z11 z11 + z22 − z21
1 + z21 z22 1 + z21

1− z11 − z21 1− z11 − z22 1− z11 − z22

⎞⎠ .
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So the rewritten problem is to find (z11, z21, z22) such thaty = y(z11, z21, z22) ≥ 0,
y(S) = e(S) = (3, 2, 2) and

u1 := u1(y(1,1)) = 2 + 12z11 − 10z21 + 10z22 > 20,
u2 := u2(y(2,1)) = 2 + 2z21 + 10z22 > 2,
u3 := u3(y(3,1)) = 12− 12z11 − 10z21 − 2z22 > 30.

The last three inequalities correspond to solving the linear equation system⎛⎝ 12 −10 10
2 10

−12 −10 −2

⎞⎠⎛⎝ z11z21
z22

⎞⎠ =

⎛⎝ û1
û2
û3

⎞⎠ ,
subject to û1 > 18, û2 > 0 and û3 > 18. Now solving this system leads to

z11 =
4û1 − 5û2 − 5û3

108

z21 =
−5û1 + 4û2 − 5û3

108
,

z22 =
û1 + 10û2 + û3

108
.

Physical feasibility implies that 1 + z21 ≥ 0 ⇔ û2 ≥ 5û1+5û3−108
4 , and û1 >

18, û3 > 18 implies that 5û1+5û3−108
4 > 180−108

4 = 18, so û2 > 18. Hence,
y(2,1),2 = z22 = û1+10û2+û3

108 > 216
108 = 2 = e2(S), a contradiction, since no

agent can have more of a commodity than the complete endowment. So there is no
deviation y for the coalition S. This concludes the proof that x ∈ C(E2).♦

Fortunately, what is really needed for the compactness argument is not equal
treatment in all core allocations, but, that there is at least one core allocation x ∈
C(En), in which agents are treated equally. This can be guaranteed under the
conditions of the following theorem.

Theorem 12. Let E be an exchange economy with asymmetric information and
trade bounded communication system. Assume that ei ∈

⋂
N⊇S�iX

S
i and ui ∈

Umo
qc for all i ∈ N . Then there is an x ∈ C(En), n ∈ N, in which agents of the

same type receive the same commodity bundle.

Instead of proving this theorem directly, we prove Lemma 13 for concave util-
ities, and explain how to obtain Theorem 12 from this lemma. Since this is a
standard argument, it is not given in detail. The lemma shows, that in the special
case of Theorem 12 where the utility functions are concave and normalized such
that ui(0) = 0, even a stronger result holds, namely that the mean allocation xn of
any core allocation x is also in the core.

Lemma 13. Let E be an exchange economy with asymmetric information and trade
bounded communication system. Assume that ei ∈

⋂
S�iX

S
i and ui ∈ Umo

co,0 for
all i ∈ N . Then x ∈ C(En), n ∈ N, implies that xn is also in C(En).
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The proof of the lemma relies on some other observations.

Lemma 14. Let E be an exchange economy with asymmetric information and trade
bounded communication system. Assume that ui ∈ Uqc for all i ∈ N . For any
assignment of commodities x : Ω → Rn×k

+ to the agents 1, . . . , n, n ≥ 2, of a
given type i ∈ N , and any S ⊂ {1, . . . , n}, |S| ≥ 2, there is an l ∈ S such that

ui

⎛⎝ 1
|S|
∑
j∈S

xj

⎞⎠ ≥ ui

⎛⎝ 1
|S| − 1

∑
j∈S,j �=l

xj

⎞⎠ .

Proof. Suppose to the contrary that

ui

⎛⎝ 1
|S| − 1

∑
j∈S,j �=l

xj

⎞⎠ > ui

⎛⎝ 1
|S|
∑
j∈S

xj

⎞⎠
for all l ∈ S. Then quasiconcavity yields

ui

⎛⎝ 1
|S|
∑
l∈S

⎛⎝ 1
|S| − 1

∑
j∈S,j �=l

xj

⎞⎠⎞⎠ ≥ min
l∈S

ui(
1

|S| − 1

∑
j∈S,j �=l

xj)

> ui

⎛⎝ 1
|S|
∑
j∈S

xj

⎞⎠ .

But the operand on the left hand side, 1
|S|
∑

l∈S
1

|S|−1

∑
j∈S,j �=l xj , actually equals

the operand of the right hand side, 1
|S|
∑

j∈S xj , a contradiction. ��

This lemma allows to order (x1, . . . , xn) in a specific way.

Lemma 15. Let E be an exchange economy with asymmetric information and trade
bounded communication system. Assume that ui ∈ Uqc for all i ∈ N . For any
assignment of commodities x : Ω → Rn×k

+ to the agents 1, . . . , n, n ≥ 2, of
a given type i ∈ N , there is a permutation π of (1, . . . , n) such that for xπ :=
(xπ(1), . . . , xπ(n)) it holds that

ui

⎛⎝ 1
n−m+ 1

n∑
j=m

xπ
j

⎞⎠ ≥ ui

⎛⎝ 1
n−m

n∑
j=m+1

xπ
j

⎞⎠
for allm = 1, . . . , n− 1.

Proof. π can be constructed inductively. Apply Lemma 14 to

S = {1, . . . , n}

and let π(1) = l. When π(1), . . . , π(j) are constructed for some 2 ≤ j < n, apply
Lemma 14 to

S = {1, . . . , n} \ {π(1), . . . , π(j)},
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and let π(j+1) = l. When finally j = n, let π(n) be the last remaining element in

S = {1, . . . , n} \ {π(1), . . . , π(n− 1)}.

Note that the π(j), 1 ≤ j < n, obtained in this way are distinct so that the process
really ends with |{1, . . . , n} \ {π(1), . . . , π(n− 1)}| = 1 and π is a permutation
of (1, . . . , n). The desired property holds by the construction via Lemma 14. ��

Now the proof of Lemma 13 can be given.

Proof. Assume to the contrary that xn is not in C(En). So there is a subcoalition
S of the grand coalition N × {1, . . . , n} and an allocation yS for that coalition,
such that

ui(yS
(i,j)) > ui(xn

(i,j)) for all (i, j) in S.

Using concavity one obtains therefore for

yS
(i,j) :=

1
|pri(S)|

∑
j∈pri(S)

yS
(i,j),

that

ui

(
yS
(i,j)

)
≥ 1
|pri(S)|

∑
j∈pri(S)

ui(yS
(i,j)) > ui(xn

(i,j)) for all (i, j) in S.

It is easily seen, that yS is also physically and informationally feasible for the
coalition S. As xn

(i,j) = xn
(i,k) for all k 	= j one can without loss of generality

assume that pri(S) = {li, . . . , n}, 1 ≤ li ≤ n, i ∈ N . Furthermore, x ∈ C(En)
implies that for any collection of permutations (πi)i∈N of (1, . . . , n) (xπi

i )i∈N :=
(x(i,πi(j)))i,j is also in C(En). Additionally permutations do not change the mean
xn

(i,j), so it can be assumed by Lemma 15 that

ui(xn
(i,j)) = ui

⎛⎝ 1
n

n∑
j=1

x(i,j)

⎞⎠
≥ ui

⎛⎝ 1
n− 1

n∑
j=2

x(i,j)

⎞⎠
≥ . . .

≥ ui

⎛⎝ 1
n− li + 1

n∑
j=li

x(i,j)

⎞⎠
= ui

⎛⎝ 1
|pri(S)|

∑
j∈pri(S)

x(i,j)

⎞⎠ .
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Hence, altogether this yields

ui(yS
(i,j)) > ui

⎛⎝ 1
|pri(S)|

∑
j∈pri(S)

x(i,j)

⎞⎠ ≥ 1
|pri(S)|

∑
j∈pri(S)

ui(x(i,j)). (4.1)

Concavity and ui(0) = 0 imply that

ui(λx) = ui(λx+ (1− λ)0) ≥ λui(x) + (1− λ)ui(0) = λui(x) (4.2)

for all λ ∈ [0, 1]. Equation 4.1 is equivalent to∑
j∈pri(S)

ui(yS
(i,j)) >

∑
j∈pri(S)

ui(x(i,j)) ≥ ui(x(i,j)) for any j ∈ pri(S),

as ui ≥ 0 on Rk×Ω
+ (ui ∈ Umo

co,0). Note that ui(yS
(i,j)) > 0, so one can define

λ(i,j) :=
ui(x(i,j))
ui(yS

(i,j))
,

and using Equation 4.2 one has

ui(λ(i,j)y
S
(i,j)) ≥ λ(i,j)ui(yS

(i,j)) =
ui(x(i,j))
ui(yS

(i,j))
ui(yS

(i,j)) = ui(x(i,j))

for all i ∈ pr1(S), j ∈ pri(S).
Furthermore,

∑
j∈pri(S)

λ(i,j)y
S
(i,j) =

⎛⎝ ∑
j∈pri(S)

λ(i,j)

⎞⎠ yS
(i,j)

=

⎛⎝ ∑
j∈pri(S)

ui(x(i,j))
ui(yS

(i,j))

⎞⎠ yS
(i,j)

= |pri(S)|
(∑

j∈pri(S) ui(x(i,j))∑
j∈pri(S) ui(yS

(i,j))

)
︸ ︷︷ ︸

<1 by Equation 4.1

yS
(i,j)

< |pri(S)|yS
(i,j) =

∑
j∈pri(S)

yS
(i,j).

Hence, letting for all i ∈ pr1(S)

yr
i :=

∑
j∈pri(S)

yS
(i,j) −

∑
j∈pri(S)

λ(i,j)y
S
(i,j) =

∑
j∈pri(S)

(1− λ(i,j))yS
(i,j),

one has that yr
i > 0 and yr

i ∈ XS
i . Let

ỹS
(i,j) := λ(i,j)y

S
(i,j) +

yr
i

|pri(S)| .
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The proof is finished, if it can be shown that ỹS is an allocation for S, because then,
as

ui(ỹS
(i,j)) > ui(x(i,j)) for all (i, j) in S,

ỹS is a deviation to x, contradicting x ∈ C(En). ỹS is an allocation for S, if it
is informationally and physically feasible. Informational feasibility and ỹS ≥ 0
follows from

ỹS
(i,j) = λ(i,j)y

S
(i,j) +

yr
i

|pri(S)| .

= λ(i,j)y
S
(i,j) +

1
|pri(S)|

∑
j∈pri(S)

(1− λ(i,j))(e(i,j) + yS
(i,j) − e(i,j))

= e(i,j) + λ(i,j)y
S
(i,j)︸ ︷︷ ︸

∈XS
i

+
1

|pri(S)|
∑

j∈pri(S)

(1− λ(i,j))(yS
(i,j) − e(i,j))︸ ︷︷ ︸

∈XS
i

− e(i,j)

|pri(S)|︸ ︷︷ ︸
∈XS

i

∑
j∈pri(S)

λ(i,j)︸ ︷︷ ︸
<|pri(S)|

> e(i,j) + λ(i,j)y
S
(i,j) +

1
|pri(S)|

∑
j∈pri(S)

(1− λ(i,j))(yS
(i,j)−e(i,j))︸ ︷︷ ︸

≥0

−e(i,j)

≥ 0.

The remaining part of physical feasibility follows from∑
(i,j)∈S

ỹS
(i,j) =

∑
i∈pr1(S)

∑
j∈pri(S)

(
λ(i,j)y

S
(i,j) +

yr
i

|pri(S)|

)

=
∑

i∈pr1(S)

∑
j∈pri(S)

⎛⎝λ(i,j)y
S
(i,j)+

1
|pri(S)|

∑
j∈pri(S)

(1−λ(i,j))yS
(i,j)

⎞⎠
=

∑
i∈pr1(S)

∑
j∈pri(S)

(
λ(i,j)y

S
(i,j) + (1− λ(i,j))yS

(i,j)

)
=
∑

(i,j)∈S

yS
(i,j) =

∑
(i,j)∈S

yS
(i,j) = e(S).

��
To prove Theorem 12 from Lemma 13, use [7], p.58, Proposition A.2, to ap-

proximate u ∈ Umo
qc by a sequence of (uj)j∈N such that uj ∈ Umo

co,0 for all j ∈ N.
Then use upper hemicontinuity of the core, viewed as a compact-valued correspon-
dence from (N,Ω, e, (PS

i )i∈S,S⊂N )× (Umo
qc )N to RN×k×Ω , i.e. when the utility

functions are variables with domainUmo
qc . Any sequence of elements from the cores

of the approximating economies yields a sequence satisfying equal treatment by
Lemma 13, and thus by upper hemicontinuity a core element of the quasiconcave
economy.
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5 Existence of competitive allocations

As a consequence of Theorem 2 one obtains in combination with Theorem 7 an
existence result for the quasi-equilibrium.

Theorem 16. Let E be an exchange economy with asymmetric information and
trade bounded communication system. Assume that ei ∈

⋂
S�iX

S
i andui ∈ Umo

qc ∩
C(Rk×Ω

+ ) for all i ∈ N . Then this economy has a competitive quasi-equilibrium
(p, x). Moreover the price system p can be chosen σ(

⋃
i∈N PN

i )-measurable.

Proof. By Theorem 2 C(En) 	= ∅ for all n ∈ N. By Theorem 7 it suffices to
show that the set of all x ∈ RN×k×Ω such that xn ∈ C(En) for all n ∈ N is not
empty. To see this, let xn ∈ C(En) be a sequence of core elements from the replica
economies En, n ∈ N. By Theorem 12 it can be assumed that agents of the same
type are treated equally, i.e. xn = (yn)n for all n ∈ N and allocations yn in the
economy E. Furthermore, yn ∈ C(E) for all n ∈ N, because any deviation to yn

in the economy E would also be a deviation to (yn)n in the economy En. As C(E)
is compact, there is a convergent subsequence (ynk

)k, nk → ∞, of (yn)n. Let y
be the limit of this subsequence. If it is shown that yn ∈ C(En) for all n ∈ N the
proof is finished. Assume to the contrary that yn is not in C(En) for some n ∈ N.

So there is coalitionS ⊂ N×{1, . . . , n} and an allocation xS for that coalition
such that

u(i,j)(xS
(i,j)) > u(i,j)(yn

(i,j)) for all (i, j) ∈ S.

As |S| <∞, there is an ε > 0 such that

u(i,j)(xS
(i,j))− u(i,j)(yn

(i,j)) > ε for all (i, j) ∈ S.

On the other hand, using continuity of utilities and ynk
→ y, there is a k0, such

that for all k ≥ k0,

ε ≥ ui(yi)− ui((yi)nk
) ≥ −ε.

But then, as u(i,j)(yn
(i,j)) = ui(yi),

u(i,j)(xS
(i,j))− u(i,j)((y(i,j))nk

nk
)

= u(i,j)(xS
(i,j))−u(i,j)(yn

(i,j)) + ui(yi)︸ ︷︷ ︸
=0

− ui((yi)nk
)

> ε+ (−ε) ≥ 0 for all (i, j) ∈ S.

Hence, xS is also an allocation for S in the economies Enk , k ≥ k0, nk ≥ n, such
that

u(i,j)(xS
(i,j)) > u(i,j)((y(i,j))nk

nk
) for all (i, j) ∈ S.

However, this contradicts (ynk
)nk ∈ C(Enk). ��
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Next situations are identified, where inf pXN,≥0
i < pei is true for all i ∈ N ,

so that Theorem 16 turns into an existence result for the competitive equilibrium.
As inf pXN,≥0

i must be equal to 0 for strictly increasing utilities, it is the same to
identify when every agent has positive income.

Let the information matrix I(S) of a coalition S be the matrix in
{0, 1}Ω×∪i∈SPi , where the entry I(S)(ω,A) is equal to IA(ω), i.e.

I(S) := (IA(ω)ω∈Ω)A∈∪i∈SPi .

This matrix maps

X+ := {x ∈ Rk×Ω |x is σ(∪i∈NPi)-measurable and xA ≥ 0
for all A ∈ ∪i∈NPi}

to Rk×∪i∈N Pi in the following way. Let

xI(S) := (xjI(S)A)1≤j≤k,A∈∪i∈N Pi .

The set of all elements in X+ mapped to the zero matrix in Rk×∪i∈N Pi is then

K(I(S)) := {x ∈ X+|xI(S) = 0}.

Lemma 17. Let E be an exchange economy with asymmetric information. Assume
that ei ∈ XN

i , ei 	= 0,
∑

i∈N ei > 0, and ui ∈ Umo for all i ∈ N . Each of
(i) to (iv) is a sufficient condition for every agent to have positive income in a
quasi-equilibrium (x, p) of this economy, where p is σ(

⋃
i∈N PN

i )-measurable.

(i) The communication system is symmetric for the grand coalition, i.e.PN
i ≡ PN

for all i ∈ N .
(ii) pei > 0 for some agent i ∈ N, and all other agents have positive initial

endowments.
(iii) K(I(S)) = {0} for some coalition S, and all agents have positive initial

endowments.
(iv) K(I(S)) = {0} for some coalition S, all agents in S have positive initial

endowments, and this coalition knows collectively more than the agents in
N \ S, i.e. ⋃

i∈S

Pi ⊇
⋃

i∈N\S

Pi.

Proof. Let (x, p) be a quasi-equilibrium of the economy E.
(i): In such a communication system the set of allσ(

⋃
i∈N Pi)-measurable price

systems p 	= 0 such that p(A) ≥ 0 for all A ∈ Pi is equal to the set XN,≥0
i \ {0}

for any i ∈ N . So, as
∑

i∈N ei > 0, at least one agent i has positive income. But
then p(A) > 0 for all A ∈ PN

i
= Pi, i ∈ N , so every agent has positive income.

(ii): As pei > 0 leads to p(A) > 0 for all A ∈ Pi, it can be concluded that
p(Ω) > 0. But then, as ej is σ(PN

j )-measurable and p(A) ≥ 0 for any A ∈ PN
j ,

j 	= i,

pej =
∑

A∈P N
j

p(A)ej(A)
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≥
∑

A∈P N
j

p(A) min
A∈P N

j

ej(A)

=

⎛⎝ ∑
A∈P N

j

p(A)

⎞⎠ min
A∈P N

j

ej(A)

= p(Ω)︸ ︷︷ ︸
>0

min
A∈P N

j

ej(A)︸ ︷︷ ︸
>0

> 0,

hence any agent has positive income.
(iii): I show that K(I(S)) = {0} implies that one agent in S has positive

income, then (ii) can be used. So suppose to the contrary, that

pei =
∑

A∈Pi

p(A)ei(A) = 0 for all i ∈ S.

Then, as p(A) ≥ 0 and ei(A) ≥ 0 for all A ∈ ∪i∈NPi, one obtains that

p(A)ei(A) = 0 for all A ∈ ∪i∈SPi.

As ei(A) > 0 for all A ∈ ∪i∈SPi this leads to

p(A) = 0 for all A ∈ ∪i∈SPi,

or, because p(A) ≥ 0 for all A ∈ ∪i∈NPi and p is σ(∪i∈NPi)-measurable,

p ∈ K(I(S)) = {0}.

This contradicts p 	= 0.
(iv): As in (iii), one agent in S must have positive income. But then p(Ω) > 0,

so all agents in S have positive income, showing that p(A) > 0 for allA ∈ ∪i∈SPi.
As ∪i∈SPi ⊇ ∪i∈N\SPi and ei ≥ 0, ei 	= 0 for all i ∈ N \ S, this means that the
agents in N \ S also have positive income. ��

Note that the situations described in (i), (iii) and (iv) are independent of the
given quasi-equilibrium (x, p). So the following corollary to Theorem 16 can be
stated.

Corollary 18. Let E be an exchange economy with asymmetric information and
trade bounded communication system. Assume that ei ∈

⋂
S�iX

S
i andui ∈ Umo

qc ∩
C(Rk×Ω

+ ) for all i ∈ N . Let the assumptions and one of the situations (i), (iii) or
(iv) given in Lemma 17 hold. Then this economy has a competitive equilibrium, and
any competitive quasi-equilibrium is already a competitive equilibrium.
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As stated after Definition 4, this corollary is able to cover existence of a Radner
equilibrium without free disposal. Other existence results are contained in Einy,
Moreno and Shitovitz [4], for the case of a non-atomic measure space of agents,
and Radner [10,12], for the case of a finite number of agents. All of these papers
assume some degree of disposability, in [4] and [12] free disposal, and in [10]
production sets have a nonempty relative interior, which translates into disposability
of at least part of the endowments in a pure exchange economy. It is known that
if one wants to dispense with free disposal one has to allow for negative prices.
An example of an economy without free disposal such that equilibrium prices are
negative can be found in Liu [8]. The prices as defined here are consequently also
allowed to be negative. Nevertheless, in equilibrium all prices seen by agents will
have to be positive, so that nobody can exploit the existence of negative prices. In
contrast to the machinery of proof used in this paper the mentioned existence results
are not obtained by appealing to a limit theorem for the core. Moreover, Radner
has to assume concavity of state-dependent utility in order to achieve concavity of
expected utility. This corresponds to concavity of the utility functions ui : Rk×Ω

+ →
R used here. No such assumptions are necessary in [4], as they are dealing with a
non-atomic measure space of agents.
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Summary. We analyze the coarse, the fine, and the private core allocation of an
exchange economy with differential information. The basic questions that we ad-
dress are whether the above concepts are: (i) coalitionally incentive compatible,
i.e., does truthful revelation of information in each coalition occur; and (ii) tak-
ing into account the information superiority or information advantage of an agent.
Moreover, the above three concepts are examined in the presence of externalities
and a comparison and interpretation of all of three core notions is provided.

1 Introduction

The idea of an exchange economy with differential information [i.e., an economy
consisting of a finite set of traders each of whom is characterized by a state depen-
dent (random) utility function, a random initial endowment, a private information
set, and a prior], was introduced by Radner (1968) [we will sometimes call such an
economy as a Radner-type economy]. The equilibrium notion that Radner (1968)
adopted to analyze trade among agents in an economy with differential information
was the Walrasian equilibrium. Since the Walrasian equilibrium notion is noncoop-
erative it precludes cooperation among groups of agents. Thus, we adopt the core,
a cooperative solution concept, in order to analyze the trade among agents in a
Radner-type economy. We will argue that not only does the core provide more sen-
sible outcomes than the Walrasian equilibrium, but it is also coalitionally incentive
compatible (i.e., there is truthful revelation of information in each coalition) and it
takes into account explicitly the information advantage or superiority of an agent.

Throughout the paper we will denote the private information set of agent i
(which is going to be a partition of a measure space) by Fi. We will first examine

� We wish to thank Stefan Krasa, Frank Page, Wayne Shafer, Anne Villamil, and Myrna Wooders for
several useful comments, discussions, and suggestions. The comments of two referees were also helpful
and we thank them for their careful reading. Obviously, we are responsible for any remaining errors.
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versions of the coarse core of Wilson (1978), where the blocking net trades of
a coalition S are

∧
i∈S Fi-measurable1 and therefore the information is common

knowledge to each member of the coalition. We next examine the fine core concept
of Wilson (1978), where the blocking net trades of a coalition S are

∨
i∈S Fi-

measurable and hence the information is pooled by the members of the coalition.
Finally, we examine the private core of Yannelis (1991), where the blocking net
trade of each member of the coalition Fi-measurable and thus there is bargaining
under differential information among the members in each coalition, contrary to
the coarse and fine core.

We will show that the coarse core exists, it is coalitionally incentive compatible
(i.e., there is truthful revelation of information in each coalition) and it takes into
account the information superiority of an individual. However, since the coarse core
always contains the private core and the latter exists and has the above properties,
we will conclude that we learn nothing new from the coarse core that cannot be
learned from the private core. In fact as we will show by means of an example,
the coarse core is “too large”, i.e., all the individually rational and Pareto optimal
allocations constitute the coarse core.

Contrary to the coarse core, the basic problem with the fine core is that it is
“too small” and in general it does not exist. Moreover, whenever it does exist we
will show that it is not coalitionally incentive compatible and it does not take into
account the information superiority of an individual. The analysis of these core
concepts suggests that the private core may be the appropriate core notion in an
exchange economy with differential information. This concept exists under standard
continuity and concavity assumptions on the utility functions, it is coalitionally
incentive compatible, and takes into account the information superiority of an agent.
Moreover, we show that the private core can be used to model the idea of an
intermediary [see Boyd-Prescott (1986) as well]. The intermediary is an agent with
“better” information than all other agents who by using his/her superior information,
executes the correct trades. The idea of an intermediary arises endogenously and
naturally in our framework. Our results suggest that cooperative solution concepts
may be quite useful for analyzing trade in economies with differential information
and may be useful for tackling basic issues in the theory of financial markets.

The paper is organized as follows: Section 2 contains notation and the economic
model. Several core notions are defined in Section 3 and some preliminary results
are proved as well. Section 4 focuses mainly on the incentive compatibility of the
private core. The interpretation of the different core concepts is given in Section 5.
Section 6 introduces different core notions in the presence of externalities, and
an existence result is proved in Section 7. Section 8 contains some concluding
remarks. Finally, in Section 9 we compare the core with the value allocation of
Krasa-Yannelis (1991).

1 The symbol
∧

i∈S Fi denotes the “meet”, i.e., the maximal partition contained in all Fi. The symbol∨
i∈S Fi denotes the “join”, i.e., the minimal partition containing all Fi. By an abuse of notation we

will denote throughout the paper, the σ-algebra generated by the partition Fi also by Fi.
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2 Notation and the economic model

Before we outline our model we begin with some notation.

2.1 Notation

Rn denotes the n-dimensional Euclidean space.
RN

+ denotes the positive cone of Rn.
Rn

++ denotes the strictly positive cone of Rn.
2A denotes the set of all subsets of the set A.
∅ denotes the empty set.
\ denotes set-theoretic subtraction.
|A| denotes the cardinality of the set A.

If (Ω,F , µ) is a measure space, then Fi will always denote a measurable par-
tition of Ω (or a sub-σ-algebra) and Ei(ω) will denote the element of the partition
Fi which contains ω ∈ Ω. If X is a linear topological space, its dual is the space
X∗ of all continuous linear functionals on X .

2.2 The exchange economy with differential information

Let Y denote the commodity space. For simplicity one may identify Y with the
positive cone of R′. However, all the results in this paper remain true if Y is the
positive cone of any Banach lattice with an order continuous norm.2 Therefore,
one can allow for infinitely many commodities. Denote by (Ω,F , µ) a probability
measure space. An exchange economy with differential information E is given by

E = {(Ω, ui, ei,Fi, µ) : i = 1, 2, ..., n} where
(1) Xi : Ω → 2Y is the consumption set of agent i,
(2) ui : Y → R is the utility function of agent i,
(3) Fi is a (measurable) partition of Ω denoting the private information3 of

agent i,
(4) ei : Ω → Y is the initial endowment of agent i, where ei is Fi-

measurable, (Bochner) integrable and ei(ω) ∈ Xi(ω) µ – a.e.
(5) µ is a probability measure onΩ denoting the common prior of each agent.

The expected utility of agent i is given by∫
ω∈Ω

ui(xi(ω))dµ(ω).

A possible interpretation of the above economy is the following: one may think that
there are two periods where actual consumption takes place in the second period.

2 See Section 7 for rigorous definitions.
3 As in Kobayashi (1980) we will assume that the members of a coalition release their private

information sets honestly, i.e., private information sets are common knowledge.
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In period one there is uncertainty over the states of nature and in this period agents
make agreements which may be contingent on the realized state of nature in the
second period. It is important to note that in this setting agents have differential
information with respect to the realized state of nature and know their endowment
realization (i.e., the initial endowment of each agent is Fi-measurable). Note that
a common prior assumption has been adopted in this framework. However, as in
Yannelis (1991), one may allow for different priors, Bayesian updating, and random
utility functions.All the results of this paper remain valid in this case, but we choose
not to adopt the latter modeling for simplicity of exposition and easier calculation
of our examples introduced later in the paper.

3 Core notions and preliminary results

In this section we define several different core notions for an exchange economy
with differential information.

3.1 The private core

The following core notion was introduced in Yannelis (1991, Definition 3.1.1,
p. 187). It was subsequently used by Allen (1991) who refers to it as the private
information core, or the publicly predictable information core.

Definition 3.1. An allocation x : Ω → Πn
i=1Xi is a private core allocation for E ,

if the following conditions hold:

(i) each xi is Fi-measurable;
(ii)

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω) µ – a.e.;

(iii) it is not true that there exist S ⊂ {1, 2, ..., n} and y : Ω → Πi∈SXi, such that
each yi is Fi-measurable for all i ∈ S,∑i∈S yi(ω) =

∑
i∈S ei(ω) µ – a.e.

and
∫
ui(yi(ω))dµ(ω) >

∫
ui(xi(ω))dµ(ω) for all i ∈ S.

Condition (i) implies that the net trade of each agent, i.e., xi − ei is Fi-
measurable (recall that each ei is Fi-measurable) and consequently each agent
knows his/her own net trade realization. Condition (ii) says that the markets are
cleared for almost all states of nature. Note that since

∑n
i=1(xi(ω)− ei(ω)) = 0 µ

– a.e. and by (i) each xi− ei is Fi-measurable, it follows that
∑n

i=1(xi(·)− ei(·))
is
∨n

i=1 Fi-measurable and therefore, the grand coalition knows the aggregate net
trade realization.

Condition (iii) says that it is not possible for a coalition of agents to get together,
redistribute their resources among themselves (while each agent in the coalition use
his/her own private information) and make the expected utility of each agent in the
coalition better off.

It should be noted that the measurability assumptions in (i) and (iii) are equiv-
alent to the fact that:

(i′) Each xi − ei is Fi-measurable, and
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(ii′) It is not true that there exist S and y : Ω → Πi∈SXi, such that yi − ei
is Fi-measurable for all i ∈ S,

∑
i∈S yi(ω) =

∑
i∈S ei(ω)µ – a.e. and∫

ui(yi)dµ >
∫
ui(xi)dµ for all i ∈ S.

Pick now arbitrarily an agent j in the coalition S. Note that since in (iii)
above,

∑
i∈S(yi(·) − ei(·)) = 0, by rearranging we have that ej(·) − yj(·) =∑

i∈S\{j}(yi(·)− ei(·)). Since ej − yj is Fj-measurable and
∑

i∈S\{j}(yi − ei)
is
∨

i∈S\{j} Fi-measurable, it is always the case that within a coalition say S the
|S − 1| members of the coalition can pool their private information and verify the
net trade of the remaining agent.4

The following theorem proved inYannelis (1991) provides sufficient conditions
which guarantee the existente of a private core allocation for E . The commodity
space Y can be the positive cone of any Banach lattice with an order continuous
norm.

Theorem 3.1. Let E = {(Xi, ui, ei,Fi, µ) : i = 1, 2, ..., n) be an exchange
economy with differential information, satisfying the following assumptions for
each i(i = 1, 2, ..., n) :

(a.3.1) Xi : Ω → 2Y is a convex, closed, nonempty valued correspondence;
(a.3.2) ui : Y → R is continuous, integrably bounded and concave.

Then a private core allocation exists in E .

A few technical remarks are in order. Note that in Theorem 3.1 of Yannelis
(1991), the set-valued functionXi : Ω → 2Y is assumed to be integrably bounded
andFi-measurable as well. The latter assumption was needed to show [seeYannelis
(1991, p. 191)] that the setLXi , which is defined to be a set of all Bochner integrable
and Fi-measurable selections from the set-valued function Xi : Ω → 2Y , is
nonempty. However, since ei : Ω → Y is Bochner integrable and Fi-measurable,
we can conclude that ei ∈ LXi

, and hence the set LXi
, is indeed nonempty.

This change in assumptions allows us to relax the separability assumption on the
commodity space. [Recall that the separability assumption in Yannelis (1991) was
needed in one step only, in particular it was used to make the Aumann measurable
selection theorem applicable and to show thatLXi , is nonempty.] Finally, the utility
function of each agent, ui : Y → R can only be assumed to be norm continuous
instead of weakly continuous as it was assumed inYannelis (1991). In particular, by
virtue of the Lebegue Dominated Convergence Theorem one can show that

∫
uidµ

is norm continuous. In view of the concavity of ui it follows from Mazur’s Theorem
that
∫
uidµ is also weakly-upper semicontinuous (w-u.s.c.) and the existente proof

in Yannelis (1991) remains unchanged. Note that in this case it doesn’t make any
difference whether we assume that each Fi is a partition, or a sub-σ-algebra of Ω.
Moreover, the dual space of Y doesn’t need to have the Radon-Nikodym Property
(RNP). For more details an these issues see Balder-Yannelis (1991) or Page (1992).

4 In view of this property of the private core, Allen (1991) refers to it as the publicly predictable
information core.
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3.2 The coarse core

The following definition of a coarse core allocation is taken from Yannelis (1991,
p. 187). It is a variant of the coarse core concept first introduced by Wilson (1978)
[see also Kobayashi (1980)].

Definition 3.2. An allocation x : Ω → Πn
i=1Xi is a coarse core allocation for E ,

if the following conditions hold:

(i) Each xi is Fi-measurable;
(ii)

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω) µ – a.e.;

(iii) It is not true that there exist S ⊂ {1, 2, ..., n} and y : Ω → Πi∈SXi such that
yi − ei is

∧
i∈S Fi-measurable for all i ∈ S,

∑
i∈S yi(ω) =

∑
i∈S ei(ω) µ –

a.e. and
∫
ui(yi(ω)). dµ(ω) >

∫
ui(xi(ω))dµ(ω) for all i ∈ S.

Conditions (i) and (ii) are discussed above. Condition (iii) says that it is not
possible for a coalition of agents by redistributing their initial endowments (based
on information which is common knowledge to the coalition) to make the expected
utility of each agent in the coalition better off.

We now state a result on the existence of coarse core allocations that follows
directly from Theorem 3.1 in Yannelis (1991), simply by noticing that the set of all
private core allocations for E is a strict subset of the set of all coarse core allocations
for E .

Theorem 3.2. Let E = {(Xi, ui, ei,Fi, µ) : i = 1, 2, ..., n} be an exchange
economy with differential information satisfying for each i, (i = 1, 2, ..., n) all the
assumptions of Theorem 3.1 above. Then a coarse core allocation exists in E .

Note that if condition (i) in Definition 3.2 is replaced by:

(i′) Each xi is
∧

i∈I Fi-measurable,

then we will indicate in Section 5 that such a coarse core notion which we will
call a strong coarse core allocation for E , may not exist. In particular, we show in
Section 5 that there exist private information exchange economies satisfying all the
assumptions of Theorem 3.2, but for which strong coarse core allocations may not
exist. Note that what we call here a “strong coarse core” corresponds to the “coarse
core” in Allen (1991). It is exactly for this reason that Allen (1991) concludes that
the strong coarse core may be empty.

3.3 The fine core

The following core notion is taken from Yannelis (1991, p. 188) and is a variant of
the fine core concept introduced by Wilson (1978).

Definition 3.3. An allocation x : Ω → Πn
i=1Xi is a fine core allocation for E if

the following conditions hold:

(i) Each xi is Fi-measurable.
(ii)

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω) µ – a.e.
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(iii) It is not true that there exist S ⊂ {1, 2, ..., n} and y : Ω → Πi∈SXi, such that
yi − ei is

∨
i∈S Fi-measurable for all i ∈ S,∑i∈S yi(ω) =

∑
i∈S ei(ω) µ –

a.e. and
∫
ui(yi(ω))dµ(ω) >

∫
ui(xi(ω))dµ(ω) for all i ∈ S.

Since conditions (i) and (ii) are the same with those in Definition 3.1 we only
need to interpret condition (iii). The latter condition says that no coalition of agents
can redistribute their own initial endowment using their pooled information and
make every member in the coalition better off. Formally, since each net trade yi−ei
is
∨

i∈S Fi-measurable for each i ∈ S, we can conclude that net trades are now
based on the pooled information of the coalition. It was remarked inYannelis (1991,
p. 188) that the above fine core may be empty.5 In Section 5 we show by means
of an example (which satisfies all the assumptions of Theorem 3.1) that indeed the
fine core may be empty.

If condition (i) in Definition 3.3 is replaced by:

(i′) Each xi is
∨n

i=1 Fi-measurable,

then we will call such a core notion a weak fine core allocation for E .6

The theorem below indicates that a weak fine core allocation exists in E .

Theorem 3.3. Let E = {(Xi, ui, ei,Fi, µ) : i = 1, 2, ..., n} be an exchange
economy with differential information satisfying for each i(i = 1, 2, ..., n) all the
assumptions of Theorem 3.1. Then a weak fine core allocation exists in E .

Proof. It follows directly from Theorem 3.1 as follows. ForS ⊂ {1, 2, ..., n) denote∨
i∈S Fi by FS . Define LXi as: LXi = {xi : xi : Ω → Y is Bochner integrable,∨
S⊂I FS-measurable and xi(ω) ∈ Xi(ω) µ – a.e.}. By Theorem 3.1 there exists

on x ∈ ΠN
i=1LXi

, such that:

(i)
∑n

i=1 xi(ω) =
∑n

i=1 ei(ω) µ – a.e.
(ii) It is not true that there existS and (yi)i∈S ∈ Πi∈SLxi such that

∑
i∈S yi(ω) =∑

i∈S ei(ω) µ – a.e. and
∫
ui(yi)dµ >

∫
µi(xi)dµ for all i ∈ S.

Observe that since x ∈ Πn
i=1LXi each xi is

∨n
i=1 Fi-measurable. (ii) implies that

condition (iii) of Definition 3.3 holds. To see this, suppose otherwise than there
exist S ⊂ I and y : Ω → Πi∈SXi such that yi − ei is

∨
i∈S Fi-measurable 7

for all i ∈ S,
∑

i∈S yi(ω) =
∑

i∈S ei(ω) µ – a.e. and
∫
ui(yi)dµ >

∫
ui(xi)dµ

for all i ∈ S. Since yi is
∨

i∈S Fi-measurable it is also
∨

S⊂I FS-measurable and
therefore yi ∈ LXi for all i ∈ S, a contradiction to condition (ii) above. Hence,
we conclude that x : Ω → Πn

i=1Xi is a weak fine core allocation for E and this
completes the proof.

5 Wilson (1978) has already shown by means of an example that his core notion may be empty.
However, his example is not entirely consistent with the above notion. Recall that in the Wilson setting
allocations and endowments are not necessarily measurable. In a public finance setting Berliant (1992)
has also shown that a fine core-type notion may not exist.

6 Clearly the set of all fine core allocations for E is a strict subset of the set of weak fine core allocations
for E . Also, notice that in the definitions of the fine, coarse, and weak fine core the measurability of the
final allocation is equivalent to the measurability of the net trades. However, this is not the case for the
strong coarse core.

7 Note that yi −ei,
∨

i∈S Fi-measurable for all i ∈ S is equivalent (recall that ei is Fi-measurable)
to the fact that yi is

∨
i∈S Fi- measurable for all i ∈ S.
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It should be noted that our definition of a weak fine core allocation for E corre-
sponds to Allen’s (1991) fine core allocation for E , who has proved a less general
version of Theorem 3.3.

4 Truthful revelation of information in the core

One of the basic questions that one may ask is whether the core notions defined in
the previous section are coalitionally incentive compatible. That is, is there truthful
revelation of information in each coalition? We show below that indeed the private,
the coarse, and the fine cores are incentive compatible. We define rigorously below
a notion of incentive compatibility which was introduced in Krasa-Yannelis (1991).

Definition 4.1. A feasible allocation is said to be coalitionally incentive compatible
if and only if the following does not hold: There exists coalition S ⊂ I and two
states a and b that members of I/S cannot distinguish (i.e., a and b are in the same
event of the partition for every agent not in the coalition S) and such that members
of S are better off by announcing bwhenever a has actually occurred. Formally, the
feasible allocation x : Ω → Πn

i=1Xi is said to be coalitional incentive compatible
for E if it is not true that we can find a coalition S and states a, b with a ∈ Ei(b)
for every i /∈ S, such that ui(ei(a) + xi(b)− ei(b)) > ui(xi(a)) for all i ∈ S.

lt turns out that in the case of one commodity per state, if preferences are mono-
tone then the Fi-measurability of a feasible allocation implies that the allocation
is also coalitionally incentive compatible. For the result below for each i,Xi is a
set-valued function from Ω to R+, i.e., there is only one good per state.

Proposition 4.1. Let x : Ω → Πn
i=1Xi be a feasible allocation for E . Suppose

that:

(i) Each xi is Fi-measurable.
(ii) For any y, z in R+ and for each i ∈ I , if y > z then ui(y) > ui(z) (mono-

tonicity). Then the allocation x is coalitionally incentive compatible.

Proof. Suppose otherwise, then there exist S ⊂ I and a, b, a ∈ Ei(b) for all i /∈ S
such that

ui(ei(a) + xi(b)− ei(b)) > ui(xi(a)) for all i ∈ S. (1)

Since x is feasible it follows that∑
i∈S

(xi(·)− ei(·)) =
∑
i/∈S

(xi(·)− ei(·)).

Since by definition the initial endowment of each agent is Fi-measurable and by
assumption (i) each xi is Fi-measurable, it follows that xi− ei Fi-measurable and
consequently we can conclude that for any coalition T ⊂ I , the sum

∑
i∈T (xi(·)−

ei(·)) is
∨

i∈T Fi-measurable. Since a ∈ Ei(b) for every i /∈ S it follows that
a ∈

⋂
i/∈S Ei(b). Clearly

⋂
i/∈S Ei(b) is an element of

∨
i/∈S Fi. By the above
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reasoning the sum
∑

i/∈S(xi(·) − ei(·)) is
∨

i/∈S Fi-measurable and therefore we
can conclude that ∑

i/∈S

(xi(a)− ei(a)) =
∑
i/∈S

(xi(b)− ei(b)). (2)

Hence, ∑
i∈S

(xi(a)− ei(a)) =
∑
i/∈S

(xi(a)− ei(a))

= −
∑
i/∈S

(xi(b)− ei(b)) (recall (2))

=
∑
i∈S

(xi(b)− ei(b)). (3)

We now show that xi(a)− ei(a) = xi(b)− ei(b) for all i ∈ S. Suppose otherwise,
i.e., xi(a)− ei(a) 	= xi(b)− ei(b) for some i ∈ S. Without loss of generality we
may assume that xi(b) − ei(b) > xi(a) − ei(a) for some i ∈ S. It follows from
(3) that xj(a) − ej(a) > xj(b) − ej(b) for some agent j ∈ S. Since xj(a) >
xj(b)−ej(b)+ej(a) it follows from assumption (ii) that uj(xj(a)) > uj(xj(b)−
ej(b) + ej(a)) for some j ∈ S, a contradiction to (1). Hence, we conclude that
xi(a)− ei(a) = xi(b)− ei(b) for all i ∈ S. But then ui(ei(a) + xi(b)− ei(b)) =
ui(ei(a) + xi(a) − ei(a)) = ui(xi(a)) for all i ∈ S, a contradiction to (1). This
completes the proof of the proposition.

lt follows now directly from Proposition 4.1 that any private, coarse, or fine core
allocation of the one commodity per state economy E is coalitionally incentive
compatible provided that preferences are monotone. The following Corollary of
Proposition 4.1 holds:

Corollary 4.1. Let E = {(Xi, ui, ei,Fiµ) : i = 1, 2, ..., n} be an exchange
economy with differential information satisfying assumption (ii) of Theorem 4.1. If
x : Ω → Πn

i=1Xi is either a private, a coarse or a fine core allocation for E , then
x is coalitionally incentive compatible.

We focus now on the private core of E and show that it is always coalitionally
incentive compatible provided that preferences are monotone. The one good per
state assumption is now dropped. Before stating the main result of this section, we
modify Definition 4.1 to permit for more than one good per state.

Definition 4.2. A feasible allocation x : Ω → Πn
i=1Xi is said to be weak coali-

tionally incentive compatible for E , if it is not true that there exist coalition S and
states a, b in Ω such that:

(i) Ei(a) ∈
∧

i∈S Fi, µ(Ei(a)) > 0,
(ii) a ∈ Ei(b) for i /∈ S, and
(iii) ui(ei(a) + xi(b)− ei(b)) > ui(xi(a)) for all i ∈ S.

This notion of incentive compatibility states that it is not possible for any coali-
tion S to become better off by announcing a false state, which agents not in the
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coalition S cannot distinguish from the true state. Conditions (ii) and (iii) are the
same as in Definition 4.1. Condition (i) says that the members of the coalition S
should agree on whether a state has occurred. In other words, the event containing
the realized (misreported) state a, i.e., Ei(a) is known to every member of the
coalition. Thus, there is no “double cross” among the members of a coalition that
they agree to lie. The condition µ(Ei(a)) > 0 shows that there is a non-negligible
possibility for misreporting.

We are now ready to state the main result of this section:

Theorem 4.1. Let E = {(Xi, ui, ei,Fi, µ) : i = 1, 2, ..., n} be an exchange
economy with differential information satisfying for each i(i = 1, 2, ..., n), all the
assumptions of Theorem 3.1. Moreover, suppose that preferences are monotone.
Then any private core allocation for E is weak coalitionally incentive compatible.

Proof. Let x be a private core allocation for E . For each i, define zi : Ω → Xi by
zi(·) = xi(·)− ei(·).

Suppose that x is not weakly coalitionally incentive compatible. Then there
exist S ⊂ I and a, b ∈ Ω such that:

(i) Ei(a) ∈
∧

i∈S Fi, µ(Ei(a)) > 0,
(ii) a ∈ Ei(b), i /∈ S, and
(iii) ui(ei(a) + zi(b)) > ui(xi(a)) for all i ∈ S.

First notice that since ei(·) and xi(·) are Fi-measurable, (iii) implies that for all
i ∈ S, ui(ei(t) + zi(b)) > ui(xi(t)) for all t ∈ Ei(a).

Since a ∈ Ei(b) for all i /∈ S we have that a ∈ ⋂
i/∈S Ei(b). Clearly⋂

i/∈sEi(b) ∈
∨

i/∈S Fi.
We know that

∑
i/∈S zi(·) is

∨
i/∈S Fi-measurable and since a ∈ ⋂i/∈S Ei(b)

we conclude that
∑

i/∈S zi(a) =
∑

i/∈S zi(b). By the feasibility of x we have that∑
i∈s zi(a) =

∑
i/∈S zi(a) and thus∑

i∈S

zi(a) =
∑
i∈S

zi(b). (4)

Consider now the following net trades:8

z∗
i (t) = zi(t)χΩ\Ei(a) + zi(b)χEi(a) for i ∈ S. (5)

The above net trades are Fi-measurable (since each zi is Fi-measurable) and fea-
sible. Indeed, since Ei(a) ∈

∨
i∈S Fi it follows that for t ∈ Ei(a), zi(t) = zi(a)

for all i ∈ S. Hence, if t /∈ Ei(a),
∑

i∈S z
∗
i (t) +

∑
i∈S zi(t) =

∑
i∈S zi(t) = 0

(recall the feasibility of x).
If t ∈ Ei(a),

∑
i∈S z

∗
i (t) +

∑
i/∈S zi(t) =

∑
i∈S zi(b) +

∑
i/∈S zi(t) =∑

i∈S zi(b) −
∑

i∈S zi(t) =
∑

i∈S zi(b) −
∑

i∈S zi(a) = 0 (by (3)). We can
now construct the following allocation. For each i, (i = 1, 2, ..., n) let

x∗
i (·) =

{
ei(·) + z∗

i (·), i ∈ S
ei(·) + zi(·), i /∈ S .

8 The symbol χ below denotes the characteristic function. See also Section 7.
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Notice that for all i ∈ S,ui(x∗
i (t)) = ui(ei(t)+zi(b)) > ui(xi(t)) for (t ∈ Ei(a)).

Since µ(Ei(a)) > 0, we have that∫
ui(x∗

i (t))dµ(t) >
∫
ui(xi(t))dµ(t) for all i ∈ S, and∫

ui(x∗
i (t))dµ(t) =

∫
ui(xi(t))dµ(t) for all i /∈ S.

Since
∫
ui(·) is norm-continuous [by virtue of the Lebegue Dominated Conver-

gence Theorem], by choosingA ∈ ∧i∈I Fi with µ(A) > 0, we can find a function
ε · χA, where ε � 0, such that for ε sufficiently small, ‖εχA‖ < δ so that∫

ui(x∗
i − εχA)dµ >

∫
ui(xi)dµ for all i ∈ S. (6)

By monotonicity of preferences for i /∈ S, ui(x∗
i (t)+ 1

|I/S|ε ·χA) > ui(xi(t)) for
t ∈ A. Since µ(A) > 0 we have that:∫

ui

(
x∗

i +
1

|I/S|εχA

)
dµ >

∫
ui(xi)dµ for all i /∈ S. (7)

Hence, the allocation:

x∗∗
i =

⎧⎪⎨⎪⎩
x∗

i − εχA, i ∈ S

x∗
i +

1
|I/S|εχA, i /∈ S

is Fi-measurable (since it is x∗
i perturbed over a measurable set), it is feasible for

the grand coalition and it follows from (5) and (6) that
∫
ui(x∗∗)dµ >

∫
ui(x)dµ

for all i, (i = 1, 2, ..., n), a contradiction to the fact that x has been assumed to be
a private core allocation for E . This completes the proof of the theorem.

Remark 4.1. Although the theorem says that any private core allocation is weakly
coalitionally incentive compatible, the proof shows that a stronger result is true,
i.e., any private Pareto optimal allocation [See Yannelis (1991), Definition 3.1.2,
p. 188] will be weakly coalitionally incentive compatible as well.

5 Interpretation of the private coarse and fine core allocations

In an economy with differential information it is reasonable to expect that an agent
with even a zero initial endowment but better (finer) private information than all
other agents that matters to the rest of the agents, should be able to exchange
his/her superior private information for actual goods. Obviously, this is not the
case if we adopt as an equilibrium notion the traditional Walrasian equilibrium
(i.e., any rational expectations equilibrium notion). In particular, in the Walrasian
equilibrium if an agent has no initial endowment, even if his/her information is better
and essential to all the other agents, he/she always ends up with zero consumption.
(To see this simply note that in any Walrasian equilibrium notion this agent will have
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to maximize his/her expected utility conditional on his/her own private information,
subject to a budget set which is zero.) We believe that for an equilibrium notion to
be suitable in a differential information economy framework it should be able to
reward an agent with superior information provided that the information matters to
the rest of the agents (even if this agent has no endowment of physical good). The
example below demonstrates that this is the case for the private core and the coarse
core, but not for the fine core.

Example 5.1. Consider an economy with three agents denoted by J,K,L and three
states of nature denoted by a, b, c. There is only one good in each state. The random
initial endowments of the agents are given as follows: Agent J’s is (10, 10, 0),
agent K’s is (10, 0, 10) and agent L’s is (0, 0, 0). Their private information sets
are: FJ = {{a, b}, {c}},FK = {{a, c}, {b}} and FL = {{a}, {b, c}}. All agents
have the same utility function given by

√
x and each state occurs with the same

probability. We first analyse the private core.

5.1 The private core

The above example satisfies all the assumptions of Theorem 3.1 and therefore a
private information core allocation exists in this three-person exchange economy
with differential information. We show that in a private core allocation agentLwill
have positive consumption. First note that since the net trade of each agent must
be Fi-measurable, J and K together cannot make any beneficial trades, i.e., the
only trades possible between J andK are state independent and these trades do not
make them better off. However, the participation of agent L in the economy makes
everybody better off. In fact it can be easily checked that the following allocation

x∗
i =

⎧⎪⎪⎨⎪⎪⎩
(8, 8, 2) for i = J

(8, 2, 8) for i = K

(4, 0, 0) for i = L,

(5.1)

is a private core allocation, i.e., x∗ is Fi-measurable, feasible and it cannot be
dominated by any coalition.

In this example, agentsJ andK cannot undertake any risk sharing without agent
L. Since agent L has superior information he/she acts as an intermediary who
executes the correct trades and as a consequence gets rewarded for this service.
All three agents are better off after trade has taken place (simply note that x∗

i

for i = J,K,L is individually rational, i.e.,
∫
ui(x∗)dµ �

∫
ui(e)dµ). In sharp

contrast with the core notion, if we had adopted the Walrasian equilibrium, then
agentLwould have obtained zero consumption since he/she started with zero initial
endowments. This holds no matter whether or not agent L’s information is useful
to the other agents.

If the private information of agentLwere not useful to agentsJ andK then agent
L would have obtained zero consumption. For instance if the private information
set of agent L is FL = {a, b, c} then the initial endowment is the unique private
core allocation. This result is quite interesting because our example indicates that
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the private core takes into account the information advantage or superiority of
an individual in an explicit way. It is exactly for this reason that we believe that
the private core serves to provide more plausible outcomes than the Walrasian
equilibrium.

5.2 Coarse core

Let us now examine the coarse core allocation. We know that any private core
allocation is also a coarse core allocation. Hence the private core allocation (5.1)
is a coarse core allocation as well.9 To show that the coarse core allocation takes
into account the superiority or information advantage of an agent, simply observe
that if agent L’s private information in Example 5.1 were the trivial partition, i.e.,
FL = {a, b, c}, then the initial endowment is the only coarse core allocation, where
agent L receives zero in all states.

The strong coarse core in this example is empty. Simply note that the strong
coarse core allocation must be (FJ

∧FK

∧FL)-measurable, but the meet of these
three partitions is the trivial partition, i.e.,FJ

∧
FK

∧FL = {a, b, c}. This implies
that the consumption of each agent must be the same in each state. However, given
the structure of the initial endowments it is easily seen that no feasible allocation
can give to each agent the same consumption in all states and dominate the initial
endowments. Moreover the initial endowment state is not a strong coarse allocation
since it is not (FJ

∧FK

∧FL)-measurable. Hence the strong coarse core is empty
in this example.

5.3 Fine core

We now show that the fine core is empty in Example 5.1. To see this, note that
any10 Fi-measurable allocation (i = J,K,L) which is beneficial to agents J and
K can be achieved only through agent L and this agent ends up with positive
consumption (e.g., the allocation in (5.1)) in state {a}. Since improvements for
agents J and K can be made with (FJ

∨
FK)-measurable allocations and {a}

belongs to FJ

∨
FK = {{a}, {b}, {c}}, it follows that all Fi-measurable (i =

J,K,L) allocations are blocked by the coalition {J,K} which in turn can share
agent L’s consumption in state {a}, e.g., the allocation in (5.1) can be dominated
by the following allocation:

y∗
i =

⎧⎪⎪⎨⎪⎪⎩
(10, 8, 2) for i = J

(10, 2, 8) for i = K

(0, 0, 0) for i = L.

Hence, we can conclude that the fine core is empty.

9 In fact it can be shown that in this example all Fi-measurable (i = J, K, L) allocations x which
are individually rational (i.e.,

∫
u(x)dµ �

∫
u(e)dµ) constitute the coarse core.

10 Except from the initial endowment which is dominated by the allocation in (5.1).
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However, the weak fine core exists. It can be easily checked that the allocation

yi =

{
(10, 5, 5) for i = J,K

(0, 0, 0) for i = L

is in the weak fine core. However, it is not incentive compatible. Simply note that if
state a occurs then agent J can become better off by reporting state c and the latter
state is not distinguishable from a by agentK. In particular, uJ(eJ , (a) +xJ(c)−
eJ(c)) = uJ(10 + 5) > uJ(xJ(a)) = uJ(10). Using the same reasoning the
reader can verify that agentK can become better off by reporting state b whenever
state a occurs.

In contrast with the private core, the information superiority of agent L is
not taken into account by the fine core. Indeed, if agent L’s partition is either
F = {a, b, c} orFL = {{a}, {b}, {c}} the above weak fine core allocation remains
unchanged (compare with the private core). This result should not be surprising
since whenever agents in a coalition pool their own information, any informational
advantage that an agent may have disappears.

5.4 The unequal treatment of the private core

In Example 5.1 the agent with zero initial endowments and superior information
useful to the rest of the economy facilitated the trades, i.e., he/she served as an
intermediary. Obviously, by executing the correct trades he/she made all other
agents better off (Pareto improvement) and was compensated for this service by
consuming some of the goods.

We now provide an example with two intermediaries.

Example 5.4.1. Consider the Example 5.1 with one additional agent M whose
initial endowment is zero in each state, he/she has the same utility function with
the other three agents, i.e.,

√
x and let his/her private information set be FM =

{{a}, {b}, {c}}. (Agent’s J,K,L initial endowments and partitions remain the
same as in Example 5.1.)

Clearly, the above four-person economy with differential information satisfies
all the assumptions of Theorem 3.1 and therefore a private core allocation exists.
We will show that agents L and M can serve as intermediaries. One can easily
check that the allocation:

x∗
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(8, 8, 2) for i = J

(8, 2, 8) for i = K

�1, 0, 0) for i = L, �1 � 0

(m1, 0, 0) for i = M,m � 0

where �1 + m1 = 4, is a private core allocation. Obviously either agent L or
M may serve as an intermediary or both may serve simultaneously. Their final
allocation in state a depends on the extent that their information was used to carry
out the trades. Note that even if agent M has the same partition as agent L, i.e.,
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FM = {{a}, {b, c}} = FL, the set of private core allocations remains the same.
Hence, one can conclude that there is no equal treatment, i.e., agents with identical
characteristics (utility function, initial endowment, and private information set) may
receive different utility private core allocations.11 Notice that the value allocation
of an economy with differential information as defined in Krasa-Yannelis (1991)
does not have the equal treatment property as well [just endow each agent in the
Scafuri–Yannelis (1984) example with the full information partition].

5.5 Independence of private information sets

It should be noted that whether trade takes place or not depends crucially on the
structure of the information (or the initial endowments) in a private information
economy. In particular, we show below that in a differential information economy
with one good per state if the private information sets of the agents are independent
(a term which is defined below) then trade does not take place. Obviously, in this
case there is no need for an intermediary. Hence, we can conclude that a sufficient
condition for trade to take place is that the private information sets should not be
independent.

We begin with a definition.

Definition 5.2. Let E = {(Xi, ui, ei,Fi, µ) : i = 1, 2, ..., n} be a private infor-
mation economy: We say that Fi is independent of Fj , i 	= j, (i, j = 1, 2, ..., n) if
µ(A ∩B) = µ(A) · µ(B) for A ∈ Fi and B ∈ Fj .

It can be easily shown that the above definition implies independence of the
initial endowments (recall that each ei is Fi-measurable), i.e.,∫

[ei(ω) · ej(ω)]dµ(ω)

=
∫
ei(ω)dµ(ω) ·

∫
ej(ω)dµ(ω) for i 	= j, (i, j = 1, 2, ..., n).

We are ready now to state the following proposition.

Proposition 5.2. Let E be an exchange economy with private information satisfying
all the assumptions of Theorem 3.1. Moreover, suppose that there is only one good
per state, preferences are monotone, and that each Fi is independent of Fj , i 	= j.
Then the unique private core allocation is the initial endowment.

The proof of this proposition follows directly from the following two lemmata.
Indeed if there is a private information core allocation sayx∗(·) = (x∗

1(·), ..., x∗
n(·))

(other than the initial endowment), then by setting for each i ∈ I, zi(ω) = x∗
i (ω)−

ei(ω) µ – a.e. and letting I = S in Lemma 5.2 below we can conclude that∫
ei(ω)dµ(ω) >

∫
x∗

i (ω)dµ(ω), i.e., x∗ is not individually rational.

Lemma 5.1. Let E = {(Xi, ui, ei,Fi, µ) : i = 1, 2, ..., n} be an exchange econ-
omy with differential information satisfying the assumptions of Proposition 5.2.

11 In particular, the final allocation of each intermediary depends an the volume of trades that they
carry through.



242 L.C. Koutsougeras and N.C. Yannelis

Consider a coalition S whose members have independent partitions. If for each
i ∈ S, zi : Ω → Xi is the net trade of agent i which is Fi-measurable and∑

i∈S zi(ω) = 0 µ – a.e., then for each i ∈ S either zi(ω) < 0 µ – a.e., or
zi(ω) � 0 µ – a.e.

Proof. Choose an agent i in S. Since
∑

i∈S zi(·) = 0 it follows that

zi(·) = −
∑
j �=i
j∈S

zj(·) (5.4.1)

Since each zj isFj-measurable it follows that−∑j �=i
j∈S

zj(·) is
∨

j �=i
j∈S

Fi-measurable

and therefore by virtue of (5.4.1) we can conclude that zi(·) is
∨

j �=i
j∈S

Fi-measurable.

Since zi(·) is
∨

j �=i
j∈S

Fj-measurable the set z−1
i ([0,∞]) = {ω ∈ Ω : zi(ω) ∈

[0,∞]} = {ω ∈ Ω : zi(ω) � 0} belongs to Fi ∩ (
∨

j �=i
j∈S

Fj). Since Fi is in-

dependent of Fji 	= j, i, j in S, it follows that Fi is independent of
∨

j �=i
j∈S

Fj .

Since z−1
i [0,∞) is Fi ∩ (

∨
j �=i
j∈S

Fj)-measurable, z−1
i [0,∞) is independent to it-

self. Hence, µ(z−1
i [0,∞] ∩ z−1

i ([0,∞])) = µ(z−1
i [0,∞]) − µ(z−1

i [0,∞]) and
so µ(z−1

i [0,∞]) = [µ(z−1
i [0,∞])]2. The latter enable us to conclude that either

µ(z−1
i [0,∞]) = 0 or µ(z−1

i [0,∞]) = 1, i.e., either for µ – a.e. zi(ω) < 0 or
zi(ω) � 0 µ – a.e.

Lemma 5.2. Let E be an exchange economy with differential information satisfying
all the assumptions of Proposition 5.2. Then given a coalition S where net trades
zi(·) are Fi-measurable for all i ∈ S and

∑
i∈S zi(ω) = 0 µ – a.e., no trades can

be beneficial to all i in S (i.e.,
∫
ui(ei + zi)dµ <

∫
ui(ei)dµ for some i in S).

Proof. By Lemma 5.2 for each i ∈ S, either zi(ω) � 0 or zi(ω) < 0 µ – a.e. We
will show that whenever zi(·) is either positive or negative for some i in S it will
violate individual rationality. Since the case where zi(ω) = 0 µ – a.e. is trivial, we
will only prove the case that for some i ∈ S, zi(ω) > 0 µ – a.e. (The case where
for some i ∈ S, zi(ω) < 0 µ – a.e. can be proved along the same lines.) Since for
some i ∈ S, zi(ω) > 0 µ – a.e. and

∑
i∈S zi(ω) = 0 µ – a.e., it must be the case

that for at least one j ∈ S, zj(ω) < 0 µ – a.e. Hence, ej(ω) + zj(ω) < ej(ω), µ
– a.e. By monotonieity we have that uj(ej(ω) + zj(ω)) < uj(ej(ω)) µ – a.e. and
therefore

∫
uj(ej(ω) + zj(ω))dµ(ω) <

∫
uj(ej(ω))dµ(ω). The above inequality

violates individual rationality for the agent j in S, and we can conclude that for
coalition S, no net trade zi(·) which is Fi-measurable and

∑
i∈S zi(ω) = 0 µ –

a.e. is beneficial, to all agents i in S.

6 The α-core of an economy with differential information

In this section we will allow for interdependent preferences (i.e., externalities in
consumption). In particular, the economy E will be identical with that described
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in Section 3 except that now the utility function of each agent i, is a real valued
function defined on Πn

j=1Yj . Hence the utility function of each agent depends not
only on his/her own consumption, but also on the consumption of all other agents.
We will denote such an economy by Γ .

We now define the notion of a private α-core for Γ which corresponds to the
private α-core strategy for a normal form game which was defined in Yannelis
(1991). We will first need some notation. If S ⊂ I then (yS , zI\S) denotes the
vector x in Πi∈IYj where xi = yi if i ∈ S and xi = zi if i /∈ S.

Definition 6.1. The allocation x : Ω → Πn
i=1Xi is said to be a private α-core

allocation for Γ if the following conditions hold:

(i) Each xi : Ω → Xi is Fi-measurable.
(ii)

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω) µ – a.e.

(iii) It is not true that there exist S ⊂ I and y : Ω → Πi∈SXi such that each
yi is Fi-measurable for all i ∈ S,∑i∈S yi(ω) =

∑
i∈S ei(ω) µ – a.e. and∫

ui(yS , zI\Sdµ >
∫
ui(x)dµ for all i ∈ S and for any zI\S ∈ Πi/∈SXi,

each zI\S is Fi-measurable for all i /∈ S and
∑

i/∈S zi(ω) =
∑

i/∈S ei(ω) µ –
a.e.

Conditions (i) and (ii) have been discussed in Section 3. (iii) says that no coalition
can redistribute their initial resources (while each agent in the coalition is allowed to
use his/her own private information) and make the expected utility of each member
better off for any feasible redistribution of the complimentary coalition.

By replacing condition (iii) of Definition 6.1 by:

(iii′) It is not true that there exist S ⊂ I and y : Ω → Πi∈SXi such that each
yi is

∧
i∈S Fi-measurable for all i ∈ S,

∑
i∈S yi(ω) =

∑
i∈S ei(ω) µ –

a.e. and
∫
ui(yS , zI\S)dµ >

∫
ui(x)dµ for all i ∈ S and for any zI\S ∈

Πi/∈SXi, each zI\S is
∧

i/∈S Fi-measurable for all i /∈ S and
∑

i/∈S zi(ω) =∑
i/∈s ei(ω) µ – a.e.,

we have the notion of a coarseα-core allocation forΓ . Moreover if the measurability
assumptions in (iii′) above on yi and zI\S are replaced by: each yi is

∨
i∈S Fi-

measurable for all i ∈ S and each zI\S
i is

∨
i/∈S Fi-measurable for all i /∈ S, we

obtain the notion of a fine α-core allocation for Γ .
In the next section we prove the existente of private α-core allocations for Γ .

7 The existente of private α-core allocations

We begin with some basic definitions of mathematical nature which will be needed
for our existence proof.

7.1 Mathematieal preliminaries

Let (T,T, µ) be a finite measure space andX be a Banach spare. Following Diestel-
Uhl (1977) the function f : T → X is called simple if there exist x1, x2, ..., xn
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in X and α1, α2, ..., αn in T such that f =
∑n

i=1 xiχαi , where χαi(t) = 1 if
t ∈ αi and χαi(t) = 0 if t /∈ αi. A function f : T → X is said to be µ-
measurable if there exists a sequence of simple functions fn : T → X such
that limn→∞ ‖fn(t) − f(t)‖ = 0 for almost all t ∈ T . A µ-measurable function
f : T → X is said to be Bochner integrable if there exists a sequence of simple
functions {fn, : n = 1, 2, ...} such that

lim
n→∞

∫
T

‖fn(t)− f(t)‖dµ(t) = 0.

In this case we define for each E ∈ T the integral to be
∫

E
(t)dµ(t) =

limn→∞ fn(t)dµ(t). It can be shown [sec Diestel-Uhl (1977), Theorem 2, p. 45]
that if f : T → X is a µ-measurable function then, f is Bochner integrable if
and only if

∫
T
‖f(t)‖dµ(t) < ∞. lt is important to note that the Lebegue Dom-

inated Convergence Theorem holds for Bochner integrable functions. In partic-
ular, if fn : T → X, (n = 1, 2, ...) is a sequence of Bochner integrable func-
tions such that limn→∞ fn(t) = f(t) µ – a.e., and ‖fn(t)‖ � g(t) µ – a.e.,
(where g : T → R is an integrable function), then f is Bochner integrable and
limn→∞

∫
T
‖fn(t)− f(t)‖dµ(t) = 0.

For 1 � p < ∞, we denote by Lp(µ,X) the space of equivalence classes of
X-valued Bochner integrable functions x : T → X normed by

‖x‖p =
(∫

T

‖x(t)‖pdµ(t)
)1\p

.

It is a standard result that normed by the functional ‖ ·‖p above,Lp(µ,X) becomes
a Banach space [see Diestel-Uhl (1977), p. 50]. Recall that a correspondence φ :
T → 2x is said to be integrably bounded if there exists a map h ∈ L1(µ,R) such
that sup{‖x‖ : x ∈ φ(t)} � h(t) µ – a.e.

A Banach spaceX has the Radon-Nikodym Property with respect to the measure
space (T,T, µ) if for each µ-continuous measureG : T → X of bounded variation
there exists g ∈ Li(µ,X) such thatG(E) =

∫
E
g(t)dµ(t) for allE ∈ T.A Banach

spaceX has the Radon-Nikodym property (RNP) ifX has the RNP with respect to
every finite measure space. Recall now [sec Diestel-Uhl (1977, Theorem 1, p. 98)]
that if (T,T, µ) is a finite measure space 1 � p < ∞, and X is a Banach space,
thenX∗ has the RNP if and only if (Lp, (µ,X))∗ = Lq(µ,X∗) where 1

p + 1
q = 1.

We now collect some basic results on Banach lattices [for an excellent treatment
sec Aliprantis-Burkinshaw (1985)]. A Banach lattice is a Banach spaceL equipped
with an order relation≥ (i.e., � is a reflexive, antisymmetric and transitive relation)
satisfying:

(i) x � y implies x+ z � y + z for every z in L,
(ii) x � y implies λx � λy for all λ � 0,
(iii) for all x, y in L there exists a supremum (least upper bound) x

∨
y and an

infimum (greatest lower bound) x
∧
y,

(iv) |x| � |y| implies ‖x‖ � ‖y‖ for all x, y in L.
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If x, y are elements of the Banach lattice L, then we define the order interval [x, y]
as follows:

[x, y] = {z ∈ L : x � z � y}.

Note that [x, y] is norm closed and convex (hence weakly closed). A Banach lattice
L is said to have an order continuous norm if, χα ↓ 0 in L implies ‖χα‖ ↓ 0. A
very useful result which will play an important role in the sequel is that if L is a
Banach lattice then the fact that L has an order continuous norm is equivalent to
weak compactness of the order interval [x, z] = {y ∈ L : x � y � z} for every
x, z in L [see Aliprantis-Burkinshaw (1985)].

We finally note that Cartwright (1974) has shown that if X is a Banach lattice
with an order continuous form (or equivalently X has weakly compact order in-
tervals) then L1(µ,X) has weakly compact order intervals, as well. Cartwright’s
Theorem will play a crucial role in our existence proof.

7.2 The private α-core existence proof

The following result provides sufficient conditions which guarantee the existence
of a private α-core allocation for Γ where |I| = 2. If |I| > 2 then the result below
is false.

Theorem 7.1. Let Γ be an exchange economy with differential information satis-
fying for each i, (i = 1, 2) the following assumptions.

(a.7.1) Xi : Ω → 2Y is a convex, closed, nonempty valued correspondence,
(a.7.2) ui : Πn

j=1Yj → R is continuous, integrably bounded and concave.

Then a private α-core allocation exists in Γ .

Proof. We first state the α-core existence theorem in Yannelis (1991a) which will
play a crucial role in our argument. Let E = {(Xi, ui, ei) : i = 1, 2} be an
exchange economy where

(1) Xi the consumption set of agent i is a subset of the positive cone of an ordered
Hausdorff linear topological space L, which is endowed with a topology τ
which is weaker than the Hausdorff topology onL, τ is a vector space topology
having the property that all order intervals in L are τ -compact.

(2) The utility function of each agent i, ui : Πn
j=1Xj → R is concave and τ -upper

semi continuous.
(3) ei is the initial endowment of agent i, where ei ∈ Xi for all i.
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IfE satisfies (1), (2), and (3) it follows fromYannelis (1991a, Theorem 4.1, p. 112)
that an α-core allocation exists12 in E.

We now construct a new economy Γ̄ as follows: For each i, i = 1, 2 let
LXi = {xi ∈ L1(µ, Y ) : x1 : Ω → Y is Bochner integrable, Fi-measurable
and xi(ω) ∈ Xi(ω) µ – a.e.}. For each i define vi : Πn

j=1LXj → R by
vi(x) =

∫
ui(x(ω))dµ(ω). Since by assumption ei is Bochner integrable ei ∈ LXi

,
(recall that ei(·) is Fi-measurable and ei(ω) ∈ Xi(ω) µ – a.e.) and therefore LXi

is nonempty. Obviously LXi
it is convex and bounded from below. It follows from

Balder-Yannelis (1991) that vi is weakly upper semicontinuous. Moreover, since
ui is concave so is vi. We now have a new economy Γ̄ = {(LXi

, vi, ei) : i = 1, 2},
where

(a) LXi is the consumption set of agent i,
(b) vi is the utility function of agent i,
(c) ei ∈ LXi , is the initial endowment of agent i.

lt can be easily seen that an α-core allocation of Γ̄ is a private α-core allocation
for Γ . Hence all we need to show is that Γ̄ satisfies the assumptions of Yannelis’s
(1991a) Theorem (i.e., conditions (1), (2), and (3) above).

Since Y is the positive cone of a Banach Lattice with an order continuous norm,
it follows from Cartwright’s theorem that order intervals are weakly compact in
L1(µ, Y ). Hence, the topology τ in Yannelis’s (1991a) theorem is taken here to be
the weak topology, and obviously assumption (1) is satisfied. Also as noted above
vi is concave and weakly upper semicontinuous and ei ∈ LXi

for all i. Hence (2)
and (3) hold and therefore an α-core allocation exists in Γ̄ . The latter implies that
a private α-core allocation exists in Γ . This completes the proof of the theorem.

Remark 7.1. One can easily see that the set of all private α-core allocations for Γ
is contained in the set of all coarse α-core allocations for Γ . However, for |I| = 2
the coarse, fine and the private α-core allocations coincide. From this observation
and Theorem 7.1 we can obtain the following corollary.

Corollary 7.1. Let Γ be an exchange economy with differential information satis-
fying for each i, (i = 1, 2) the assumptions of Theorem 7.1. Then a coarse and a
fine α-core allocation exists in Γ .

12 To be more specific,Yannelis (1991a) allows for preferences which need not be ordered. In particular
one only needs to assume that the preference correspondence of agent i, Pi : Πn

j=1Xj → 2Πn
i=1Xi

satisfies for each i the following assumptions:

(i) Xi = Y ,
(ii) x /∈ conPi(x) for all x ∈ Πn

i=1Xi (where con denotes convex hull),

(iii) Pi has τ -open lower sections
(

i.e., for every y ∈ Πn
i=1Xi, the set P −1

i (y) =
{

x ∈ Πn
i=1Xi :

y ∈ Pi(x)
}

is τ -open in Πn
i=1Xi

)
.

Note now that by defining the preference correspondence Pi : Πn
j=1Xi → 2Πn

i=1Xi by Pi(x) =
{y : ui(y) > ui(x)}, it follows from the concavity of ui that Pi(·) is convex valued and clearly
x /∈ conPi(x) = P (x) for all x ∈ Πn

i=1Xi. Moreover the τ -upper semicontinuity of ui implies that
Pi has τ -open lower sections. Hence, Theorem 4.1 of Yannelis (1991a) applies to the above setting.
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Remark 7.2. Recently Holly (1991) has shown that in an exchange economy (with-
out incomplete information) where the set of agents is greater than two, Yannelis’s
(1991a) α-core existence theorem ceases to be true. lt is straighforward to extend
Holly’s example to an exchange economy with differential information and show
that if |I| > 2 then the coarse α-core of Γ , is empty, and therefore so is the private
α-core of Γ .

Remark 7.3. lf the economy Γ has one good per state, then the reader can easily
verify that the private, coarse and fine α-core allocations for Γ are coalitional
incentive compatible. The proof of this result is similar with that in Proposition 4.1.

8 Conclusions

The analysis of different core notions in an economy with differential information
enables us to draw the following conclusions: The private core appears to be a
sensible solution concept; it exists under very mild assumptions, it is coalitionally
incentive compatible, and it takes into account the information superiority of an
individual. Moreover, our examples indicate that it provides reasonable outcomes
especially in situations where the traditional Walrasian equilibrium concept fails to
do so. The coarse core appears to have the same properties as the private information
core but since the latter concept is a strict subset of the former it does not provide
any additional information. As our Example 5.1 indicated the coarse core is “too
big”. Contrary to the coarse core the fine core is “too small” and generally does not
exist. However, whenever it exists (e.g., the weak fine core) it is not coalitionally
incentive compatible and it does not take into account the information advantage of
an agent. Nonetheless, we believe that the weak fine core may be useful for analyz-
ing situations of adverse selection. We also showed (Sect. 7) that all the above core
notions can be easily modified in order to allow for externalities in consumption.
Since the private core can be used to explain intermediation, it is our belief that
this concept has great potential in the theory of financial and incomplete markets.
In particular, the fact that the private core rewards the agents with superior infor-
mation provides interesting insights into the way that opportunities for financial
intermediation or arbitrage arise in economies with differential information.

We conclude by noting that our adoption of a cooperative solution concept (e.g.,
the private core) to analyse economies with differential information seems to us
very appealing. Indeed, in most applications agents cooperate either bilaterally or
multilaterally under differential information. Although there is a non-cooperative
feature in the private core notion, (i.e., private information sets are not verifiable
by each member of a coalition), the resulting allocation is always coalitionally
incentive compatible.
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9 A comparison with the value allocation

Krasa-Yannelis (1991) examined the cardinal value allocation in an economy with
differential information. Specifically, they analyzed the coarse, the fine, and the
private value allocation. lt was shown that the coarse and the fine value allocations
are problematic (as is the case with the coarse and the line core) but the private
value allocation is coalitionally incentive compatible and it takes into account the
information superiority of an individual. The latter two properties are shared by
the private core as shown in this paper. Despite the fact that both concepts have
the same appealing properties, (i.e., they are coalitionally incentive compatible
and take into account the information superiority of an agent), they redistribute
the initial endowments quite differently. In particular, a private value allocation
need not be a private core allocation and vice versa. Thus, since the value and
the core generate different outcomes, we cannot say whether one concept is better
than the other. The decision for choosing the private value over the private core (or
vice versa) should be based on the economic behavior that we intend to explain
or rationalize. For instance, in modeling economic behavior where the bargaining
power of an individual in a private information economy plays an important role
the value seems in this situation more suitable that the core.
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Summary. We introduce several efficiency notions depending on what kind
of expected utility is used (ex ante, interim, ex post) and on how agents share
their private information, i.e., whether they redistribute their initial endow-
ments based on their own private information, or common knowledge in-
formation, or pooled information. Moreover, we introduce several Bayesian
incentive compatibility notions and identify several efficiency concepts which
maintain (coalitional) Bayesian incentive compatibility.
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1 Introduction

An exchange economy with differential information consists of a finite set of
agents, each of whom is characterized by a random (state dependent) utility
function, random initial endowment, a private information set, and a prior.
In such an economy the definition of efficiency (or Pareto optimality) is not
immediate as was first alluded to in seminal papers by Wilson (1978) and by
Myerson (1979). (The latter considered the Harsanyi framework rather than
an exchange economy with differential information.) In particular, two main
problems arise. First, if we assume that agents make agreements (contracts)
before the state of nature is realized, it is important to know what kind of
expected utility we adopt, i.e., ex ante or interim. Moreover, how does the
choice of the expected utility change the outcome? Secondly and most im-
portantly, when all agents make a redistribution of their initial endowments,
what kind of information do they use? That is, do they pool their informa-
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tion, or do they use common knowledge information, or do they just make
redistribution based on their own information?

Before we proceed, it may be useful to accept the fact that there is no
single definition of efficiency which universally works for all environments. In
fact, since the information is decentralized in differential information
economies, the incentive problem becomes a critical issue for a mechanism
which allocates resources according to the reports of agents. This problem
was first raised by Myerson (1979) and Holmström-Myerson (1983) in the
Harsanyi framework. The key point is that an efficient allocation may not be
Bayesian incentive compatible, i.e., the set of efficient allocations is much
larger than the set of Bayesian incentive compatible allocations. Our main
purpose is to focus on notions of efficiency which are incentive compatible.

Several of the interim efficiency concepts that we introduce in this paper
are stronger than those of Holmström-Myerson (1983), but we think they are
the proper concepts to capture the efficiency idea in differential information
economies. The main assumption we impose is that the net trades are private
information measurable.1 If such a condition is not satisfied, i.e., a proposed
net trade is not measurable with respect to private information, then it may
create incentive problems and contracts may not be viable (see Example 3.1
as well as Example 6.1). Consequently, it is reasonable to impose the private
information measurability condition on allocations.2

With the private measurability assumption, every feasible allocation
turns out to be Bayesian incentive compatible. Indeed, no single agent can lie
and become better off simply because if he/she becomes better off by lying, at
least one other agent should be worse off by feasibility, which is impossible
by the private information measurability.3 This weak property of Bayesian
incentive compatibility suggests that a stronger Bayesian incentive compat-
ibility notion, coalitional Bayesian incentive compatibility may be appro-
priate. The idea is that no coalition can become better off by reporting false
events. That is, in terms of game theory, truth-telling is a coalitional (or
strong) Nash equilibrium when agents are asked to report their private in-
formation events.

Based on the ‘‘proper’’ efficiency notion and the private information
measurability condition, we show that any ‘‘proper’’ efficient allocation is
coalitionally Bayesian incentive compatible. This means that if we adopt

1 The endowment is an initial signal of states and every agent has a private information
generated by this signal. This means that the private information measurability of net trades is
equivalent to that of allocations.
2It has been shown in Krasa-Yannelis (1994) that private measurability is a necessary and
sufficient condition for coalitional Bayesian incentive compatibility in the one good per state
differential information economy.
3 All agents except the single liar do not distinguish the true state and the false state. The private
information measurability assumption implies that their allocations in the false state are the
same as in the true state. Since lying does not change the total endowment in the true state, there
is no way for the single liar to become better off.
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certain efficiency concepts, the incentive issue (individual or coalitional) need
not be considered. It should be noted that a Holmström-Myerson type effi-
ciency notion with the private information measurability condition does not
have this property.

Finally, we consider an (interim) efficiency notion without the individual
measurability assumption and propose a notion of incentive efficiency. This
concept corresponds to the interim efficiency concept of Myerson (1979) and
Holmström-Myerson (1983) that they have introduced for the Harsanyi
framework and it is different from our other interim efficiency concepts. As in
Myerson (1979), it is shown to exist whenever the utility functions are affine.
This argument favors our earlier concepts of interim efficiency which exist
assuming only concavity of the utility functions.

The paper is organized as follows: Section 2 outlines the basic mathema-
tical notation and definitions. The description of the differential information
economy is given in Section 3. We propose several concepts of incentive
compatibility in Section 4. In Section 5, we define efficiency concepts in dif-
ferential information and characterize their properties. The relationship be-
tween efficiency and incentive compatibility is examined in Section 6. There
are some remarks on individual rationality in Section 7. In section 8, We show
the existence of individually rational and efficient allocation. Without mea-
surability, incentive efficiency is defined and analyzed in Section 9.

2 Notation and definitions

We begin with some notation and definitions.

2.1 Notation

�A� denotes the number of elements in the set A.
2A denotes the family of all subsets of A.
� denotes the set theoretic subtraction.
If A is a set, we denote by �A the characteristic function having the property
that �A��� is one if � � A and it is zero otherwise.

2.2 Definitions

Let (��F� �) be finite measure space, and X be a Banach space. Following
Diestel-Uhl (1977), the function f � � � X is called simple if there exist
x1� x2� � � � � xn in X and A1� A2� � � � � An in F such that f �

�n
i�1 xi�Ai

� A func-
tion f � � � X is said to be �-measurable if there exits a sequence of simple
functions fn � � � X such that limn���fn��� 	 f ���� � 0 for almost all
� � �� A �-measurable function f � � � X is Bochner integrable if there
exists a sequence of simple functions 
fn � n � 1� 2� � � �� such that

lim
n��

�
�
�fn��� 	 f ����d���� � 0�

In this case, we define for each A �F, the integral to be
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�
A

f ���d���� � lim
n��

�
A

fn���d�����

It can be shown [see Diestel-Uhl (1977), Theorem 2, p.45] that if f � � � X is
a �-measurable function, then f is Bochner integrable if and only if�

� �f ����d���� ��� It is important to note that the Dominated Con-
vergence Theorem holds for Bochner integrable functions. In particular, if
�fn � � � X � n � 1� 2� � � �� is a sequence of Bochner integrable functions
such that limn��fn��� � f ����-a�e�� and �fn���� � g���� - a�e�� where
g � � � R is an integrable function, then f is Bochner integrable and lim

�
�

�fn��� 	 f ����d���� � 0 [see Diestel and Uhl (1977), Theorem 3, p.45].
Denote by Lp���X � with 1 � p �� the space of equivalence classes of X -

valued Bochner integrable functions x � � � X normed by

�x�p �

�
�
�x����pd����

� �1
p

���

It is a standard result that normed by the functional � 
 �p above, Lp���X �
becomes a Banach space [see Diestel-Uhl (1977), p.50].

We will denote by L����X � the space of equivalence classes of essentially
bounded Bochner integrable functions x � � � X normed by

�x�� � ess sup �x� � inf �
 � R� � ��� � � � �x���� � 
� � 0��

Normed by the functional � 
 ��� L����X � with 1 � p �� becomes a Ba-
nach space [Diestel-Uhl (1977, p.50)]. It is well-known that Lq���X � is the
dual of Lp���X �� where 1 � p � � and 1�p � 1�q � 1� and the value � 
 x of
x � Lp���X � at � � Lq���X � is defined by

w 
 x �
�

�
�w��� 
 x����d�����

Recall that ��Lp���X ��Lq���X �� is defined as the weakest topology on
Lp���X � for which a net x� � x if and only if w 
 x� � w 
 x for all
w � Lq���X �� We call this topology as weak topology and the convergence as
weak convergence. A function f � X � R is weakly upper semicontinuous if
lim sup f x�

� �
� f �x�� weakly lower semicontinuous if lim inf f x�

� �
� f �x��

and weakly continuous if it is both weakly upper semicontinous and weakly
lower semicontinuous, whenever x� � x weakly.

Now we state basic results on Banach lattices [see Aliprantis-Burkinshaw
(1985) for details]. A Banach space X is a Banach lattice if there exists an
ordering � on X with the following properties:

(1) x � y implies x � z � y � z for every z � X �
(2) x � y implies �x � �y for every � � R��
(3) for all x� y � X � there exist a supremum x � y and an infimum x � y�
(4) �x� � �y� implies �x� � �y� for every x� y � X �
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For x� y � X � define the order interval �x� y� by �x� y� � �z � X � x � z � y��
Note that �x� y� is convex and norm closed, hence weakly closed (Mazur’s
Theorem). Cartwright (1974) has shown that if X is a Banach lattice with
order continuous norm or equivalently has weakly compact order intervals,
then Lp���X � with 1 � p � 	 has weakly compact order intervals, as well.4

All the results of the paper hold true for any Banach space
Lp���X �� 1 � p � 	� However, we will restrict ourselves to L1���X ��

3 Differential information economies

Below we define the notion of an economy with differential information (or
Radner-type economy). Let ���F��� be a probability measure space de-
noting the states of the world and Y be an ordered Banach space denoting
the commodity space.5 An economy with differential information is described
by E � ��Xi� ui�Fi��� ei� � i � I�� where

(1) Xi � � 
 2Y� is the random consumption set correspondence of agent i � I �
(2) ui � �� Y� 
 R is the random utility function of agent i � I �
(3) Fi is a (finite) measurable partition6of � denoting the private information

of agent i � I �7

(4) � is a probability measure on � denoting the common prior of each agent.
(5) ei � � 
 Y� is an Fi-measurable and Bochner integrable function de-

noting the random initial endowment of agent i � I � where ei���
� Xi����-a�e�

Let us denote by Li the set of all Fi-measurable and Bochner integrable
functions from � to Y � i�e��Li � �xi � L1��� Y � � xi is Fi-measurable�. Denote
by LXi � the set of all Fi-measurable and Bochner integrable selections from
the correspondence Xi� i�e��LXi �� �xi � L1��� Y � � xi is Fi-measurable and
xi��� � Xi����-a�e��. Let L �

�
i�I Li and LX �

�
i�I LXi � We assume that

for each i � I and each xi � Y�� ui�� xi� is integrably bounded. Denote
e �
�

i�I ei�

The ex ante expected utility function V i � LXi 
 R of agent i is defined by

4 x� � 0 means that x� is a decreasing net with inf x� � 0� A Banach lattice X is said to have an
order continuous norm if x� � 0 in X implies �x�� � 0� If X is a Banach lattice, X has an order
continuous norm if and only if any order interval is weakly compact.
5 It is important to note that even if we assume that our commodity space Y � R� (where R� is
the �-fold Cartesian product of the reals R), the space Lp���R��� 1 � p �	 is still infinite
dimensional (in view of the continuum of states). Hence, to assume that Y � R� does not change
in any way the arguments of the main results of the paper. As a matter of fact, even if we have
just one good, i.e., Y � R, we will need to work with Lp���R�� 1 � p � 	 which is an infinite
dimensional space.
6 One may assume that Fi is a sub-�-algebra of F� The results of the paper remain unaffected.
7 Throughout our analysis, we assume that information partitions �Fi�i�I are common
knowledge in the sense of Aumann.
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V i�xi� �

�
�

ui��� xi����d�����

We call a set of states an event. An event Ei� which is an element of Fi� is the
maximal set of states that agent i cannot distinguish. Let Ei��� denote the
element of Fi which contains � � �� This means that when a true state �
occurs, agent i knows only that Ei��� occurs instead. Assume that
��Ei���� � 0 for every i � I and every � � �� The interim (conditional) ex-
pected utility function Vi � � � LXi � R of agent i is defined by8

Vi���xi� �
1

��Ei����

�
Ei���

ui��
�� xi��

���d������

Lemma 3.1.1: If, for every i � I � ui��� �� is continuous for each � � �� then

(1) V i is continuous,
(2) Vi��� �� is continuous for each � � ��

Proof: Since, for every i � I � ui��� �� is continuous for every � � � and
ui��� xi� is integrably bounded for every xi � Y�� the result follows directly
from the Dominated Convergence Theorem [see Diestel-Uhl (1977), Theo-
rem 3, p.45]. �

Lemma 3.1.2: For every i � I � if ui��� �� is upper semicontinuous and concave
for every � � �� V i is weakly upper semicontinous and concave and Vi��� �� is
weakly upper semicontinuous and concave for every � � ��

Proof: See Theorem 2.8 in Balder-Yannelis (1993). �

Lemma 3.1.3: For every i � I � ui��� �� is continuous and affine for every
� � � if and only if V i is weakly continuous and Vi��� �� is weakly con-
tinuous for every � � ��

Proof: See Corollary 2.7 and Corollary 2.9 in Balder-Yannelis (1993). �

Lemma 3.1.4: For every i � I � if ui is Fi-measurable, then it follows that

Vi��� xi� � ui��� xi�����

8 One could allow agents to have different priors as follows: Let qi � � � R�� be the prior of
agent i, which is a Radon-Nikodym derivative of � having the property that

�
� qi���d���� � 1�

Then the interim expected utility function Vi � �� LXi � R of agent i is defined by

Vi��� xi� �

�
Ei���

ui��
�� xi��

���qi��
�	Ei����d������

where

qi��
�	Ei���� �

�
qi�����

�
Ei���

qi�s�d��s�if �� � Ei���

0 otherwise�
The results of the paper will remain valid under the above interim expected utility framework,
but we choose not to adopt it for simplicity and convenience.
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Proof: For every i � I � since xi and ui are Fi-measurable, ui���
� xi����� is

constant on Ei���� Therefore,�
Ei���

ui���� xi�����d����� � ��Ei����ui��� xi����

and the conclusion follows. �

The set of feasible allocations is given by A � �x � LX �

�
i�I xi �

�
i�I ei��

For each i, an element zi � Li with zi � xi � ei is a net trade of agent i. The set
of feasible net trades is given by Z � �z � L �

�
i�I zi � 0�� Let

�Z � ��z ��i�I Yi �
�

i�I �zi � 0�� where Yi � Y for every i � I . Notice that the
initial endowment vector denoted by e � �ei�i�I is an element of LX . Let
L0

X �� �xi � L1��� Y�� � xi��� � Xi����-a�e�� and L0
X ��i�I L0

Xi
� Define the set

of ex post allocations by A0 � �x � L0
X �
�

i�I xi �
�

i�I ei�� For each partition
G of �� define A�G� � �x � L0

X � xi is G-measurable for every i � I and�
i�I xi �

�
i�I ei� and Z�G� � �z ��i�I L1��� Y � � zi is G-measurable for

every i � I and
�

i�I zi � 0��
We close this section by discussing the notion of private information

measurability of allocations. To say that an agent’s allocation is Fi-mea-
surable, it means that his/her consumption is the same in states that he/she
cannot distinguish. Also notice that since by assumption initial endowments
are Fi-measurable, the net trade of each agents is Fi-measurable as well. This
assumption will be dropped in Section 9. However, we believe that this
assumption is not only reasonable but it is also tractable from an analytical
view point. The example below may be useful to bring out the importance of
private measurability.

Example 3.1 Consider an economy with differential information with two
agents, one good, and three states (i.e., � � ��1��2��3�� with equal prob-
ability (i.e., ������ � 1�3 for every � � �� where utility functions, initial
endowment, and private information sets are given as follows:

u1��� x� � ���
x

	
� e1 � �10� 10� 0� F1 � ���1��2�� ��3���

u2��� x� � ���
x

	
� e2 � �10� 0� 10� F2 � ���1��3�� ��2���

In this example, we want to show that without private information mea-
surability, a net trade may not be viable. For simplicity, we only consider the
ex ante expected utility. Suppose that agent 1 proposes the net trade
z � �z1� z2� with

z1 � ��2��2� 2�� z2 � �2� 2��2��
Note that these net trades are not private information measurable. In par-
ticular, z2 is not F2-measurable. Notice that if state �1 is realized, agent 1
may claim that state �3 occurred since he/she obtains two units of the good
from agent 2 at state �3� Observe that agent 2 cannot detect that agent 1 has
misreported the state since he/she is not able to distinguish state �3 from
state �1� Conversely, if state �1 is realized, agent 2 may claim that state �2
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occurred since he/she obtains two units of the good from agent 1 at state �2

(agent 1 cannot distinguish state �2 from state �1). Consequently, the non-
Fi-measurability of the net trades has created incentive problems and the
contract may not take place. In other words, trade may not be viable without
private information measurability. As was mentioned in footnote 2, in this
example, private measurability is necessary and sufficient for coalitional in-
centive compatibility. The latter concept is discussed below.

4 Coalitional Bayesian incentive compatibility

When agents have differential information, arbitrary allocations are not
generally viable. In particular, arbitrary allocations might not be incentive
compatible in the sense that groups of agents may misreport their informa-
tion without other agents noticing it, and hence achieve different payoffs.

In Krasa-Yannelis (1994), a concept of coalitional incentive compatibility
was introduced. For purposes of comparison, we modify their definition in
terms of interim expected utility. An allocation x � e � z � A is coalitionally
Bayesian incentive compatible if it is not true that there exist coalition S and
states ��

� ����� �� ��� with �� �
�

i��S Ei���� such that

1
��Ei�����

�
Ei����

ui��� ei��� � zi��
���d����

�
1

��Ei�����

�
Ei����

ui��� ei��� � zi����d����

for every i � S� Notice that in Krasa-Yannelis (1994), instead of the interim
expected utility Vi� the ex post utility function ui is used. In essence, this
concept assures that no coalition S can make redistributions among them-
selves in states that the complementary coalition cannot distinguish, and
become better off. In other words, if state �� occurs and the agents in the
coalition I�S cannot distinguish between the state �� and ��, it must be the
case that the agents of coalition S cannot become better off by announcing ��

instead of the actually occurred ��� The measurability implies that
�� �� Ei���� for every agent i in the coalition S.

As in Palfrey-Srivastava (1989), a deception for agent i is a function
�i � Fi 	 Fi� Let ��i � Fi 	 Fi be the truth-telling for agent i. A deception
vector � � ��i�i�I is compatible with F if ���� �� �i�I�i�Ei���� �� 
 for every
� � �� We use the following notation:9 ��S��� � Es��� � �i�SEi����
��s��� � E�S��� � �i��SEi���� �S��� � ES

���� � �i�S�i�Ei����� ��S��� �
E�S

� ��� � �i��S�i�Ei����. Let z � Z be a feasible net trade. If � is compatible
with F, then �z � ����� � z������ � z���� for all �� � ����� Otherwise

9 For example, consider the following information structure:
F1 � �1��2�� �3���F2 � �1��3�� �2���F3 � �1�� �2�� �3�� Let us define a de-
ception as follows: for every �� �i�Ei���� � �1���i � 1� 2 and �3�E3���� � E3���� Then for the
coalition S � 1� 3�� ��S��3� � ES��3� � �3�� ���S��3� � E�S ��3� � �1��3�� �S ��3� � ES

�

��3� � �1��
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z � � � 0� Note that �z � ����i � zi � � and �z � �������� � z���� Recall from
Lemma 1 of Palfrey-Srivastava (1989, p.120) that for every i � I � if
�� � Ei���� then ������� 	 Ei������ for every i � I � where Ei������ is the
event that contains ������� In view of this Lemma, we immediately conclude
that if z � Z� then z � � � Z for each � compatible with F.

In terms of the deception �i� one can define Bayesian incentive compat-
ibility. It captures the idea that no agent can improve his utility by using a
deception, which is not detected by any other agent. Furthermore, the al-
location that is generated by the deception is to be feasible. One can notice
the difference between our Bayesian incentive compatibility and the standard
Bayesian incentive compatibility [see for example Palfrey-Srivastava (1987)].
This property is well known and considered as a basic requirement for a
desirable mechanism in differential information economies. However, it turns
out that Bayesian incentive compatibility is not strong enough to play a role
as a condition in our model.10

Definition 4.1: An allocation x � e 
 z � A is said to be Bayesian incentive
compatible (BIC ) if for every i � I � for every � � �� and for every
�i � Fi �Fi with ��i� ���i� compatible with F,

Vi��� xi�  Vi��� ei 
 �z � ��i� �
�
�i��i��

where e 
 z � ��i� ���i� � A�

Definition 4.2: An allocation x � e 
 z � A is said to be coalitionally Bayesian
incentive compatible (CBIC ) if it is not true that there exists a state � � �, a
coalition S 	 I � and a deception �S �

�
i�S Fi �

�
i�S Fi such that ��S � ���S� is

compatible with F and for every i � S�

Vi��� ei 
 �z � ��S � �
�
�S ��i� � Vi��� xi��

where e 
 z � ��S � ���S � � A�
This notion of incentive compatibility states that it is not possible for any
coalition S to become better off by announcing a false event11� Observe that if
S is a singleton, then the CBIC condition is reduced to standard BIC con-
dition. This implies that coalitional Bayesian incentive compatibility is a
stronger condition than Bayesian incentive compatibility.

Definition 4.3: An allocation x � e 
 z � A is said to be weakly coalitional
Bayesian incentive compatible (weakly CBIC ) if it is not true that there exists
a state � � �� a coalition S 	 I � and a deception �S �

�
i�S Fi �

�
i�S Fi such

that for every i � S� �i�Ei����� � Ei������� ��Ei����Ei��� � �i�SFi� and

Vi��� ei 
 �z � ��S � �
�
�S ��i� � Vi��� xi��

10 See Theorem 6.4.
11 Note that whenever Ei��� and �i�Ei���� are singletons for every i � S� our notion coincides
with that of Krasa-Yannelis (1994), provided that ex post utility functions are used.
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where e � z � ��S � ���S � � A�

This is obtained from adding Ei��� �
�

i�S Fi�	i � S to the deceiving con-
ditions in CBIC. In particular, the true event, which is misreported, is
common knowledge to the deceiving coalition.

We can now define a much stronger notion of incentive compatibility.

Definition 4.4: An allocation x 
 e � z � A is said to be strongly coalitional
Bayesian incentive compatible (SCBIC ) if it is not true that there exist a state
� � �� a coalition S � I � and a deception �S �

�
i�S Fi �

�
i�S Fi such that

��S � ���S� is compatible with F and for every i � S�

Vi��� ei � �z � ��S � �
�
�S ��i�  Vi��� xi�

with strict inequality for some i � S� where e � z � ��S � ���S � � A�

Definition 4.5: An allocation x 
 e� z � A is said to be t-coalitional Bayesian
incentive compatible (TCBIC )12 if it is not true that there exist a state � � ��

a coalition S � I � and a deception �S �

�
i�S Fi �

�
i�S Fi, and a transfer

�ti�i�S �
�

i�S Li with
�

i�S
ti 
 0� each ti is

�

i�S
Fi-measurable such that ��S � ���S�

is compatible with F and for every i � S�

Vi��� ei � �z � ��S � �
�
�S ��i � ti� � Vi��� xi��

where e � z � ��S � ���S � � A�

The t-coalitional Bayesian incentive compatibility models the idea that it is
impossible for any coalition to cheat the complementary coalition by mis-
reporting the event and making side payments to each other which cannot be
observed by agents who are not members of this coalition. When ui��� �� is
monotone and continuous for every i � I and � � �� one can easily show
that the notion of SCBIC is equivalent to the TCBIC. In particular, if an
allocation is not SCBIC, the agent who became strictly better off can make
side payments to every agent in the deceiving coalition and make them
strictly better off.

By observing the definitions, one can easily check that the following re-
lationship between these concepts of incentive compatibility holds:

TCBIC � SCBIC � CBIC � weakly CBIC � BIC�

5 Efficiency

5.1 Efficiency concepts in differential information economies

The notions of informational efficiency discussed below are distinguished
depending the degree of private information. The ex ante efficiency is defined

12 This is an interim version of the strong coalitional incentive compatibility of Krasa-Yannelis
(1994).
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at the stage where every agent has private information but no state is yet
realized. The interim efficiency is defined at the stage where every agent
knows his/her private information event which contains the realized state.
The ex post efficiency is defined at the stage where every agent has complete
information. Because the interim stage and the ex post stage depend on
states, it is more difficult to define the notions of efficiency. In particular, for
the definition of interim efficiency, the possibility of communication between
all the agents when they block the proposed allocation make the problem
even harder. In order to address the possibility of communication among
agents, we will introduce more notation.

Denote by
�

i�I Fi the finest common coarsening of �Fi � i � I�� i�e�� the
finest partition of � which is coarser than Fi for every i � I � An event E is
said to be common knowledge at � if �

�
i�I Fi���� � E where �

�
i�I Fi���� is

the event of
�

i�I Fi containing �� Notice that �
�

i�I Fi���� itself is common
knowledge at �� We also call

�
i�I Fi the common knowledge partitions of �.

Denote by
�

i�I Fi coarsest common refinement of �Fi � i � I�� i�e�� the
coarsest partition of � which is finer than Fi for every i � I . Denote by
�
�

i�I Fi���� the event of
�

i�I Fi containing �� We also call
�

i�I Fi the
pooled information partition.13

Several notions of efficiency will be defined below. The main differences of
these concepts are basically two. Firstly, the degree of information sharing of
the grand coalition, i.e., do agents make redistribution of their initial en-
dowment based on their own private information, common knowledge in-
formation, or pooled information? Secondly, what kind of expected utility is
used, i.e., interim, ex ante, or ex post?

5.2 Ex ante efficiency

The notion of ex ante efficiency is defined in terms of the ex ante expected
utility. If the grand coalition of agents is allowed to redistribute their re-
sources among themselves to become better off by using the common
knowledge information, the ex ante coarse efficiency is a natural concept of
efficiency.

Definition 5.2.1: An allocation x � A is ex ante coarse efficient if there is no
x� � A such that x� � e � Z�

�
i�I Fi� and V i�x�i� � V i�xi� for every i � I �

If it is possible for the grand coalition of agents to redistribute their initial
endowments among themselves to become better off by using their own
private information, the ex ante private efficiency can be adopted.

13 In the context of �-algebra��i�IFi denotes the meet, i.e. the maximal (finest) �-algebra
contained in every �-algebra Fi and 	i�IFi denotes the join, i.e., the minimal (coarsest) �-algebra
containing every �-algebra Fi�
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Definition 5.2.2: All allocation x � A is ex ante private efficient14 there is no
x� � A such that V i�x�i� � V i�xi� for every i � I �

If it is possible for the grand coalition of agents to redistribute their initial
endowments among themselves to become better off by pooling and sharing
their private information, the ex ante fine efficiency can be defined as follows.

Definition 5.2.3: An allocation x � A is ex ante fine efficient if there is no
x� � A�

�
i�I Fi� such that V i�x�i� � V i�xi� for every i � I �

In addition, if a feasible allocation is allowed to be measurable with respect
to the pooled information, then a weaker concept can be defined.

Definition 5.2.4: An allocation x � A�
�

i�I Fi� is ex ante weak fine efficient if
there is no x� � A�

�
i�I Fi� such that V i�x�i� � V i�xi�for every i � I �

5.3 Interim efficiency

The interim efficiency notions below will be defined in terms of the interim
expected utility. If the grand coalitian of agents can redistribute their re-
sources among themselves to become better off by using the common
knowledge information, the interim coarse efficiency can be defined as fol-
lows.

Definition 5.3.1: An allocation x � A is interim coarse efficient if there is no
x� � A such that x� � e � Z�

�
i�I Fi� and for some � � �� Vi��� x�i� � Vi��� xi�

for every i � I �

If it is possible for the grand coalition of agents to redistribute their initial
endowments among themselves to become better off by using their own
private information, the interim private efficiency can be defined as follows.

Definition 5.3.2: An allocation x � A is interim private efficient15 if there is no
x� � A such that for some � � �� Vi��� x�i� � Vi��� xi� for every i � I �

If it is possible for the grand coalition of agents to redistribute their initial
endowments among themselves to become better off by pooling and sharing
their information, the interim fine efficiency can be defined as follows.

Definition 5.3.3: An allocation x � A is interim fine efficient if there is no
x� � A�

�
i�I Fi� such that for some � � �� Vi��� x�i� � Vi��� xi� for every

i � I �16

14 Notice that if ui��� �� is continuous and monotone, this definition is equivalent to: An
allocation x � A is strongly ex ante private efficient if there is no x� � A such that V i�x�i� � V i�xi�

for every i � I with strict inequality for some i � I.
15 An allocation x � A is strongly interim private efficient if there is no x� � A such that for some
� � �� Vi��� x�i� � Vi��� xi� for every i � I with strict inequality for some i � I .
16 One may consider an interim expected utility which takes into account the pooled
information. But throughout the paper, we ignore this effect.
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If the feasible allocation is allowed to be measurable w.r.t to the pooled
information, then a weaker concept can be defined as follows.

Definition 5.3.4: An allocation x � A �
�

i�I Fi� is interim weak fine efficient if
there is no x� � A�

�
i�I Fi� such that for some � � �� Vi��� x�i� � Vi��� xi� for

every i � I �

Moreover, if the event where every agent becomes better off is common
knowledge to the grand coalition, then the notion of weakly interim effi-
ciency can be defined as follows.

Definition 5.3.5: An allocation x � A is weakly interim efficient if there is no
x� � A such that for some E �

�
i�I Fi� Vi��� x�i� � Vi��� xi� for every � � E

and for every i � I �

Since interim efficiency does depend on states, we have one more notion of
interim efficiency, HM interim efficiency, which is widely used as interim
efficiency notion in economics literature [for example, see Holmström-
Myerson (1983, p.1805)].

Definition 5.3.6: An allocation x � A is HM interim efficient17 if there is no
x� � A such that Vi��� x�i� � Vi��� xi� for every � � � and for every i � I with
strict inequality for some � � � and for some i � I �

In the same way as in interim efficiency, one can define strongly ex post
efficiency, ex post efficiency, and HM ex post efficiency by using ex post
utility ui and ex post feasible set A0.

5.4 Relationship of the efficiency concepts

In economies with certainty, it is known that if the preferences are monotone
and continuous, strong efficiency and efficiency are equivalent. In the same
way, one could get corresponding equivalence18 for differential information
economies. Furthermore, one can easily prove that efficiency concepts are
stronger if the information sharing of the grand coalition is finer in either ex
ante or interim case as the following proposition indicate:

Proposition 5.4.1: The following statements hold.

(a) Every ex ante fine efficient allocation in E is also ex ante private efficient.
(b) Every ex ante private efficient allocation in E is also ex ante coarse ef-

ficient.
(c) Every ex ante fine efficient allocation in E is also ex ante weak fine

efficient.

17 This is different from that of Homström-Myerson (1983) in that they do not impose the
private information measurability.
18 Assume that ui��� � is monotone and continuous for every i � I and � � �. By simply
observing the definitions, one can easily check that an allocation is strongly interim private
(strongly ex ante private, strongly ex post, resp.) efficient if and only if it is interim private (ex
ante private, ex post, resp.) efficient.
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Proof: (a) Let x be an ex ante fine efficient allocation. Suppose that it is not ex
ante private efficient. Then there exist x� � A such that V i�x�i� � V i�xi� for
every i � I . Since A � A�

�
i�I Fi�, we have x� � A�

�
i�I Fi� such that

V i�x�i� � V i�xi� for every i � I , a contradiction.
(b) Let x be an ex ante private efficient allocation. Suppose that it is not ex

ante coarse efficient. Then there exists x� � A such that x� � e � Z�
�

i�I Fi�
and V i�x�i� � V i�xi� for every i � I . Since Z�

�
i�I Fi� � Z�we have x� � A such

that V �x�i� � V i�xi� for every i � I , a contradiction.
(c) Let x � A be an ex ante fine efficient allocation. Suppose that it is not

ex ante weak fine efficient. Then there exists x� � A�
�

i�I Fi� such that
V i�x�i� � V i�xi� for every i � I � Since A � A�

�
i�I Fi�� we have x � A�

�
i�I Fi�

such that there exists x� � A�
�

i�I Fi� such that V �x�i� � V i�xi� for every i � I �
a contradiction. �

Applying the same arguments about the information sharing, we get the
same results for the concepts of interim efficiency.

Proposition 5.4.2: The following statements hold.

(a) Every interim fine efficient allocation in E is also interim private efficient.
(b) Every interim private efficient allocation inE is also interim coarse efficient.
(c) Every interim fine efficient allocation in E is also interim weak fine efficient.

Proof: Follow the argument adopted for the proof of Proposition 5.4.1. �

Proposition 5.4.3: The following statements hold.

(a) Every interim private efficient allocation in E is also weakly interim effi-
cient.

(b) Every HM interim efficient allocation in E is also weakly interim efficient.
(c) If ui��� �� is monotone and continuous, then every interim private efficient

allocation in E is also HM interim efficient.

Proof: (a) Let x be an interim efficient allocation. Suppose that x is not
weakly interim efficient. Then there is a feasible allocation x� such that for
some common knowledge event E �

�
i�I Fi� Vi��� x�i� � Vi��� xi� for every

� � E and for every i � I . This implies that for some � � �� Vi��� x�i�
� Vi��� xi� for every i � I � Hence, x is not interim efficient, a contradiction.

(b) Let x be a HM interim efficient allocation. Suppose that x is not
weakly interim efficient. Then there is a feasible allocation x� such that for
some common knowledge event E �

�
i�I Fi� Vi��� x�i� � Vi��� xi� for every

� � E and for every i � I . Consider a new allocation x� � �x�i �i�I � A� where

x�i ��
�� �

x�i��
�� if �� � E�

xi���� otherwise.

�

It follows that Vi��� x�i � 	 Vi��� xi� for every � � � and for every i � I .
Moreover, Vi��� x�i � � Vi��� xi� for some � � � and for some i � I � Hence, x
is not HM interim efficient, a contradiction.
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(c) Let x be an interim private efficient allocation. Suppose that x is not
HM interim efficient. Then there is a feasible allocation x� such that,
Vi��� x�i� � Vi��� xi� for every � � � and for every i � I with strict inequality
for some �� � � and for some k � I . Since for each i � I and for each fixed
� � �� Vi��� �� is continuous by Lemma 3.1.1, there is an 
 � 0 such that that
Vk���� x�k � 
 � 1 � Vk���� xk�. Consider a new allocation x� � �x�i �i�I � A with

x�i �
x�i � 
 � 1 if i � k,
x�i 	

1

I 
�1 
 � 1 otherwise.

�

Since Vi��� �� is monotone, it follows that Vi���� x�i � � Vi���� xi� for every
i � I . Hence, x is not interim private efficient, a contradiction. �

Recall that the ex ante expected utility and the interim expected utility are
related in the following way:

V i�xi� �
�

Ei����Fi

��Ei����Vi��� xi�� �5�4�1�

This gives the relationship between ex ante private efficiency and HM interim
efficiency.

Proposition 5.4.4: Assume that ui��� �� is monotone and continuous for every
i � I and � � �. Every ex ante efficient allocation in E is also HM interim
efficient.19

Proof: Let x be an ex ante private efficient allocation. Suppose that x is not
HM interim efficient. Then there is an feasible allocation x� such that
Vi��� x�i� � Vi��� xi� for every � � � and for every i � I with strict inequality
for some �� � � and some k � I . It follows from (5.4.1) that V i�x�i� � V i�xi�
for every i � I with strict inequality for k � I . Since V i is continous (recall
Lemma 3.1.1), there is an 
 � 0 such that V k�x�k � 
 � 1� � V k�xk�. Consider a
new allocation x� � �x�i �i�I � A where

x�i �
x�i � 
 � 1 if i � k,
x�i 	

1

I 
�1 
 � 1 otherwise.

�

Since V i is monotone, V i�x�i � � V i�xi� for every i � I . This implies that x is
not ex ante private efficient, a contradiction. �

Corollary 5.4.5: Assume that ui��� �� is monotone and continuous for every
i � I and � � �. Every ex ante private efficient allocation in E is weakly
interim efficient.

19 When the private information measurability is not imposed, one can show that the strong ex
ante efficiency implies the HM interim efficiency, which in turn implies the HM ex post efficiency.
This is a well-known fact [see Holmström-Myerson (1983)]. For comparison, let Ti be the type
space of agent i. Then Ei�t� � �ti�  T�i with t � �ti� t�i�� Thus, in the context of type
representation of private information, the private information measurability is described by
xi�ti� t�i� � xi�ti� t��i� for every t�i and t��i in T�i since Ei�ti� t�i� � Ei�ti� t��i��
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Proof: It follows from Proposition 5.4.3 (b) and Proposition 5.4.4. �

Unlike Holmström-Myerson (1983), it turns out that there is no direct
implication between the ex ante private efficiency and the interim private
efficiency, as the proposition below indicates.

Proposition 5.4.6: An ex ante private efficient (weakly interim efficient, or
HM interim efficient) allocation in E may not be interim private efficient.

Proof: Consider an economy with differential information with three agents,
two goods, and three equally probable states, where utility functions,
random initial endowments, and private information sets are given as fol-
lows:

u1��� x1
� x2� �

���������
x1x2

�
� e1 � ��10� 0�� �10� 0�� �10� 0���F1 � ���1� �2� �3���

u2��� x1
� x2� �

���������
x1x2

�
� e2 � ��4� 4�� �1� 5�� �1� 5��� F2 � ���1�� ��2� �3���

u3��� x1
� x2� �

���������
x1x2

�
� e3 � ��0� 1�� �1� 3�� �3� 4��� F3 � ���1�� ��2�� ��3���

The allocation x � �x1� x2� x3� with

x1 � ��6� 2�� �6� 2�� �6� 2���
x2 � ��7� 3�� �5� 3�� �5� 3���
x3 � ��1� 0�� �1� 3�� �3� 4��

is an ex ante private (weakly interim efficient, or HM interim efficient) but is
not interim private efficient, since the allocation x� � �x�1� x�2� x�3� with

x�1 � ��6�1� 2�� �6�1� 2�� �6�1� 2���
x�2 � ��7� 3�� �4� 4�� �4� 4���
x�3 � ��0�9� 0�� �1�9� 2�� �0�9� 3��

results in Vi��2� x�i� � Vi��2� xi� for every i � I . �

Denote by E an economy as defined in Section 3, with the only difference
that now Y� � R�� i�e�� we have one good per state. In this case, the set of
feasible allocations lies in the infinite dimensional space L1���R��. In a one
good economy, the set of feasible allocations is equivalent to the set of
interim efficient allocations. It is obvious that every interim efficient alloca-
tion is feasible. The other direction is clear too. Indeed, from a given feasible
allocation, a change to any other feasible allocation makes at least one agent
become worse off at some state because there is only one good. It can be
proved formally as follows.

Proposition 5.4.7: Every feasible allocation in E is interim coarse efficient.

Proof: Suppose that a feasible allocation x � A is not interim coarse efficient.
Then there exist a state � � �, a agent i � I , an allocation x� � A such that
x� 	 e � Z��i�I Fi� and for every i � I ,
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Vi��� x�i� � Vi��� xi�� �5�4�2�

Since there is only one good, (5.4.2) implies that for every i � I � x�i��� � xi���
by monotonicity and measurability. Hence, e����

�
i�I x�i��� �

�
i�I xi��� �

e���� a contradiction. �

Corollary 5.4.8: Every feasible allocation in E� is interim private efficient.

Proof: Since every interim coarse efficient allocation is interim private
efficient [Proposition 5.4.2(b)], the conclusion follows from Proposition
5.4.7. �

6 Relationship of efficiency with incentive compatibility

It is well-known that the Bayesian incentive compatibility condition is too
restrictive for achieving socially desirable allocations. In particular, Myerson
(1979) recognized that most interim efficient allocations may not be Bayesian
incentive compatible. However, if a simple condition is assumed (that is, the
private information measurability), the BIC condition turns out to be so
weak that every feasible allocation is BIC. However, the CBIC condition
seems more appropriate and one can show that several efficiency concepts
defined in Section 5 are always coalitionally Bayesian incentive compatible.

Proposition 6.1: Every interim coarse efficient allocation in E is TCBIC.

Proof: Suppose that x � e � z � A is interim coarse efficient but it is not
TCBIC. Then there exists a state �� � �� a coalition S, a deception
�S �
�

i�S Fi �
�

i�S Fi� and a transfer �ti�i�S �
�

i�S Li with
�

i�S ti � 0�
each ti is

�
i�S

Fi-measurable and such that for every i � S�

Vi��
�� ei � �z � 	�S � �

�

S ��i � ti� � Vi��

�� xi��

where e � z � 	�S � ��
S � � A� Since for every �� � ES
���

���E
S���� it holds
that zi���� � zi����� i�e�� �z � 	�S � ��
S ��i��

�� � zi���� for every i �� S, it must be
the case that for every i �� S,

Vi��
�� ei � �z � 	�S � �

�

S ��i� � Vi��

�� xi�� �6�1�

Since for each i � I and for each fixed � � �� Vi��� �� is continuous by
Lemma 3.1.1, there exists an 
 � 0 such that for every i � S,

Vi��
�� ei � z � 	�S � �

�

S �i � ti 
 
 � 1� � Vi��

�� xi�� �6�2�

Let us define z� � �z�i�i�I � � � �Z by z�i��� � �zi�	�S � ��
S ����
�� � ti���� for

every � � �, where ti � 0 for every i �� S. Define x� � �x�i�i�I by

x�i �
ei � z�i 
 
 � 1 if i � S�
ei � z�i �

S
I�S 
 � 1 if i �� S�

�

Note that x�i 
 ei is
�

i�I Fi-measurable and x� is a feasible allocation since�
i�I�z � 	�S � ��
S ��i � 0� However, (6.2) implies that Vi���� x�i� � Vi���� xi� for

every i � S� Because Vi��� �� is monotone for every i � I � (6.1) implies that
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Vi���
� x�i� � Vi���� xi� for every i �� S� Hence we have a contradiction to the

fact that x is interim coarse efficient. �

Corollary 6.2: Every interim coarse efficient allocation in E is CBIC.

Proof: Since TCBIC implies CBIC, the conclusion follows from Proposition
6.1. �

Corollary 6.3: Every interim private efficient allocation in E is CBIC.

Proof: Since every interim private efficient allocation is interim coarse effi-
cient [Proposition 5.4.2 (b)], Corollary 6.2 leads to the assertion. �

Since CBIC implies BIC, we can therefore obtain the following from Cor-
ollary 6.3.

Corollary 6.4: Every interim private efficient allocation in E is BIC.

Proposition 6.5: Assume that ui��� �� is monotone and continuous for every
� � � and for every i � I � Then every weakly interim efficient allocation in 

is weakly CBIC.

Proof: Suppose x � e � z � A is weakly interim efficient but it is not weakly
CBIC. Then there exist a state �� � �� a coalition S, and a deception
�S �

�
i�S Fi �

�
i�S Fi such that for every i � S� �i�Ei����� � Ei����

	�� ��Ei����� Ei���� �
�

i�S Fi� and

Vi��
�� ei � �z 
 ��S � �

�
�S �i� � Vi��

�� xi��

where e � z 
 ��S � ���S  � A� Since for every �� � ES
���

���E�S���� it holds
that zi���� � zi����� i�e�� �z 
 ���S � ���S �i��

�� � zi���� for every i �� S� it must
be the case that for every i �� S�

Vi��
�� ei � �z 
 ��S � �

�
�S �i� � Vi��

�� xi�� �6�3�

Since for each � � �� Vi��� �� is continuous for every i � I by Lemma 3.1.1,
there exists an 
 � 0 such that for every � � � and for every i � S

Vi��� ei � �z 
 ��S � �
�
�S �i � 
 � 1� � Vi���xi�� �6�4�

Let us define x� � �x�i�i�I by

x�i��
�� �

ei � �z 
 ��S � ���S �i � 
 � 1 if i � S�
xi �

�S�
�I�S� 
 � 1 otherwise.

�

Note that x� � A� (6.4) implies that V ��� x�i� � Vi��� xi� for every � � E and
for every i � S. Because Vi��� �� is monotone for every � � � and for
every i � I � (6.3) means that Vi��� x�i� � Vi��� xi� for every � � � and for
every i �� S� Hence x is not weakly interim efficient, a contradiction. �
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Corollary 6.6: Assume that ui��� �� is monotone and continuous for every
� � � and for every i � I � Then every HM interim efficient allocation in E is
weakly CBIC.

Proof: It follows from Proposition 5.4.3 (b) and Proposition 6.5. �

Corollary 6.7: Assume that ui��� �� is monotone and continuous for every
� � � and for every i � I � Then every ex ante private efficient allocation in E
is weakly CBIC.

Proof: It follows from Corollary 5.4.5 and Proposition 6.5. �

Proposition 6.8: A weakly interim efficient allocation in E may not be CBIC.

Proof: Consider the same economy as in Proposition 5.4.5. The allocation
x � �x1� x2� x3� with

x1 � ��6� 2�� �6� 2�� �6� 2���

x2 � ��7� 3�� �5� 3�� �5� 3���

x1 � ��1� 0�� �1� 3�� �3� 4��

is weakly interim efficient allocation but is not interim private efficient alloca-
tion. However, the allocation x is not coalitional Bayesian incentive com-
patible, since, at �2� coalition S � �2� 3� with a deception �i�Ei���� � ��1�
for every � � � and i � S will make its members better off, i.e.,

V2��2� e2 � �z � 	�S � �


1��2� � V2��2� x2��

V3��2� e3 � �z � 	�S � �


1��3� � V3��2� x3��

�

Corollary 6.9: A HM interim efficient allocation in E may not be CBIC.

In fact, we can show that any feasible allocation is Bayesian incentive
compatible. This means that the Bayesian incentive compatibility is too weak
to play a role as a condition.

Proposition 6.10: Every feasible allocation in E is BIC.

Proof: Suppose a feasible allocation x � A is not BIC. Then there exist a state
� � �� an agent i � I � and a deception �i � Fi � Fi such that

Vi��� ei � �z � 	�i� �


i��i� � Vi��� xi�� �6�5�

where e � z � 	�i� �
i� � A� Since for every �� � Ei
�����Ei��� it holds that

zk���� � zk���� i�e�� �z � 	�i� �
i��k��� � zk��� for every k �� i� it follows from
the feasibility that

�z � 	�i� �


i��i��� � zi����

By measurability, we obtain

Vi��� ei � �z � 	�i� �


i��i� � Vi��� xi��

a contradiction to (6.5). �
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It is worth noting that in an economy E with one good per state, the set of
interim private efficient allocations coincides with the set of Bayesian in-
centive compatible allocations. This can be shown by combining Corollary
5.4.8 with Proposition 6.10.

Corollary 6.11: The set of interim private efficient allocations in E� the set of
Bayesian incentive compatible allocations E� and the set of feasible alloca-
tions E� are all equivalent.

Since every BIC allocation is feasible, Proposition 6.10 implies that the set of
feasible allocations is equivalent to the set of BIC allocations. Apparently,
our result looks contradicting that of Myerson (1979), i.e., an interim effi-
cient allocation may not be Bayesian incentive compatible. Note that the
interim efficiency of Myerson (1979) is equivalent to our HM interim effi-
ciency except the private information measurability assumption on alloca-
tions. In view of Proposition 5.4.3 (c), our interim efficiency is stronger than
that of Myerson (1979). As it will be shown with an example below, Myer-
son’s argument is robust without the imposition of private information
measurability (i.e., an interim efficient allocation may not be Bayesian in-
centive compatible). This is still true even when our interim efficiency notion
is adopted. However, when allocations are private information measurable,
the adoption of our notion of interim private efficiency (Definition 5.3.2)
guarantees that indeed any interim private efficient allocation is always CBIC
(BIC). One may think of Corollary 6.2 as an improvement of that of
Myerson (1979), in the sense that a stronger notion of interim efficiency with
a simple condition (private information measurability) makes any interim
private efficient allocation CBIC (BIC).

Example 6.1: Consider an economy with differential information with two
agents, two goods, and two equally probable states, where utility functions,
random initial endowments, and private information sets are given as follows:

u1��� x1
� x2� �

���������

x1x2
�

� e1 � ��10� 0�� �10� 0��� F1 � ���1� �2���

u2��� x1
� x2� �

���������

x1x2
�

� e2 � ��0� 8�� �0� 10��� F2 � ���1�� ��2���

The allocation x � �x1� x2� with

x1 � ��5� 4�� �5� 5���
x2 � ��5� 4�� �5� 5��

is a strongly ex post efficient (ex post efficient, or HM ex post efficient)
allocation. But it is neither ex ante nor interim efficient allocation because xi

is not Fi-measurable for i � 1� 2� However, if we do not impose private
information measurability on the allocations as in Myerson (1979), Holm-
ström-Myerson (1983), and Palfrey-Srivastava (1987), this allocation is ex
ante efficient, interim efficient, and ex post efficient. But, observe that it is not
CBIC (BIC). Suppose that �2 is realized. Since

268 G. Hahn and N.C. Yannelis



V2��2� e2 � �z � ��2� ��1��2� � V2��2� x2�

with �2�E2���� � ��1	 for every � 
 �� it is not CBIC (BIC). Therefore, this
example shows that an interim efficient allocation without private information
measurability may not be CBIC (BIC). This also illustrates that Bayesian
incentive compatibility is incompatible with the ex post efficiency.

Proposition 6.12: An interim weak fine efficient allocation in E may not be
CBIC.

Proof: Observe that the allocation x in Example 6.1 is also a weak fine
efficient allocation. �

7 Are efficient and incentive compatible allocations individually rational?

Even though a mechanism is efficient, it cannot be achieved unless it is in-
dividually rational, otherwise someone may not be willing to trade. Therefore
the individual rationality condition is a fundamental requirement for a me-
chanism. As with the efficiency notions, the individual rationality can be de-
fined according to ex ante, interim, and ex post utility functions. In this
section, we show that efficient allocations may not be individually rational.

Definition 7.1: An allocation x 
 A is interim individually rational if for every
� 
 �� Vi��� xi� � Vi��� ei� holds for every i 
 I �

An allocation x 
 A is ex ante individually rational if the same condition
holds for ex ante expected utility V i. An allocation x 
 A0 is ex post in-
dividually rational if the same condition holds for ex post utility ui and ex
post feasible set A0

�

We begin with a simple result for an economy with one good per state.

Proposition 7.1: The initial endowment is the unique interim individually
rational allocation in E�.

Proof: First of all, note that the initial endowment is interim individually
rational. Suppose that a feasible allocation x �� e is individually rational.
Then for every � 
 � and every i 
 I �

Vi��� xi� � Vi��� ei��

Since there is only one good and x �� e� this implies that xi��� � ei��� for
every � 
 � and i 
 I � and xi���� � ei���� for some �� 
 � and for some
i 
 I by measurability. Thus, e�����

�
i
I xi���� �

�
i
I ei���� �

�
i
I e�����

a contradiction. �

Proposition 7.2: An ex ante private efficient allocation in E may not be
interim individually rational.

Proof: Consider an economy with differential information with three agents,
one good, and three states �i�e��� � ��1��2��3	� with equal probability

Efficiency and incentive compatibility 269



�i�e�� ������ � 1�3 for every � � �� where utility functions, initial endow-
ment, and private information sets are given as follows:

u1��� x� � ���

x
�

e1 � �9� 9� 1� F1 � ���1��2�� ��3��
u2��� x� � ���

x
�

e2 � �9� 1� 9� F2 � ���1��3�� ��2��
u3��� x� � ���

x
�

e3 � �0� 0� 0� F3 � ���1�� ��2�� ��3���
It can be shown that the allocation x � �x1� x2� x3� is ex ante private efficient
and ex ante individually rational where

x1 � �8� 8� 2�� x2 � �8� 2� 8�� x3 � �2� 0� 0��
However, the initial endowment is the unique and interim individually
rational allocation. �

Proposition 7.3: A CBIC (BIC) allocation in E may not be interim indivi-
dually rational.

Proof: Consider an economy with differential information with two agents,
one good, and two equally probable states, where utility functions, random
initial endowments, and private information sets are given as follows:

u1��� x� � ���

x
�

� e1 � �8� 8�� F1 � ���1��2���
u2��� x� � ���

x
�

� e2 � �1� 1�� F2 � ���1�� ��2���
The allocation x � �x1� x2� with

x1 � �9� 9��
x2 � �0� 0�

is a CBIC (BIC) allocation but is not interim individually rational.

8 On the existence of individually rational and efficient allocations

8.1 Existence of individually rational and efficient allocations

Before we state the results for the individually rational and efficient alloca-
tions, we need two preliminary lemmata. These concern the properties of the
upper contour set and a selection theorem.

Lemma 8.1.1: Suppose that ui��� �� is upper semicontinuous and concave for
every � � �� Define the correspondence Pi � �� LXi 	 2LXi by

Pi��� xi� � �x
i � LXi � Vi��� x
i� � Vi��� xi���
Then for every � � �� Pi��� �� is

(a) irreflexive, convex-valued, and
(b) it has weakly open lower sections20�

20 Let X, Y be linear topological spaces. A correspondence � � X 	 2X is said to be irreflexive if
x ����x� for every x � X � A correspondence � � X 	 2Y is said to have (weakly) open lower
sections if for every y � Y � the set ��1�y� �� �x � X � y � ��x�� is (weakly) open in X.
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Proof: (a) It follows from the concavity of ui��� �� that Vi��� �� is concave as
well and therefore the correspondence Pi��� �� is convex-valued. It can be
easily checked that Pi��� �� is irreflexive, for if xi � Pi��� xi� for some xi� then
Vi��� xi� � Vi��� xi�� a contradiction.
(b) Fix � � �� To show that Pi��� �� has weakly open lower sections in LXi �

define the correspondence Ri � � � LXi � 2LXi by

Ri��� xi� � LXi�P�1
i ��� xi� � 	x
i � LXi � Vi��� x
i� � Vi��� xi���

It suffices to show that Ri��� xi� is weakly closed for every xi� Fix xi and take a
net 	x	

i � such that x	
i converges weakly to xi in LXi and x	

i � Ri��� xi�� Since
x	

i � Ri��� xi�� it follows that Vi��� x	
i � � Vi��� xi�� By Lemma 3.1.2, Vi��� �� is

weakly upper semicontinuous, i.e., if x	 converges weakly to x� we have
Vi��� xi � � lim sup Vi��� x	

i ��Notice that lim sup Vi��� x	
i � � Vi��� x	

i �� There-
fore, Vi��� xi � � Vi��� xi�� i�e�� xi � Ri��� xi�� Hence Ri��� xi� is weakly closed
and we can conclude that Pi��� �� has weakly open lower sections in LXi � �

Lemma 8.1.2: If X be a paracompact Hausdorff space and Y be a topological
space. Suppose that a correspondence � � X � 2Y is non-empty-valued,
convex-valued, and having open lower sections. Then there exists a con-
tinuous function f � X � Y such that f �x� � ��x� for every x � X �

Proof: See Theorem 3.1 in Yannelis-Prabhakar (1983). �

For the theorem below we will assume that � in finite. This will simplify
the proof.

Theorem 8.1.3: If ui��� �� is upper semicontinuous and concave for every i � I
and every � � �� then an interim individually rational and weakly interim
efficient allocation exists in E.

Proof: Let B be the set of all interim individually rational allocations:

B � 	x � LX � �� � �� Vi��� xi� � Vi��� ei���i � I��

Since e � B� B is nonempty. Since Vi��� �� is weakly upper semicontinuous,
B is a weakly closed subset of the order interval �0� e��I� � �0� e� � � � � � �0� e��
which is weakly compact (Cartwright’s Theorem). This implies that B is also
weakly compact.

Let
�

i�I Fi � 	E1�E2� � � � �Ek� � � � �En�be the common knowledge partition.
Fix Ek �

�
i�I Fi� Let us define

Bk � 	x � �Ek � x � B��

Lk
Xi
� 	xi � �Ek � xi � LXi��

Lk
X � 	x � �Ek � x � LX��

Note that Bk is weakly compact. Define the correspondence Pk
i � Ek

�Lk
Xi
� 2Lk

Xi by

Pk
i ��� xi � �Ek � � 	x
i � �Ek � Lk

Xi
� Vi��� x
i� � Vi��� xi���

and define the correspondence Pk
� Bk � 2Bk

by
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Pk�x � �Ek � �
�

��Ek

�
i�I

P k
i ��� xi � �Ek �

�
Bk

� �
�

It follows from Lemma 8.1.1 that Pk is irreflexive, convex, and has weakly
open lower sections in Bk

�

Now let x � �Ek � Bk and suppose that there is x� � �Ek � Lk
X such that

x�i � �Ek � Pi��� xi � �Ek � for every � � Ek� Since x � �Ek belongs to Bk
� so does

x� � �Ek � Therefore, Pk is nonempty-valued. Hence, there is a weakly con-
tinuous function f � Bk � Bk such that f �x � �Ek � � Pk�x � �Ek � for every
x � �Ek � Bk . By the Brouwer-Schauder-Tychonotf fixed point theorem, there
exists a fixed point, i.e., �x � �Ek � f ��x � �Ek � � P��x � �Ek �, a contradiction to the
irreflexivity of Pk� Therefore, there exists xk � �Ek � Bk such that
Pk�xk � �Ek � � � for every k � 1� � � � � n� Construct x� �

�n
k�1 xk � �Ek � It is clear

that x� is interim individually rational. To show that it is weakly interim
efficient, suppose otherwise. Then there is x� � A such that for some common
knowledge event Ek �

�
i�I Fi� Vi��� x�� � Vi��� x�� for every � � Ek and for

every i � I � This means x�i � �Ek � Pk
i ��� xk

i � �Ek � for every � � Ek and for every
i � I � Since xk � �Ek � Bk

� it follows that x� � �Ek � Bk
� This contradicts that

Pk�xk � �Ek � � �� �

Theorem 8.1.4: If the ui��� �� is upper semicontinuous and concave for every
i � I and every � � �� then the set of ex ante individually rational and ex
ante private efficient allocations of 
 is nonempty.

Proof: Let H be the set of all ex ante individually rational allocations:

H � 	x � LX � V i�xi� 
 V i�ei���i � I��

Since e � H�H is nonempty. Since V is weakly upper semicontinuous, H is a
weakly closed subset of the order interval 0� e��I� � 0� e� � � � � � 0� e�� which
is weakly compact (Cartwright’s Theorem). This implies that H is also
weakly compact. Define the correspondence �Pi � LXi � 2LXi by

�Pi�xi� � 	x�i � LXi � V i�x�i� � V i�xi���

and define the correspondence �P � H � 2H by

�P�x� �
�
i�I

�Pi�xi�
�

H�

In the same way as in Lemma 8.1.3, we can show that �P is irreflexive, convex-
valued, and it has weakly open lower sections in H .

Now let x be an ex ante individually rational allocation. Suppose that it is
not ex ante private efficient. Then there is an allocation x� � A such that
x�i � �Pi�xi� for every i � I � Note that x � H implies x� � H� It follows that
x� � �P�x� and therefore, �P is nonempty-valued. By Lemma 8.1.2, there is a
weakly continuous function f � H � H such that f �x� � �P�x� for every
x � H� By the Brouwer-Schauder-Tychonoff Theorem, there exists a fixed
point x� � f �x�� � �P�x��� a contradiction to the irreflexivity of �P � Hence we
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conclude that there exists an ex ante individually rational and ex ante effi-
cient allocation. �

8.2 Nonexistence of individually rational and efficient allocations

Below we show that in well-behaved differential information economies, that
is, where agents’ utility functions are monotone, continuous, and concave, an
interim fine efficient allocation may not exist.

Proposition 8.2.1: An interim fine efficient allocation may not exist in E�

Proof: Consider an economy with differential information with two agents,
two goods, and three equally probable states, where utility functions, ran-
dom initial endowments, and private information sets are given as follows:

u1��� x1
� x2� �

���������

x1x2
�

� e1 � ��10� 0�� �10� 0�� �10� 0��� F1 � ���1��2�� ��3���
u2��� x1

� x2� �
���������

x1x2
�

� e2 � ��10� 0�� �0� 10�� �0� 10��� F2 � ���1�� ��2��3���
Suppose that �1 is realized. Then there is no trade in that state. It follows
that agent 1 will not trade at �2 and agent 2 will not trade �3� which implies
that there is no trade at every state. The allocation x � e is the unique feasible
allocation. Consider a new allocation x� � A��i�I Fi�:

x�1 � ��10� 0�� �5� 5�� �5� 5��
x�2 � ��10� 0�� �5� 5�� �5� 5���

Since Vi��2� x�i� � Vi��2� ei� for i � 1� 2� the initial endowment is not interim
fine efficient. Hence there is no interim fine efficient allocation. �

Proposition 8.2.2: An interim individually rational and interim coarse effi-
cient allocation need not exist in E�

Proof: Consider an economy with differential information with two agents,
two goods, and two equally probable states, where utility functions, random
initial endowments, and private information sets are given as follows:

u1��� x� �
���������
x1x2

�
� e1 � ��10� 2�� �10� 2��� F1 � ���1��2���

u2��� x� �
���������
x1x2

�
� e2 � ��2� 10�� �2� 6��� F2 � ���1�� ��2���

The set of all interim coarse efficient allocation is

� �12� 8�� �12� 8�� �� �0� 4�� �0� 0�� �� 	� �0� 0�� �0� 0�� �� �12� 12�� �12� 8�� �� 	��
Hence, no interim coarse efficient allocation is interim individually rational.

Corollary 8.2.3: An interim individually rational and interim private efficient
allocation need not exist in E.

Proof: Since the interim private efficiency implies the interim coarse efficiency
[Proposition 5.4.2 (b)], the claim follows from Proposition 8.2.2. �
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8.3 Compactness of the set of individually rational and efficient allocations

In this section, we show that the set of interim individually rational and
interim private efficient allocations is weakly compact.

Theorem 8.3.1: If ui��� �� is upper semicontinuous for every i � I and every
� � �� the set of interim individually rational and interim private efficient
allocations of E is weakly compact.

Proof: Define the correspondence Pi � �� LXi � 2LXi by

Pi��� xi� � �x�i � LXi � Vi��� x�i� � Vi��� xi�	�

and define the correspondence P � � � B � 2LX by

P��� x� �
�

i�I

Pi��� xi�� �8�3�1�

It follows from Lemma 8.1.1 that P��� �� is irreflexive, and has weakly open
lower sections in B for every � � �� Let M be the set of interim individually
rational and interim private efficient allocations. Formally,

M � �x � B � 
�� P��� x� � �	

Then it follows that

B�M � �x � B � � � �� P��� x� �� �	

� �x � B � � � � and y � P��� x�	

� �x � B � � � � and y � LX such that x � P�1��� y�	

�
�

���

�

y�LX

P�1��� y�

Since P��� �� has weakly open lower sections, B�M is weakly open. Hence M
is a weakly closed subset of the weakly compact set B and therefore we can
conclude that M is weakly compact. �

Notice that if ui��� �� is affine (a rather strong assumption which rules out
risk aversion), the set M can be shown to be convex. This is parallel to the
results of Myerson (1979) and Holmström-Myerson (1983) who show that if
ui��� �� is linear, the set M is convex.

Theorem 8.3.2: If the ui��� �� is upper semicontinuous for every i � I and
every � � �� then the set of ex ante individually rational and ex ante private
efficient allocations of E is weakly compact.

Proof: Define the correspondence �Pi � LXi � 2LXi by

�Pi�xi� � �x�i � LXi � V i�x�i� � V i�xi�	�

and define the correspondence �P � H � 2LX by
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�P�x� �
�

i�I

�Pi�xi�� �8�3�2�

Define H as in Theorem 8.1.4. Then H is nonempty and weakly compact,
and �P��� is irreflexive and has weakly open lower sections in H . Let Ma be
the set of ex ante individually rational and ex ante private efficient alloca-
tions. Formally,

Ma � �x � H � �P�x� � ��

Then it follows that

H � Ma � �x � H � �P�x� 	� ��

� �x � H � 
y � �P�x��

� �x � H � 
y � LX such that x � �P�1��� y��

�
�

y�LX

�P�1�y�

Since �P has weakly open lower sections, H � Ma is weakly open. Hence Ma is
a weakly closed subset of the weakly compact set H and therefore we can
conclude that Ma is weakly compact. �

Theorem 8.3.3: If the ui��� �� is upper semicontinuous for every i � I and
every � � �, then the set of ex post individually rational and ex post efficient
allocations of E is nonempty and weakly compact.

Proof: One can proceed in a similar way as in Theorem 8.3.1. �

9 Incentive efficiency

As we saw in Example 6.1, the private information measurability of alloca-
tions is the key assumption to obtain our results. That is, without it, an
interim efficient allocation may be not Bayesian incentive compatible. We
now propose the concept of incentive efficiency. This notion is defined as
before but no measurability conditions are imposed. Hence, we disregard the
private information measurability assumption and define the concept of in-
centive efficiency. We show that an incentive efficient allocation exists and
that the set of incentive efficient allocations is weakly compact. This kind of
approach is not the first one in the literature. Holmström-Myerson (1983)
show that an efficient (HM interim efficient) allocation may be not Bayesian
incentive compatible and propose the concept of incentive efficiency as an
appropriate efficiency concept in incomplete information environment.
However, we have a different setting, i.e., a differential information economy,
rather than the Harsanyi model. Moreover, we allow for a continuum of
states and commodities as well. We define below our incentive efficiency
notion. Note that we keep all the definitions of efficiency and incentive
compatibility as before except the imposition of private information mea-
surability on allocations. An allocation x � e � z � A0 is incentive compatible
if for every � � �, every i � I , and every deception �i � Fi Fi such that
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(�i� ���i) is compatible with F and Vi��� xi� � Vi��� ei � �z � ��i� ���i��i� where
e � z � ��i� ���i� 	 A0. Let us define

Di 
 ��i��i � Fi  Fi�

and let

Ci��� �i� 
 �x 	 A0
� Vi��� xi� � Vi��� ei � �z � ��i� �

�
�i��i�

with e � z � ��i� �
�
�i� 	 A0��

Then the set of all incentive compatible allocations is given by

C 

�

�	�

�

i	I

�

�i	Di

Ci��� �i��

Definition 9.1: An allocation x 
 e � z 	 C is incentive efficient if there is no
x� 	 C such that for some � 	 �� Vi��� x�i� � Vi��� xi� for every i 	 I .

It should be noted that our interim efficiency (Definition 5.3.2) is not com-
parable to the incentive efficiency without private information measurability
because the set of feasible allocations with the private information measur-
ability assumption is smaller but it is more difficult for the grand coalition to
block them with the private information measurability assumption. Hence,
neither set contains the other one. As in Myerson (1979), for the existence of
incentive efficient allocations, risk neutrality is required as the theorem below
indicates (compare this result with the existence results of Section 8 where
risk aversion is allowed).

Theorem 9.2: If ui��� �� is continuous and affine � 	 � and i 	 I , there exists
an incentive efficient allocation in E.

Proof: Since e 	 C �C is nonempty. Since Vi��� �� is weakly continuous by
Lemma 3.1.3, it follows that C is a weakly closed subset of the weakly
compact set �0� �e��I � 
 �0� �e� � �0� �e� � � � � � �0� �e�. This implies that C is weakly
compact.

Fix � 	 � and consider the maximization problem:

max
x	C

�

i	I

	i���ui��� xi�����

where for all i 	 I , 	i � �  R� and 	 
 �	i�i	I �
 0. Since C is nonempty and
weakly compact, and the maximand is weakly continuous in x, there is
a solution x�. Then x� with x���� 
 x���� is an incentive efficient alloca-
tion. �

Theorem 9.3: If ui��� �� is continuous and affine for every � 	 � and for every
i 	 I , the set of incentive efficient allocations of E is weakly compact.

Proof: One can proceed in a similar way as in Theorem 8.3.1. �
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1 Introduction

Incentive considerations are interesting in cooperative games because they provide
an argument that agreements made within coalitions are self-enforcing. For ex-
ample, if contracts are incomplete,1 a fully credible verification and enforcement
arrangement may be lacking. More generally, commitments may be only partially
enforceable. Games with partial commitment power define an interesting territory
between cooperative and noncooperative game theory.

The introduction of information into cooperative game theory was initiated by
Wilson (1978) and extended, in the standard Harsanyi framework of games with
incomplete information, by Myerson (1984) and Rosenmüller (1990). A series
of more recent papers – i.e., as initiated by Yannelis (1991) and Allen (1991) –
has examined the (NTU) core with asymmetric information, but without incentive
compatibility requirements.

On the other hand, Myerson (1984) and Rosenmüller (1990) do discuss incen-
tives, but do not analyze any core concept. Allen (1993) examines verification –
the notion that a player’s or coalition’s strategy must be measurable with respect to
the information available to other players – but this is very different from incentive
compatibility. Krasa and Yannelis (1994) define the (NTU) value with incentive
compatibility for a simple class of economies with private information sharing and
(essentially) finitely many states of the world. Koutsougeras and Yannelis (1995)
find core allocations (with private, fine, and the balanced cover of coarse informa-
tion sharing) and check that private information sharing allocations satisfy incentive
compatibility. However, they do not require incentive compatibility for blocking
allocations. [Allen (1995 and 1999, respectively) demonstrates positive existence
results for the (NTU) incentive-compatible core in large economies under either a
relaxation to an approximate core concept or a dispersion hypothesis.]

Recent attention has focused on a variety of definitions of coalitional incentive
compatibility. For an overview of part of this large and growing literature, see Allen
and Yannelis (2001) and the references cited there.

For a class of taxation problems having a very special structure, Berliant (1992)
defines and analyzes the incentive compatible core; he argues that it may, in general,
be empty. In the context of financial intermediation, Boyd and Prescott (1986) and
Kahn (1987) find incentive compatible core allocations directly. Marimon (1989)
examines an asymmetric information core with adverse selection.

However, all of this work has failed to define the incentive compatible core in
general economies with asymmetric information and to analyze when the incentive
compatible core is nonempty. The work of Berliant (1992) suggests that problems
can be expected to arise in general, but his model is sufficiently different from (for
instance) the general exchange economy paradigm that such a conclusion is not
fully justified.

In this paper, I formulate the incentive compatible core for exchange economies
in which agents with asymmetric information have state-dependent utilities and ini-
tial endowments. Incentive compatibility is taken to mean that players’strategies (in

1 See, for example, Section 3 of Hart and Holmstrom (1977) and the article by Hart and Moore
(1988).
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the induced cooperative game with nontransferable utility) satisfy a self-selection
constraint that the state-dependent net trade must give rise to allocations that are
at least as good as those for the state-dependent net trade of another state of the
world. Here “at least as good” refers to the true state-dependent utility function if
the player is perfectly informed and to conditional expected utility given his infor-
mation otherwise. I focus on games with nontransferable utility because this is the
appropriate setting for the study of incentives. Incentive compatibility or truthful
revelation does not pose a problem when the goal of all coalition members is to
maximize a single objective function.

My notion of incentive compatibility should be interpreted as a restriction on
players’strategies rather than a specification of what happens if a lie occurs. Indeed,
I do not emphasize mechanisms to define allocations when one or more players lie
about their information. Instead, one performs the thought experiment in which the
player receives the net trade corresponding to whatever information he announces,
even though all of these net trades may not be feasible for the whole economy
(unless all players lie in an internally consistent way). Any state-dependent net
trade commitments that give anyone a strict incentive to lie are eliminated from the
set of strategies that players may use. For example, a contract may detail outcomes
based on the information provided by a party to the contract but may be independent
of the information given by others in similar contracts. Any strategy that is not self-
enforceable in the sense described above is simply not believed to be a credible
commitment by other members of a coalition.

Existence of allocations in the incentive compatible core requires a weakening
of the usual solution concept. Convex combinations of incentive compatible net
trades may violate incentive compatibility, so that the usual argument to show
balancedness of cooperative games derived from exchange economies fails, even
though traders are assumed to have concave utilities. To bypass this obstacle, I
introduce a randomization.2 Incentive compatible core allocations thus consist of
probabilities over incentive compatible state-dependent net trades such that the
actual state-dependent allocation is, for almost all states of the world, feasible on
average with respect to the randomization.

The next section furnishes an example of a pure exchange economy with three
traders, five commodities, and five states of the world in which incentive compati-
bility leads to nonconvex strategy sets. As a result, the game is not balanced and its
(NTU) incentive compatible core is empty. This demonstrates that the randomiza-
tion is indeed necessary. The example further shows that resource feasibility must
be expressed in terms of averages over the randomization within every state rather
than with probability one with respect to the randomization.

The necessity for weakening the resource feasibility requirement suggests that
perhaps the phenomenon should be viewed as a negative result. While this argument
indeed has its rationale, asset markets, inventories and the law of large numbers
could be used to justify my average feasibility condition. Nevertheless, the existence

2 This is reminiscent of the work of Prescott and Townsend (1984a,b), who analyze competitive
equilibria and Pareto optimality in large economies with asymmetric information and lotteries or many
independent risks.
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of such incentive compatible core allocations should be interpreted with caution.
On the other hand, my analysis has the virtue of providing a cooperative game-
theoretic explanation of the endogenous and strategic choice of a mechanism in the
presence of asymmetric information. The choice of a cooperative solution point can
be interpreted as the choice of a mechanism. While the core cannot be expected to
contain, in general, a unique incentive-compatible state-dependent allocation (and
hence to correspond to a unique equivalence class of mechanisms), allocations or
mechanisms outside of my core can be blocked with incentive compatible outcomes
so that points not in the core can be eliminated from consideration when strategic
agents can cooperate within coalitions.

The remainder of this paper is organized as follows: Section 2 gives the example
illustrating that incentives can destroy convexity, balancedness, and nonemptiness
of the set of incentive compatible core allocations. Section 3 presents the model.
Incentive constraints and randomizations are discussed in Sections 4 and 5 respec-
tively, while Section 6 presents and proves the main result. Section 7 concludes
with some remarks.

2 The example

This section presents an example which demonstrates the main ideas of the paper.
The example illustrates a pure exchange economy under uncertainty in which the
induced strategy sets of the cooperative game fail to be convex due to incentive
compatibility constraints. The set of utility vectors attainable by the grand coalition
is also nonconvex, although the nonconvexities in payoff space occur where they
are inessential for the existence of points in the core. The nonconvexity of incentive-
compatible strategy sets leads to a game with nontransferable utility which is not
balanced and has an empty (NTU) core.

However, the introduction of randomizations over allocations restores convex-
ity, balancedness, and nonemptiness of the core at the expense of weakening fea-
sibility requirements. Almost sure resource feasibility is replaced by feasibility, in
each state of the world, of (state-dependent) allocations on average with respect
to the randomization. While randomization over almost surely feasible allocations
would convexify the sets of attainable payoffs, it does not guarantee either balanced-
ness or the existence of core allocations. Hence the original game with incentive
constraints derived from my example fails to have convex feasible payoff sets, has
convex strategy sets, is not balanced, and has an empty core. Randomization with
almost sure feasibility is sufficient to ensure convexity of feasible payoffs, but does
not solve any of the other problems. Randomization with mean feasibility enlarges
the attainable utility sets further and suffices to convexify the underlying strategy
sets so as to give a balanced game which therefore has a nonempty core. Yet re-
moval of the incentive compatibility constraints would alter the game still more
and lead to larger core payoffs so that my randomization operation is definitely not
equivalent to the elimination of incentive compatibility.

The example features three traders, five states of the world, and five commodi-
ties, of which the first two matter in the first two states while each of the remaining
goods is of consequence in exactly one state. All states are equally likely, so that
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total utility is proportional to expected utility (which slightly simplifies the calcu-
lations). LetΩ = {a, b, c, d, f} denote the set of states of the world. Use subscripts
i = 1, 2, 3 to distinguish players, and let commodities be indicated by x, y, z, r,
and t. Nonnegative amounts of all goods can be consumed in every state s ∈ Ω.

Traders’ initial endowment vectors do not depend on the state of the world in
this pure exchange example. Write ei(s) ∈ R5

+ for player i’s initial endowment
in state s ∈ Ω and suppose that e1(s) = (1, 1, 3, 0, 0), e2(s) = (0, 4, 0, 1, 0), and
e3(s) = (4, 0, 0, 0, 1) for all s = a, b, c, d, f .

The second and third economic agents have almost identical state-dependent
cardinal utilities. They are given by u2(x, y, z, r, t; a) =

√
x, u3(x, y, z, r, t; a) =√

y, u2(x, y, z, r, t; b) = −∞I(y < 4), u3(x, y, z, r, t; b) = −∞I(x < 4), u2(x,
y, z, r, t; c) = u3(x, y, z, r, t; c) = z, u2(x, y, z, r, t; d) = r, u3(x, y, z, r, t; f) =
t and u3(x, y, z, r, t; d) = u2(x, y, z, r, t; f) = 0.3

Trader 1 has rather complicated utility functions in states a and b, but straightfor-
ward utilities in the remaining three states. Let u1(x, y, z, r, t; c)=z/3, u1(x, y, z,
r, t; d) = r/2, u1(x, y, z, r, t; f) = t/2, and u1(x, y, z, r, t; b) = (x + y)/2
if x + y ≤ 2, u1(x, y, z, r, t; b) = 1 if x = 0 and y ≥ 2 or if y = 0 and
x ≥ 2, and set u1(x, y, z, r, t; b) > 1 if x > 0, y > 0, and x + y > 2 so as
to be concave and continuous. Finally, for state a, define4 u1(x, y, z, r, t; a) =
1
4 min(x+y−1+

√
(x+ y − 1)2 + 8x, x+y−1+

√
(x+ y − 1)2 + 8y). Note

that, in particular, utility along each axis in the plane is given by (y−1)/2 if x = 0
or (x − 1)/2 if y = 0. This utility function is more easily described by its utility
levelm indifference surfaces as the union of the line segment joining (0, 2m+ 1)
and (m,m) and the line segment joining (m,m) and (2m + 1, 0) in the x − y
plane, so that the points (3, 0), (0, 3) and (1, 1) are associated with a utility level of
1, (4, 0), (0, 4) and (3/2, 3/2) have utility 3/2, (5, 0), (0, 5) and (2, 2) give utility
2, and (7, 0), (0, 7), and (3, 3) give utility 3 regardless of trader 1’s allocation of
commodities z, r, and t. Note that this utility function is concave and, moreover,
is the least concave representation for these indifference curves because it is linear
along the diagonal.

Writing payoffs as total utilities (summed over the five states) gives 3 as the
individually rational utility level for player 1 and 1 as the individual rationality
constraint for players 2 and 3; these are the total utilities associated with each
player’s initial endowment. By interchanging their initial endowments in state a,
the coalition composed of players 2 and 3 can achieve utilities of 3 each; this
presumes that they can distinguish state a from state b.

With complete information and in the absence of any incentive compatibility
considerations, the (total utility) imputation (5, 3.5, 3.5) belongs to the core. It
can be achieved with the state-dependent allocations ((4, 4, 3, 0, 0),(1, 1, 3, 0, 0),
(1, 1, 0, 0, 0), (1, 1, 3, 0, 0), (1, 1, 3, 0, 0)) for player 1, ((1, 0, 0, 1, 0), (0, 4, 0, 1, 0),

3 Define ∞ · 0 = 0 and ∞ · 1 = ∞, so that −∞ · I(y < 4) = −∞ if y < 4, −∞ · I(y < 4) = 0
if y ≥ 4, −∞ · I(x < 4) = −∞ if x < 4 and −∞ · I(x < 4) = 0 if x ≥ 4, where I(·) denotes the
indicator function of a set.

4 A discussion with Heraklis Polemarchakis helped me to transform the desired indifference curves
into this utility function.
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(0, 4, 1.5, 1, 0), (0, 4, 0, 1, 0), (0, 4, 0, 1, 0)) for player 2, and ((0, 1, 0, 0, 1),
(4, 0, 0, 0, 1), (4, 0, 1.5, 0, 1), (4, 0, 0, 0, 1), (4, 0, 0, 0, 1)) for player 3. These out-
comes are individually rational and cannot be blocked by the coalition {2, 3}.
Clearly the allocation is Pareto optimal and hence cannot be blocked by the grand
coalition. Finally, notice that it cannot be blocked by {1, 2} or {1, 3}, as these
coalitions can, at best, achieve utility imputations such as (3.94, 3.5), (5.19, 0) or
(4.95, 0.7).

Incentive compatibility implies that the above core allocation (as well as the
latter two imputations for coalitions {1, 2} or {1, 3}) cannot be sustained. Indeed,
player 1 prefers his allocation in state a to his allocation in state bwhen the true state
of the world is b. The role of the particular indifference curve specified for player 1
in state b is to demonstrate that incentives destroy convexity of sets of feasible net
trades. Note that (5, 0, 0, 0, 0) or (0, 5, 0, 0, 0) in state a with (1, 1, 0, 0, 0) in state
b is an incentive compatible allocation for trader 1, but the convex combination
of (2.5, 2.5, 0, 0, 0) in state a violates incentive compatibility if trader 1 receives
(1, 1, 0, 0, 0) in state b, as he would then always claim that the state is a even
when b is true. In this way, incentive considerations change the cooperative game
in characteristic function form that is derived from this economy.

An easy way to see why this is true in general is to observe that if there were only
one commodity and if all agents’ state-dependent utilities were strictly increasing
in that commodity, then the only incentive compatible allocations are those that
give, to each trader, identical amounts of the good in each state that occurs with
positive probability. Clearly this reduces the possibilities for risk sharing and for
gains from trade based on different preferences or subjective probabilities.

To construct the cooperative game V : 2I → R3 in characteristic function form
(where I = {1, 2, 3} is the player set) derived from my economic example with
incentive compatibility constraints, examine efficient, incentive compatible and
feasible state-dependent commodity allocations and their associated total utility
payoff vectors for each coalition. In order to do so, I must first specify the infor-
mation of each player. To set notation, let v : 2I → R be the associated game with
transferable utility, so that v(S) is the total worth of coalition S [set v(∅) = 0], and
if T is any subset of some Euclidean space, let comp(T ) denote its comprehensive
hull, where comp(T ) = T − Rn

+ if T is considered as a subset of Rn.
Information will be defined for each agent so as to make player 2 or player 3

need another player in order to be able to distinguish state a from state b. Player 1
knows the precise state of the world – i.e., his information is specified by the par-
tition {{a}, {b}, {c}, {d}, {f}} of S. Players 2 and 3 each receive a signal drawn
randomly, with equal probabilities, from the set {0, 1, c, d, f}. These signals are
correlated with states of the world as follows: If the signal received by a player
is c, d, or f , then the same signal is received by the other player and that (com-
mon) signal equals the state of the world. Conditional on the state (and signal) not
being equal to c, d, or f , the combinations 00, 01, 10 and 11 are equally likely.
If both players receive the same signal, the true state is a, while if they receive
different signals, the state is b. Thus, player 2 or player 3 has the information par-
tition {{a, b}, {c}, {d}, {f}} while all other coalitions, including {2, 3}, have the
complete information partition {{a}, {b}, {c}, {d}, {f}}.
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Since incentive compatibility does not affect initial endowments – indeed,
agents’ endowments in the example do not depend on the state of the world –
the worth of any singleton equals its worth in the game without incentive con-
straints. Hence v({1}) =

∑
s∈Ω u1(1, 1, 3, 0, 0; s) = 1 + 1 + 1 + 0 + 0 = 3,

v({2}) =
∑

s∈Ω u2(0, 4, 0, 1, 0; s) = 0 + 0 + 0 + 1 + 0 = 1, and v({3}) =∑
s∈Ω u3(4, 0, 0, 0, 1; s) = 0 + 0 + 0 + 0 + 1 = 1 in the TU game while

V ({1}) = comp(v({1}))×R2, V ({2}) = R×comp(v({2}))×R, and V ({3}) =
R2 × comp(v({3})) in the NTU game. Alternatively, V ({1}) = {p ∈ R3 | p1 ≤
3}, V ({2}) = {p ∈ R3 | p2 ≤ 1}, and V ({3}) = {p ∈ R3 | p3 ≤ 1}. Clearly
these are nonempty closed convex comprehensive cylinder sets.

The efficient feasible allocations for {2, 3} are defined by giving all of good x
to player 2 in state a (giving him a utility of

√
4 = 2 in state a) and all of good y to

player 3 in state a (for a utility of
√

4 = 2 in state a). Goods x and y are not traded in
state b, nor are r and t traded in states d and f . The resulting allocations are incentive
compatible and assign three units of total utility to each player in the coalition {2, 3}.
Therefore, v({2, 3}) = 6 and V ({2, 3}) = R× comp((3, 3)) = {p ∈ R3 | p2 ≤ 3
and p3 ≤ 3}. Note that this coalition uses its combined (complete) information and
neither player can gain from cheating in information revelation.

Now consider the remaining two-player coalitions, {1, 2} and {1, 3}.As players
2 and 3 play symmetric roles here, it suffices to examine the incentive compatible
utility imputations of one of these coalitions. Individual rationality precludes trades
in state b. Therefore the (unique) efficient and incentive compatible allocation in
state a gives all five units of y to player 1 and one unit of x to player 2. In state c,
the three units of commodity z can be divided arbitrarily between the two players
and similarly for the one unit of good r in state d. Satiation in utilities implies that
state-dependent allocations of all other goods do not matter providing that they
do not cause violations of incentive compatibility. Hence V ({1, 2}) = {p ∈ R3 |
p1 ≤ 4.5 − z/3 and p2 ≤ 1 + z for z ∈ [0, 3] or p1 ≤ 3.5 − r/2 and p2 ≤ 4 + r
for r ∈ [0, 1]}. Similarly, V ({1, 3}) = {p ∈ R3 | p1 ≤ 4.5− z/3 and p3 ≤ 1 + z
for z ∈ [0, 3] or p1 ≤ 3.5 − t/2 and p3 ≤ 4 + t for t ∈ [0, 1]} Therefore, in the
game with transferable utility, v({1, 2}) = max{p1 + p2|p ∈ V ({1, 2})} = 8 and
v({1, 3}) = max{p1 + p3|p ∈ V ({1, 3})} = 8. Note that both V ({1, 2}) and
V ({1, 3}), like V ({2, 3}), are convex sets.

Finally, the grand coalition {1, 2, 3} = I is also restricted by incentive com-
patibility. Individual rationality for players 2 and 3 implies that no trades occur
in state b. This forces player 1 in state a to receive either 1 unit each of x and y
or to receive an allocation consisting of zero units of either x or y and a quantity
between three units and five units (inclusive) of the other good. If player 1 keeps
his one unit of x and one unit of y while players 2 and 3 interchange their initial
endowments of x and y in state a, the sum total utilities received by players is
maximized. This defines worth v(I) = 11 of the grand coalition in the game with
transferable utility. The corresponding nontransferable utility imputations are spec-
ified by (2+z1/3+ r1/2+ t1/2, 2+z2 + r2, 2+z3 + t3) where z1 +z2 +z3 = 3,
r1 + r2 = 1, t1 + t3 = 1, and z1, z2, z3, r1, r2, t1, t3 are all nonnegative.
However, the imputations of this form that are individually rational for player 1
[v({1}) = 3] are dominated by those based on giving all five units of x or y to
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player 2 or 3 respectively and the remainder to player 1 in state a. This yields im-
putations of the form (3 + z1/3 + r1/2 + t1/2, 2.236 + z2 + r2, 0 + z3 + t3) and
(3 + z1/3 + r1/2 + t1/2, 0 + z2 + r2, 2.236 + z3 + t3) where z1 + z2 + z3 = 3,
r1 +r2 = 1, t1 + t3 = 1, and z1, z2, z3, r1, r2, t1, t3 are all nonnegative. Inspection
of the imputations (5, 2.236, 0) and (5, 0, 2.236) shows that V (I) is not convex;
the utility vector (5, 1

2

√
5, 1

2

√
5) cannot be realized by incentive compatible allo-

cations.
Recapitulation of the game with transferable utility gives v({1}) = 3, v({2}) =

v({3}) = 1, v({1, 2}) = v({1, 3}) = 8, v({2, 3}) = 6, and v({1, 2, 3}) = 11.
This game is balanced and (equivalently, by the theorem of Bondareva (1962) and
Shapley (1967)) has a nonempty core. The easiest way to see this is to observe that
(5, 3, 3) is the unique core imputation for the TU game derived from my example
with incentive compatibility constraints. However, notice that (5, 3, 3) /∈ V (I);
this utility vector cannot be attained in the game with nontransferable utility unless
incentive compatibility is violated (in which case (5, 3.5, 3.5) can be achieved); the
total utility of 11 in the NTU game uses the imputation (2, 4.5, 4.5), which fails
individual rationality for player 1.

A sufficient (see Scarf, 1967) but not necessary condition for nonemptiness of
the (NTU) core of a cooperative game with nontransferable utility is balancedness.
This means that for any balanced collection B of subsets S of I with balancing
weights γS ≥ 0 [where

∑
S∈B
S�i

γS = 1 for all i ∈ I], V (I) ⊇ ∑
T⊆I

γTV (T )T , where

V (T )T = {w ∈ V (T ) | wi = 0 if i /∈ T}. A weaker condition which suffices
for nonemptiness of the NTU core is quasibalancedness, or

⋂
S∈B V (S) ⊆ V (I)

for every balanced collection B of coalitions with nonnegative balancing weights.
To see that my example does not generate a balanced game,5 consider the col-
lection {{1, 2}, {1, 3}, {2, 3}} of two-player coalitions with balancing weights
1
2 each. If one takes (3, 5, 0) ∈ V ({1, 2}){1,2}, (3, 0, 5) ∈ V ({1, 3}){1,3} and

(0, 3, 3) ∈ V ({2, 3}){2,3}, the sum 1
2 (3, 5, 0)+ 1

2 (3, 0, 5)+ 1
2 (0, 3, 3) = (3, 4, 4) /∈

V (I), so that the game is not balanced. However, these vectors do not show that
the game fails to be quasibalanced, as (3, 3, 3) ∈ V (I). Alternatively, check-
ing (3 5

6 , 3, 0) ∈ V ({1, 2}){1,2}, (3 5
6 , 0, 3) ∈ V ({1, 3}){1,3}, and (0, 3, 3) ∈

V ({2, 3}){2,3} gives 1
2 (3 5

6 , 3, 0) + 1
2 (3 5

6 , 0, 3) + 1
2 (0, 3, 3) = (3 5

6 , 3, 3) /∈ V (I)
but (3 5

6 , 3, 3) ∈ V ({1, 2}) ∩ V ({1, 3}) ∩ V ({2, 3}) so that the game is neither
balanced nor quasibalanced.6 Unfortunately, this need not prove that the NTU core
is empty.

Perhaps the easiest way to verify that the core actually is empty is to examine the
maximum payoffs that players can obtain in V (I) subject to certain other coalitions

5 Contrast this to the standard case of a pure exchange economy without uncertainty, which neces-
sarily generates a balanced game, as demonstrated by Scarf (1971).

6 Almost by definition, the (NTU) game is superadditive: V (T ) ∩ V (T ′) ⊆ V (T ∪ T ′) whenever
T ∩ T ′ = ∅. This is true because resources are additive in an exchange economy and incentive
compatibility is a restriction on an individual’s allocation which is independent of the coalition, so that
the union of disjoint coalitions can always choose any allocations that were permitted in the smaller
coalitions.
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being unable to block. The logic here is to observe that if the core is nonempty, then
there are strictly Pareto optimal core allocations, where strict optimality means that
no single agent can be made better off without making someone else worse off.
(Contrast this to the definition of blocking by the grand coalition, which requires
strict improvements for every player.) Requiring individual rationality for players 1
and 3 leads to the problem of maximizing w2 subject to (w1, w2, w3) ∈ V (I) with
w1 ≥ 3 and w3 ≥ 1. Its solution is (3, 6.236, 1) ∈ V (I). However, this imputation
can be blocked by the coalition {1, 3}, which can attain 4 for player 1 and 2 for
player 3. The argument works the same way if the roles of players 2 and 3 are
reversed. Alternatively, the condition that coalition {2, 3} cannot block combined
with individual rationality for players 2 and 3 yields the problem of maximizing
w1 subject to (w1, w2, w3) ∈ V (I) and w2 ≥ 3, w3 ≥ 1 (or, equivalently, w2 ≥ 1
andw3 ≥ 3). The solution is (4.413, 3, 1) ∈ V (I), which can be blocked by {1, 3}
with the imputation of 4.45 to player 1 and 1.15 to player 3. This proves that all
strictly Pareto optimal feasible allocations for the grand coalition can be blocked
by some smaller coalition. Therefore, my example has an empty core.

Randomization over almost surely feasible state-dependent allocations satisfy-
ing incentive compatibility would convexify the sets V (S) for all S ⊆ I . In my
example, this randomization operation is thus equivalent to replacing V (I) by its
(closed) convex hull in the definition of the NTU game with incentive constraints.
However, this does not suffice to give a balanced game. In fact, the solutions to
the two optimization problems examined above would be the same if V (I) were
replaced by its convex hull. Hence, almost surely feasible randomization does not
insure nonemptiness of the core.

On the other hand, randomization with feasibility on average in every state of
the world does lead to the existence of an incentive compatible core. Indeed, for
my example, giving probability 1

2 to the allocation ((0, 5, 0, 1, 1), (1, 1, 0, 1, 1),
(1, 1, 0, 1, 1), (1, 1, 0, 1, 1), (1, 1, 0, 1, 1)) to player 1, ((4, 0, 1, 0, 0), (0, 4, 1, 0, 0),
(0, 4, 1, 0, 0), (0, 4, 1, 0, 0), (0, 4, 1, 0, 0)) to player 2 and ((0, 1, 2, 0, 0), (4, 0, 2, 0,
0), (4, 0, 2, 0, 0), (4, 0, 2, 0, 0), (4, 0, 2, 0, 0)) to player 3 (so that total utilities
are 4, 3 and 3 while the total resource allocation is (4, 6, 3, 1, 1) in state a and
(5, 5, 3, 1, 1) in all other states) and probability 1

2 to the allocation ((5, 0, 0, 1, 1),
(1, 1, 0, 1, 1), (1, 1, 0, 1, 1), (1, 1, 0, 1, 1), (1, 1, 0, 1, 1)) to player 1, ((1, 0, 2, 0, 0),
(0, 4, 2, 0, 0), (0, 4, 2, 0, 0), (0, 4, 2, 0, 0), (0, 4, 2, 0, 0)) to player 2 and ((0, 4, 1,
0, 0), (4, 0, 1, 0, 0), (4, 0, 1, 0, 0), (4, 0, 1, 0, 0), (4, 0, 1, 0, 0)) to player 3 (for total
utilities of 4, 3, and 3 again with a total allocation of (6, 4, 3, 1, 1) in state a and
(5, 5, 3, 1, 1) in all other states) is an incentive compatible core allocation.

Note that this randomization is not equivalent to removal of incentive com-
patibility constraints. Without incentive compatibility, the above randomized core
allocation could be blocked (and strictly Pareto improved) by the nonrandom-
ized state-dependent allocation of ((2.5, 2.5, 0, 1, 1), (1, 1, 0, 1, 1), (1, 1, 0, 1, 1),
(1, 1, 0, 1, 1), (1, 1, 0, 1, 1)) to player 1, ((2.5, 0, 1.5, 0, 0), (0, 4, 1.5, 0, 0), (0, 4,
1.5, 0, 0), (0, 4, 1.5, 0, 0), (0, 4, 1.5, 0, 0)) to player 2 and ((0, 2.5, 1.5, 0, 0), (4, 0,
1.5, 0, 0), (4, 0, 1.5, 0, 0), (4, 0, 1.5, 0, 0), (4, 0, 1.5, 0, 0)) to player 3 which yields
total utilities of 4.5, 3.08, and 3.08 respectively. Of course, this allocation violates
incentive compatibility for player 1, who prefers his state a allocation to his state b
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allocation when the true state of the world is b; the problem is clearly nonconvexity
of player 1’s set of incentive compatible allocations for state a given the allocation
which is forced by the utilities of players 2 and 3 in state b.

It is relatively easy to find examples in which incentive compatibility violates
convexity of strategy sets and balancedness, but the economy nevertheless admits
nonrandom incentive compatible core allocations. Indeed, if one were to delete the
last two states and two commodities from the example analyzed above, the resulting
game is not balanced but has a nonempty core. In this case,V ({1}) = (−∞, 3]×R2,
V ({2}) = R × (−∞, 0] × R, V ({3}) = R2 × (−∞, 0], and V ({2, 3}) =
R×comp((2, 2)). Coalition {1, 2} can trade to the incentive compatible allocation
((0, 5, 3), (1, 1, 3), (1, 1, 3)) for player 1 and ((1, 0, 0), (0, 4, 0), (0, 4, 0)) for player
2 (with total utilities of 4 and 1 respectively). Similarly, {1, 3} can attain 4 and 1
using the allocations ((5, 0, 3), (1, 1, 3), (1, 1, 3)) and ((0, 1, 0), (4, 0, 0), (4, 0, 0)).
However, placing balancing weights of one-half each on the balanced collections of
two-player coalitions requires 1

2 (4, 1, 0)+ 1
2 (4, 0, 1)+ 1

2 (0, 2, 2) = (4, 1.5, 1.5) ∈
V ({1, 2, 3}), for balancenedness, which is false. Nor is the game quasi-balanced
[(4, 1, 1) /∈ V ({1, 2, 3})], although it is superadditive. The efficient and individ-
ually rational points in V ({1, 2, 3}) are of the form (3 + z1/3,

√
5 + z2, z3) or

(3 + z1/3, z2,
√

5 + z3) where zi ≥ 0 for all i and z1 + z2 + z3 = 3. (This also
shows that V ({1, 2, 3}) is not convex. Convexification of this set via extending
strategy sets to include almost surely feasible random allocations does not lead
to balanced game.) The imputations (4, 2.236, 0) and (4, 0, 2.236) belong to the
incentive compatible core. They can be achieved by the incentive compatible (non-
random) allocations ((0, 5, 3), (1, 1, 3), (1, 1, 3)) to player 1, ((5, 0, 0), (0, 4, 0),
(0, 4, 0)) to player 2, and ((0, 0, 0), (4, 0, 0), (4, 0, 0)) to player 3 or ((5, 0, 3),
(1, 1, 3), (1, 1, 3)), ((0, 0, 0), (0, 4, 0), (0, 4, 0)), and ((0, 5, 0), (4, 0, 0), (4, 0, 0))
respectively. Recall that {1, 2} or {1, 3} can obtain exactly 4 and 1. These two
core points cannot be blocked in the convexified game with almost surely feasi-
ble random allocations, but its core also includes closed line segments with these
endpoints; more precisely, the core contains all total utility vectors of the form
(4, λ

√
5, (1 − λ)

√
5) for λ ∈ [0, 2/

√
5] ∪ [1 − 2/

√
5, 1]. If one allows random-

izations that are only feasible on average, then the imputation (3, 3, 3) belongs
to the core. It can be obtained from the allocation ((0, 5, 0), (1, 1, 0), (1, 1, 0)),
((4, 0, 0), (0, 4, 0), (0, 4, 0)), and ((0, 1, 3), (4, 0, 3), (4, 0, 3)) with probability 1

2
(for a total allocation of (4, 6, 3) in state a and (5, 5, 3) in states b and c) and
((5, 0, 0), (1, 1, 0), (1, 1, 0)), ((1, 0, 3), (0, 4, 3), (0, 4, 3)), and ((0, 4, 0), (4, 0, 0),
(4, 0, 0))with probability 1

2 (for a total allocation of (6, 4, 3) in statea and (5, 5, 3) in
states b and c).The (nonrandomized) transferable utility version of this example with
three states has v({1}) = 3, v({2}) = v({3}) = 0, v({1, 2}) = v({1, 3}) = 7,
v({2, 3}) = 4, and v({1, 2, 3}) = 9. Its core equals the imputation (5, 2, 2) which
cannot be achieved in the nontransferable utility game with incentive compatibility
constraints.

For a somewhat more dramatic example of the difference between balancedness
and the existence of core allocations with incentive compatibility, remove the third
state and third commodity from the preceding example – i.e., take only the first
two states and two good in the original example. Then V ({1}) = (−∞, 2] × R2,
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V ({2}) = R × R− × R, V ({3}) = R2 × R−, V ({2, 3}) = R × (−∞, 2] ×
(−∞, 2], V ({1, 2}) = (−∞, 3]× (−∞, 1]×R, and V ({1, 3}) = (−∞, 3]×R×
(−∞, 1]. The game is not balanced because 1

2 (3, 1, 0) + 1
2 (3, 0, 1) + 1

2 (0, 2, 2) =
(3, 1.5, 1.5) /∈ V ({1, 2, 3}), nor is it quasibalanced as (3, 1, 1) /∈ V ({1, 2, 3}). On
the other hand, it is superadditive; to check this directly verify that the points
(2, 2, 2), (3, 1, 0), (3, 0, 1), and (2, 0, 0) all belong to V ({1, 2, 3}). The trans-
ferable utility version of the game has v({1}) = 2, v({2}) = v({3}) = 0,
v({1, 2}) = v({1, 3}) = v({2, 3}) = 4, and v({1, 2, 3}) = 6. The TU core
consists of the (unique) point (2, 2, 2), which can be obtained under an incentive
compatible allocation [((1, 1), (1, 1)), ((4, 0), (0, 4)), ((0, 4)(4, 0))] which belongs
to the NTU core. However, every Pareto optimal and individually rational imputa-
tion of the NTU game with incentive compatibility constraints belongs to its core,
including also the imputations (2.5,

√
5, 1), (2.5, 1,

√
5), (2,

√
5,
√

2), (2,
√

2,
√

5),
(3,
√

5, 0), and (3, 0,
√

5).
Finally, a further remark regarding the original example is in order. It can be

perturbed slightly so as to give a pure exchange economy having strictly positive
initial endowments (which are constant across the world) and strictly concave and
continuous – or even smooth – utility functions for which the incentive compatible
core is empty.

3 The model

To begin, let Ω be a finite set of states of the world (with typical element ω) and
let µ be a probability on (Ω,F) where F = 2Ω . For convenience, assume that the
(subjective) probability measure µ is the same for all agents and that µ(ω) > 0 for
all ω ∈ Ω (otherwise reduce Ω by a µ-null set). Interpret Ω as a description of all
of the relevant uncertainty in the economy, where points inΩ represent systematic
risk or states of the world common to all agents. Alternatively, think ofΩ as the set
of all possible profiles of agents’ types. Note that if Ω is infinite but each agent’s
information consists of a finite partition of Ω, one could redefine a finite set of
states of the world by events in the pooled information partition.

Assume that there is a finite number, �, of commodities potentially available in
each state of the world. Take R�

+ to be the consumption set of each consumer in
each state of the world.

Finitely many economic agents are present in my pure exchange economy. Let
I be the set of traders (or players in the induced games), write #I for its cardinality,
and use subscript i (i ∈ I) to signify a typical individual agent.

Each trader is endowed with a nonnegative vector ei ∈ R�
+ of commodities. For

simplicity, these initial allocations are assumed to be constant as states of the world
vary. Thus, an agent’s initial endowment is always incentive compatible and does
not contain any information. Nor does the economy’s total resource endowment
vector contain any information. If incentive compatibility were violated for state-
dependent endowments, the worth of a singleton might not be well defined as the
utility level that an agent can guarantee itself should be attainable with an incentive
compatible allocation if incentive compatibility is required for all other coalitions.
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Preferences are described by state-dependent cardinal utility functions. Ex-
pected utilities define payoffs. For i ∈ I , write ui : R�

+ × Ω → R and assume
that, for all ω ∈ Ω, ui(·;ω) is a continuous and concave function on R�

+. (For the
generalization to infinitely many basic states of the world, F-measurability in ω
and continuity on R�

+ imply joint measurability of this mapping.)
The data of the pure exchange economy under uncertainty generates a cooper-

ative game. The correspondence V : 2I → R#I defines a cooperative game with
nontransferable utility ifV (∅) = {0} and for allS ⊆ I ,S 	= ∅,V (S) is a nonempty
closed comprehensive cylinder set. In the absence of incentive compatibility con-
straints, my economic model generates a balanced game with a nonempty core.7

4 Information and incentives

With asymmetric information, the incentive compatible core of a pure exchange
economy under uncertainty should consist of exactly those feasible incentive com-
patible state-dependent allocations that cannot be blocked by any coalition. Here
blocking requires strict improvement in expected utility using state-dependent al-
locations that are incentive compatible and feasible for the coalition. Equivalently,
one could define the NTU game generated by the economy with incentive com-
patibility constraints and examine the core of the induced game. Analysis of either
concept requires stating the information that each trader possesses and formulating
the appropriate incentive compatibility restriction.

To specify traders’ information, for each i ∈ I , let Si be a finite set and let
si : Ω → Si be a function. Then si generates a finite partition Pi of Ω and a
finite sub-σ-field Fi of F . Interpret Si as the set of signals that i can receive
about the state of the world and Pi or Fi as i’s initial information. Think of the
sets Si and the maps si : Ω → Si for all i ∈ I as common knowledge for all
agents (and to the planner or mechanism designer). Take Si also to be the set of
messages that agents can implicitly communicate. In other words, an agent can
convey a (true or false) subset of his actual information partition. Note that the
realizations si(ω) of i’s signal are not observable to agents other than i (or to the
planner or mechanism designer). Note also that “random signals” are allowed in
this model in that otherwise identical “copies” of ω ∈ Ω could be mapped into
different elements of Si, so that this is equivalent to expanding Ω to a larger finite
set. Let S = S1 × · · · × S#I with typical element s = (s1, . . . , s#I) and write
(s′i, s−i) = (s1, . . . , si−1, s

′
i, si−1, . . . s#I) ∈ S and s−i ∈ S−i =

∏
j �=i Sj .

Let s : Ω → S be defined by s(ω) = (s1(ω), . . . , s#I(ω)) and define s−i in the
obvious way. Write µ(· | si) and µ(· | s) for the conditional probabilities on Ω
given si ∈ Si or s ∈ S respectively. The distributionµ onΩ and the map s : Ω → S
induce a distribution ν on S. For i ∈ I , denote its conditional distribution on S−i

given si ∈ Si by νi(· | si).
A state-dependent allocation xi : Ω → R�

+ for trader i ∈ I is strongly incentive
compatible if xi(·) is σ(

⋃
i∈IFi)-measurable [i.e., if xi(ω) = xi(ω′) whenever

s(ω) = s(ω′)] and if for all ω ∈ Ω, ui(xi(ω);ω) ≥ ui(xi(ω′);ω) for all ω′ ∈ Ω.

7 Hildenbrand and Kirman (1976) is a useful reference.
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It is Bayesian incentive compatible if xi(·) is σ(
⋃

i∈IFi)-measurable and if, for all
si ∈ Si and all s′i ∈ Si, one has∑

ω∈Ω

ui(xi(s(ω));ω)µi(ω | si) ≥
∑
ω∈Ω

ui(xi(s′i, s−i(ω));ω)µ(ω | si)

where xi(s(ω)) = xi(ω), xi(s′i, s−i(ω)) = xi(ω′) if s(ω′) = (s′i, s−i(ω)), and
xi(s′i, s−i(ω)) = 0 if there is noω′ ∈ Ω for which s(ω′) = (s′i, s−i(ω)). Both defi-
nitions require that allocations depend only on signals; each agent’s state-dependent
allocation must be measurable with respect to the joint information received – or
reported – by all agents. Both formulations also capture the notion that agent i
can do no better by reporting s′i rather than si when his true signal is si ∈ Si.
Strong incentive compatibility clearly implies Bayes incentive compatibility, but
not conversely. The difference is that strong incentive compatibility applies to each
possible realization of ω ∈ Ω separately, while the Bayes incentive compatibility
requirement is stated in terms of trader i’s expected utility given the signal that he
has received. Strong incentive compatibility is more appropriate if players do not
know the probabilities affecting their opponents. Either definition can be applied
(consistently) in the remainder of this paper.

Say that an allocation belongs to the (strong or Bayes) incentive compatible core
if it is feasible and (strongly or Bayesian) incentive compatible and if it cannot be
blocked by any coalition using an allocation that is (strongly or Bayesian) incentive
compatible and feasible for the coalition. More formally, the strongly incentive com-
patible core (respectively, Bayesian incentive compatible core) of a pure exchange
economy with asymmetric information consists of ((xi(·), . . . , x#I(·)) : Ω →
R#I�

+ such that
∑

i∈I xi(ω) =
∑

i∈I ei(ω) for (almost) all ω ∈ Ω, xi(·) is strongly
incentive compatible (Bayesian incentive compatible) for all i ∈ I , and there does
not exist T ⊆ I , T 	= ∅, and x′

i(·) : Ω → R�
+ for i ∈ T such that

∑
i∈T x

′
i(ω) =∑

i∈T xi(ω) for (almost) all ω ∈ Ω with x′
i(·) strongly incentive compatible

(Bayesian incentive compatible) for all i ∈ T and
∫

Ω
ui(x′

i(ω);ω) dµ(ω) >∫
Ω
ui(xi(ω);ω) dµ(ω) for every i ∈ T . Allocations in the strongly incentive com-

patible core (Bayesian incentive compatible core) of an economy correspond to im-
putations in the (NTU) core of the strongly incentive compatible game (Bayesian in-
centive compatible game) V S : 2I → R#I(V B : 2I → R#I) with nontransferable
utility defined by V (∅) = {0} and for T ⊆ I , T 	= ∅, V (T ) = {(w1, . . . , w#I) ∈
R#I | there exist strongly incentive compatible (Bayesian incentive compatible)
xi : Ω → R�

+ for i ∈ T with
∑

i∈T xi(ω) =
∑

i∈T ei(ω) for (almost) all ω ∈ Ω
and wi ≤

∫
Ω
ui(xi(ω);ω) dµ(ω)}.

Any Bayesian incentive compatible allocation (and hence any strongly incentive
compatible allocation) can be achieved as a Nash equilibrium of a mechanism
in which each player’s message space is Si. However, to do so may require the
mechanism to waste resources outside of (this) equilibrium. The reason is that
initial endowment vectors may dominate the desired incentive compatible allocation
for some signal realization, so that the usual device of forcing all agents to keep
their endowments whenever the messages are inconsistent may not cause truthful
revelation. This requires, of course, the extremely weak monotonicity assumption
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on state-dependent preferences that for all i ∈ I and all ω ∈ Ω, ui(0;ω) ≤
ui(xi;ω) for all xi ∈ R�

+.

5 Randomization

To demonstrate existence of incentive compatible core allocations, one might en-
large players’ strategy spaces to as to ensure balancedness of the induced game.
Since balancedness is a type of convexity condition – albeit involving convex com-
binations of objects taken from different sets being required to belong to yet another
set – extension to “mixed strategies” in the cooperative game intuitively appears to
be a promising approach.

However, as the example of Section 2 proves, randomization over state-depen-
dent allocations which are feasible with probability one for the economy serves to
convexifyV (I) [and alsoV (S) forS ⊆ I if needed] but does not guarantee that this
modified game has a nonempty core. Balancedness relates to convexification over
allocations that are feasible for different coalitions in the balanced family. Because
different players can belong to these coalitions, that total resource requirement may
therefore also be random, although feasibility can be preserved on average in each
state of the world.

My story is as follows: Agents reveal their messages, perhaps strategically, and
a commonly observed and verifiable random device selects an allocation according
to a known, verifiable, and agreed upon probability over allocations that are state-
dependent and incentive compatible. The ex ante random allocation is incentive
compatible (in terms of its expected utility, not the utility of its expectation) as
is its ex post realization. In this sense, the sequencing of communication and the
randomization does not matter. Messages can be sent before, during, or after the
random drawing occurs in my model. When averaged over the randomization, the
(state-dependent) allocations satisfy mean resource feasibility in each state of the
world, although the given realization of the allocation need not be feasible.

The law of large numbers could perhaps justify mean feasibility. For instance,
the deviation from feasibility vanishes if the state-dependent resource allocation
problem with incentives is repeated many times or if there are many independent
“copies” (i.e., “islands”) of the economy or the game. Inventories could also play
a role.

However, perhaps a better interpretation is to appeal to asset markets.8 Imagine
that the grand coalition (or planner or mechanism designer) buys and sells risky
commodity contracts so as to offset the discrepancy between the total incentive
compatible state-dependent resource allocation and the group’s total initial endow-
ment. The randomization could even be defined to depend on the outcome in the
risky asset market so that after the outside commodity market’s random addition to
or subtraction from total resources, feasibility is exactly satisfied.

To summarize this discussion more formally, first consider the case of almost
surely feasible randomizations. Define the convexified strongly incentive compat-
ible game V CS : 2I → R#I by V CS(T ) = conv(V S(T )) for T ⊆ I . Sim-

8 It’s a pleasure to acknowledge a helpful discussion with Jacques Drèze on this point.
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ilarly, define the convexified Bayesian incentive compatible game V CB : 2I →
R#I by V CB(T ) = conv(V B(T )) for T ⊆ I . [If S is a closed subset of Rn,
conv(S) denotes its (closed) convex hull.] The convexified strongly incentive com-
patible core is the core of the convexified strongly incentive compatible game
and the convexified Bayesian incentive compatible core is the core of the convex-
ified Bayesian incentive compatible game. Not surprisingly, core allocations in
the respective incentive-constrained economies give rise to core imputations in the
corresponding games. Hence, the convexified strongly (Bayesian) incentive com-
patible core of an economy includes precisely those randomizations over strongly
(Bayesian) incentive compatible allocations that are resource feasible with prob-
ability one and that cannot be blocked by any coalition using an almost surely
feasible randomization over strongly (Bayesian) incentive compatible allocations
for the coalition. Somewhat more formally, these core concepts are defined by
the statement that the convexified strongly (Bayesian) incentive compatible core
of a pure exchange economy with asymmetric information consists of probabil-
ity measures α on state-dependent allocations with α({(x1(·), . . . , x#I(·)) : Ω →
R#I�

+ |∑i∈I xi(ω) =
∑

i∈I ei(ω) for (almost) all ω ∈ Ω and for all i ∈ I , xi(·)
is strongly (Bayesian) incentive compatible}) = 1 such that there does not exist
T ⊆ I , T 	= ∅, and a probability measure β on state-dependent allocations for
T with β({(x′

i(·))i∈T : Ω → R#T�
+ |∑i∈T xi(ω) =

∑
i∈T ei(ω) for (almost) all

ω ∈ Ω and for all i ∈ T , x′
i(·) is strongly (Bayesian) incentive compatible}) = 1

such that
∫ ∫

ui(xi(ω);ω) dµ(ω) dα(xi(·)) <
∫ ∫

ui(x′
i(ω);ω) dµ(ω) dβ(x′

i(·))
for all i ∈ T .

It remains to define these concepts when the randomization is only required to
satisfy resource feasibility on average. The term “modified” signifies this distinc-
tion. The modified strongly (Bayesian) incentive compatible game VMS : 2I →
R#I(VMB : 2I → R#I) is defined by VMS(∅) = VMB(∅) = {0} and, for
T ⊆ I , T 	= ∅, VMS(T ) (respectively VMB(T )) equals the set {(w1, . . . , w#I) ∈
R#I | there exists a probability measure α on state-dependent allocations for coali-
tion T , with α({(xi(·))i∈T : Ω → R#T�

+ |xi(·) is strongly (Bayesian) incentive
compatible}) = 1 and

∑
i∈T

∫
xi(ω) dα(xi(·)) =

∑
i∈T ei(ω) for (almost) every

ω ∈ Ω, for which wi ≤
∫ ∫

ui(xi(ω);ω) dµ(ω) dα(xi(·)) for all i ∈ T}. Then
the modified strongly (Bayesian) incentive compatible core of the economy equals
the set of randomized strongly (Bayesian) incentive compatible allocations, with
resource feasibility on average, that yield imputations in the (NTU) core of the mod-
ified strongly (Bayesian) incentive compatible game. To state this more explicitly,
the modified strongly (Bayesian) incentive compatible core of a pure exchange econ-
omy with asymmetric information consists of those probability measuresα on state-
dependent allocations such thatα({(x1(·), . . . , x#I(·)) : Ω → R#I�

+ |xi is strongly
(Bayesian) incentive compatible for all i ∈ I}) = 1,

∑
i∈I

∫
xi(ω) dα(xi(·)) =∑

i∈I ei(ω) for (almost) all ω ∈ Ω, and there is no coalition T ⊆ I (T 	=
∅) with probability measure β on state-dependent allocations for T such that
β({(x′

i(·))i∈T : Ω → R#T�
+ |x′

i(·) is strongly (Bayesian) incentive compatible for
each i ∈ T}) = 1,

∑
i∈T

∫
x′

i(ω) dβ(x′
i(·)) =

∑
i∈T ei(ω) for (almost) allω ∈ Ω,
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and
∫ ∫

ui(xi(ω);ω)dµ(ω) dα(xi(·)) <
∫ ∫

ui(x′
i(ω);ω) dµ(ω) dβ(x′

i(·)) for all
i ∈ T .

Since my main result does not depend on the difference between strong in-
centive compatibility and Bayes incentive compatibility, call either concept the
modified game and the modified incentive compatible core. To simplify notation,
write Ṽ : 2I → R#I for either VMS or VMB . Call Ṽ the modified NTU game with
incentive compatibility constraints and randomization with feasibility on average.

6 Nonemptiness of the modified incentive compatible core

The purpose of this section is to state and prove the main result that there are
(state-dependent) allocations in the modified incentive compatible core (as defined
in Section 5), or, equivalently, that the modified game has a nonempty core. As
discussed above, this holds because balancedness follows from the extension of
strategy sets to permit randomization over state-dependent and incentive compatible
allocations that are feasible on average for every state of the world.

Theorem. The modified NTU game Ṽ : 2I → R#I with incentive compatibility
constraints (and randomization with feasibility on average) is balanced and its
(modified incentive compatible) core is nonempty.

Proof. Let B be a balanced family of coalitions with (nonnegative) balancing
weights γT ≥ 0 for T ∈ B. I need to show that

∑
T∈B γT Ṽ (T )T ⊆ Ṽ (I).

First choose wT ∈ V (T )T for T ∈ B. Recall that this means wT ∈ V (T ) ⊆ R#I

and wT
i = 0 if i /∈ T . By definition, there are (nonrandom) incentive compatible

(state-dependent) allocations xT
i : Ω → R�

+ such that, for (almost) all ω ∈ Ω,∑
i∈T

xT
i (ω) =

∑
i∈T

ei(ω)

and for all i ∈ T ∑
ω∈Ω

ui(xT
i (ω);ω)µ(ω) ≥ wT

i .

Assign i ∈ I the random allocation which equals xT
i (·) with probability γT if

i ∈ T . Since ∑
T∈B
T�I

γT = 1 for all i ∈ I,

this defines a probability measure λ on state-dependent allocations for the grand
coalition. Feasibility holds on average because∑

i∈I

∑
T�i

xT
i (ω)λ({x′

1(·), . . . , x′
#I(·))|x′

i(ω) = xT
i (ω)})

=
∑
T∈B

∑
i∈T

γTx
T
i (ω) =

∑
T∈B

γT

∑
i∈T

xT
i (ω)

=
∑
T∈B

γT

∑
i∈T

ei(ω) =
∑
i∈I

ei(ω).
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If, in place of wT ∈ V (T )T , we had wT ∈ Ṽ (T )T , then there would exist finitely
many (nonrandom) incentive compatible allocations x̃T

i : Ω → R�
+ such that the re-

sulting random allocation is feasible on average and always generates expected util-
ity wT

i . Repetition of the above argument completes the proof that Ṽ : 2I → R#I

is balanced. By Scarf’s (1967) theorem, Ṽ therefore has a nonempty core. Hence
there exist (random) allocations in the modified incentive compatible core. ��

Remark.The same argument shows that Ṽ is totally balanced and hence that all
subgames have nonempty modified incentive compatible cores.

7 Remarks

1. If for all agents i ∈ I and all pairs ω, ω′ ∈ Ω of states of the world, the state-
dependent preferences represented by the utilities ui(·;ω) and ui(·;ω′) on R�

+
satisfy the “single crossing” property, then the randomization is not necessary
for the existence of state-dependent allocations in the incentive compatible core.
In this case, incentive compatibility may require the disposal of some resources.
As one would expect, even without randomization the core and the incentive
compatible core are (generally) distinct.

2. If there are infinitely many states of the world (and especially if Ω is an un-
countable set and the support of µ fails to be at most countable), closedness of
the V (S) sets may prove problematic since incentive compatibility destroys the
convexity of strategy sets. Technically, the problem is that the proof in Allen
(1991) that the NTU game V : 2I → R#I is well defined (based on the Theo-
rem of Dunford and Pettis) relies on the fact that strongly closed convex subsets
of an L1 space are also weakly closed or, equivalently, that strongly continuous
and concave utilities must be weakly upper semicontinuous functions.

3. Communication requirements or communication restrictions could be modeled
as exogenous information sharing rules. Such limits to the endogeneity of in-
formation revelation constraints should satisfy the boundedness condition for
information sharing rules to avoid destroying balancedness of the resulting NTU
game. See Allen (1991).

4. The incentive compatibility constraints in the definition of the (modified) in-
centive compatible core could be altered to reflect the specific asymmetric in-
formation situation. For instance, particular restrictions may not be desirable if
they involve states of the world that agents know. However, such modifications
move one away from the mechanism story.
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���K������:

(�� ������	 ����� ��
���	�� 	�� ����� �-��� �� ������� ���	���	��# ��-
�� ���	���	��#� ��- �� � 
�	� 9����� ����� �� ����# 2������� ��- )�-���<� G.H
�����	 
�-�� � ���@	 ���	�� #�
� 9�	� ����
���	� ����
�	���� � ��
��

�-�� 	� -������� ��	����	��� � 	�� ���

�	������� ����
�- ���@	 ���	���
B-��������D �� ����-���<� G�H @�
 �� 
��	�-��������� ��
 B4 ��
 @�
D:
(���� ��� ������� ������� 9�� 	��� 
�-�� �� ������ ����3 ,���	� 	�� ��#��@ 
����� � 4 ��
 @�
� �� 	�� ������	 -�� �����
� ��� ���������#�� ����
����#��&�-: �����-� �� ���	� � 	���� ��#��@������ 	�� ������������ ����-�#

��- ����������	��� #�
� 	����� ���� ����- 	� �����&� 	�� 9��0��#� � ����
@�
�: (���-� �	��	�#� ������ ��- ����
�	��� ���������# �� �� 4 ��
 @�

B��-��-� �� ��� ��#���&�	���D ��� ��	���������� �������	���� �� 9��	 ���- 	� ��
������- ���� �� �	��	�#�� �������	��� #�
� 	����� 9�	� ����
���	� ����
� 
	���: ,���	�� �� ��
�����	� � 	�� 
�-��� ��� ��� ������ ��	��� ����� ��	
�����������:

(�� @��	 ��
��� �����	 � 	�� ������	 ����� BI������	��� �:�D ���� 	��	 �����
� ���� ���� ���	���	 � 	�� ���@	 ���	�� #�
� �� ������� �;��������
 	��� 
���	��#��	 ���	���	 �=��� � 	�� @��	 #�
�: B��K����	 ���-�	���� �� 	�� �F 
��	���� � �� � ���� ���� ���	���	 9��� ��	�������- �� 2������� ��- )�-��� G.H:D
(�� �����- ��
��� �����	 BI������	��� �:�D �� 	�� �F��	���� � � ���� �� ���	���	
� 	�� 	���- #�
�� ��	� �� 	�� �����F ���� ��- �� 	�� ���� ������	���&�- �� �
�	���	���� ����	������� �
��# 	�� -�������� B	�� G��
���
��	��� ��������H 
���	�
�� ����	�������D: (��� �	���	���� ����	������� 9�� �������- @��	 ��
)�-��� G��H� ��- ������ ��� �����F �� 9��� �� �����F �����: " �� ���	���	
�
������ 	�� 9����� � ���� -�������: (�� �F�
��� �	 	�� ��- � ���	��� �
B�F�
��� �:�D �����	��	�� �� 	�� ��� ����
�	��� ��������# ���� ��9 � �� 
���	���	 ��
���� 	�� ���K������ 	��	 9�� �����- �� $������� �����	���
��
��	�����	�: >����	������� � 
�	� �K������ ��� �	��� ��	 �� �������-� -�� 	�
	�� ����	����	 �	��� �
����- �� 	�� ����
�	��� ������# ����:

���	��� � �����9� 	�� 
�-�� � � ���@	 ���	�� #�
� 9�	� ����
���	� �� 
��
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����� � ������� ���	���	��# ��- �� ���	���	��#: ���	��� � ������	� ��
���
�F��	���� �����	� ��- �� �F�
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$ �� 	��� 
�����
���% �� � �����
����� %���
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�-�� � � ���@	 ���	�� #�
� 9�	� ����
���	� ����
�	��� 9�� ��	��-���-
�� 2������� ��- )�-��� G.H� �� � $������� �F	������ � )�-���<� G��H �� 

���	��� � ����-���<� G�H @�
 �� 
��	�-��������� ��
: (��� ���	��� ����C�
�����9� 2������� ��- )�-���<� 
�-��:

(�� @�
 �� -���-�- ��	� @��	��� 
��� ����	���	� ��-�F�- �� � � � : ����	��

�� � 	�� �
��� � ��� ����
�	� �����	� � � 7 � �� �� � ���: " 
�
��� � �
�� �����- � ��������� � -��������: (�� #��-�� ��������� ��- ��������� 	��	 ���
���-� ���-���-� ���#�	 �� ���- �� 	�� -�������� ��� �����- ����������	: (��
��

�-�	��� ���� ��� ������@�- ��	� 	9� ��	�#�����3 	���� �� ��

�-�	����
�����- ������ ����������	� 	��	 ��� ���#�	 �� ���- �� 	�� -��������� ��-
	���� �� ��

�-�	���� �����- ��������� ����������	� 	��	 ��� �9��- ��
���-���- �� 	�� @�
 ��- ���- ��	�������: >��
��0�	 ��

�-�	��� ��� ��

��	���	������ �F����#�- �
��# 	�� -��������: ����	� �� �� 	�� ��	 � ��

��0�	 ��

�-�	���� ��- �� �� 	�� ��	 � �� ���
��0�	 ��

�-�	���: A�	
� �� �� � ��� � �� �� � ��:

�������� �<� �������� 	���� ��� -�������- �� � @��	� ��	 ��: ��@��
�� �� �

��� �� �� ���� � � �� ��- 9��	� � �� �� �� ��
�����	�: ,��
�����
-������� �<� �����	� ����
�	��� �	���	��� �� -�@��- �� 	�� ��#���� �� �� �
#�����	�- �� 	�� �����-�� ��	�� ��	�� 	 ������ 
 	� � ���: ���� -������� � 0��9�
��� 	�� ��?��	��� � ���� ���������	��� �
 �� �
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 � � : ��@�� ��	� ������ ���	��:
�� �	 
�	������� � ���� � &:

" ��� ���
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��� � -������� � �� � ���	��� �� � � � ��� 9���� ����#�� 	�
���� 	��� ���@�� 	 � ��	 ��	��	 ���	��#��	 ���� 	� ���	� �� ����	�� ���	��7 	��
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� 
 �� 	�� ���-�����	� � � : ��@�� �� �� �

��� ��� ��-
�� �� ������� : ,���	��� �� �� � ��� ���
�� 
��� � �����	��� �:

J���� � 	��� ���@�� 	 � � � 	�� ���	�� ��	� � ��� � ������� ��	�����	 -� 
������� 	�� ;���	�	��� � ���
��0�	 ��

�-�	��� 	��	 ��� ����#��- 	� B��
�9��- ��D -������� � ���	��#��	 ���� 	 ����� 	�� ���-��	��� �������:

� (�� ��	�	��� LL� �� �<< 
���� LL� �� �;��� 	� � �� -�@��	���:<<
� ,�� 	9� ���	��� � ��- � �� � � � � 
���� ��	� � � ��	� �� ��� 	� � � � � 
���� G� � � � ��- � �� � �H�
��- � � � 
���� ��	� � � ��	� �� ��� 	:
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" ��	 ��	��	 9��� �� ���- �� 	�� 
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���@	/ 	��	 -������� � ����#� �� 	� 	�� @�
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J���� � 	��� ���@�� 	 � � � � 
���� ��
������� � �����	��� � �� � ���	��
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���@	 �� �������� �� ���� 	: " 
���� ��
������� 
��� � �����	��� � �� �
���	��� �� � � � �� � 	 �� ���	�: " ���� � � ���@	 �
��	�	��� ���� ��- � ��	
��	��	 ����� ��� � ���� �� �����- � 
��� � �����	��� �: " ��	 ��	��	 ���� ��������
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 � -������� 	� ���	���� ��	 	����
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�-�	��� -� ��	 ���� ������D: >����	������� � ���@	 �
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(�� � ���� �	�#� �� -�@��- �� 	�� �	�#� �� 9���� �� -������� 0��9� 	��
	��� 	��� � ��� -�������: (�� ������� �	�#� �� -�@��- �� 	�� �	�#� �� 9����
���� -������� �� �����	��� � 0��9� �	� �9� 	��� 	��� ��- �������� ��� ��
�
����
�	��� ����	 	�� 	��� 	���� � ��
� �	��� -�������� �� �: (�� � 
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�	�#� �� 	�� �	�#� �� 9���� ���� -������� 0��9� 	�� 	��� 	��� ���@�� �� � :

2������� ��- )�-��� G.H ������	�- � �������� � ��9 � ���-��	��� ������� ��
�����	��� � 	�0�� ����� 	����#���	 	�� ������� �	�#�� �� �����-���� 9�	� �
���	���	 9����9�� �#���- ���� �	 	�� �����-��# � ���� �	�#�: ����� �� � ����
���	���	 �� �-��	�@�- 9�	� � ���� ��� � ���: (���� ��� 	9� �����-� � 	�� �������
�	�#�7 	�� @��	 �����- �� 	�� -��������< ��
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��
: " ��	 ��	��	 ���� �� 
�� �� 9��		�� �� �� �� ����� ����7 	�� ���	����
��� � � � ��� � 	 �� ����	�� ��- ��� � � � ��� � 	 �� ����	�� ���������- 	� �� ��-
��� ������	�����: ��@�� ��� �� �������� � ��� �� �������� :

A�	 �� �� 	�� ��#���� �� � #�����	�- �� ������� � �� �� ������ : (��� ��
�� ����� ����- �� 	�� ����
�	��� �	���	���� 	��	 ��� ��������� 	� 
�
����
�� � -����# 	�� ������� �	�#�: " ���	��� �� � �� �� 
���������� �= �	 -����-�
���� ���� 	� : ����	� �� �� 	�� ��	 � ��� ��������������� ���������� ����� � �

/ (�� ������	 -�@��	��� � ���@	 �� -�=����	 ��
 	�� ������������ -�@��	��� � ��	������������

���@	� �� 	��	 �	 ���- ��	 ��C��	 	�� ���	 � ���������� ���� �� ����	��� 	��	 ��� ��	 ��-�� 	��

���	��� � 	�� -��������:
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� � �	� �F���	���: 2� ��-�� 	� ������	 	��� ����	����	� -�@��	��� �
��
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�� ��� ��� 	� �� ��  
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�	��� �	���	��� �
������
� �� 
��
�� ��

�� 0��9��-#� �� �����	��� � �	 	�� ��#�����# � 	�� �����-
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B�D ��� �� ��  
����������
B��D ���� ���� �� ��� ����� 
���������:

�����-� 	�� 
�
���� � �����	��� � ���- 	� ���� 	�� ��

�� 0��9��-#� 	��	
���� -������� ��� 	�� �����	��� 	� 
�0� � ������ �� 	�� @��	 �����- �����-��# 	�
�	� 	��� 	���: "	�� ���� 	�� �#���
��	 9��� ��	 �� ������-� � ��
� 
�
��� ���
	�� �����	��� 	� 
�0� � ������ 9�	� ���� ���	������� ����	 �	� 	��� 	��� ��	���

302 (: 2������� ��- 4: ): ���	��



-����# 	�� @��	 �����- �� -����# 	�� �����- �����-: 2 	�� 
�
���� � � ������
�	 	�� 	�
� � -���#���# � ���� 	��	 � ���	������ ���� ��� � ��� 
�� ��	�� ��-���
���� ���� ���	�������� 	��� -� ��	 �#��� �� 	�� ���� ��� � ���: (��� 9��� �����-��
���� 	���� ����� 	��	 ��� $������� �����	��� ��
��	����: $������� �����	���
��
��	�����	� �� -�@��- �� 	�� ��F	 	9� ����#�����:

" 
�����	��� �������� � -������� � �� � ���	��� � � �� � ��� 9���� ����
	��	 9��� �	� 	��� 	��� �� 	�� �	 ��	� B
�0�� � ������D �� 	���#� �	� 	��� 9���
��	��: 2� 	�� @��	 �����-� -������� �<� ����
�	��� �	���	��� �� #���� �� �� �
9���� �� �����	�: ��� -������� � �� ��	 ���#�	 �� 	�� @��	 �����- �� 
�		��
9���� ������ �	 
�0�� ��
 �����	�� 
 	� � ���7 	��	 ��� �	 ��� 
�0� � ������
�����-��# 	� ��� ���	������ ���	��� �� �� 	��	 9��� -������� �<� 	��� 	��� ��
�	�� �	 
�0�� 	�� ������ �������	���: $� ��	��# �����-��# 	� 	�� ���	��� ��� � ��
-������� � 9�	� �	� 	��� 	��� �	� ������ �� 	� ��� 	�� �	��� 
�
���� � � 	��
����
�	��� 	��	 ����	 � �� ���

�� ���� � ���	��� ��� �������-: (��� ����
�	���

�� �� ����� 	��	 ��� �	� 
�� ��	 �� � 
�
��� � �� ��	 	�� �	��� 
�
����
	�0� �	 �� �<� 	��	�
��� ����	 �	��� ��- �F���	 	��	 � 9��� ��	 �����-��# 	� 	���
����
�	��� �� 	�� �����- �����-� 	��	 ��� � 9��� ���� 	� 
�0� � ������ ��

���� ������� �� 	�� �����- �����-: (�������� �<� ���	������ ���	��� �� 	��
�����- �����- ��� 	� �� � 	�� ��
 � � � �� ��
� ���	������ ���	��� �
9���� 
��� ���� 
���
�� ��	 � ������ ��	� �	���: (�� �-�� � ���	������
���� ����9� 	�� 
�����������
������ 
�����
�� � ���	�� G�/� ��: 6� ��: !!1.�H�
��	�� -�������- �� *���� ��- ���	�� B���� �:#:� *���� ��- ���	�� G5� ��H:D
"����-��#��� 9��� 	��� ��������� �� 
�-� ������	� �#��	� ��� ����9�- 	�

������ 	� ���� 	���� ������ 	����� ��� 
��	 	�����	�� 
������ �� �� ��	 	�
����� 	��
:

(�� ������	 ������	 � $������� �����	��� ��
��	�����	� ���� 	��	 -�������
� �����	 ����@	 ��
 ��� ���� � ���	������ ���	���� 	��	 ��� ��	 ���#�	:
,��
����� � ���� ��� � ��� �� �����- ����	��� �������������
������� � �� ���
� � �� ��� ���	������ ���	���� � � �� � ��� ��- ��� ���	������ ���	����
� � �� � �� 9���� 
�� ���� 
���
�� ��	 � ������ ��	� �	����

� 	 � � � � ��
��� ��� �����

� �
�	� � � �� � �� � �� �-�

��� ��� �����
� �

�	� �

9���� �- �� 	�� �-��	�	� 
�� �� ������:

(�������� $�+ ),������� ��
����	� �������"�����* (�� 
�
���� � �����	��� �
��� -���#� ���� $������� �����	��� ��
��	���� �����:

(�� ����9��# ��	� 	�0�� ��
 2������� ��- )�-��� G.� ,��	 6:� B�DH�
������	���&�� 	�� $������� �����	��� ��
��	�����	�:

-�
� $�. ��� ��� � ��� � �� �� � 
��� ����� 	���	��	 ��� ������������
������
����� ���� �� �	 ����	��� �������������
������ �!

� � � � � � 	�� 	�� � �� � � �	����� � ������ �

� ��
��� ��� �����

� �
�	���	������� � � ��

��� ��� �����
� �

�	����	������ �
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A�	 ��� �� 	�� ��	 � ��� ����� �� �� 	��	 ��	��� I��	���	�� �:� ��- �:�: I���
��� � ��� �� � ���-�-�	� �� �����	��� �<� �#���
��	 �= ��� � ��� � ��� :

������� 	�� #���- �����	��� � �� �����-����# � �������� �#���
��	
���� � ��� � � ��� �	 	�� � ���� �	�#�: �����	��� � 9��� �
����� ���� ���� � ��� � � �	
@�-� � ���� ��� � ��� � ��� ���� 	��	� �� ���� 
�
��� �� 	�� �F���	�	��� ��� �
�� �� #���	�� 	��� 	�� �F���	�	��� ���� � ��� : 2 ���� ���� � ��� � �� ��	 �
�����-
���� �� ��� �����	���� �	 ����
�� � ��� �������# �#���
��	: "� � ���� ����

��� �� � ���� � 	�� #���- �����	��� 9���� �� ������� ��- 9���� �����	 ��
�
�����- ���� �� ��� �����	���7 	��� �� ��#��- �� ��� 
�
���� � � �� ��
� ���� ��������:

'�������� $�/ "� � ���� ���� 
��� � ���@	 ���	�� #�
� 9�	� ����
���	�
����
�	��� ����� ������ � ���� �������� � �� �� � ���� ���� � ��� � � 	�� #���- �� 
���	��� � ���� 	��	

B�D ���� � ��� � � ��� 7 ��-
B��D �	 �� ��	 	��� 	��	 	���� �F��	 � � � ��- ��� � ��� � ��� ���� 	��	 �� ���

� � �� ��� � ���� :

2� 	�� ������	 ���	��� �� �� � ���� ���	���	� �	 �� �F�����	�� ��	�����	�- 	��	
	�� #�
� �� ���� �� ���� �� � ���	���	 B�	��	�#� ���-��D �� ��#��-: (�� ���	 �
	�� 	�
� ��;����� B	��	 ��� 	�� ������� �	�#�D �� ����	 �� ���	���	 �F���	���:
" ���	���	� ���� �#���- ����� �� ���-��# �� 	�� �����;���	 �����-�:

�����0 $�1 2������� ��- )�-��� G.H �������- � 9��0�� ��	��� � � ����
���� ���� 	��� 	�� ������	 ��	��� B��@��	��� �:/D: (��� �--�����- 	�� �F�� 
	���� ����� 9�	��� 	�� ��
�9��0 � � 
�-�@�- ���@	 ���	�� #�
� �� ��	���
���	���	��# 	�� ���-;���	���< ����������	�: "�	������ 	��� ��	�������- �F�� 
	���� 	�����
� �� 	�� ������	 B�	���#��D ��	��� � � ���� ���� �� 	��

�-�@�- #�
�: (�� ������	 ����� �	�-��� 	�� ��
�-�@�- 
�-��� ������� 	��
���-;���	���< ����������	� ���	���	� 	���� ��	 	� �� ���������	 	� 	�� �����	�
BI������	���� �:� ��- �:�D ��- 	�� 9����� �������� B�F�
��� �:�D #���� ����:
�

+ 2 ����� �� ������� 
�����
���% ��� ��
�����
���%

(�� -�������� � 	�� @�
 
�� 9��� 	� 
�0� � ���	���	 �	 	�� ������� �	�#��
9��� 	�� 	��� 	��� � ���� -������� � �� �<� �����	� ����
�	���: $� ��#���#
���� �� ������� ���	���	� � -������� 	�������� ������ �� 	� 	�� �	��� -��������
B� ���	 �D �	� �����	� ����
�	���: ,��	���
���� �����# ��	����- ��������
���	� � �	����< �����	� ����
�	��� 	����#� 	���� ���	���	�� ��
� 
�
����

�� 9��� 	� �� 9��	� 	���� ���	���	�: (�� ������� � 	��� ���	��� �� 	� ������	
� �������� �� ������� ���	���	��# ��- �� ���	���	��#: �� 	�� ��� ���-� 9����
	�� ������	�	��� ���� �� 9�	��� 	�� ��
�9��0 � 	�� ���@	 ���	�� #�
�
� �� ����� ������ � ���� �������� � ��� �	 �� #���� �� ���� � 9�� 	��	 	�� ��������
�� ���-��� �F	��-�- 	� � 
��� #������ ��
�9��0 � � 	9� ������� �����-
$������� �����	�: �� 	�� �	��� ���-� 	�� ������	 ���	��� ������ ���� 	��
�����@� ���	����� � 	�� ���@	 ���	�� #�
�� #���� ��

304 (: 2������� ��- 4: ): ���	��



� � � � � �� �
�
	����

���	��

B��� )�
��0� �:�� �:/ ��- /:� �� 2������� ��- )�-��� G.HD: ���� 	���� ���	�����
��� 
�����#�� �� 	�� ������	 �	�-� � 	�� ���@	 ���	�� #�
�� ������� ����
-������� �����-� ��� �	� �����	� ����
�	��� �	 	�� 	�
� � ��#���# � ���	���	:
2	 �� ���� ���	���	�- 	��	 ���� � -����-� ���� ���� 	�:

,�� ��#���# � ���	���	 	� ���� �� ����
�	���� 	���� ���� 	� �� �������
��	����	��� ���	���	 �=���: $� �������# ��� �=��� -������� � ������� 	� 	��
�	��� -�������� 	�� ����
�	��� 	��	� � ��� 	�� ��������� �=���� �<� ������
���	���	 #���� ��
 	�� ��#���	 ���-�	����� �F���	�- �
��	�	��� #���� ��� 	���
	��� B����
��# 	�� $������� �����	��� ��
��	�����	�D� ����� 	�� �	����< -� 
-��	��� ����	 �<� 	��� 	���: (��� ��	�� �� ���	����� 	��� �� 	�� ��������� �#��	

�-�� � � ����� ���	���	 �� � ��		��# 9���� 	�� ��������� �=��� �������
��	����	��� ���	���	� 	� �������� ��- ���� ������� ������� ��� � 	��
: 2	
	���� ��	 	��	 
��� �=��� � ��	����	��� ���	���	� -� ��	 9��0 �� 	�� ������	
���	�F	 � ���@	 ���	�� #�
�� -�� 	� 	�� ��
�����	� � ���� -�������<� ��� 
������ ����	��� B-������� �<� �	���	� ����� �� �-��	�@�- 9�	� �<� ���@	 �
��	� 
	���D: (�������� �� �--�	����� �	���	��� �
��# 	�� �=���- ������� ���	���	�
9��� �� ��	��-���-:

"� �� 	�� �������� ���	���� 	���� ��� 	9� ������� �����-�: "� �������
�������� ���� � ���� � ���� �����@�� �� ���� -������� �3 B�D �	� ���	��� ��	���	� ���
B� ��� D ������ �� 	�� @��	 �����-� B�D �	� �����;���	 ��	���	� ����	������ B� ��� D
������ �� 	�� �����- �����- ���	��#��	 ���� ���� 	��� ���@�� 	����� � 	��
�	��� 
�
����� 9���� �� �-��	�@�- 9�	� 	�� ���	��� ��� � ������ � ��� � ��- B�D
� ����� � ���@	 �
��	�- 	� � �� 	�� �����- �����- ���	��#��	 ���� ���� 	��� 
���@�� � 	�� �	��� 
�
����� �� � ������ � �:

" -������� �<� � ���� ���� ���� ��� �� 	�� ���@	 ���	�� #�
� �� ��	�����	�- ��
	��� ���	��#��	 ������� ���	���	��

	� �� �����	��� �����	�� ��� ���	�� ���� �

(��� 	��� ���	��#���� �� 	�� �--�	����� �	���	��� ���-�- �� 	�� ��	 � �� 
	����	��� ���	���	� �=���- 	� �� ������	��� �����	�� ��� ���	�� ���� 
 	� � ���:

(�� �������� ������	� � � ��;����� � ������� #�
��: 2� 	�� @��	 �	�#�� 	��
-�������� ���� � �������	��� #�
� 9���� ��	��
� �� � ��	 � 	��� ���	��#��	
������� ���	���	 �=���: "� ��	 	���� �� �� ��	��� � 	�0��# �� �=��� �� -�������
�<� 	��� 	��� �	� ��
���� �	� �����	� ����
�	��� 	����#���	 	��� �	�#�: ,�� �
-�	����- -��������� � 9�� ����
�	��� �� ��	 ��������- -����# 	��� �	��� ���
)�
��0 �:/ ����9:

(�� #�
� �� 	�� @��	 �	�#� �� �����- 
��� �� 	�� ��
� 9�� �� �� 	��
�����-��# ���	���7 �� ���	������� � ������� �	��	�#� ���-�� �� �����	��� � �� �

�
��� ��� � ��� � ��� : ��9����� 	�� �;��������
 ������	 ���� �� �	���#���
������� 	�� #�
� �� �����- �	 �� ������� �	�#�: ������� 	��	 	�� #���-
�����	��� � �� �����-����# � �������� �	��	�#� ���-�� ���� � ��� � � ��� : 2 	����
�F��	� � �����	��� � ��- �	� �	��	�#� ��� � ��� � ��� ���� 	��	 ���� 
�
��� � � �
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���� ��		�� �= 9�	� ��� � ��� 	��� 9�	� ���� � ��� � 9��� ������	��# 	��
 ����- ��
�	� �����	� ����
�	���� 	��	 ���

� � � � � ���� 
 �	�� � ����� 
 �	�� �

	��� 	�� 
�
���� � 9��� -���	 ��
 	�� #���- �����	��� � : ��� 
�#�	�
	�������� ������� � �����	����� �	�����	� ���-�	��� �� ���� � ��� � ��3

� � � � � � � ��� � ��� � ��� � � � � � � ���� 
 �	�� � ����� 
 �	�� �

(��� ���-�	��� �� ��	 �����	������ ��9����� ����� ����-� �� � � ��� 0��9� �<�
	��� 	���: " �	���#��� ��	 �����	����� �����	����� �	�����	� ���-�	��� ���� 	��	
�� �����	��� � ��� �
����� ���� ���� � ��� � ��#��-���� � 9�������� 	��� ���@��
�� 	���7 ��
�����

� � � � � � � 	� � �� � � ��� � ��� � ��� � � � � � � ���� 
 	�� � ����� 
 	�� �

(��� �� � �����	����� �	���#	�����# � ��������<� G/H $������� �;��������

������	: " �	��	�#� ���-�� ���� � ��� � � ��� ��	�����# 	��� B�	���#��D ���-�	��� ��
-�@��- �� �;��������
 	��� ���	��#��	 ���	���	 �=���7 ��
�	�
�� �	 �� ����
�����- �� ������� ���� 	�������:

'�������� +�# "#��������� ��
������������ �������� �!��	 � ���@	 ���	��
#�
� 9�	� ����
���	� ����
�	��� � ��� � ���� ���� � ��� � � 	�� #���- �����	���
� ���� 	��	

B�D ���� � ��� � � ��� 7 ��-
B��D �	 �� ��	 	��� 	��	 	���� �F��	 � �����	��� � � �� �	� 	��� ���@�� 	� � �� ��-

� ���� ��� � ��� � ��� ���� 	��	 �� ��� � � �� ���� 
 	�� � ����� 
 	���
�����0 +�$ " �������	� �� -�@��- �� � ���	��� � � � � � ��
 � 
�� 
��#� ���@�� ����� � 	� �� ��	��
� ����� �7 	�������� � 
����#� �� � 	���: 2�
	�� �	��-��- ��������� �#��	 	����� B���� �:#:� )�	������- ��- �	�#��	& G��HD�
	�� ��������� -���#�� � 
�������
 � ��- �=��� 	� 	�� �#��	� 	�� �
��� �
������� ���	���	�� �� ��� 
 � � ��: 2� 	�� ������	 ���@	 ���	�� #�
�� 	��� 
���	��#��	 ���	���	 �=��� �� �� ��� � ��� � � � ������
� 
 
�� �� �����-���- �

�������
� ��-�#������� -�	��
���- �� 	�� -�������� � : (�� �
��� � ���
����� ���	���	� �=���- 	� -������� � �� 	��� -�@��- �� 	�� ��	 ����	�� �� 
 	� � ���:
�

2� 	�� �����- �	�#�� ���� -������� �� �����# 	�� �����	� ����
�	��� � �	�
	��� 	��� �	�� ��#�� ��� � 	�� ���	���	� ��������� 	� ��

������	��� ������	�� ��� ��� �	�� ����� 	� � �� �

$� 	�� $������� �����	��� ��
��	�����	�� �	 ������� 	�� ���	���	

������ ��������� �������� �� �������	��� �������	�� ��� ��� ��	�� ���� �

(��� �� ��	 � #������ 
��	������� #�
� ��	 �� ��-���-��� ��	�
�&�	���
������
:

306 (: 2������� ��- 4: ): ���	��



"� -������� � ������� ������ �������� ������� ��- �� ��#�#�- �� �	� ���	��� ��	���	�
���� -����# 	�� @��	 ������� �����-� � � � � 	�� ����
�	��� �� �����- �� 	� 	��
�	��� -�������� 	��	 �<� 	��� 	��� �����- �� �� 	�� ��	

��� �� ���� � ��� ����������� ����� �������� �

B����� 	�� �	���# �	���	��� � 	��� ���	��#���� �� 	�� ��	 � ���	���	 �=���
�� ���-:D A�	 ��� �� �

��� ���� ��- �� �� ��� � ��- ��	 ��� �� 	�� ���-�	����� ���� 
�����	� � �� #���� ���: A�	 ���� �� 	�� ��	 � 	��� ���@�� ���	��#��	 �����- 
�����- ��	���	��� ��� � �� � ��� 	��	 ��� 	�������#������ �������� #���� ������
���� � 	�� @��	 �����-7 ��
�����

���� �� ���� � �� � ��� 
 � 	 � �� � ������ ����	�� � ���	��� �

>�	��� 	��	 ������� ������� ��� ����	��	 ���	���� �� ������� -�� 	� 	�� 
�� 
��������	� ��;����
��	 �� ��� � �

�
��� �� ��� 
�� -���	� 	���� ������ �� ���� ����:

E���� 	�� -�������� � � ��� �	��� �����	 �-��	�� �<� 	��� 	��� �� 	�� ��	 ���� 	���
0��9 �<� ���	���	� ����� ����� B� �	 ��� D: (�� 	���- �	�#� �� �� 	�� ��		�� ���	 �
	�� ������� �����- 9��� ����� -������� ��� �����-� �������- 	�� ����	 �� : "	
	��� �	�#�� -������� � ��� ������ ��	���	� ���� ��- ������� �
��	�	��� ��� ��
�����@�- �� 	�� ���	���	� �� �� 	�� ���� � �� ���	���	��# �	 ���� 	�� ��� 
�����- ���@	 ���	�� #�
��

�� �� �� ��
� ��
�
�� � ���
� �
����
�� � �� � ���
����� 	�� ���@	 �
��	�	��� ��� �� #�����	��- 	� � �� ���# �� � �����	� �� ��#��
������
��	 � 	�� ���	���	� ����� ��� ������ �� �<� ��	��������� 
���� �� #�
�
��: �������� �<� 
��� �� #�
� �� �� � ���� � � ��	 ��	��	 ���� ��� � �� � ��� ��-
� ���@	 �
��	�	��� ���� �� � �� � � �� 	�� �����- ������� �����-: ����	� ��
��� 	�� ��#���� �� �� #�����	�- �� 	�� �����-��� ��	�� 	 ������� 
 	� � ����: >�
��	��� ����
�	��� ����	 	�� �	����< 	���� �� ��������� 	� � -����# 	�� �� 
���	���	��# �����-� �� �<� ���� ����� ��� � �� � ����� ��� 	� �� ��������� �� 	��
����� 	��	 �	 �� ���  
���������� 	��	 ��� �	 -����-� ���� ���� 	�: B+������� G�.H
�����- 	��� 
����������	� ��;����
��	 	�� �����	� ����
�	��� ����� ��-
2������� ��- 2-&�0 G6H �����- �	 	�� 2 >I ���� B����
�	��� ��� ������# ����D:D

������� -�������� � ��� 	� -���	 ��
 	�� #���- �����	��� �� ��#���# � �� 
���	���	 �
��# 	��
������: ���� � -���	��� 9���- �� �

������� �� 	��
��
�����# -�������� �� � 	��� 9��� 	� ������� ��
 � 	���� -���#���
��	 ����	�
���� � � � � �7 ��� ���	�� G�6H �� 	�� ���� � �

����� ���� �����	 �� � -�=����	
�����
�� ���	�F	: ����	� �� ��� 	�� ��	 � ��� ���������� �

�������� �����
����������� ����������� ��- ������������ �������� ����� � �����	��� � �� #�
�
��� 	��	 ��� 	�� ��	 � ����� ��� � ���� � �� � �������
�
 ���� 	��	 ���� ���� ���� ��
���  
���������� � � �� ���� 	��	 ��� �� 	�������#������ �������� �:�:�

��� � ���� �

���� 	��	 	�� 	�	�� �������� ����	����	 �� ��	��@�- 9�	��� �� �:�:�

� 	 � �� �
�
�����
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�
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9���� ����	�� �� #���� �� 	�� ���������-��# ������	�� � ����� ��- ���� 	��	 	��
���@	 �
��	�	��� �� �� ���� 	��� 	�� -���#���
��	 ����	 �� ��
� 	��� ��� 
@��� �:�:�

� � � � � � 	� � ��� � ���	�� � ��� �

B(�� ���	 ���-�	��� �� 9��0�� 	��� 	�� 
�����#�� ���-�	����

� � � � � ����	�� � ��� �

��	 �	 �� �����	�����:D
(�� $������� �����	��� ��
��	�����	� � ���� ��� � ���� �� 	�� 2 >I ���� ��

-�@��- ��

� � � � � � 	��� 	��� � ��� � ����� 
 	��� � ������	��� � 
 	���
9���� 	�� �F���	�	��� �� �� 	�0�� ���� �� 9�	� ������	 	� ���������	� ��� ��-
���	��� � �� �-��	�@�- 9�	� 	�� ����	��	 ���	��� 	� �� ���	��� �: ����	� �� ��� 	�� ��	
� ��� $������� �����	��� ��
��	���� ����� �� ��� : B(�� ������	 ���-�	��� �
$������� �����	��� ��
��	�����	� 9�� ���- �� 	�� 2 I ���� �� 2������� ��-
2-&�0 G6H �� � 
��� #������ ��	��:D

" ���� ����������� �� � $������� �����	��� ��
��	���� ���� � 	�� #���-
�����	��� �� #�
� �� 9���� �����	 �� �
�����- ���� �� ��� �����	���3

'�������� +�+ " ���� ����������� � 	�� ��� �����- ���@	 ���	�� #�
� �� �� �
���� ����� � ����� � � 	�� #���- �����	��� ���� 	��	

B�D ����� � ����� � � ��� 7 ��-
B��D �	 �� ��	 	��� 	��	 	���� �F��	 � � �� 	� � ��� ��- ��� � ���� � ��� ���� 	��	

�� ��� � � �� ����� 
 	�� � ������� 
 	��:
2 	���� �� � ���� �� ���	���	� 	�� -�������� 9��� �#��� �� �	 �	 	�� ��#�����# �
	�� �����- ������� �����-: �	���9���� 	��� 9��� ������ ���� � ����� �� �����@�- ��
	�� ���#���� ���	���	:

(�� ���������	� � �� ���	���	��# ������� ������� #���� 	�� ��-�	�- �� 
��
�	��� B��

���&�- �� 	�� ����	 �� D �� 	�� 	���- �	�#�� 	�� -�������� �� 
���&� 	��	 	�� ���	��� ���	���	� 	��� -��9 B�� 	�� @��	 �	�#�D ��- ��#��- B�� 	��
�����- �	�#�D ��� ���K����	: (��� -��� ��	 
��� 	��	 	�� ���	���	� 9���

�-� ����	�������: ��-�� �
�����	 ����
�	���� ���� 	���� ���	���	� 	��	
���� 	�� ����
�	��� ������# ���� ��� �������� ��- ���� 	�� $������� �� 
���	��� ��
��	���� ���	���	� ��� 	��	����� �� �F���	�-: (�� -�������� �� 
�	�	�	� 	�� $������� �����	��� ��
��	�����	� �� ��-�� 	� ����� �= 	�� -�=������
�� �
��	�	���� B9�	� ������	 	� 	����D� �� ��	 �� ��-�� 	� ����# 	�� �
��	� 
	���� -�9� 	� 	�� ��9��	 ������ �� 	��	 	���� �� �� �����	��� �� 
������� 
���	�	���: $� ��#�#��# �� �� ���	���	 ���� ��-�	� � ����
�	���� 	��
-�������� ��� 	�0��# ���0 	�� ��
���- �F���� � 	�� �
��	�	���� ���� 	��
��9��	 �����:

�����0 +�. E����� G�!H �F	��-�- 	�� ���� � � �	�	�� ���� �F����#� �����
�
��- 	�� � ���� � � #�
� �� ���
�� ��
 	� 	�� ��	��	���� �� 9���� �������
-�=�� �� 	���� ��-�9
��	� � ����
�	��� �	���	���: ����� ������ �<� ���� 

308 (: 2������� ��- 4: ): ���	��




�	��� �	���	��� �� -�@��- �� �� ��#���� �� �� �� ����	������ #���� @��	� �	�	�
�����:6 A�	 �� �� ������ �<� ��� >��
��� 4��#���	��� �	���	� ���	��� -� 
@��-! �� ��� ���� �	��	�#� ����� ��: �����-�� �����	��� � 9���� �� 	����# 	�
��� 9��	��� �	� ?���	 �	��	�#� ���-�� �� �
������ ���� � ���������# �	��	�#� ��

� 	�� #���- �����	���: E����� �����- �� 	9� ������ ����- �� 	�� ����
�	���
�	���	��� �� -�@��- �� 	�� 
�
����< ��

�� ����
�	���� �� �� ������ �
��- 	�� ����
�	��� �	���	��� �� -�@��- �� 	�� 
�
����< ���� �����- �� 
��
�	���� �� �� ������ : B�D 2� 	�� @��	 ����� 	�� 
�
���� ������-� 	��	 ��
�
������ ���� �� B����� ��
 � -���	��# �����	��� �D� � 	���� �F��	� � �������
����	 � � �� ���� 	��	 ������ 
�� � � ������� 
�� � �� �: B�D 2� 	�� �����- �����
	�� 
�
���� ������-� 	��	 �� �
������ ���� �� B����� ��
 � -���	��#
�����	��� �D� � B�D �� ����# ����
�	��� �	���	��� �� � 	���� �F��	� � �������
����	 � ��� ���� 	��	 ������ 
��� � ������� 
��� �� �� �� B��D �� ����# �� 
��
�	��� �	���	��� �� � 	���� �F��	� � ������� ����	 � � �� ���� 	��	
������ 
 ��� � ������� 
 ��� �� �: �� �����- 	�� ���� ��- � ���� ������	� ����	�
�� ���� �����-��#�� �� 	��� ���������- 	� ����� B�D �� B�D� ������	�����:.

E�����<� �	��	�#� ������	 �� 	�� ��
� �� 	�� �	��	�#� ������	 � 	��
������	 @��	 #�
� 9���� -�	��
���� 	��� ���	��#��	 ������� ���	���	 �=����
�� 	�� ����� 	��	 ��	� ��� � ���	��� ��
 	�� 	��� ���@�� ����� � 	� ��
��	��� �����: (�� 	9� -�=�� �� 	��	� 9���� E����� �� ��	 �F�����	 ����	 	��

����������	� ��;����
��	 �� �	��	�#� ���-����5 	�� ������	 ����� �
����� �
�����@� 
����������	� �� ������� �	��	�#���: "��� $������� �����	��� ��
 
��	�����	� �� ���	���	�- �� 	�� ������	 ����� �� � ���	 � 	�� ��������	� ��� 
-�	���� ��- �	� �
�����	��� �� �F�����-:

(���� �� �� �
���	��	 -�=������ ��	9��� E����� G�!H ��- 	�� ������	
�����3 2� 	�� ������	 ������ ��-�#����� ����
�	��� ���������# 	����#�
��#���# � ���	���	 �� �F�����	�� 
�-����-: 2�-��-� 	�� ��	��
� � 	�� @��	
#�
� �� ��	�����	�- �� � ������ � ������� ���	���	 �=���� ��- ���� -�������
������� ��- ��#�� � ���	���	� ����� ������� �	� 	��� 	��� �	 ����	 ���	������ ��
	�� ��	�
�&�	��� ������
 � 	�� �����- �	�#� B)�
��0 �:�D:

"��	��� -�=������ ��	9��� 	�� 	9� 9��0� �� 	�� ���� 	��	 ������� �� 
��
�	��� �	���	���� ����: E�����<� ������ ���� ��- ������ � ���� ������	�
��� ��	 �����-���- ���� �������� -�� 	� 	�� �F	��
� ���

�	�� � ���� 

6 (�� ��
�9��0 � 	�� ������	 ����� �� 
��� �����@� 	��� ��� �� 	��	 	�� �	�	� ����� ���� �� #����

�� � 	��� ���@�� �����:
! (�� �F	������ � 	��� -�@��	��� 	� 	�� ���
�� ��
 #�
� �� �	���#�	��9��-:
. (�� ����� -�@��	��� � LL����0��#<< �� 	�� �����- ���� �� ��������� E�����<� #������ -�@��	���

G�!� �: .��� 	�� 	���- ����#����H ������- 	� 	�� ��	��	��� 9���� 	9� ��

�����	��� �	���	���� ���

��������� 	� �����	��� �3 ��� �� 9���� ����� 
�
��� � � ��� ������ 	� ����
�	��� �	���	��� ��

�� � ��

�����	��� �	���	���� ��- 	�� �	��� �� 9���� ����� 
�
��� � � ��� ������ 	�

����
�	��� �	���	��� �� : 2	 ���
�� ��9����� 	��	 �� ��� -�
���	��	��� � 	�� ��� �F��	���� � �

@�� ���� ������	��� BE����� G�!� �: .��� 	�� @��	 ����#����HD �� �������� ���-�	��� B��D �� 	��

����9��# 
��� ��������� ���-�	���3 $� ����# ����
�	��� �	���	��� �� � 	���� �F��	� � �������

����	 � � �� ���� 	��	 ������ 
��� � ������� 
��� �� �:
5 2� ��� ��	��	��� �� -�@��� �	 �� 	�� 
����������	� 9�	� ������	 	� �� �� ���� B�D7 ��� 	��


����������	� �  �
� �� 	�� �����- ��
 	�� ���	 ����#���� �� ��#� .�/ �� E����� G�!H:
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�	��� �� �� 	�� 	������ ��#���� ��� �� �� � ��� 
���#��	�� �����	��� �� �� 	�� �����	����� �	�����	� ���-�	��� � � ������ ����
�	��	�#� ���-�� �� �#����	 �<� �	��	�#� ���-�� �� ����
��

� � � � � � ���� 
�� � � ����� 
�� � �� � �

9���� �� ��9��� ��	��@�- �� �� � ���� ���� �	��	�#� ���-��7 	��	 ��� �� � ����
���� �	��	�#� ���-�� 9���� ��	��@�� ������� ��-���-��� ��	������	� �� ��
��������� � ������ ������� ����: E�����<� @�� ���� ��- @�� � ���� ������	�
��� ��	 �����-���- ���� ��	���� ������� 	�� ����� ���� �� ��9 	�� 
�
���� � �
�����	��� ��-�#������� ���� 	���� �����	� ����
�	��� BI��	���	� �:�D� �� 	��	

�
��� � 9��� ����	����� ���� �� ����
�	��� �	���	��� 	��	 �� @��� 	��� ��

��- �� ������� 	��� �� : �

�����0 +�/ 2� #������� �����	� ����
�	��� 
�� �� �������- �� 	�� �������
� �����	��� ��
�	���� 9���� �� 	��� ��C������ 9��	��� �� ��	 	�� �����	���
��� ����	����� �� ��
�-: 2� 	�� ������	 �����@� ���	�F	 � � ���@	 ���	��
#�
�� ��9����� 	��� ����
�	��� ������	��� �	 	�� �����	��� ��
�	��� �	�#�
-��� ��	 �����: (� �����	��	� ����
�	��� ������	��� �� �����	��� ��
�	����
�����-�� 	�� ����9��# �F�
���: A�	 � � ��� ��� �� � �!�� "��� ���!�� � ���"��
� ���� � � �� ��- �����-�� 	9� �	��	�#��� ��� � �� � � � �� -�@��- ��

��� �	� �� �� �� ��� � ��- 	 �

���	� ��
�� � 	 � �!�� "�� �

�� �	���9��� 7
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������� � ���	�
���	�� 9��	��� 	� ��� �� 	� �
����� ���� ��� : >�	��� 	��	

���� 
 !�� � � � � � ����� 
 !��� �� ����� � � � �

�� � ��� �
����� ���� ��� 9��� 	�� 	��� 	��� ���@�� �� �	 � �!��!��: "� 
���-��# 	� ��@��	��� �:� B��D� 	�������� ��� ����- ��	 �� �� ������� ����
�	��	�#�: ��9����� ������ � 0��9� 	��	 ������ � �#���� 	� 	�� ?���	 �	��	�#�
�� ���� 9��� �<� 	��� 	��� �� !�� �����

���� 
 "�� � � � � � ����� 
 "�� �

(��� ������ �<� �#���
��	 	� �� ������� 	�� ����
�	��� 	� ������ � 	��	 �<�
	��� 	��� �� !�: J���� 	��� ����
�	���� ������ � -��� ��	 �#��� 	� �� �����

���	��!�� � � � � � ����	��!��� �� 	� � !�� "� �

(���� �	��	�#� �� �����	 ����� �� � LL����0��#<< �	��	�#� �#����	 ��� :
(�� ��	 	��	 ����
�	��� ������	��� -��� ��	 ����� �� 	�� ������	 ���@	 

���	�� #�
� �� ����� ��
 	�� �������	��� 	��	 ��� �	��	�#� ��� � ��� � ��� ��
$������� �����	��� ��
��	����� �� ���� 
�� � �� ����	��	 �� � �� ����� � � �
B,��	 �:�D: ,�� � LL����0��#<< �	��	�#� 9���- 	��� ���� 	� 
�0� ����� � � �
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��	�	���D �� ��� ��������
	��� ���@���: (���� 	�� ��	 	��	 -������� � ?���� � ���	������ �����	��� -���
��	 ������ ��� ����
�	��� 	� 	�� �	��� -�������� � 	�� �����	���: �

. ��� ����� ���
��
 �� ��� ,������� �����
����� %���

(�� @��	 ��
��� �����	 � 	��� ����� �� 	�� ����9��# ������	���&�	��� � ���
����� �;��������
 	��� ���	��#��	 ���	���	 �=��� �� �� � ���� ���� ����:
�F��	���� �����	� �� 	�� ��		�� 9��� ��	�������- �� 2������� ��- )�-��� G.H� ��
	��� ���� ����� �� �F��	���� �����	� �� 	�� ��
�� �� ���9 � 	��� ������	�� 
�&�	��� �����	:

(���������� .�# $ 
��� �� � 
����������� ���� ���� �����
���� ����������� �	
�� � ���� ���� 
��� �� ��� ���� �� �� �	 �#��������� ��
������������ ��������
�!��	�
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� ��
��� ��� �����

� �
�	���	������� � � ��

��� ��� �����
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(�� �����	����� �	�����	� ���-�	��� � 	�� � ���� ���� ���� �� 	��� �;�������	
	� 	�� �	�����	� ���-�	��� � 	�� �;��������
 	��� ���	��#��	 ���	���	 �=���:
�

2� 	�� ��#�	 � 	�� $������� �����	��� ��
��	�����	�� �� -������� ��� ���
�����	��� 	� 
����������	 �	� 	���� �� �	 ��#�� �	� ���	���	 �����-��# 	� �	� 	���
	���: (�� ��F	 ��
��� �����	 #�����	��� 	�� �F��	���� � � ���� �� ���	���	 ��
	�� 	���- #�
�: )�-��� G.� ������	��� !:�H ���- � ���	������ �		��	��� 	� 	��
����9��# �	���	���� ����	������� �
��# 	�� -��������: (�� -�������� � ���
���	�	����- ��	� 	9� 	����� 	�� ��������� ��- 	�� ���	�
���3 (�� 	�

����	
���-��� ��- ������ 	� 	�� ���	�
��� ���
��0�	 ��	��
�-��	� ��

�-�	����
��- 	�� ��	�����	 ��� 	���� ���
��0�	 ��	��
�-��	� ��

�-�	���� ���-���

��0�	 ��

�-�	��� ��- ����# �� ���@	 	� 	�� @�
: 2 	�� ���-��	� � ���
��������� ��� ���-�- �� ���� ���	�
��<� ���-��	��� ��	���	���� 	�� ���������
��� �����- ���
���������:

(���������� .�$ ��� ���� � ��� � �� �#��������� ��
������������ �������� �!��	 ��

����������� ���� �� �	 �� ��� ���� ��
��
����� ��� �� �� ��� ����
����� 
�����
������ ���� ����� �� %&': $		��� ������ ���� ���� �� �	 ����� �� ���� �����
��	�	 ��� (���
��������� 	�

����)���	����� ��������	��
 ����� ��� ����	���	�
���� ����� ��	�	 � ���� ����������� �� ��� ���� ��:
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������	�� �� �� �������� ������	�����: (�� ����9�����	� ��;����
��	 � ����
��� � ���� � ��� � �� ���� 	��	 �� ���� � � �� ���� ���� �� � ���	��� � 	� ����� ��
��� 
�� ����� 9��	� ����	��� ����	��� ���	��- � ����	�� ����	��: $� 	�� ��
� �� 
#�
��	 �� �� 	�� ���� � 2������� ��- )�-��� G.� ,��	 6:�H� ��� ��� ������
���9 	��	 ���� ��� � ���� � ��� � �� �� $������� �����	��� ��
��	���� �=� ��
���� � � �� ����� 
�� � �� � ����	��	 ���	��� �� �� B������ �� �� � ����	��	
���	��� �� �� D: $� ���#�	 ����� � ��	�	���� ��	 �� ���� -���	� 	�� ����� � 	��
����	��	 ���	���:

��@�� 	�� ��� ��-� ���
��	 #�
� �# � �� �� ��

�# ��� �� �� 
 � ��� � ���� � ��� � � � � � � �� � ��� �

I��� �� 	�� �����F 	�������#� ���� �� ��9 #����: ������ ��� �������-
����
��� � � � 9�	� �������	�- ��������# ���K����	� �������� ��- 	�0�
��� � � ���� �# ���: (���� �� ���� � � �� 	���� �F��	� ������ � ������ � �
�� � �	 ��� ���� 	��	 ����� �� ����	��	� ���� ������ �� ��� 
���������� ��� � ���� �

� 	 � �� �
�
���

�����

&


 �
�

�
�����

���
&


 �
�
�
���

�����

&


 �

�
�
���

� � ���	��
����	�� � ���	��

� �
�

��- � � � � � ����� � 
�F ����� ��� �

��@�� ��� � ���� ��

���� ���� ��
�

�������
�������� � ������ � �
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(�������� � � �# ���: J�
� �# �� �������-� �� �	 ��� � ����
�	� ����: " ����
�	��	�#� �� � ���� �� ���	���	 � �:

I��� �� 	�� G��
���
��	��� ��������H ���	�
�� ����	������� ���� �� 	��
��
� �� 	�� ���� � (�����
 /:� � 2������� ��- )�-��� G.H� �� �� ��	 	� 	��
���-��: �

�����0 .�+ 2� 	�� ����� ���� � (�����
 �:� �� 	�� �����F ����� �	 �� 	��
�����F�	� � ���� 	��	 �� ���- �� �� �����	��� 9��: (��� ����
�	��� �� ��� 
���	��	 9�	� ������� ����� �� 9���� 	�� ���#���� ��	 �� �� ��������F ��- �F 
����	� ���������# ��	���� 	� �����: �� 	�� �	��� ���-� � ��� 	�� �����- �����-
���
��0�	 ��

�-�	��� ��� ���� ���- �� ����	� B�� 	��� �����	 �� ��	�� 
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�-�	���D� ��- � 	�� ��	 �����	�� �� -��	����	��� B��� ���� G��� ��:
���1���H �� � -�@��	���7 	��� ���-�	��� �
����� ���������# ��	���� 	� �����D�
	��� �� 	�� ��
� ��#�
��	 �� �� ���� G��� (�����
� � ��- 6H� ��� ���
��	������ 	�� �F��	���� � � ���� �� ���	���	 � #�
� ��: ��9����� -��	���� 
	������� � �����	�� �� � ;���	������� ����
�	���� ���� 9��� 	�� ���#���� ��	
���	�� �� -��	����	���: �

(�� ����9��# �F�
��� � 	�� G��� ��������H G��� ���	�
��H ����	�������
�����	��	�� ��� ����
�	��� ��������# �;��������
 	��� ���	��#��	 ���	���	
�=��� �� 	�� @��	 #�
�� ��- ���9� ��9 � ���� �� ���	���	 �� 	�� 	���- #�
�
��
���� 	�� ���K������ 	��	 9�� �����- �� 	�� $������� �����	��� ��
��	 
�����	� �� 	�� @��	 #�
�: 2	 9��� �� ����	�- ��	� ��9����� 	��	 � 
�	� ���K 
������ 
�� ������	� ������� 	�� -�������� 
�� ���� 
�-� ��
� � 	�� �������
�	 	�� 	�
� 9��� ���� ��- �� ����
�	��� ����	 	�� �	����< 	����� 	��	 ���
������� 	��� ��- 	� ����9 	�� ����
�	��� ������# ����:

�3����� .�. �����-�� � @�
 9�	� 	9� -��������� � � ��� ��� �� 9���� -��� 
���� � �� � 	�

���� B� �� ��	��
�-��	� ���
��0�	 ��

�-�	�D ��- -������� �
�� � ��	����� B� �� ��	��
�-��	� ���
��0�	 ��

�-�	�D: (���� ��� 	����
#��-�7 � 
��0�	 ��

�-�	� 9���� ;���	�	� �� -���	�- �� �� �� ��	��
�-��	�
���
��0�	 ��

�-�	� 9���� ;���	�	� �� -���	�- �� ��� ��- � ���
���
���
��0�	 ��

�-�	� 9���� ;���	�	� �� -���	�- �� �$: "���
� 	��	 	��
���
��� ��

�-�	� �� ���- �� 	�� @��	 ������� �����-� 	�� ��	��
�-��	�
���
��0�	 ��

�-�	� �� ���-���- ��- ���- �� 	�� �����- ������� �����-�
��- 	�� 
��0�	 ��

�-�	� �� ���-���- �� 	�� �����- ������� �����-: (��

��0�	 ����� � 	�� ��	��	� �� �� ���
���&�- 	� �� �;��� 	� �: ���� -�������
��� 	9� 	����� �� � �!�� "��� ��- 	�� � ���� ���������	� �� �� �� #���� �� 	��
�;��� ���������	� ����!��� � ����"��� � ���� � � �� �: (�� �������� ���-����
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Summary. The purpose of this paper is to derive the structure of optimal multi-
lateral contracts in a costly state verification model with multiple agents who may
be risk averse and need not be identical. We consider two different verification
technology specifications. When the verification technology is deterministic, we
show that the optimal contract is a multilateral debt contract in the sense that the
monitoring set is a lower interval. When the verification technology is stochastic,
we show that transfers and monitoring probabilities are decreasing functions of
wealth. The key economic problem in this environment is that optimal contracts
are interdependent. We are able to resolve this interdependency problem by using
abstract measure theoretic tools.

1. Introduction

In the Arrow-Debreu model complete insurance markets exist and agents are able
to attain unconstrained Pareto efficient consumption allocations. In addition, the
structure of the set of financial securities that support these allocations is indeter-
minate (i.e., the Modigliani-Miller Theorem states that a firm’s debt-equity ratio is
irrelevant when there are no market imperfections). Clearly, firms have determinate
debt-equity ratios and insurance markets are incomplete. The costly state verifica-
tion model, proposed by Townsend (1979), provides one plausible explanation of
these outcomes that is consistent with (constrained) Pareto efficient behavior. The
model imbeds an information friction in an Arrow-Debreu’economy and has two
essential elements. First, agents have asymmetric information since they know the
(common) distribution of a random variable (i.e., endowments) but the realization
of a particular agent’s random variable is costlessly observed only by the agent.

� We wish to thank Mark Feldman, Wayne Shafer and Nicholas Yannelis for useful comments. We
also gratefully acknowledge financial support from the National Science Foundation (SES 89-09242).
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Second, a technology exists that can be used to publicly announce the realization
to all agents ex post, but it is costly to use. The model has proved useful for analyz-
ing many economic problems (cf. Sect. 2). In this paper we generalize the model
to permit its application to a broader class of economic problems - environments
with multiple heterogeneous agents where contracts (and hence consumption allo-
cations) may be interdependent.

We characterize the nature of contracts that support information and resource
constrained Pareto efficient consumption allocations when trade is not restricted
a priori to be symmetric, bilateral, or separable in endowments and agents may
be risk averse. We use abstract measure theoretic arguments to show that “debt-
like” securities are optimal when the monitoring technology is deterministic (i.e.,
the optimal multilateral contract has a lower interval), and transfer functions and
monitoring probabilities are monotonically decreasing functions of wealth when
the monitoring technology is stochastic. The key problem when agents are risk
averse and contracts are explicitly multilateral is that non-trivial interdependencies
among agents exist. Measure theoretic tools such as the Isomorphism Theorem and
Lusin’s Theorem appear to be necessary to solve this interdependency problem
since they allow us to change contracts so that the expected utility of one agent is
affected while the expected utility of all others remains the same. We then show
that given any arbitrary initial contract, unless one starts with a lower interval
monitoring set (for deterministic monitoring) or monotonically decreasing transfer
and monitoring functions (for stochastic monitoring) at least one agent can be made
better off ceteris paribus, which contradicts the Pareto optimality of the arbitrary
initial contract. These results are stated formally in Theorem 1, and Theorem 2 and
Corollary 1, respectively.

2. Discussion of the literature

Townsend (1979) proved that when costly state verification is deterministic (i.e.,
monitoring occurs with either probability one or zero) the optimal contract that
supports information and resource constrained Pareto efficient consumption allo-
cations resembles debt because the monitoring set is a “lower interval” (i.e., it
is optimal to monitor only announcements below a cut-off point). This result is
important because it is consistent with many stylized facts observed in actual mar-
kets (e.g., debt payment characteristics and institutional features of bankruptcy).1

Previous lower interval results have been established only under several restric-
tive assumptions: Agents are either assumed to be risk neutral or their trades are
exogenously restricted to be symmetric, separable in endowments, and bilateral.2

Townsend (1979, p. 281) notes that these restrictions are “unpleasant” because

1 This result is also obtained by Gale and Hellwig (1985) when only the agent who pays for monitoring
gets the information. The distinction between public and private monitoring is irrelevant in a two agent
economy but is important with multiple agents. See Williamson (1986) and Krasa and Villamil (1992)
for multiple agent costly state verification environments wich private monitoring reports.

2 Recently, Winton (1991) considers a costly state verircation model wich multiple risk averse agents
and derives conditions under which subordinated debt is optimal. Boyd and Smith (1993) study credit
rationing in a similar model with multiple risk neutral agents with a particular form of heterogeneity.
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they are motivated by technical, rather than economic considerations. Further, they
may preclude optimal risk sharing arrangements even in two-agent contracting
problems.3 More fundamentally, however, multilateral structures which permit in-
terdependencies among heterogeneous agents are important because these features
are inherent in many economic problems. For example, Krasa and Villamil (1992)
consider a costly state verification model with deterministic monitoring and risk
neutral agents where a financial intermediary arises endogenously. They show that
when the intermediary contracts with both depositors and entrepreneurs and is sub-
ject to non-trivial default risk, its deposit and loan contracts are interdependent.
As is common in the literature, their results depend crucially on risk neutrality.
In contrast, the multilateral model that we present permits many types of agent
heterogeneity: multiple types of risk aversion, (endowment) distribution functions,
transfer functions, and monitoring cost functions.4

Border and Sobel (1987) prove that when the verification technology is stochas-
tic (i.e., monitoring need not occur with probability one) the optimal contract that
supports information and resource constrained Pareto efficient consumption alloca-
tions specifies transfer and monitoring procedures that resemble those commonly
used by insurance companies and tax collection agencies: transfers and monitoring
probabilities are monotonically decreasing functions of an agent’s reported wealth.
This result is important because it is consistent with the following stylized facts.
In insurance markets a large loss can be viewed as a low wealth realization, thus
a monotonic contract implies that policy holders receive higher transfers when
they claim larger losses and the probability of being audited is correspondingly
higher for such reports. In a public finance context laxes can be viewed as negative
transfers and low wealth reports can be viewed as high itemized deduction claims,
so the monotonicity result implies that larger (total) tax payments are associated
with larger wealth reports and the probability of a tax audit is decreasing in reported
wealth (where low wealth claims not low wealth make an audit more likely). Border
and Sobel’s model has two risk neutral agents (one having a random endowment
of wealth), and information conditions that are identical to those in Townsend’s
model. They note (p. 533) that risk neutrality is essential for their argument and
that “it is not known if the monotonicity result ... extends to the risk averse case.”
This open question is particularly important for insurance applications of the model
as risk aversion is typically a driving force behind most insurance arrangements.

3. The model

Consider a two period exchange economy with finitely many individuals indexed by
i = 1, ..., n. Traders are described by von Neumann-Morgenstern utility functions,

3 Townsend (1979, p. 281) provides an example where two agents have utility functions of the form
u(c) = cα+1/(α + 1), where −1 < α < 0. The optimal symmetric transfer function implied by this
common utility specification is not separable in endowments as required by the exogeneous restriction.

4 Using the core, Boyd and Prescott (1986) and Wilson (1968) also argue that group (syndicate)
structures are important in finance and insurance problems. Höwever, Boyd and Prescott note: “An
extension which is not so easy [in their model] is to allow for more than two agent or project types.”
Such an extension is straightforward in our framework.
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ui, defined over second period consumption, ci, and random endowments,Xi. Let
ui be concave and monotonically increasing in consumption.Assume that theXi are
independent random variables. Denote a particular realization ofXi by xi, letFi be
the distribution ofXi, letFn be the joint distribution ofX1, ..., Xn, and assume that
all distributions are non-atomic.5 To ensure non-negative consumption, assume that
the support ofFi, is contained in [m,∞), wherem > 0. The information conditions
are as follows. Each agent i privately observes his/her endowment realization, xi,
ex-post, but all agents have access to a costly state verification technology that can
be used to publicly announce the realization to other agents. Let φi(·) be the cost
incurred by agent i from using the verification technology.6

Denote by ti(x1, ..., xn, ) the net transfer function of agent i, which describes
the payment between the coalition and each agent i. This payment may be posi-
tive (indicating a state-contingent payment from the coalition to the agent), negative
(indicating a payment by the agent to the coalition), or zero.Assume that agents’ver-
ification costs are an arbitrary positive function of the transfer payments, φi(ti(·)).
Because transfers need not be identical across agents, verification costs may differ
as well.7 At time zero agents have the opportunity to write binding contracts to pro-
vide for consumption next period. The structure of optimal contracts will depend
on the specification of agents’ preferences, the distributions of random variables,
the verification technology, and the nature of information in the economy.

4. The case of deterministic verification

In this section we study the form of Pareto efficient multilateral contracts under
deterministic monitoring. Transfers, ti(·), can be contingent only an endowment
realizations of agent i which are publicly verified. In private information states, all
transfers must be non-contingent. LetSi denote the set of all announced realizations
ofXi for which verification occurs, and let Sc

i denote the complement of Si. Define
a multilateral contract as follows.

Definition 1. A multilateral contract with deterministic verification for each agent
i = 1, ..., n is a pair (ti, Si), where ti(x1, , ..., xn) is a net-transfer function for
agent i from Rn into R and Si is a set of endowment realizations announced by
agent i for which monitoring occurs (with probability one). If agent i is verified,
the endowment becomes public information.

We restrict the analysis to the class of incentive compatible contracts:

Definition 2. A collection of multilateral contracts (ti, Si) with deterministic ver-
ification is incentive compatible if Si = S̄i and ti(·) = t̄i(·) for every i = 1, ..., n,

5 A distribution is non-atomic if every single point has probability zero. This follows automatically
if the distribution has a density.

6 When monitoring occurs the true endowment is publicly reported without error.
7 Townsend (1979, p. 269) considers two verification cost specifications, and our cost function in-

cludes both as special cases. In his first case the verification cost is a fixed constant, and hence independent
of the actual realization. In the second case the verification cost of agent i depends on the transfer ti,
where the costs are strictly monotonic.
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where (ti, Si) denotes the pre-state contractual commitment and (t̄i, S̄i) denotes
the post-state outcome.

Definition 2 indicates that under an incentive compatible contract, agents do not
misrepresent their private information (i.e., pre-state commitments are fulfilled ex
post). Townsend (1988, pp. 416–418) uses a revelation principle argument to prove
that incentive compatibility can be imposed without loss of generalizy. The follow-
ing conditions generalize the incentive compatibility specification of Lemma 5.1
in Townsend (1979):

(IC 1) xi �→ ti(x1, ..., xi, ..., xn) is constant an Sc
i , for a.e. xj , j 	= i.

(IC2) ti(x1, ..., xi, ..., xn)− φi(ti(·)) ≥ ti(x1, ..., y, ..., xn); for a.e. xi ∈ Si, for
every y ∈ Sc

i , and for a.e. xj , j ∈ i.
IC1 says that when agent i’s endowment announcement is not verified (ceteris

paribus), his/her net-transfer is constant (because transfers cannot depend on pri-
vate information). IC2 says that it is (at least weakly) optimal for agent i to request
verification when the endowment realization is in the verification set. Thus, it en-
sures that agent i requests verification when xi ∈ Si. We assume that the incentive
constraints are satisfied a.e. Thus, there exists a set of realizations of the agent’s
endowment which has measure zero in which it might be optimal to misreport. See
Section 6 for a discussion of implementation and alternative specifications of the
incentive constraints.

We now state an information constrained optimization problem whose solutions
characterize optimal multilateral contracts. The objective is to Coose Pareto efficient
net transfer functions, ti(xt, ..., xn), and sets of endowment realizations for which
verification occurs, Si, to maximize a weighted average of agents’ utilities, subject
to feasibility and information constraints. The λi denote weights on agents’ utility
functions.

Problem 3.1. Choose ti and Si for i = 1, ..., n to maximize

n∑
i=1

λi

∫
ui[ci(x1, ..., xn)]dFn(x1, ..., xn), (3.1)

subject to

0 ≤ ci ≤ xi + ti(x1, ..., xn)− φi(ti(·)) a.e. for all i, (4.2)
n∑

i=1

ti ≤ 0 a.e., (4.3)

ti is incentive compatible for every i (4.4)

Si is a measurable set for every i. (4.5)

The optimal multilateral contract maximizes the expected utility of all agents
(3.1), subject to: (3.2) a budget constraint for each agent which holds almost ev-
erywhere; (3.3) an aggregate feasibility constraint which holds almost everywhere;
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(3.4) incentive-compatibility conditions IC1 and IC2; and (3.5) a standard mea-
surability condition. The problem’s solution characterizes the nature of optimal
contracts when verification is deterministic. (constrained) Pareto efficient multi-
lateral contracts have lower interval monitoring sets, except for nullsets. Thus, we
show that there exists a yi such thatSi = [m, γi) for all i, except for a set of measure
zero, where the lower interval may be trivial. Because monitoring is deterministic,
it follows immediately from this result that the transfer function is constant for all
xi ∈ Sc

i (for fixed xj , j 	= i).
Townsend (1979, p. 283) proves a related lower interval result under several

exogenous restrictions which he describes as “unpleasant” because they are neces-
sary for technical reasons, but are not motivated by economic considerations. He
assumes:

(i) all transfers and verification costs are symmetric;
(ii) all trades are bilateral; and further
(iii) when both agents are verified, the transfer function is separable in endowment

realizations (i.e., in our notation t(x1, x2) = t̂1(x1) + t̂2(x2)).8

Before beginning our formal analysis we describe the relationship between our
result and Townsend’s, and give an overview of the proof of Theorem 1. Townsend
specifies an optimization problem which involves the maximization of a weighted
average of utilities, subject to information and resource constraints. However, in-
stead of characterizing ti and Si directly as in our Problem 3.1, Townsend refor-
mulates an analog of Problem 3.1 as a standard constrained maximization problem.
The key difference between our approaches is that the maximizer in his reformu-
lated problem is a function of only one variable. This follows from restrictions
(i) and (iii), as they immediately impiy that the transfer function is of the form
t(x1, x2) = t̂(x1) + t̂(x2). Under these restrictions it is only necessary to choose
a one-dimensional transfer function, t̂. Townsend considers the multilateral case
(pp. 278–283) but reduces it to a similar one-dimensional problem by using (ii).
This approach has two limitations. First, it precludes certain types of agent hetero-
geneity (i.e., (i) rules out transfer and cost function differences). Second, even when
agents’ transfer and cost functions are identical, restrictions (ii) and (iii) preclude
some economically plausible risk-sharing arrangements.

In contrast, we characterize the solutions to Problem 3.1 directly. The maximiz-
ers are explicitly multi-dimensional transfer functions and verification sets, where
transfer and verification cost functions need not be symmetric. We use abstract
measure theoretic arguments to obtain our results; and these mathematical tools
appear to be essential in our more general setting. We proceed as follows: Our main
result in this section is Theorem 1, which establishes that in a multi-agent economy
with deterministic costly state verification, all solutions to Problem 3.1 have lower
interval verification sets (except for sets of measure zero). We prove the Theorem
indirectly by assuming that there exists some arbitrary initial contract (ti(·), Si)
which is optimal but is not a lower interval. We then define a measure preserving
mapping, g, which allows us to transform the transfer functions, monitoring sets,

8 Separability is equivalent to the slope of the net-transfer function of agent i depending only on
agent i’s realization. This precludes most interdependencies among agents.
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and monitoring costs associated with the initial contract into an alternative contract
(t′i, S

′
i) such that the new contracts are feasible, incentive compatible, strictly in-

crease the expected utility of at least one agent, and leave the expected utility of all
other agents unaffected. This contradicts the optimality of the original (non-lower
monitoring interval) contract, hence it establishes the optimality of contracts with
lower monitoring intervals.

Roughly speaking, we contradict the optimality of non-lower intervals in the
following way. We move a part of the original (non-lower interval) monitoring
set of one agent (say agent one) to the left, mapping it into a set where there was
previously no state verification. Such sets (with positive measure) always exist if the
initial contract was not a lower monitoring interval, and we construct these sets to be
compact. The existence of a measure preserving one-to-one mapping, g, between
these two sets follows from the Isomorphism Theorem which says that measure
preserving one-to-one mappings exist between all separable and complete measure
spaces (where both spaces have the same measure). Since compact subsets of R
are separable and complete (in the induced topology) the Theorem can be applied.

Feasibility and incentive compatibility of the alternative contract are straightfor-
ward to show because g is measure preserving and one-to-one. It is also reasonably
straightforward to show that the expected utility of agent one increases by a Roth-
schild and Stiglitz increasing risk argument. Townsend (1979, p. 288) uses a similar
argument in the proof of Proposition 3.2, which is his lower-interval result for two-
agents, one risk neutral, with fixed monitoring costs. Thus, the reader may wonder
why we use abstract measure theory to obtain our results. The remaining and key
step in the proof is to show that the utility of all other agents does not decrease
under the alternative contract. In Townsend’s proof, this follows immediately from
risk neutrality and fixed verification costs.9 In our setting with multiple risk-averse
agents and arbitrary verification cost functions his argument breaks down exactly at
this step because all contracts are interdependent. Without an additional argument,
it is not possible to avoid affecting other agents’ expected utility nor to see in which
direction their utilities change. Measure preserving mappings impose the necessary
structure to overcome this problem.

We begin our analysis by defining a measure preserving mapping. As indicated
above, this concept is crucial for the arguments that follow.

Definition 3. Let (Yi, βi, µi), i = 1, 2 be two measure spaces and let g : Y1 → Y2
be a measurable function. For every A ∈ β2 define gA = {ga : a ∈ A}. Then g is
measure preserving iff µ1(g−1A) = µ2(A).

9 Townsend (1979, Proposition 3.1) proves a second lower interval result for a bilateral contracting
problem where agents may be risk averse and the monitoring tost function is convex with φi(0) < 1.
His Euler equation argument depends crucially on restrictions (i), (ii), and (iii). It does not appear that
this approach can be readily extended to the multilateral case because of the interdependency problem.
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The following Remark is an immediate consequence of Definition 3.10

Remark 1. Let f be an integrable function on Y2, and let g be a measure preserving
transformation as defined above. Then f ◦g11 is integrable and the following holds:∫

Y2

f(x)dµ2(x) = f

∫
Y1

f(g(x))dµ1(x).

Remark 1 corresponds to Theorem 1.6.12 of Ash (1972) or Remark 28.14 of
Parthasarathy (1977). For completeness we give the proof in the Appendix. This
Remark is essential for the proofs of our main results as it establishes that whenever
we change the payoffs to one agent in a measure preserving way (i.e., choose a
measure preserving function g), then the expected utility from an arbitrary initial
contract ti(x1, ..., xn) and a transformed alternative contract ti(g(x1), x2, ..., xn)
is the same for all other agents.

To construct measure preserving mappings we use the Isomorphism Theorem
from measure theory (cf., Parthasarathy (1977) Proposition 26.6).

Isomorphism Theorem. LetYi, i = 1, 2, be complete and separable metric spaces,
and letµi, be non-atomic Borel measures onYi such thatµ(Y1) = µ(Y2) > 0. Then
the two measure spaces are isomorphic, i.e., there exist two sets of measure zero,
Ni, i = 1, 2, and there exists a measure preserving transformation, g : Y1\N1 �→
Y2\N2, whose inverse exists and is also measure preserving.12

We now state our main result concerning the nature of optimal contracts in a
multi-agent economy with deterministic costly state verification.

Theorem 1. Assume that the utility functions of all agents are twice continuously
differentiable and that u′′ < 0. Furthermore assume that φi(t) > 0 for every agent
i and for every t ∈ R. Let the endowments of the agents be described by independent
random variables Xi for all i = 1, ..., n. Then all solutions to Problem 3.1 have
lower interval verification sets, except for sets of measure zero (i.e., there exists a
γi such that Si∆{x : x < γi} has measure zero).13

Proof. We proceed indirectly. Without loss of generality, assume that the mon-
itoring set of agent one is not a lower interval. Let µ be the distribution of the
endowment of agent one. Then there exist compact sets Ki, i = 1, 2 with positive
measure, and such that k1 < k2 for all ki ∈ Ki and such that K1 ⊂ R\S1 and

10 Consider the following example of a measure preserving mapping. Let Y1 = [0, 1] ∪ {2} and
Y2 = [1, 2]. On both sets consider the standard Lebesgue measure. Then the function

g(x) =

{
x + 1 if x ∈ [0, 1];

1 if x = 2;

is measure preserving in this example (though not a one-to-one mapping). ‘
11 f ◦ g is the composition of f and g, i.e. f ◦ g(x) = f(g(x)).
12 “\” denotes set theoretic subtraction.
13 “∆” denotes the symmetric difference: A∆B = (A\B) ∪ (B\A), for arbitrary sets A and B.
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K2 ⊂ S1. By regularity14 and non-atomicity of the measure, we can assume that
µ(K1) = µ(K2).

Note that the Ki are reparable and complete because they are compact.
Thus, by the Isomorphism Theorem there exists a measure preserving mapping
h : K1\N1 → K2\N2 such that h−1 exists and is also measure preserving, where
Ni, i = 1, 2 are sets of measure zero. Note that h can be extended to R by

g(x) =

⎧⎪⎨⎪⎩
h(x) if x ∈ K1\N1;
h−1(x) if x ∈ K2\N2;
x otherwise.

Clearly, g is again measure preserving.
Recall that ti(x1, ..., xn) are transfer functions associated with some arbitrary

initial contract, where the monitoring set of agent one is not a lower interval. Thus
for every agent i, now define new transfers t′i by

t′i(x1, ..., xn) = ti(g(x1), x2, ..., xn).

Further, define the new monitoring set of agent one by S′
1 = g−1(S1) and S′

i =
Si for i = 2, ..., n. The strategy of the proof is to show the following: (i) The
transfer functions associated with the new contracts (t′i(·), S′

i) are feasible; (ii) the
new contracts are incentive compatible; (iii) the utility of all other agents i 	= 1
does not change, and (iv) the utility of agent one strictly increases. This gives the
contradiction to the assumed optimality of a non-lower interval contract. (i)–(iv)
are proved as follows:

(i) Let A = {(x1, ..., xn) :
∑n

i=1 ti(x1, ..., xn) > 0}. Define g̃ on Rn by
(x1, ..., xn) �→ (g(x1), x2, ..., xn). Clearly, g̃ is measure preserving with respect to
the joint distribution of theXi. Then, g̃−1A = {(y1, ..., yn) : g(y1) = x1; yi = xi

for all i > 1, and
∑n

i=1 ti(x1, ..., xn) > 0} = {(y1, ..., yn) :
∑n

i=1 =
ti(g(y1), y2, ..., yn) > 0}. Since g̃ is measure preserving, (3.3) implies that g̃−1A
has measure zero. Hence,

n∑
i=1

ti(g(x1), x2, ..., xn) ≤ 0 a.e.

which proves feasibility.

(ii) Incentive compatibility requires IC1 and IC2 to be fulfilled. IC1 is obvious.
Let t̄i(x1, ..., xi−1, xi+1, ..., xn) denote the constant payment to agent i in non-
monitoring states. We first show that IC2 is satisfied for i ≥ 2 (the argument is
similar to that given for (i)). Define g̃ as above, but now let A = {(x1, ..., xn) :
ti(x1, ..., xn) − φi(t(x1, ..., xn)}. Then it follows that g̃−1A = {(x1, ..., xn) :
ti(g(x1), ..., xn) − φi(t(g(x1), ...xn)) < t̄i(g(x1), ...xn)}. Since g̃ is measure
preserving, IC2 implies that g̃−1A has measure zero. Hence IC2 holds for the new

14 Regularity means that µ(A) = inf{µ(O) : O ⊂ A, O open} = sup{µ(F ) : F ⊂
A, F closed}. Our measure µ is regular, since every probability measure on a metric space is reg-
ular (cf., Parthasarathy (1977) Proposition 19.13).
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contract for all agents i ≥ 2. It remains to give the proof for i = 1. This, however,
follows immediately from the argument for i ≥ 2 and the fact that

t̄ ′
1(x2, ..., xn) = sup

y1∈S′c
1

t1(g(y1), ..., xn)

= sup
y1∈S′c

1

t1(y1, ..., xn) = t̄1(x2, ..., xn),

because g is one-to-one. This proves (ii).

(iii) Apply Remark 1 and Fubini’s Theorem (cf., Ash (1972), Theorem 2.6.4).
Let c′i denote consumption under the new contract, and let ci denote consump-
tion under the original contract for agent i. Note that for every i 	= 1 we
have ci(g(x1, x2, ..., xn) = c′i(x1, ..., xn). We must show that

∫
ui(ci)dFn =∫

ui(c′i)dF
n, which means that the expected utilities are the same. This follows

from Fubini’s Theorem since∫ ∫
...

∫
ui(ci(g(x1), x2, ..., xn))dF1(x1), dF2(x2), ..., dFn(xn)

=
∫ ∫

...

∫
ui(ci(x1, x2, ..., xn))dF1(x1)dF2(x2)...dFn(xn).

Equality follows from Remark 1, i.e., the fact that g is measure preserving. This
proves (iii).

(iv) For given (x2, ..., xn) define

f(x1) = t1(x1, ..., xn)− φ1(t1(x1, ...xn)).

Because of IC1 and IC2, transfers (net of monitoring costs) in monitoring states are
always higher than transfers in non-monitoring states. g moves these high transfers
to the left (i.e., to low income states) and vice versa.15 By Lemma 2 in theAppendix,
agent one is strictly better off under the new contract. This contradicts the assumed
optimality of the original contract, proving the Theorem.

5. The case of stochastic verification

In this section we study the form of Pareto efficient multilateral contracts that arise
among agents under stochastic monitoring. We begin by defining a multilateral
contract for this economy.

Definition 4. A multilateral contract with stochastic verification for each agent
i = 1, ..., n is a pair (ti, pi), where ti(x1, ..., xn) is a net-transfer function for
agent i from Rn into R, and pi : [m,∞]n → [0, 1] is a function which indicates
the probability that agent i’s endowment announcement is verified. If agent i is
verified, the endowment becomes public information.

15 That is f(k1) < f(k2) for every k1 ∈ K1, and for every k2 ∈ K2. This is exactly the condition
under which Lemma 2 holds.
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Alternative formulations of the stochastic monitoring problem have been stud-
ied by other authors. Townsend (1988, p. 424) reports the results of systematic
numerical analyses of costly state verification economies with stochastic monitor-
ing and gives examples of non-monotonic monitoring probabilities. His results stem
from the fact that his monitoring probability function, pi, is defined on [m,∞], so
whether or not an agent is verified depends only on the agent’s own announcement
(and is independent of all other agents’announcements).16 In contrast, in our model
monitoring depends on the agents own endowment announcement and on the an-
nouncements of all other agents (i.e., pi is defined on [m,∞]n in Definition 4).
This specification seems reasonable for many stochastic auditing applications of
the model. For example, the probability of a tax audit is related not only to an
individual’s own income tax return, but also to the returns filed by all other indi-
viduals in the economy.17 Border and Sobel also prove a monotonicity result, but
their arguments depend crucially on risk neutrality (cf. Sect. 2).

Our main goal in this section is to characterize the solutions to an information
constrained optimization problem with stochastic monitoring. Before beginning our
formal analysis we first discuss an inherent difficulty that emerges in economies with
stochastic monitoring and risk averse agents. The problem stems from the fact that
stochastic monitoring generates additional uncertainty into expected consumption
allocations, and this additional uncertainty decreases the expected utility of risk
averse agents.18 The key problem is that states with low endowment realizations
are the same states where the probability of monitoring is the highest. These high
variance states are precisely the states of most concern to risk averse agents. In
general it is difficult to characterize the marginal loss of utility to an agent from
the additional uncertainty caused by stochastic monitoring. Transfers which are
contingent not only on all agents’endowment realizations (as they are in our model),
but also on whether or not monitoring is actually performed (which does not occur
in our model) might ameliorate the negative utility effects associated with stochastic
monitoring somewhat. However, it is unlikely that such transfers would eliminate
these effects entirely.

We consider two polar cases which are designed to address the “marginal utility
loss” problem experienced by risk averse agents. We first consider the Gase where
monitoring costs are borne by each individual agent, but restrict agents’ utility
functions to be separable in consumption and monitoring cost. This approach is
often employed in the literature (e.g., Moohkerjee and Png (1989)), hence we use
it in the statement of Problem 4.1 below. However, our proofs also apply to an
alternative specification where agents are abie to diversify their individual specific
monitoring cost risk (e.g., if monitoring occurs, the monitoring costs of agent i are

16 Townsend’s example is for a discrete (hence atomic) distribution. However, because it is an equal
distribution our proof immediately goes through (but breaks down for discrete distributions which are
not equal distributions). We are not aware of an example where the “discreteness” is solely responsible
for the non-monotonicity.

17 That is, an individual with a university salary is more likely to be audited in a small college town
(Urbana, IL) than in the Silicon Valley (Palo, Alto, CA).

18 Note that stochastic monitoring also has the countervailing beneficial effect of reducing expected
monitoring costs (relative to deterministic monitoring).
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borne by all other agents i 	= j). We defer discussion of this second specification
until after we have proved our main results (Theorem 2 and Corollary 1).

We now state the optimization problem for this economy:

Problem 4.1. Choose ti(·) and pi(·) for i = 1, ..., n to maximize:

n∑
i=1

λi

∫
[vi(xi + ti(·))− pi(·)φi(ti(·))]dFn(x1, ...xn), (4.1)

subject to

0 ≤ ci ≤ xi + ti(x1, ..., xn) a.a. for all i, (4.2)
n∑

i=1

ti ≤ 0, a.e. (4.3)

vi(xi + ti)(x1, ..., xi, ..., xn))− pi(xi, ..., xn)φi(ti(·))
≥ (1− pi(x1, ..., y, ..., xn))vi(xi + t(x1, ..., y, ..., xn))

+pi(x1, ..., y, ..., xn)[vi(0)− φi(ti(·))], for all i.

for all y, and for a.e. xi; and (4.4)

0 ≤ pi(xi, ..., xn) ≤ 1, for every xi. (4.5)

(4.1) reflects the consumption and monitoring cost separability restriction described
above. Separability implies that each agent’s utility from consumption is indepen-
dent of the non-pecuniary (effort cost) imposed on the agent by the monitoring
procedure. Loosely speaking, the idea is that the monitoring process causes no
additional utility or disutility other than the direct costs. (4.3) is the same as in
Problem 3.1. (4.4) is the incentive compatibility constraint under stochastic moni-
toring.19 The left-hand side of (4.4) is the expected utility of agent i from truthfully
reporting endowment realization xi; and the right-hand side is the expected utility
of agent i from announcing any other realization y 	= xi. When agent i misreports
and is verified, he/she receives a zero transfer and the entire endowment is confis-
cated, so utility is vi(0)−φi(ti(·)). We implicitly assume that it is optimal to punish
an agent as much as possible (by seizing the entire endowment) for misreporting,
but this is straightforward to show since maximizing the penalty minimizes the
propensity to cheat. See Section 6 for further discussion of incentive compatibility.
Finally, (4.5) states that the pi are probabilities.

We now give an overview of the proof of Theorem 2. This Theorem shows that
the transfer function associated with the optimal contract is a decreasing function
of wealth when monitoring is stochastic. As in Theorem 1, we proceed indirectly:
Assume that the transfer function of agent one is not a monotonically decreasing
function of wealth over the entire support of the distribution. We again wish to use
the Isomorphism Theorem to find a measure preserving one-to-one function gwhich

19 Townsend (1988, pp. 416–418) uses a relevation princple argument to prove that this restriction
can be imposed without loss of generality.
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maps arbitrary initial contracts into an alternative contract which is “more mono-
tonic.”20 We show that this “more monotonic” alternative contract: (i) is feasible;
(ii) is incentive compatible; (iii) does not decrease the expected utility of all other
agents; and (iv) strictly increases the expected utility of agent one. This establishes
the optimality of contracts with monotonically decreasing transfer functions.

The first step of the proof, since the argument is indirect, is to establish a uni-
form violation of (decreasing) monotonicity of an arbitrary initial (non-monotonic)
transfer function. We begin by showing that it is possible to find two compact sets
with positive measure, denoted U and V , where U is strictly to the left of V , and
such that all values of the transfer function in U are strictly below the values which
the transfer function assumes in V .21 To construct such sets, we use Lusin’s Theo-
rem (cf., Parthasarathy (1977) Proposition 24.21 and Corollary 24.22), which says
that for any integrable function (on a complete and separable metric space) there
exist arbitrary large compact subsets of the domain such that the restriction of a
function on this compact subset is continuous. We use this continuity to establish
the desired (uniform) violation of monotonicity of the transfer function on U and
V . The main insight in this part of the proof is that it is not sufficient to establish a
violation of monotonicity of the transfer function for single points as the analysis
necessarily excludes sets of measure zero. Hence, starting with two points z1, z2 for
which monotonicity is violated, we must establish a violation which also holds on
a set of positive measure contained in neighborhoods of there two points. For con-
tinuous functions this is obviously always the case. Fortunately, Lusin’s Theorem
implies that this is also true almost everywhere for arbitrary measurable functions
(by continuity of such a function on compact subsets).

The remainder of the proof is similar in structure to Theorem 1: We apply
a version of the Isomorphism Theorem (proved in Lemma 3) to get a measure
preserving mapping h between the arbitrary initial (non-monotonic) contract and
a (more monotonic) alternative contract, on the two compact sets U and V . We
then show that (i)–(iv) hold. However, unlike in Theorem 1 with deterministic
monitoring, when we apply the Isomorphism Theorem in the stochastic case, we
must apply it “slice-wise.”22 The basic problem is that the sets U and V do not
necessarily have a product structure, i.e., we cannot represent U or V in the form
A×C whereA ⊂ R andC ⊂ Rn−1 and V asB×C whereB ⊂ R. If the sets had
a product structure, then we could apply the Isomorphism Theorem to construct a

20 In general it is not possible (even for very simple cases) to construct a monotonic contract directly
with a measure preserving transformation. Consider the following example: Choose the interval [0, 1]
with the standard Lebesgue measure. Let f(x) = x(1−x). Now assume (indirectly) that there exists a
measure preserving transformation g on [0, 1] such that f ◦ g(x) = g(x)(1− g(x)) is monotonic. The
function is quadratic, so there are two solutions xi, i = 1, 2 to any equation x(1−x) = z. Hence, there
exist x1 �= x2 such that f ◦ g(x1) = f ◦ g(x2). Assume that x1 < x2. Since f ◦ g is monotonic, f is
constant on the image of the interval [x1, x2] under g. This, however, means that g([x1, x2]) contains
at most two points. This is a contradiction to g being measure preserving.

21 For technical reasons we prove an even stronger violation of monotonicity. We show that if the
endowment realization x lies in U and a transfer corresponding to an arbitrary state in V is used instead
of the transfer t1(x), then the consumption of agent one strictly increases. A similar condition holds if
the realized state is an element of V .

22 A slice of a set A ⊂ R is given by A(x2,...,xn) = {(x1, x2, ..., xn) : (x1, x2, ..., xn) ∈ A}.
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measure preserving mapping betweenA andB for agent one when the realizations
of all other agents are fixed. In Lemma 3 we generalize the Isomorphism Theorem
so that for fixed realizations (x2, ..., xn) of all other agents we can still establish
an isomorphism between respective “slices” of the sets A and B. We define the
mapping on every slice in Lemma 3 in a way which ensures that we get a measure
preserving “slice-wise” mapping, and then use Fubini’s Theorem to get a measure
preserving mapping h between the setsA andB. The technical problem in applying
the argument is to ensure measurability of h, but this follows from a measurable
selection Theorem (also contained in Lemma 3). The strategies of the arguments
for (i), (ii), (iii), and (iv) remain similar to those used in Theorem 1.

We now state our main result concerning the nature of optimal contracts in a
multi-agent economy with stochastic verification.

Theorem 2. Let (ti, pi) for i = n be a collection of Pareto optimal contracts.
Then there exists a set of measure zero N such that for every agent i and for
every z1 = (x1, ..., xi, ..., xn), and z2 = (x1, ..., yi, ..., xn) with z1, z2 ∈ Rn\N
it follows that ti(z1) ≥ ti(z2) if xi ≤ yi, i.e., the transfers are monotonically
decreasing a.e.

Proof. We proceed indirectly. Without loss of generality we can assume that the
transfer function of agent one is not monotonic a.e. LetO be the union of all open sets
with measure zero. ThenO itself is open and has measure zero. By Lusin’s Theorem
(cf. Ash (1972), Corollary 4.3.17(b)) there exists for every ε > 0, a compact subset
K ⊂ Rn with µ(Rn\K) < ε and such that t1 is continuous onK. Without loss of
generality we can assume thatO∩∅ (otherwise takeK\O). Hence, we can construct
an increasing sequence of compact sets Ki such that ti is continuous on each of
theKi and such that Rn\∪∞

i=1Ki has measure zero. Since ti is not monotonic a.e.
there must exist z1 = (x1, x2, ..., xn), and z2 = (y1, x2, ..., xn) such that x1 < y1,
and t1(z1) < t1(z2), and such that z1, z2 ∈ ∪∞

n=1Kn. For a sufficiently large n
we can assure that z1, z2 ∈ Kn. Thus, t1 is continuous onKn.23 Choose γ1 and γ2
such that x1 + t1, z1) < γ1 < x1 + t1(z2)) and y1 + t1(z1) < γ2 < γ1 + t1(z2).
Then there exist compact neighborhoods U of z1 and V of z2 such that

(a) u1 + t1(u) < γ1 < u1 + t, (v); and
(b) v1 + t1(u) < γ2 < v1 + t1(v),

for every u ∈ U and v ∈ V , where u1 and v1 are the first coordinates of u and v,
respectively. Furthermore, we can assume that U is to the left of V , i.e., for every
u ∈ U and for every v ∈ V we have u1 < v1. Since U and V are neighborhoods,
they must have positive measure (since their intersection with O is empty). By the
“generalized Isomorphism Theorem” (Lemma 3) there exist subsets A ⊂ U and
B ⊂ V and measure preserving mappings h1 : A → B and h2 : B → A such
that for fixed (x2, ..., xn) the mappings x �→ hi(x1, ..., xn), i = 1, 2 are measure
preserving on A(x2,...,xn) and B(x2,.−.,xn), respectively.24

23 Note that all neighborhoods are in the induced topology on Kn and not in the original topology
of Rn, i.e., U is a neighborhood of x ∈ Kn if there exists a neighborhood W , of x in Rn such that
U = Kn ∩ W .

24 A(x2,...,xn) = {(x1, x2, ..., xn) : (x1, ..., xn) ∈ A} and similar for B.



Optimal multilateral contracts 333

Now define

f(x1, ..., xn) =

⎧⎪⎨⎪⎩
h1(x1, ..., xn) if x ∈ A;
h2(x1, ..., xn) if x ∈ B;
(x1, x2, ..., xn) otherwise.

Then for fixed (x2, ..., xn) the mapping x1 �→ f(x1, ..., xn) is a measure pre-
serving transformation on Rn

(x2,...,xn), where Rn
(x2,...,xn) is given by the set

{(x1, x2, ..., xn) : x1 ∈ R}. Let g denote the first coordinate of f(x) =
(f1(x), ..., fn(x)). Then x1 �→ g(x1, ..., xn) is a measure preserving transforma-
tion on R for fixed (x2, ..., xn).

Now define new transfers denoted by ti(g(x1, ..., xn), x2, ..., xn) and new mon-
itoring probabilities denoted by pi(g(x1, ..., xn), x2, ..., xn). We show that these
new contracts are: (i) feasible, (ii) incentive compatible, (iii) preserve the utility of
all agents i 	= 1, (iv) increase the utility of agent one.

(i) Feasibility follows as in the proof of Theorem 1.

(ii) Incentive compatibility requires (4.4) to be satisfied. There are three possible
cases. First, assume the true realization (x1, ....xn) lies in B. If it is profitable to
cheat in this situation under the alternative contract, then it must also have been
profitable with the initial contract in state g−1(x1, x2, ..., xn), because the transfers
are the same under the two contracts but under the initial contract the endowment
of agent one was lower (hence the penalty if detected cheating was less severe).
This contradicts incentive compatibility of the initial contract. Second, assume the
realization lies inA. If it is profitable to cheat in this situation under the alternative
contract, then it must have been even more profitable under the initial contract as ihe
transfer was lower. This again contradicts optimality of the initial contract. Finally,
for all other realizations the two contracts are the same. This proves (ii). However,
also note that the monitoring probabilities can be reduced slightly without violating
incentive compatibility.

(iii) The expected utility of all other agents is unchanged, cf. Theorem 1.25

(iv) Since (a) and (b) are fulfilled, and since A is to the left of B we can apply
Lemma 1 for agent one for fixed x2, ..., xn. Agent one is therefore strictly better
off with the alternative contract (we exchange high transfers to low income states
and vice versa). Since the monitoring probabilities can be reduced slightly without
violating incentive compatibility because of(ii), the utility of agent one can be
strictly increased. Thus, Fubini’s Theorem implies that the expected utility of agent
one is vtrictly greater under the alternative contract. Thus, contracts which are
non-monotonic cannot be optimal. This proves the Theorem.

The following Corollary follows immediately from Theorem 2.

25 The utility of an agent depends on x1, ..., xn. Using Fubini’s theorem, we can first integrate over
the realization x1 in order to compute the expected utility. However, for fixed x2, ..., xn, the mapping
x1 �→ g(x1, ..., xn) is measure preserving. Thus, g drops out of the integral when integrating over x1
(cf. Remark 1).
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Corollary 1. Under the assumptions of Theorem 2 it follows that pi(z1) ≥ pi(z2),
i.e., the probabilities of verification are monotonically decreasing a.e. in endow-
ments.

Proof. The Corollary follows immediately from the fact that the transfers are mono-
tonically decreasing: Let x1 ≤ y1. Consider two endowments z1 = (x1, ..., xn),
and z2 = (y1, x2, ..., xn), and assume that monotonicity of the probabilities is vi-
olated for agent one, i.e., p1(z1) < p1(z2). By Theorem 2, t1(z1) ≥ t1(z2). Now
choose p(z1) as the monitoring probability for z2. Using this construction we could
lower the probabilities of verification if the contracts are not monotonic and thus
increase the payoff of the agent. This is a contradiction to the optimality of the
original contracts. It remains to prove that the contracts with the lower probabilities
of verification are still incentive compatible. This, however, follows immediately.
Suppose it were profitable for the agent to cheat in some other state and announce
z1. Then it would be at least as profitable to announce zt since the transfer is at
least as high and the probability that cheating is detected is lower which contradicts
incentive compatibility of the original contract. This proves the Corollary.

We conclude this section by diseussing the alternative monitoring cost specifi-
cation described before the statement of Problem 4.1. That is, instead of assuming
that each risk averse agent i privately bears the entire “utility loss” stemming from
stochastic monitoring, Theorem 2 and Corollary 1 continue to hold if we assume
that a mechanism exists whereby the monitoring costs of agent i are borne by all
agents j 	= i (when monitoring occurs). This follows from the fact that steps (i), (ii)
and (iii) from the proof of Theorem 2 remain valid under either specification of the
model because the transfers and monitoring probabilities have the same expected
value and the same distribution (although we did not use this fach in the proof of
Theorem 2 because of the assumed separability of the utility function). Examples
of mechanisms in actual economies which appear to be qualitatively similar to this
second (publicly borne) cost specification are tax surcharges (levied by a govern-
ment) or a reduction in the “dividend credits” commonly rebated to policy holders
by insurance companies (e.g., TIAA-CREF and many other insurance companies
follow this practice).

6. Concluding remarks

This paper generalizes the costly state verification model to allow risk averse agents
who need not be identical ex ante to write multilateral contracts. Following standard
practice in the literature we impose incentive compatibility constraints. Townsend
(1988) notes that in order to justify this restriction in costly state verification models
one can formulate the underlying revelation game as follows: Contracts are written
before uncertainty is revealed. Uncertainty is then privately revealed, and each agent
sends a message (i.e., reports a state). Thus, agents play a Nash game in messages
where each agent has beliefs over whether all other agents teil the truth. When the
analysis is restricted to truth-telling equilibria, it follows that each agent expects
all other agents to tell the truth. In such a framework the point-wise incentive
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constraints used in our model follow. This formulation implicitly contains a great
deal of communication among agents in the sense that decisions are made based
on the expected announcements of all other agents.

An alternative formulation is to consider is a game with no communication
among agents. This suggests two issues. First, what are the implications of such an
environment for the form of the incentive constraints? Second, which environment
(one with or without communication) is most plausible? We begin with the first
issue. In a game with no communication among agents, each agent makes an an-
nouncement with no knowledge of other agents’ announcements. This corresponds
to a Harsanyi (1967) type Bayesian Nash game, where the incentive constraints
need not hold pointwise but only in expected value.26 Theorem 2 and Corollary 1
immediately go through under this alternative formulation of the constraint because
we do not use incentive compatibility in any essential way in the proof. Rather, we
need only check that it remains satisfied.27 From a technical point of view, this step
of the proof requires us to show that our construction does not move us out of the
set of all incentive compatible contracts – and this is of course easier to show if the
constraint set is bigger. Thus, the expected value form of the incentive constraint
does not change the structure of the optimal contract with stochastic monitoring.
In fact, it facilitates the technical arguments necessary to prove the result.

In contrast, in Theorem 1 we again check that incentive compatibility conditions
IC1 and IC2 are satisfied in step (ii) of the proof, but we also use there conditions
in step (iv) in an essential way. In particular, we use them in (iv) to show that
the transfer in every non-monitoring state is always higher than the transfer in
every monitoring state. Thus, the final step in the proof of Theorem 1 does not go
through with an incentive constraint which holds only in expected value. In fact,
it turns out that under the mathematically weaker expected value constraint, the
transfers associated with the optimal contract need no longer be constant on the
nonmonitoring set. We first show this in a simple (but not pathological) example
and then provide an economic interpretation of the result.

Example 1. Consider a discrete distribution and two agents: agent one is risk neutral
and agent two is very risk averse. The same kind of example also goes through for
continuous distributions and if one agent is (slightly) risk averse. Assume that there
are four states which occur with equal probability. The endowment of agent one is
given by (7, 7, 3, 3) and of agent two by (7, 3, 7, 3). Clearly, the two endowments are
independent. Let φ be a constant monitoring cost. Choose S1 = ∅ and S2 = {3},
i.e., agent one is never monitored and agent two is monitored in the low state.
Pareto optimal contracts are given by t1 = −t2 = (2 + c,−2, 2 + c,−2), since
under this contract agent two is completely insured, i.e., consumption is state-
independent (net of monitoring costs). However, agent one’s net-transfer is not
constant even though the agent is never monitored. Incentive compatibility for

26 IC1 is then: xi �→ ∫
ti(x1, ..., xi, ..., xn)dF (x1, ..., xi−1, xi+1, ..., xn) is con-

stant on Sc
i ; while IC2 is:

∫
ti(x1, ..., xi, ..., xn) − φ(·)dF (x1, ..., xi−1, xi+1, ..., xn) ≥∫

ti(x, ..., y, ..., xn)dF (x1, ..., xi−1, xi+1, ..., xn) for all xi ∈ Si and for every y ∈ Sc
i . In both

cases dF (·) denotes integration with respect to the joint distribution of the random variables Xj , j �= i.
Unlike in the pointwise specirication, these constraints need only hold on average.

27 Use the argument in step (ii) of the proof of Theorem 2 and take the expected value.
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agent two is straightforward. Incentive compatibility for agent one is fulfilled in
expected value: Assume that agent one gets the high realization. The expected
net transfer is c/2, the same expected net-transfer the agent would get in the low
state. The argument goes through even if agent one is slightly risk averse because
this arrangement economizes on monitoring costs: Choosing S1 = {3} increases
monitoring costs by a discrete amount since monitoring is deterministic.

Some readers may be tempted to construe Example 1 as refuting the optimal-
ity of debt even under deterministic verifcation. We regard this interpretation as
misguided. As Townsend (1987, p. 382) notes, the motivation for an analysis such
as our Theorem 1 is to “begin with some striking arrangement [e.g., debt] in an
actual economy and ask whether any theoretical environment might yield such an
arrangement ... without making the [model] too complicated or implausible.” We
view the question – is a model with an expected value incentive constraint better
than a model with a point-wise constraint? – to be methodologically equivalent
to the question – is a model with stochastic monitoring better than a model with
deterministic monitoring? In our opinion the answer is clearly no. Mathematical
generality is not the desideratum per se, rather it is the consistency of the structure
and results of alternative models with those observed in actual economic envi-
ronments which determines which model is more appropriate for the problem at
hand.

7. Appendix

Proof of Remark 1. Let t be a simple function on Y2, i.e., there exist A ∈ β2, and
λi ∈ R such that t =

∑n
i=1 λi1Ai

, where

1Ai
(x) =

{
1 x ∈ Ai;
0 otherwise.

Then t(g(x)) =
∑n

i=1 λi1g−1Ai
(x). Hence,∫

Y1

t(g(x))dµ1(x) =
n∑

i=1

λi

∫
Y1

1g−1Ai
(x)dµ1(x) =

n∑
i=1

λiµ1(g−1Ai)

=
n∑

i=1

λiµ2(A) =
n∑

i=1

λi

∫
Y2

1Ai(x)dµ2(x) =
∫

Y2

t(x)dµ2(x).

The third equality follows because g is measure preserving. Since the Remark holds
for all simple functions, it also holds for all integrable functions.28

Lemma 1. Let µ be a measure on R and let A, B be two subsets of R with the
same measure. Let f be an integrable function on R. Assume that a < b for every
a ∈ A and for every b ∈ B. Assume that f is bounded onA∪B. Let g be a measure

28 This is a standard approximation argument in measure theory: All integrable functions can be
approximated by simple functions.
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preserving isomorphism on R such that g(x) = x for every x ∈ R\A∪B. Assume
that there exist γA, γB ∈ R such that x + f(X) ≤ γA ≤ x + f(g(x)), for every
x ∈ A; and x+ f(g(x)) ≤ γB ≤ x+ f(x), for every x ∈ B. Then x+ f(g(x)) is
less risky than x+ f(x) in the Rothschild and Stiglitz sense (i.e., every risk averse
agent prefers x+ f(g(x)) over x+ f(x)).

Proof. Here we need only check that the integral condition of Rothschild and
Stiglitz (1970) holds. Let F be the distribution of x + f(g(x)) and let G be the
distribution of x+ f(x). Then

(i) G(t)− F (t) ≥ 0 for every t < γA.
(ii) G(t)− F (t) is monotonically decreasing for γA ≤ t < γB ; and
(iii) G(t)− F (t) ≤ 0 for every t ≥ γB .

(i) follows from the fact that g is measure preserving. In particular:

µ({x ∈ A : x+ f(x) ≤ t}) = µ({x ∈ B : g(x) + f(g(x)) ≤ t}).

Note thatµ({x ∈ B : x+f(x) ≤ t}) = 0, andµ({x ∈ A : x+f(g(x)) ≤ t}) = 0
for every t < γA. Since g(x) ≤ x for every x ∈ B this proves (i). (ii) follows
immediately from the definition of γA and γB . Finally, the argument for (iii) is
similar to the argument for (i).

Since f is bounded and sinceA andB are bounded there exists anM > 0 such
thatG(t)−F (t) = 0 for every t 	∈ [−M,M ].29 Let T (y) =

∫ y

−M
G(t)−F (t)dt.

By Rothschild and Stiglitz (1970, Theorem 2) it is sufficient to prove that the
following two conditions are satisfied.

(a) T (M) =
∫M

−M
[Gi(x)− Fi(x)]dx = 0;

(b) T (y) ≥ O for −M ≤ y ≤M .

(a) follows immediately from integration by parts and from the fact that g is measure
preserving.30 (b) follows immediately from (a) and from conditions (i), (ii) and (iii).
This concludes the proof.

Lemma 2. Let u be a utility function which is twice continuously differentiable.
Assume that u′′(x) < 0 for every x. Let A, B be two subsets of R with the same
measure. Let f be integrable and let g be a measure preserving transformation
such that g(g(x)) = x for every x, such that g(A) = B, and f(x) = x for every
x 	∈ A ∪ B. Assume that f(a) < f(b) for every a ∈ A and for every b ∈ B. Then
Lemma 1 holds with a strict inequality, i.e., the agent strictly prefers the contract
x+ f(g(x)) to x+ f(x).

29 In order to be able to apply the Theorem we need that the points of increase of the distribution
functions lie in a compact interval.

30 Measure preservingness implies
∫ M

−M tdF (t) =
∫ M

−M tdG(t). Partial integration therefore yields

∫ M

−M
G(t) − F (t)dt = t(G(t) − F (t))|M−M −

(∫ M

−M
tdG(t) −

∫ M

−M
tdF (t)

)
= 0.
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Proof. Here we need only check that the integral condition of Rothschild and Stiglitz
holds with a stritt inequality, and then use partial integration to show that the agent
strictly prefers x+ f(g(x)) (cf., Rothschild and Stiglitz (1970), footnote 10).

Let ε > 0. Then there exists a δ > 0 such that f(b) − f(a) > δ except on
sets SA ⊂ A and SB ⊂ B with µ(SA) = µ(SB) < ε. Since g(g(x)) = x for
every x ∈ R, we can construct a finite partition Ai, i = 1, ..., n of A\SA and
a finite partition Bi, i = 1, ..., n of B\SB such that g(Ai) = Bi and such that
the condition of Lemma 1 is fulfilled for each Ai and Bi.31 Thus, since we can
subsequently exchange the transfers of Ai with the transfers of Bi and since ε was
chosen arbitrarily, Lemma 1 implies that x+ f(g(x)) is less risky than x+ f(x).
Thus, the integral conditions of Rothschild and Stiglitz (1970) hold. Note that
T (y) > 0 on a set of positive measure.

Integration by parts yields∫ M

−M

u(x)dS(x) = u(x)S(x)|M−M −
∫ M

−M

u′(x)S(x)dx

= −u′(x)T (x)|M−M +
∫ M

−M

u′′(x)T (x)dx, (A.1)

since u(x)S(x)|M−M = 0 by (a). Further, since T is strictly positive on a set of
positive measure, and since u′′ < 0 it follows that∫ M

−M

u′′(x) : T (x)dx < 0. (A.2)

(A.1), (A.2) and u′(x)T (x)|M−M = 0 immediately imply that the agent’s utilityis
strictly greater under contract x+ f(g(x)). This proves the Lemma.

Next we state a “generalized” version of the Isomorphism Theorem. The prob-
lem we face in the proof of Theorem 2 is that the sets U and V are not necessarily
representable as the product of lower dimensional spaces. However, for the proof
of the Theorem we need an isomorphism between subsets A ⊂ U and B ⊂ V
which is also an isomorphism between the corresponding “slices” ofA andB. The
existence of such an isomorphism and of the subsets is provided by the following
Lemma. The central step of the argument is the use of a theorem on measurable
selections.

Lemma 3. Let Ki, i = 1, 2 be two compact subsets of R × Rn. Let µ1, and µn

be probability measures on R and Rn, respectively, and let µ denote the product
measure. Then there exist measurable subsets Ai ⊂ Ki and measure preserving
mappings h1 : A1 → A2 and h2 : A2 → A1 such that x �→ hi(x, y), i = 1, 2 are
measure preserving mappings from A1

y to A2
y and from A2

y to A1
y , respectively, for

every y ∈ Rn where Ai
y = {(x, y) : (x, y) ∈ Ki}.32

31 That means that there exist γA, γB , for i = t, ..., n such that x + f(x) ≤ γAi
≤ x + f(g(x)),

for every x ∈ Ai; and x + f(g(x)) ≤ γBi
≤ x + f(x), for every x ∈ Bi.

32 Let B be a subset of Ai
y . Then B = B′ × {y}. By slight abuse of notation, we define µ1(B) to

be µ1(B′).
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Proof. Define a function f : R× Rn × R → R+ by

f(x, y, t) = |µ1((−∞, x)× {y} ∩K1
y)− µ1((−∞, x+ t)× {y} ∩K2

y)|.

Note that f is jointly measurable in x and y.33 Furthermore, for fixed x and y, the
function t �→ f(x, y, t) is continuous onK1. By compactness ofK1 andK2 there
always exists a t̄ such that f(x, y, t̄) = inft f(x, y, t). Thus, Landers’ Theorem
[cf. 6.10 of Strasser (1985)]34 implies that there exists a Borel measurable function
φ : R× Rn → R such that

f(x, y, φ(x, y)) = inf
t
f(x, y, t).

Note thatφ is part of the measure preserving transformation defined below, however,
we still must construct the sets Ai, i.e., the sets where the measure of the slices
coincide. We do this as follows. Let

A1 = {(x, y) : f(x, y, φ(x, y)) = 0}.

Then A1 is measurable. Define h1 on A1 by (x, y) �→ (x + φ(x, y), y). In a
similar way we can construct a measurable subset A2 ofK2 and a mapping h2 on
A2. It immediately follows from the above construction that h1(A1

y) ⊂ A2
y and

h2(A2
y) ⊂ A1

y . Thus, h1(A1) ⊂ A2 and h2(A2) ⊂ A1. It now remains to show
that the hi are measure preserving. This can be established as follows:

Let y ∈ Rn. By construction, hi preserves theµ1-measure of all sets of the form
(−∞, a)×{y}∩Ai

y for i = 1, 2. These sets generate theσ-algebra of all measurable
sets. Thus hi is a measure preserving transformation on Ki

y for i = 1, 2. Finally,
note that Fubini’s Theorem proves that the mappings hi are measure preserving on
Ki. This concludes the proof of the Lemma.

33 This can be established as follows: Let g : K → R be defined by (x, y) �→ µ1((−∞, x)x{y} ∩
K1

y). For fixed x, the mapping y �→ g(x, y) is measurable by Fubini’s Theorem. Furthermore, note
that for fixed y the mapping x �→ g(x, y) is continuous. Thus, g is jointly measurable [See Castaing
and Valadier (1977)]. A similar argument shows that (x, y, t) �→ µ1, ((−∞, x + t) × {y} ∩ K2

y) is
also jointly measurable in x and y. This proves the measurability of f in x and y.

34 Landers’ Theorem: Let (Ω, A, µ) be a measurable spare and (X, d) a σ-compact metric space.
Let h : Ω × XtoR be a function such that ω �→ h(ω)x) is measurable for every x ∈ S and
t �→ rightarrow(ω, t) is continuous for every ω ∈ Ω. If

B(ω) =
{

x ∈ X : h(ω, x) = inf
y∈X

h(ω, y)
}

�= ∅

for a.e. ω then there is a measurable function φ : Ω → X such that

h(ω, φ(ω)) = inf{h, (ω, y) : y ∈ X}, µ − a.e.
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Summary. The paper extends Diamond’s (1984) analysis of financial contracting
with information asymmetry ex post and endogenous “bankruptcy penalties” to
allow for risk aversion of the borrower. The optimality of debt contracts, which
Diamond obtained for the case of risk neutrality, is shown to be nonrobust to the
introduction of risk aversion. This contrasts with the costly state verification lit-
erature, in which debt contracts are optimal for risk averse as well as risk neutral
borrowers.
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1 Introduction

Under a standard debt contract, a borrower’s obligation to his financiers is indepen-
dent of his actual returns or his ability to pay. If he cannot fulfil the obligation, he
goes bankrupt, and the financiers confiscate his remaining assets. The use of such
contracts is commonly explained by differences in information of the borrower and
his financiers about outcomes. If the borrower’s obligation is independent of his
own returns, it is easy for financiers to determine whether the obligation is being
fulfilled or not. If the borrower’s obligation depends on his returns, financiers have
to ascertain what these returns actually are. This may be difficult or costly; the use

� I am grateful for helpful comments from Paul Povel and an anonymous referee. I am also grateful
for research support from the Deutsche Forschungsgemeinschaft.
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of debt, with a non-contingent payment obligation, avoids this difficulty, at least in
normal circumstances when the obligation is met.

The confiscation of assets in the event of bankruptcy, i.e., when the obligation
cannot be fulfilled, provides the borrower with an incentive to avoid bankruptcy;
moreover by maximizing the financiers’ returns in bankruptcy, it makes it possible
to keep the nominal debt service obligation, i.e., the financiers’ return outside of
bankruptcy, low and therefore to minimize the incidence of bankruptcy with all the
costs and difficulties that it may entail.

The literature contains two distinct formalizations of this argument. The costly
state verification approach of Townsend (1979) or Gale and Hellwig (1985) assumes
that the information asymmetry can be lifted if resources are spent to provide the
financier with information about the borrower’s true ability to pay. If all participants
are risk neutral, an optimal contract provides for such costly state verification if and
only if the borrower cannot pay the prescribed amount; if this occurs, the borrower’s
remaining assets are confiscated. This is interpreted as “bankruptcy”.1

In contrast, Diamond (1984) assumes that the information asymmetry cannot
be lifted at all. It is however possible to use nonpecuniary “bankruptcy penalties” to
discourage the borrower from claiming that he cannot repay the financiers. These
nonpecuniary penalties need not be hours in debtor’s prison; they may represent
a loss of future opportunities that can be imposed on the borrower (without a
corresponding gain to his financiers). Imposition of these penalties is endogenous, in
accordance with the initial contract; their magnitude, or equivalently the probability
of their being imposed, are made to depend on the amount by which the borrower’s
payment falls short of his debt service obligation. If all participants are risk neutral,
an optimal contract in this setting also takes the form of a standard debt contract
(Diamond, 1984; see also Povel and Raith, 1999).

The apparent similarity of the two approaches disappears if the assumption of
risk neutrality of the borrower is dropped. If the borrower is risk averse and, as
usual in models of financial contracting, financiers are risk neutral and non-wealth-
constrained, the costly state verification approach still yields a modified version of a
standard debt contract. In this modified version, the debtor has a state-independent
debt service obligation, and state verification occurs if and only if he fails to fulfil
this obligation. In the event of “bankruptcy”, i.e., when state verification occurs, the
borrower’s assets are not always confiscated: He may be left with a positive living
allowance. This living allowance is the same in all “bankruptcy” states, providing
an element of insurance against return risk across bankruptcy states (Townsend,
1979; Gale and Hellwig, 1985)2. Under the additional incentive constraint that the
borrower must not want to destroy returns before the financiers get to verify anything

1 For details see Gale and Hellwig (1985). As emphasized by a referee, Townsend (1979) does
not actually consider standard debt contracts. His notion of “debt” allows for arbitrary return sharing
arrangements in bankruptcy states and requires only that (i) payments to financiers be non-state contin-
gent for all non-bankruptcy states and (ii) non-bankruptcy states are exactly those states in which the
borrower’s returns do not suffice for this non-bankruptcy debt service.

2 As emphasized by a referee, this result is not valid if financiers as well as the borrower are wealth-
constrained and, moreover, the total wealth of financiers and the borrower is insufficient to finance the
optimal living allowance as well as the desired level of investment.
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(Innes, 1990), the optimal level of this living allowance in the event of bankruptcy
is actually equal to the lowest nonbankruptcy consumption of the borrower, i.e., the
consumption he has if he can barely fulfil his debt service obligation.3

In contrast, the present paper shows that in Diamond’s (1984) approach the
optimality of standard debt contracts is not generally robust to the introduction
of risk aversion. The underlying incentive considerations are significantly more
complex, and an optimal incentive compatible contract should not be expected
to have a simple mathematical form. The nonlinearity of the borrower’s utility
function implies that the nonpecuniary ”bankruptcy penalty” that is required to
discourage the borrower from underreporting his ability to pay will itself be given
by a nonlinear function of the amount of underreporting. Moreover, an optimal
contract will involve an element of risk sharing as well as finance. These two
considerations interact in such a way that an optimal incentive-compatible contract
will typically not take the form of a standard debt contract, even one with a minimum
living allowance.

The difference is illustrated in Figures 1 and 2. The heavy line in Figure 1
exhibits the relation between the return realization y of the borrower and his con-
sumption c(y) under a standard debt contract, with c(y) = 0 for y below the repay-
ment obligation ŷ and c(y) = y− ŷ when y exceeds the repayment obligation. The
dashed line in Figure 1 exhibits the same relation under a standard debt contract
with a living allowance ε > 0. In contrast, Figure 2 exhibits the relation between
y and c(y) under an optimal contract à la Diamond (1984) when (i) financiers are
risk neutral, (ii) the borrower exhibits constant relative risk aversion, and (iii) the
ex ante distribution of returns is uniform over some interval [0, Y ]. For high values
of y, the dependence of c(y) on y looks similar in all three cases, but for low values
of y, contracting à la Diamond (1984) with risk aversion looks quite different from
standard debt4 - with or without a minimum living allowance. This suggests that
Diamond’s model of incentive contracting with endogenous ”bankruptcy penal-
ties” is rather less closely related to the costly state verification literature than the
parallel results on the optimality of standard debt contracts under risk neutrality
would seem to indicate.

I came across these findings when I wanted to extend Diamond’s (1984) analysis
of financial intermediation to allow for risk aversion of the potential financial inter-
mediaries. Diamond (1984) had used his result on the optimality of standard debt
contracts as an ingredient in the analysis of the conditions under which financial in-

3 As pointed out by Garino and Simmons (1998), optimal contracting in the simple Townsend-Gale-
Hellwig model with risk aversion of the borrower requires that the bankruptcy living allowance have a
marginal utility equal to the expected marginal utility of the borrower’s consumption in nonbankruptcy
states. This implies that the bankruptcy living allowance exceeds the lowest nonbankruptcy consump-
tion level of the borrower. The Innes incentive condition eliminates this possibility, because in “bad
nonbankruptcy states” the borrower must not want to destroy output in order to get into bankruptcy and
avail himself of the bankruptcy living allowance.

4 As emphasized by the referee, the contract corresponding to Figure 2 would still be called “debt”
under the weaker definition of Townsend (1979), with y2 − c(y2) as the borrower’s debt service
obligation and [0, y2) as the set of bankruptcy states. If we forget about the semantics of “debt” and
“standard debt”, the point of Figure 2 is that the different approaches give qualitatively different results
for optimal risk sharing in low-return states.
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termediation is efficient in the sense that the overall agency costs of intermediated
finance are less than the agency costs of direct finance even though intermedia-
tion lengthens the chain of transactions. This analysis involves a diversification
argument, which makes essential use of the assumption that intermediaries are risk
neutral and raises the question of robustness to the introduction of risk aversion. On
the way to answering this question, I found that risk aversion complicates not only
the diversification argument for financial intermediation, but also the underlying
model of incentive contracting. This latter complication is studied here; on the basis
of this analysis, the viability of financial intermediation with risk aversion is studied
in a companion paper (Hellwig, 1998b). That paper shows that the central results of
Diamond (1984) on diversification across borrowers as a basis for intermediation
are indeed robust to the introduction of risk aversion.

In the following, Section 2 develops the basic model of incentive contracting
with ex post information asymmetry and endogenous bankruptcy penalties for a risk
averse borrower. Section 3 discusses optimal contracts and explains the economics
underlying the contract exhibited in Figure 2. Proofs are presented in the Appendix.
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2 Ex post information asymmetry and incentive contracting
with nonlinear utility

Like Diamond (1984), I consider the financing of a venture that requires a fixed
investment I > 0 and bears a random return ỹ. The random variable ỹ has a
probability distributionGwith a density g, which is continuous and strictly positive
on the interval [0, Y ]. The expected return of the venture is strictly greater than the
cost I , i.e., ∫ Y

0
y dG(y) > I. (1)

The owner/manager of the venture, with own funds w ≥ 0, wants to raise external
finance, either because his funds are less than the investment outlay, or because he
wants to share the risk of his venture with others.

Outside financiers know the return distribution G, but – in contrast to the en-
trepreneur – they are unable to observe the realizations of the return random vari-
able ỹ. The agency problems caused by this information asymmetry can be reduced
through the use of nonpecuniary penalties as a device to discourage misreport-
ing of return realizations. These penalties are determined endogenously as part of
the finance contract. Moreover they can be made to depend on the entrepreneur’s
report about his return realization and his actual payment to his financiers. As men-
tioned above, these nonpecuniary penalties need not literally correspond to hours
in debtor’s prison or something like that; they can also be interpreted as expecta-
tions of losses of subsequent opportunities that are imposed on the borrower by the
intervention of the lenders (see, e.g., Povel and Raith, 1999).

A finance contract is represented by a numberL indicating the funds provided by
outside financiers and by two functions r(.) and p(.) such that for any z ∈ [0, Y ],
r(z) is the payment to financiers and p(z) ≥ 0 is the nonpecuniary penalty the
entrepreneur suffers when he reports that his return realization is equal to z. With
outside funds L, his own financial contribution to his project is E = I − L ≤ w.
Any excess of w over E is invested in an alternative asset, which is safe and has a
gross rate of return equal to one.

Given a finance contract (L, r(.), p(.)), the entrepreneur’s consumption is w+
L−I+y−r(z) if the true return realization is y and the reported return realization
is z; the corresponding payoff realization is u(w + L − I + y − r(z)) − p(z). A
contract (L, r(.), p(.)) is said to be feasible if L ≥ I − w and moreover,

w + L− I + y − r(y) ≥ 0 (2)

for all y ∈ [0, Y ], so the entrepreneur’s consumption is never negative. A contract
(L, r(.), p(.)) is said to be incentive compatible if it is feasible and moreover

u(w + L− I + y − r(y))− p(y) ≥ u(w + L− I + y − r(z))− p(z) (3)

for all y ∈ [0, Y ] and all z ∈ [0, Y ] such that w + L− I + y ≥ r(z), so he has no
incentive to misreport his return realization.
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The utility function u(.) is assumed to be strictly increasing and strictly con-
cave as well as twice continuously differentiable on  ++; moreover, u(0) =
limc→0u(c), with the usual conventions when limc→0u(c) = −∞, e.g., when
u(.) = ln(.). Given these assumptions, standard arguments from incentive theory
yield:

Proposition 1 A finance contract (L, r(.), p(.)) satisfying (2) for all y ∈ [0, Y ] is
incentive compatible if and only if:

(i) the function r(.) is nondecreasing on [0, Y ] and
(ii) for all y ∈ [0, Y ],

p(y) = p(Y ) +
∫ Y

y

u′(w + L− I + x− r(x)) dr(x). (4)

Condition (4) shows that for a given loan size L and repayment function r(.),
incentive compatibility determines the penalty function p(.) up to a constant of
integration, p(Y ). If r(.) is differentiable, this condition is actually equivalent to
the differential equation

dp

dy
= −u′(w + L− I + y − r(y)) dr

dy
, (5)

showing that as the return realization y goes down, the penalty p(y) goes up at a
rate which depends on the rate dr

dy at which the payment r(y) goes down as y goes
down.

As an illustration, consider the class of finance contracts (L, r(.), p(.)) such
that

r(y) = w + L− I + min(y, ŷ)− ε (6)

for some fixed ε ≥ 0 , ŷ ∈ (0, Y ), and all y ∈ [0, Y ]. Such contracts can be
interpreted as standard debt contracts with a minimum living allowance ε. The
amount w+L−I+ ŷ−ε represents a return-independent debt service obligation.
If the entrepreneur can meet this obligation he does so and retains the excess of his
actual return y over ŷ as well as ε. If he cannot meet the obligation w+L−I+ŷ−ε,
he defaults and retains just the minimum living allowance ε. If the minimum living
allowance is zero, (6) is the repayment function for a standard debt contract as
studied by Diamond (1984) or Gale and Hellwig (1985).

By (6), a standard debt contract has dr
dy = 0 if y > ŷ and the obligation

w+L− I + ŷ− ε is met, but dr
dy = 1 if y < ŷ and the entrepreneur defaults on his

obligation. Thus condition (5) entails dp
dy = 0 if y > ŷ, and dp

dy = −u′(ε) if y < ŷ;
condition (4) reduces to:

p(y) = p(Y ) + max(ŷ − y, 0) u′(ε). (7)
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If ε = 0 and u′(0) = 1, (7) is exactly the condition that Diamond (1984)
gives for the incentive compatibility of a standard debt contract for the case of risk
neutrality5, requiring that the difference p(y)−p(Y ) be just equal to the amount of
money that the entrepreneur saves by paying r(y) rather than r(Y ). For y ∈ [ŷ, Y ]
of course, (6) implies r(y) = r(Y ) and hence p(y) = p(Y ). If u′(ε) 	= 1, the
money gain r(ŷ) − r(y) = ŷ − y from reporting y < ŷ rather than ŷ under the
repayment function (6) has to be weighted by u′(ε) so as to as to make the penalty
p(y) commensurate with the utility gain from reporting y rather than ŷ and paying
r(y) rather than r(ŷ). (If u′(0) is very large, this militates against the use of a
standard debt contract as opposed to one with a minimum living allowance ε > 0.)

Turning to the choice between contracts, I note that the entrepreneur’s expected
payoff from an incentive-compatible contract (L, r(.), p(.)) is equal to:∫ Y

0
u(w + L− I + y − r(y)) dG(y)−

∫ Y

0
p(y) dG(y). (8)

Upon using (4) to substitute for p(y) and integrating the resulting double integral
by parts, one finds that this is equal to∫ Y

0
u(w + L− I + y − r(y)) dG(y)

−
∫ Y

0
u′(w + L− I + y − r(y)) G(y) dr(y)− p(Y ). (9)

As for the financiers, I assume that there are enough of them dividing the
uncertain return r(ỹ) among each other so that they assess the contract (L, r(.), p(.))
as if they were risk neutral. Moreover on aggregate, they are not wealth-constrained.
They are only concerned as to whether the expected gross return

∫ Y

0 r(y) dG(y)
is enough to cover the opportunity cost of their putting up the funds L. From their
perspective, an incentive-compatible finance contract (L, r(.), p(.)) is acceptable,
if and only if ∫ Y

0
r(y) dG(y) ≥ L. (10)

Condition (1) ensures that the set of acceptable contracts is nonempty. An ac-
ceptable incentive-compatible finance contract (L, r(.), p(.)) is called optimal if it
maximizes the entrepreneur’s expected payoff (8), respectively (9), over the set of
all acceptable incentive-compatible contracts.

In the remainder of the paper, I study the properties of optimal incentive-
compatible contracts. I begin with the observation that, as shown in (9), the en-
trepreneur wants p(Y ), the penalty he suffers when he reports the maximum pos-
sible return, to be as small as possible. As for the financiers, (10) shows that their

5 Risk neutrality is not compatible with the assumption that u(.) is strictly concave. A careful anal-
ysis of the proof of Proposition 1 shows that this assumption is used only to establish that incentive
compatibility entails weak monotonicity of r(.). The other parts of Proposition 1, i.e., the sufficiency of
(i) and (ii) and the necessity of (ii) for incentive compatibility, go through even if u(.) is merely weakly
concave.
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payoff is independent of p(Y ); moreover (4) shows that incentive compatibility
hinges on the difference p(y)− p(Y ) rather than the level of p(Y ). Trivially then
one obtains:

Remark 1 Any optimal incentive-compatible contract satisfies p(Y ) = 0.

3 Optimal incentive-compatible contracts

In view of Proposition 1, the problem of finding an optimal incentive-compatible
contract is equivalent to the problem of finding a loan size L ≥ I − w and a
nondecreasing repayment function r(.) so as to maximize (9), with p(Y ) = 0,
subject to the feasibility constraint (2) and the acceptability condition (10). It is
convenient to rewrite this problem in terms of the entrepreneur’s consumption
pattern c(.), where for any y ∈ [0, Y ],

c(y) := w + L− I + y − r(y). (11)

Since (11) implies dr(y) = dy − dc(y), the objective function (9) with p(Y ) = 0
can be rewritten as∫ Y

0
u(c(y)) g(y) dy −

∫ Y

0
u′(c(y)) G(y) dy +

∫ Y

0
u′(c(y)) G(y) dc(y).

(12)

Upon combining the first and the third term and integrating, one can further rewrite
this as

u(c(Y ))−
∫ Y

0
u′(c(y)) G(y) dy. (13)

The financiers’ participation constraint (10) is similarly rewritten as:

∫ Y

0
c(y) dG(y) ≤ w − I +

∫ Y

0
y dG(y). (14)

Finally, with (4) subsumed in (9), respectively (13), feasibility and incentive com-
patibility reduce to the requirements that

c(y) ≥ 0 (15)

and that r(.) be nondecreasing or, equivalently, that

c(y)− c(z) ≤ y − z (16)

for all y, z ∈ [0, Y ] such that y ≥ z. The optimal-contracting problem has thus
been reduced to the problem of choosing a function c(.) on [0, Y ] so as to maximize
(13) under the constraints (14)-(16).

Proposition 2 Under the maintained assumptions, in particular (1), an optimal
incentive-compatible contract exists.
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Proposition 3 If c(.) corresponds to an optimal incentive-compatible contract,
then c(.) is continuous on (0, Y ]. Moreover c(Y ) > 0 and c(y) = c(Y ) + y − Y
for y sufficiently close to Y.

Given that the range of the random return ỹ is bounded, an optimal contract
always exhibits the feature of a debt contract whereby for high realizations of the
borrower’s return a further increase in his return leaves his payment to the financiers
unaffected, i.e., all of this increase serves to raise his consumption. This reflects the
prominence of u(c(Y )) in (13): For return levels close to Y , it is important to have
c(y) increase as much as possible with y so as to make c(Y ) and hence u(c(Y ))
large. Accordingly the consumption patterns in Figures 1 and 2 all have a slope dc

dy

equal to one when the return level y is close to the upper bound Y .6

In contrast, for low realizations of the borrower’s return, an optimal contract in
the presence of risk aversion does not always exhibit the feature of a debt contract
that lenders confiscate everything “in the event of bankruptcy”. Indeed Propositions
5 - 7 below show that for many specifications of the borrower’s utility function the
repayment owed to lenders is insensitive to the borrower’s return realization when
the latter is low as well as when it is high, and the borrower’s consumption c(y) is
bounded away from zero.

The analysis uses control-theoretic methods. If c(.) was known to be absolutely
continuous, the problem of maximizing (13) under the constraints (14) - (16) could
be formulated as a standard optimum-control problem with control v(y) := dc

dy (y)
and (16) equivalent to the requirement that v(y) ≤ 1 for all y. The assumptions
here do not actually guarantee absolute continuity of c(.). Even so, the consump-
tion pattern induced by an optimal contract must satisfy a suitable analogue of
Pontryagin’s conditions. This is the point of:

Proposition 4 Let c(.) correspond to an optimal incentive-compatible contract.
Then there exist a scalar µ > 0 and a continuously differentiable real-valued
function ψ(.) on [0, Y ] such that for all y ∈ [0, Y ],

dψ

dy
≤ u′′(c(y)) G(y) + µ g(y), with equality if c(y) > 0, (17)

ψ(y) ≥ 0, with equality unless in a neighbourhood of y (18)

c(.) is continuously differentiable with
dc

dy
= 1,

6 If the range of the random return ỹ is unbounded, this statement is not generally true any more.
Suppose for instance that ỹ has an exponential distribution with density λ e−λy for some λ > 0 and
that the borrower has constant absolute risk aversion δ > 0. If λ < δ, the same arguments as in the
proofs of Propositions 4 and 5 below show that for this specification the optimal incentive-compatible
contract is unique and involves the consumption pattern c(.) such that for some y1 > 0 and all y ≥ y1,

c(y) = c(y1) + [ln(eλy − 1) − ln(e−λy1 − 1)] /δ

and dc
dy

= λ/δ(1 − e−λy), with limy→∞ dc
dy

= λ/δ ∈ (0, 1).
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ψ(Y ) = u′(c(Y )), (19)

ψ(0) = 0. (20)

If u′′(.) is a strictly increasing function, these conditions are sufficient as well as
necessary for c(.) to maximize (13) under the constraints (14)-(16); in this case, the
optimal contract is unique in the sense that consumption patterns corresponding
to different optimal contracts all coincide on (0, Y ].

It is instructive to consider the case of constant absolute risk aversion. In this
case, as in the more general case of nonincreasing absolute risk aversion, u′′(.)
is automatically a strictly increasing function, so the maximand (13) is strictly
concave in c(.), and the last part of Proposition 4 applies, i.e., the consumption
pattern corresponding to an optimal contract is completely characterized by the
Pontryagin conditions (17)-(20). This yields:

Proposition 5 Assume that u(.) exhibits constant absolute risk aversion, i.e., that
u(c) ≡ −e−δc for some δ > 0. Assume further that the distributionG(.) is uniform,
i.e., that g(y) ≡ 1/Y , and let c(., δ) be the consumption pattern corresponding to
an optimal incentive-compatible contract.

(a) If δ is sufficiently close to zero, then c(., δ) has the form shown in Figure 1,
i.e.,

c(y, δ) = max(w − I, 0) + max(0, y − ŷ), (21)

where ŷ ∈ [0, Y ) is chosen so that (14) holds with equality.
(b) If δ is sufficiently large, then c(., δ) has the form shown in Figure 2, i.e.,

c(0, δ) > 0, and there exist y1(δ), y2(δ) ∈ (0, Y ) such that

dc

dy
= 1 if y < y1(δ) or y > y2(δ) (22)

and

c(y, δ) = c(y1, δ) + δ−1[ln y − ln y1(δ)] if y1(δ) ≤ y ≤ y2(δ). (23)

Moreover as δ goes out of bounds, y1(δ) converges to zero, y2(δ) converges to
Y , and c(., δ) converges to the constant function with value w − I +

∫
y dG(y),

uniformly on [0, Y ].

With constant absolute risk aversion, a standard debt contract is optimal if risk
aversion is close to zero, but not if risk aversion is large. To understand the eco-
nomics behind this result, go back to the borrower’s objective function as specified
in (12) and rewrite this in the form∫ Y

0
u(c(y)) g(y) dy −

∫ Y

0
u′(c(y)) G(y) (1− v(y)) dy (24)
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where, for any y, v(y) := dc
dy . (In the constellation of Proposition 5 this is actually

legitimate.) In the case of risk neutrality, with u(c) ≡ c and u′(c) ≡ 1, (24)
simplifies to ∫ Y

0
c(y) g(y) dy −

∫ Y

0
G(y) (1− v(y)) dy. (25)

An optimal contract must obviously satisfy (14) with equality. In the case of risk
neutrality, this fixes the first term in (25) as w− I+

∫
ydG, regardless of any other

aspect of the consumption pattern c(.). The shape of c(.) is then chosen solely with
a view to minimizing the expected value

∫ Y

0 G(y) (1− v(y)) dy of nonpecuniary
penalties. If w ≥ I , this requires v(y) = 1 for all y; if w < I , it requires that
v(y) = 1 if G(y) is large and v(y) = c(y) = 0 if G(y) is small. This explains
Diamond’s (1984) result on the optimality of standard debt under risk neutrality.7

The appearance of the weights G(y) in the expressions for expected nonpecu-
niary penalties in (25) reflects the fact that the incentive compatibility condition (4)
relates changes in p(.) to changes in r(.). If dr

dy = 1 − v(y) is positive over some
interval (y −∆, y], the increase in penalties as one goes from y to y −∆ affects
the level of penalties not just at y−∆, but at all return levels y′ < y (to discourage
the entrepreneur from misreporting y′ instead of y − ∆). This explains why the
“increase” dr = (1 − v(y)) dy enters (25) with the weight G(y) of the set of all
return levels less than y. Given this appearance of the weights G(y) in (25), under
risk neutrality it is desirable to concentrate the deviations of v(y) from one at low
levels of y.

A simple comparison of (24) and (25) shows that this argument for the optimality
of debt contracts is heavily dependent on the assumption of risk neutrality. If the
von Neumann-Morgenstern utility function u(.) is strictly concave, two additional
considerations must be taken into account: First, when the borrower is risk averse,
the first term in (24) depends on the riskiness as well as the mean of the random
variable c(ỹ) = w+L− I + ỹ− r(ỹ). If u′(c) is large when c is close to zero, this
militates against c(ỹ) being zero with positive probability. Secondly, the weight with
which “the increase” dr enters the expected value of the nonpecuniary penalties in
the last term in (24) depends on u′(c(y)) as well as G(y), the point being that the
nonpecuniary penalties have to compensate for utility gains from false reporting,
not just the money gains. If marginal utility is large, a given money gain from false
reporting may translate into a large utility gain, requiring a large penalty to keep the
borrower honest. Whereas under risk neutrality, expected nonpecuniary penalties
are minimized by concentrating the increases of r(.) at those return levels where
G(y) is small, with risk aversion, they are minimized by concentrating them at
those return levels where u′(c(y))G(y) is small. This need not be where y is small.

The consumption pattern in Figure 2 reflects these considerations. In Figure 2,
in contrast to Figure 1, the slope v(y) = dc

dy is equal to one for very low as well as
very high values of y; this reflects the possibility that the weight u′(c(y))G(y) of

7 Alternatively, the reader may observe that under risk neutrality, (13) takes the form c(Y ) −∫
G(y)dy, which is maximal if c(Y ) is maximal, which in turn is the case when c(.) takes the form

(21); for details see Lemma 9 in Hellwig (1998a).
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the term (1 − v(y)) in (24) may be large if c(y) is small and u′(c(y)) is large. In
an intermediate range in Figure 2, v(y) = dc

dy lies strictly between zero and one,
reflecting a tradeoff at the margin between considerations of risk sharing (calling
for a low value of v(y)), the need to repay the financiers (again calling for a low
value of v(y)) and the desire to keep nonpecuniary penalties low (calling for a high
value of v(y)).

The important point is that in the presence of risk aversion the finance contract
provides for risk sharing as well as finance. Even if w ≥ I , i.e., if the entrepreneur
is able to finance his project on his own, he may still want to bring in an external
investor as this enables him to maintain his consumption when project returns
are low. He has to pay for this insurance in terms of nonpecuniary penalties, but
depending on his risk preferences and on the distribution of returns, he may well
find this worthwhile. This is, e.g., always the case in the constellation of Proposition
5 when δ is large; in this case, regardless of the relation of w and I , an optimal
incentive-compatible contract will provide the entrepreneur with a consumption
pattern close to the nonrandom constant w − I +

∫
ydG(y).

More generally, for the case of constant absolute risk aversion, Proposition 5
shows that risk sharing considerations play no role if risk aversion is low, but entail
the nonoptimality of debt contracts if risk aversion is high. For other utility func-
tions, risk sharing considerations always preclude the optimality of debt contracts
if u′(c) becomes large as c becomes small, e.g., if the von Neumann-Morgenstern
utility function exhibits constant relative risk aversion. This is shown in:

Proposition 6 Let c(.) correspond to an optimal incentive-compatible contract. If
limc→0 u

′(c) = ∞, then c(y) > 0 for all y ∈ (0, Y ]. If limc→∞ u′′(c)c = −∞,
then c(0) > 0 and v(y) = 1 for any y that is sufficiently close to 0.

Proposition 7 Assume that u(.) exhibits constant relative risk aversion, i.e., that
u′(y) ≡ cδ−1 for some δ < 1. Assume further that the distribution function G(.)
is uniform, i.e., that g(y) ≡ 1/Y , and let c(.) be the consumption pattern corre-
sponding to an optimal incentive-compatible contract. If w < I, then c(.) has the
form shown in Figure 2, i.e., c(0) > 0, and there exist y1, y2 ∈ (0, Y ) such that

dc

dy
= 1 if y < y1 or y > y2 (26)

and

c(y) = c(y1)(y/y1)1/(2−δ) if y1 ≤ y ≤ y2. (27)

For other specifications of utility and distribution functions, yet more compli-
cated finance contracts may be optimal. To see this, note that if v(y) = dc

dy is not
equal to one, then, by (18), the costate variable ψ(.) must have a local minimum at
y. If in addition c(y) > 0, then by (17), one must have

u′′(c(y)) G(y) + µ g(y) = 0. (28)
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This equation represents the tradeoff at the margin mentioned above that underlies
an interior choice of v(y) = dc

dy . If u′′(.) is a strictly increasing function, (28) can
be rewritten as

c(y) = u′′−1
(−µ g(y)

G(y)
). (29)

Using (29), one easily verifies that if u′′(.) is strictly increasing and g(.)/G(.) is
nondecreasing, then the consumption pattern c(.) that corresponds to an optimal
incentive-compatible contract is nondecreasing. Otherwise, e.g., if u′′(.) is increas-
ing and the hazard rate function g(.)/G(.) is not everywhere nondecreasing, c(.)
may be decreasing somewhere.8 Moreover, depending on the slope of the func-
tion u′′−1

(−µg(.)/G(.)), the number of switches back and forth between intervals
where dc

dy takes an interior value and intervals where dc
dy = 1 may be arbitrarily large.

Optimal incentive-compatible contracts are thus very sensitive to the specification
of the functions u′′(.) and g(.)/G(.).

A Appendix

Proof of Proposition 1. Suppose first that a finance contract satisfies conditions
(i) and (ii) of the proposition. For any y ∈ [0, Y ] and any z ∈ [0, Y ] such that
r(z) ∈ w + L− I + y, one then has, from (4)

u(w + L− I + y − r(y))− p(y)− [u(w + L− I + y − r(z))− p(z)] (A.1)

= −
∫ r(y)

r(z)
u′(w + L− I + y − r) dr +

∫ y

z

u′(w + L− I + x− r(x)) dr(x).

If z < y, concavity of u(.) implies u′(w + L− I + x− r(x)) ≥ u′(w + L− I +
y − r(x)) for all x ∈ [z, y]. By the monotonicity of r(.), one then has∫ y

z

u′(w + L− I + x− r(x)) dr(x) ≥
∫ y

z

u′(w + L− I + y − r(x)) dr(x)

=
∫ r(y)

r(z)
u′(w + L− I + y − r) dr,

which means that (A.1) implies (3). Alternatively, if z > y, concavity of u(.)
implies u′(w+L− I + x− r(x)) ≤ u′(w+L− I + y− r(x)) for all x ∈ [y, z].
By the monotonicity of r(.), one then has∫ z

y

u′(w + L− I + x− r(x)) dr(x) ≤ −
∫ z

y

u′(w + L− I + y − r(x)) dr(x)

=
∫ r(z)

r(y)
u′(w + L− I + y − r) dr,

8 This is not incompatible with Innes’s (1990) condition whereby the borrower must not have an
incentive to destroy output. The Innes condition requires monotonicity of the total payoff u(c(y))−p(y)
rather than monotonicity of just u(c(y)). Monotonicity of u(c(y)) − p(y) is implied by (4).
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and again (A.1) implies (3). This shows that any finance contract which satisfies
assertions (i) and (ii) in the proposition is incentive-compatible.

Conversely, suppose that a contract (L, r(.), p(.)) is incentive-compatible. Let
0 ≤ y1 < y2 ≤ Y . Apply the incentive compatibility condition (1) once with
y = y2 and z = y1, and, assuming that r(y2) ≤ w+L−I+y1,9 once with y = y1
and z = y2, and add the resulting inequalities.

This yields

u(w + L− I + y2 − r(y2)) + u(w + L− I + y1 − r(y1))
≥ u(w + L− I + y2 − r(y1)) + u(w + L− I + y1 − r(y2))

or, after a rearrangement of terms,∫ y2

y1

u′(w + L− I + x− r(y2)) dx ≥
∫ y2

y1

u′(w + L− I + x− r(y1)) dx.

Given that u(.) is strictly concave, this inequality implies r(y2) ≥ r(y1), proving
that r(.) is nondecreasing on [0, Y ].

To prove that the contract also satisfies (4), note that for any y ∈ [0, Y ] and
x < y, (3) implies

p(y)− p(x) ≤ u(w + L− I + y − r(y))− u(w + L− I + y − r(x))

= −
∫ r(y)

r(x)
u′(w + L− I + y − r) dr

≤ −
∫ r(y)

r(x)
u′(w + L− I + x− r) dr. (A.2)

For any y∗ ∈ [0, Y ] and any sequence {yi}n
i=1 with y1 = y∗ < y2 < ... < yn = Y ,

a repeated application of (A.2) with y = yi, x = yi−1, i = 2, ..., n, yields

p(Y )− p(y∗) ≤ −
n∑

i=2

∫ r(yi)

r(yi−1)
u′(w + L− I + yi−1 − r) dr. (A.3)

Further, a precisely parallel argument, based on incentive compatibility relative to
upward deviations in reports, yields

p(Y )− p(y∗) ≥ −
n−1∑
i=1

∫ r(yi)

r(yi−1)
u′(w + L− I + yi − r) dr. (A.4)

Given that the right-hand sides of (A.3) and (A.4) are just the approximating sums
for the Stieltjes integral in (4), the validity of (4) follows immediately. This com-
pletes the proof of Proposition 1.

9 If r(x2) > w + L − I + x1, the desired result, namely r(x2) ≥ r(x1), is trivial.
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For the proof of Proposition 2 the reader is referred to Hellwig (1998a). The
argument is completely standard and does not contribute anything to the under-
standing of optimal contracts in the present context.

Proof of Proposition 3. Suppose first that c(.) is not continuous on (0, Y ]. If c(.) is
not continuous at Y , then, by (16), one must have limy′↗Y c(y′) > c(Y ), and an
increase in c(Y ) will raise the value of (13) without affecting the validity of (14) -
(16). If c(.) is not continuous on (0, Y ), then, again by (16), there exists y ∈ (0, Y )
such that limy′↗y c(y′) > limy′↘y c(y′), and, by the strict monotonicity of u′(.),
limy′↗y u

′(c(y′)) < limy′↘y u
′(c(y′)). But then a small reduction in c(y′) for y′

belonging to a small interval to the left of y, combined with a suitably chosen small
increase in c(y′) for y′ belonging to a small interval to the right of y, will raise the
value of (13) without affecting the validity of (14) - (16). The assumption that c(.)
is not continuous on (0, Y ] thus leads to a contradiction and must be false.

To prove that c(Y ) > 0, I note that, by standard arguments, there exists a
Lagrange multiplier µ such that if c(.) maximizes (13) under the constraints (14)-
(16), then c(.) also maximizes

u(c(Y ))−
∫ Y

0
u′(c(y)) G(y) dy + µ (K −

∫ Y

0
c(y) g(y) dy) (A.5)

under the constraints (15) and (16), withK > 0 defined by

K := w − I +
∫
ydG(y) > 0. (A.6)

Since both u(.) and −u′(.) are strictly increasing functions, µ must be strictly
positive. For any ε > 0, consider the consumption pattern ĉε(.) such that ĉε(y) =
c(y) if y ≤ Y − ε and ĉε(y) = c(Y − ε) + y − Y + ε if y ≥ Y − ε. Clearly, ĉε(.)
satisfies (15) and (16), and so does ĉλε (.) = (1−λ)c(.) +λĉε(.) for any λ ∈ [0, 1].
It follows that for any ε > 0 the derivative

d

dλ
[u(ĉλε (Y ))−

∫ Y

0
(u′(ĉλε (y)) G(y) + µ ĉλε (y) g(y))dy]

must be nonpositive at λ = 0, and one must have

u′(c(Y ))(ε+ c(Y − ε)− c(Y ))

−
∫ Y

Y −ε

(u′′(c(y)) G(y) + µ g(y))(y − Y + ε+ c(Y − ε)− c(y))dy ≤ 0.

Since u′′(c(y)) < 0 for all y and, by (16), 0 ≤ y − Y + ε + c(Y − ε) − c(y) ≤
ε+ c(Y − ε)− c(Y ) for all y ∈ [Y − ε, Y ], it follows that

[u′(c(Y ))− µ(1−G(Y − ε))](ε+ c(Y − ε)− c(Y )) ≤ 0 (A.7)

for any ε > 0. However if ε is close to zero, [u′(c(Y ))− µ(1−G(Y − ε))] > 0,
so (A.7) must imply c(Y ) = ε + c(Y − ε) ≥ ε > 0. For y = Y − ε close to Y,
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this in turn yields c(y) = c(Y ) + y − Y. The second statement of the proposition
is thereby proved.

Proof of Proposition 4. To prove Proposition 4, I note that the consumption pattern
c(.) has a Lebesgue decomposition

c(.) = cA(.) + cS(.) + cD(.)

into an absolutely continuous function cA(.), a singular, continuous function cS(.),
and a jump function cD(.). This follows from the observation that the repayment
function r(.) that corresponds to c(.) is nondecreasing and therefore has a Lebesgue
decomposition

r(.) = rA(.) + rS(.) + rD(.)

into an absolutely continuous function rA(.), a singular, continuous function rS(.),
and a jump function rD(.). These three functions are all nondecreasing; moreover
there is no loss of generality in assuming that rS(0) = rD(0) = 0.The correspond-
ing decomposition of c(.) is given by setting cA(y) ≡ y−rA(y), cS(y) ≡ −rS(y),
and cD(y) ≡ −rD(y); the continuity of c(.) established in Proposition 3 implies
cD(y) ≡ −rD(y) ≡ 0.As for cS(.) and cA(.), the monotonicity of rS(.) and rA(.)
implies that cS(.) is nonincreasing and that the (Radon-Nikodym) derivative v(.)
of cA(.) satisfies

v(y) ≤ 1 for all y ∈ [0, Y ]. (A.8)

Now let µ > 0 again be the Lagrange multiplier in (A.5) and consider the
control problem

max
F (.),f(.)

[u(c(Y ) + F (Y ))−
∫ Y

0
(u′(c(y) + F (y))G(y) + µ(c(y) + F (y))g(y)) dy]

(A.9)

with the constraints

c(y) + F (y) ≥ 0 for all y ∈ [0, Y ], (A.10)

dF

dy
= f(y) for all y ∈ [0, Y ], (A.11)

and

f(y) ≤ 1− v(y) for all y ∈ [0, Y ]. (A.12)

I claim that the pair (F0(.), f0(.)) with F0(y) ≡ f0(y) ≡ 0 solves this control
problem. Given (A.8), clearly (F0(.), f0(.)) satisfies the constraints (A.10)-(A.12).
Moreover for any pair (F (.), f(.)) that satisfies (A.10)-(A.12) one easily finds that
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the consumption pattern ĉF (.) := c(.)+F (.) satisfies (15), and, for anyy, z ∈ [0, Y ]
such that y ≥ z,

ĉF (y)− ĉF (z) = c(y)− c(z) + F (y)− F (z)

=
∫ y

z

v(x) dx+ cS(y)− cS(z) +
∫ y

z

f(x) dx

≤
∫ y

z

v(x) dx+
∫ y

z

(1− v(x)) dx

≤ y − z,

i.e., ĉF (.) also satisfies (16). Given that c(.) maximizes (A.5) under the constraints
(15)-(16), it follows that

u(c(Y ))−
∫ Y

0
(u′(c(y)) G(y) + µ c(y) g(y)) dy

≥ u(ĉF (Y ))−
∫ Y

0
(u′(ĉF (y)) G(y) + µ ĉF (y) g(y)) dy

= u(c(Y ) + F (Y ))−
∫ Y

0
(u′(c(y) + F (y)) G(y) + µ(c(y) + F (y)) g(y)) dy

for any pair (F (.), f(.)) satisfying (A.10)-(A.12), and hence that (F0(.), f0(.))
maximizes (A.9) under the constraints (A.10)-(A.12).

Pontryagin’s maximum principle now implies the existence of a continuously
differentiable real-valued function ψ(.) such that for all y ∈ [0, Y ],

dψ

dy
(y) ≤ u′′(c(y)) G(y) + µ g(y),with equality unless c(y) = 0, (A.13)

f0(y) = 0 ∈ arg max
f≤1−v(y)

ψ(y) f ; (A.14)

moreover, since c(Y ) > 0, one has the transversality conditions

ψ(Y ) = u′(c(Y )) (A.15)

and

ψ(0) ≤ 0, with equality unless c(0) = 0. (A.16)

Note that (A.13) and (A.15) are the same as (17) and (19). Further, (A.14) implies

ψ(y) ≥ 0, with equality unless v(y) = 1. (A.17)

To establish (18), it is therefore necessary and sufficient to show that if ψ(y) > 0,
then in a neighbourhood of y the singular component cS(.) of c(.) is constant. For
this purpose, note that cA(.), the absolutely continuous component of c(.), satisfies
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(15) and (16), and so does ĉλ(.) = (1−λ) c(.)+λ cA(.), for any λ ∈ [0, 1]. Given
that c(.) maximizes (A.5) subject to (15) and (16), it follows that the derivative

d

dλ

[
u(ĉλ(Y ))−

∫ Y

0
(u′(ĉλ(y)) G(y) + µ ĉλ(y) g(y)) dy

]
must be nonpositive at λ = 0 , or that

u′(c(Y ))(−cS(Y ))−
∫ Y

0
(u′′(c(y)) G(y) + µ g(y))(−cS(y)) dy ≤ 0.(A.18)

Upon adding
∫ Y

0
dψ
dy (−cS(y))dy − ψ(Y )(−cS(Y )) +

∫ Y

0 ψ(y)d(−cS(y)) = 0 to
the left-hand side and rearranging terms, using (A.15) and the fact that cS(0) = 0,
one can rewrite (A.18) as ∫ Y

0
ψ(y) d(−cS(y)) (A.19)

−
∫ Y

0
[u′′(c(y)) G(y) + µ g(y)− dψ

dy
(y)](−cS(y))dy ≤ 0.

Given that cS(.) is nonincreasing and cS(0) = 0, (A.13) implies that the last term
on the left-hand side is nonnegative, hence∫ Y

0
ψ(y) d(−cS(y)) ≤ 0. (A.20)

Since cS(.) is nonincreasing, (A.20) can only hold if cS(.) is constant in the neigh-
bourhood of any point y satisfying ψ(y) > 0. (18) is thereby proved. As for (20),
this follows trivially from (A.14) and (A.17).

To complete the proof of Proposition 4, assume that u′′(.) is a strictly increasing
function. Then −u′(.) is a strictly concave function, and (13) defines a strictly
concave functional on the set of consumption plans c(.). Since the set of plans
satisfying (14)-(16) is convex, the optimal c(.) is unique up to a set of measure
zero; given the continuity property established in Proposition 3, the optimal c(.) in
fact is unique up to the possible discontinuity at y = 0. Sufficiency of Pontryagin’s
conditions for characterizing this optimal c(.) follows as in Theorem 1, p. 141, of
Mangasarian (1966).

Proof of Proposition 5. (a) Given the consumption pattern specified in (21), set
µ = µ̂(δ) and ψ(.) = ψ̂(., δ) where

µ̂(δ) =
1 + δŷ − e−δ(Y −ŷ+c(0))

Y − ŷ (A.21)

and for any y ∈ [0, Y ],

ψ̂(y, δ) = 0 if y < ŷ, (A.22)

ψ̂(y, δ) = [(1 + δy)e−δ(y−ŷ+c(0)) − (1 + δŷ)e−δc(0) + µ(y − ŷ)]/Y (A.23)

if y ≥ ŷ.
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For y < ŷ, (A.22) implies

dψ

dy
(y) =

∂ψ̂

∂y
(y, δ) = 0 ≤ −δ2 y

Y
+ µ̂(δ)

1
Y

= u′′(0)G(y) + µg(y)

if δ is sufficiently small so that δ2ŷ ≤ µ̂(δ). For y > ŷ, (A.23) implies

dψ

dy
(y) =

∂ψ̂

∂y
(y, δ) = −δ2e−d(y−ŷ+c(0)) y

Y
+ µ̂(δ)

1
Y

= u′′(c(y))G(y) + µg(y).

In either case, (17) is verified. For y > ŷ, (A.23) and (A.21), also imply

limδ→0
∂ψ̂
∂y (y, δ) = limδ→0 µ̂(δ)/Y = 1/(Y − ŷ)Y, uniformly in y. Hence, if

δ is sufficiently small, one has ψ(y) = ψ̂(y, δ) > 0 for all y > ŷ. In combination
with (A.22), this shows that the given c(.), µ, and ψ(.) also satisfy (18) if δ is
sufficiently small. As for (19) and (20), these are obviously implied by (A.21) and
(A.23). Part (a) of the proposition therefore follows from the last part of Proposition
4 and the observation that u′′(c) = −δ2e−δc is strictly increasing in c.

(b) To prove part (b), I begin by specifying the critical values y1(δ), y2(δ) for
the kinks in the consumption pattern c(., δ). By standard calculus arguments, there
exists a unique z1 > 1 such that

ez1 = 1 + z1 + z21 . (A.24)

For any X ≥ 3, there exists z2(X) ∈ (1, X) such that

z2(X) =
1− e−(X−z2(X))

X − z2(X)− 1
. (A.25)

(The function z3 → f(z3) := z3 + (1 − e−z3)/(z3 − 1) ranges between +∞
and 3 − e−2 as z3 ranges from 1 to 2, so put z2(X) = maxz3∈f−1(X)∩[1,2](1 −
e−z3)/(z3 − 1).) For δ ≥ 3/Y, put

y1(δ) = z1/δ (A.26)

and

y2(δ) = z2(δY )/δ. (A.27)

From (A.26), one has limδ→∞ y1(δ) = 0. From (A.25) and the fact that z2(X) >
1 for X ≥ 3, one also has limX→∞ (X − z2(X)) = 1, so (A.27) implies
limδ→∞ δ(Y − y2(δ)) = 1, hence limδ→∞ y2(δ) = Y. In particular, one has
0 < y1(δ) < y2(δ) < Y if δ is sufficiently large.
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Let δ be such that 0 < y1(δ) < y2(δ) < Y, and, for any parametrically given
µ > 0, consider the consumption pattern ĉ(., δ, µ) such that

ĉ(y, δ, µ) =
1
δ

ln(δy1(δ)) + y − y1(δ)−
1
δ

ln(µ/δ) if y < y1(δ), (A.28)

ĉ(y, δ, µ) =
1
δ

ln(δy)− 1
δ

ln(µ/δ) if y ∈ (y1(δ), y2(δ)), (A.29)

ĉ(y, δ, µ) =
1
δ

ln(δy2(δ)) + y − y2(δ)−
1
δ

ln(µ/δ) if y > y2(δ). (A.30)

Given the monotonicity of ĉ(., δ, µ) in µ, there exists a unique µ(δ) such that∫
ĉ(y, δ, µ(δ)) dG(y) = K (A.31)

where K > 0 is again given by (A.6). I claim that for any sufficiently large δ the
consumption pattern c(., δ) := ĉ(., δ, µ(δ)) corresponds to an optimal incentive-
compatible contract.

To establish this claim, I first show that if δ is sufficiently large, then c(., δ)
satisfies the constraints (14)-(16). (14) holds trivially, by the definition of µ(δ).As
for (15), I note that (A.26)-(A.30) imply

−y1(δ) ≤ c(y, δ) +
1
δ

ln(µ(δ)/δ) ≤ 1
δ

ln(δY ) + Y − y2(δ)

for all y and δ, hence

lim
δ→∞

[
c(y, δ) +

1
δ

ln(µ(δ)/δ)
]

= 0,

uniformly in y. From (A.31) this implies limδ→∞ 1
δ ln(µ(δ)/δ) = K and hence

limδ→∞ c(y, δ) = K, uniformly in y. Since K > 0, it follows that c(y, δ) > 0,
confirming (15) for all y if δ is sufficiently large. Finally, (A.26)-(A.30) imply
that dc

dy = 1 if y < y1(δ) or y > y2(δ), and dc
dy = 1

δy ≤ 1
δy1(δ)

= 1
z1
< 1 if

y ∈ (y1(δ), y2(δ)), so (16) holds as well.
To show that c(., δ) := ĉ(., δ, µ(δ)) is actually optimal, I specify the costate

variable ψ(.) = ψ̂(., δ) where

ψ̂(y, δ) =
[
(1 + δy)e−δ(y−y1(δ)) − eδy1(δ) + δ2y1(δ)y

] µ(δ)
δ2y1(δ)Y

(A.32)

if y < y1(δ),

ψ̂(y, δ) = 0 if y ∈ (y1(δ), y2(δ)), (A.33)

ψ̂(y, δ) =
[
(1 + δy)e−δ(y−y2(δ)) − 1 (A.34)

−δy2(δ) + δ2y2(δ)(Y − y2(δ))
] µ(δ)
δ2y2(δ)Y

if y > y2(δ).
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Given the conditions (A.24)-(A.27) for y1(δ) and y2(δ), it is straightforward to
check that the consumption pattern c(., δ), the Lagrange multiplier µ(δ), and the
costate variable ψ(.) = ψ̂(., δ) defined by (A.32)-(A.34) satisfy conditions (17)-
(20). As in part (a) of the proposition, the optimality of the consumption pattern
c(., δ) for any sufficiently high δ now follows from the last part of Proposition 4.

Proof of Proposition 6. Let limc→0 u
′(c) = ∞. If c(y) = 0 for a nonnull set of

return levels y ∈ [0, Y ], then the integral in (13) is undefined and one cannot be
at a maximum of (13) under the constraints (14)-(16). Therefore one must have
c(y) > 0 for all but a null set of return levels y ∈ [0, Y ]. Suppose that, contrary to
the first statement of the proposition, c(y′) = 0 for some y′ > 0. Then there exists
a sequence {yk} converging to y′ from below such that the associated sequence
{c(yk)} converges to c(y′) = 0 monotonically from above and moreover v(yk) < 1
for all k. By (18), it follows that ψ(yk) = 0 for all k and hence that dψ

dy (y′) = 0,
which is incompatible with (17). This proves the first statement of the proposition.

Next impose the stronger assumption that limc→∞ u′′(c)c = −∞. To prove
the second statement of the proposition, I first show that this assumption implies
ψ(y) > 0 and hence, by (18), dc

dy = 1 for any y that is sufficiently close to zero.

For suppose that this claim is false. Then there exists a sequence {yk} converging
to zero such that ψ(yk) = 0 for all k. Then (18) implies that for each k, ψ(.) has a
local minimum at yk, i.e., one must have

dψ

dy
(yk) = 0 (A.35)

for all k. Since limc→∞ u′′(c)c = −∞ implies limc→0 u
′(c) = ∞, for each k one

must also have c(yk) > 0. By (17), it follows that (A.35) entails

u′′(c(yk)) G(yk) + µg(yk) = 0 (A.36)

for all k. Since g(.) is continuous and strictly positive on [0, Y ], and moreover
limk→∞G(yk) = 0, it follows that limk→∞ u′′(c(yk)) = −∞ and hence that
c(0) = limk→∞ c(yk) = 0. From (16), this implies c(yk) ≤ yk for all k. However
upon rewriting (A.36) in the form

u′′(c(yk))c(yk)
yk

c(yk)
G(yk)
yk

+ µg(yk) = 0 (A.37)

and using l’Hospital’s rule, one also finds that limk→∞ u′′(c(yk))c(yk) = −∞
implies limk→∞(yk/c(yk)) = 0 and hence that yk < c(yk) for any sufficiently
large k. The assumption that there exists a sequence {yk} converging to zero such
that ψ(yk) = 0 for all k has thus led to a contradiction and must be false. This
proves that ψ(y) > 0 and dc

dy (y) = 1 for any y that is sufficiently close to zero.
By Proposition 4, this latter conclusion in turn implies that

0 < ψ(y) = ψ(y)− ψ(0) ≤
∫ y

0
[u′′(c(0) + x) G(x) + µ g(x)] dx (A.38)
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for any y that is sufficiently close to zero. Now (A.38) implies

−g
¯

∫ y

0
u′′(c(0) + x) x dx ≤ µ ḡ y (A.39)

where g
¯

and ḡ are the minimum and the maximum, respectively, of the density g(.)
on [0, Y ]. If (A.39) is to hold for any y that is sufficiently close to zero, it follows
that−u′′(c(0) + x)xmust be uniformly bounded even as x is close to zero. Under
the assumption that limc→0 u

′′(c)c = −∞, this is possible only if c(0) > 0. This
completes the proof of Proposition 6.

Proof of Proposition 7. Since limc→0 c
δ−1 = ∞ and limc→0 u

′′(c)c = (δ −
1)cδ−1 = −∞, Proposition 6 implies c(0) > 0 and dc

dy (y) = 1 for y close to zero.
Since w < I , (14) implies that c(y′) < y′ for some y′ ∈ (0, Y ]. By (18) it follows
that the set I = {y ∈ (0, Y )| ψ(y) = 0} has positive measure. Define y1 = inf I
and y2 = sup I. I claim that in fact I = [y1, y2], i.e., I is a closed interval. For
suppose not. Then there exists y′ ∈ [y1, y2] such that ψ(y′) > 0. By continuity,
ψ(y) must actually be positive on some neighbourhood of y′; this implies y′ 	= y1,
y′ 	= y2 and hence y′ ∈ (y1, y2). One may therefore define ȳ1 = sup I ∩ [0, y′]
and ȳ2 = inf I ∩ [y′, Y ], and one has ȳ1 < ȳ2. For y ∈ (ȳ1, ȳ2), one has ψ(y) > 0,
hence, by (18),

c(ȳ2) = c(ȳ1) + ȳ2 − ȳ1. (A.40)

Next I note that, again by (18), at any y ∈ I , the function ψ(.) has a minimum
and satisfies dψ

dy = 0. By (17) in conjunction with the fact that c(y) > 0 for all y,
this implies that

u′′(c(y))G(y) + µg(y) = 0 (A.41)

for all y ∈ I. For the given utility function and distribution function, it follows that

c(y) = ĉ(y, µ) where (A.42)

ĉ(y, µ) = (1− δ)
(
y

µ

) 1
2−δ

(A.43)

for all y ∈ I . By continuity, one has ψ(ȳi) = 0, hence ȳi ∈ I for i = 1, 2. From
(A.42), one then has

c(ȳi) = ĉ(ȳi, µ) (A.44)

for i = 1, 2. From (A.40) and (A.44), it follows that there is some y′′ ∈ (ȳ1, ȳ2)
such that

∂ĉ

∂y
(y′′, µ) = 1. (A.45)

Given that the function ĉ(., µ) is strictly concave, (A.45) implies

∂ĉ

∂y
(y, µ) > 1 (A.46)
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for all y ≤ ȳ1. From (16), (A.44), and (A.45) one then obtains

c(y) ≥ c(ȳ1)− ȳ1 + y

> ĉ(ȳ1, µ)−
∫ ȳ1

y

∂ĉ

∂y
(y, µ)dy

= ĉ(y, µ) (A.47)

for all y < ȳ1. In view of (A.43), (A.47) implies u′′(c(y))G(y) + µg(y) 	= 0
and hence, by (17), that dψ

dy 	= 0 for all y < ȳ1. Given that ψ(ȳ1) = 0, this is
incompatible with the transversality condition (20) requiring that ψ(0) = 0. The
assumption that the set I = {y ∈ (0, Y )| ψ(y) = 0} is not a closed interval [y1, y2]
has thus led to a contradiction and must be false.

Given that I = [y1, y2], the argument just given shows that c(.) satisfies (A.42)
and (A.43) and hence (27) on [y1, y2]. Since limy→0

∂ĉ
∂y (y, µ) = ∞, it follows that

y1 > 0. For y ∈ (0, y1), ψ(y) > 0 and hence by (18), dc
dy = 1. Finally, Proposition

3 implies that y2 < Y. For y ∈ (y2, Y ], ψ(y) > 0 and hence, again by (18), dc
dy = 1.

This shows that c(.) also satisfies (26) and completes the proof of Proposition 7.
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Summary. In this paper we introduce a new model of ex ante contracting for
economies with asymmetric information to examine endogenously determined
communication plans for information sharing in the interim stage. In contrast to the
models used in previous research, in the present model agents negotiate not only
on a contract of state contingent allocations but also on a communication plan, a
set of rules describing how agents will reveal part of their private information at
the interim stage to execute the trade contracts. We prove a result about the nested
structure of the set of allocations implementable by various communication plans
and establish the existence of core strategies for this cooperative game under various
regularity conditions.

Keywords and Phrases: Exchange economies with asymmetric information, Co-
operative games, Information processing.
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1 Introduction

As first introduced by Radner [7], an exchange economy with asymmetric infor-
mation consists of a finite set of agents contracting to trade their allocations in an
uncertain economic environment. The uncertainty in the economy is formalized
by a set of possible states of nature and agents differ in their private information
about the prevailing state of nature. Each economic agent is characterized by a
state dependent utility function, a state dependent initial endowment, a prior and
an information partition.

� I wish to thank Tatsuro Ichiishi and the referee for several valuable comments and suggestions.
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Wilson [11] initiated research in strategic cooperative game theory in the pres-
ence of asymmetric information by introducing core and efficiency concepts for
asymmetric information economies. He considered several scenarios differing in
the amount of information that the agents are allowed to rely on to execute their
trades. In particular the fine core concept introduced by Wilson allowed information
sharing between agents, however ignored the issue of incentive compatibility.

Yannelis [10] opened up a lively revival of research in this area by formalizing
information processing between agents by means of appropriate measurability re-
strictions on the trade contracts. Indeed, Yannelis [10], Koutsougeras-Yannelis [6],
Allen [1], Ichiishi-Idzik [5] and Hahn-Yannelis [3] introduced new cooperative
equilibrium concepts with explicit treatment of information processing and incen-
tive compatibility. Koutsougeras-Yannelis [6] remarked that the fine core concept
suggested by Wilson is flawed in the sense that whenever Wilson’s core notion
exist it is not incentive compatible and whenever it is incentive compatible it does
not exists. They showed that exogenously determined measurability restrictions on
trade contracts can resolve these difficulties. In particular, private information mea-
surable trade contracts provide a rich set of contracts satisfying Bayesian incentive
compatibility (BIC) conditions which facilitate truthful implementation of these
contracts by agents with asymmetric information.

In this paper, we present a new model of ex ante contracting for economies
with asymmetric information. Our starting point is the measurability approach to
asymmetric information economies. We seek to endogenize the choice of the mea-
surability restrictions or equivalently, the choice of the information sharing rule by
introducing an explicit communication stage before trade execution into the model,
while adopting appropriate individual incentive compatibility conditions to ensure
truthful implementation. In contrast to the models used in previous research, in
the present model agents negotiate not only on a contract of state contingent al-
locations but also on a communication plan, a set of rules describing how agents
will reveal part of their private information at the interim stage. The contract ex-
ecution relies only on the pooled information revealed by agents as described in
the communication plan and therefore, the trade vector for each agent becomes
common knowledge after the communication stage. Thus, the set of allocations
implementable with a given communication plan are restricted by appropriate mea-
surability conditions. The presence of asymmetric information further restricts the
set of implementable communication plan-allocation pairs. Specifically, only com-
munication plan-allocation pairs satisfying certain individual Bayesian incentive
compatibility conditions are considered to ensure truthful execution of the infor-
mation revealing process. These incentive compatibility conditions are appropriate
generalizations of the individual BIC conditions introduced by Hahn and Yannelis
in [3].

We define and analyze core strategies for this new ex ante contracting model
with endogenized communication plans. We prove that the set of allocations im-
plementable by various communication plans has a nested structure. As a corollary
to this result we obtain an information revealing property for the core strategies.
Specifically, we show that if the core is nonempty, then there exists always an
element of the core that is associated with the full information revealing commu-
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nication plan. Using this result the existence of core strategies is established under
certain regularity conditions.

2 Model and definitions

We begin by defining the concept of economy with asymmetric information [7].
The set Ω denotes the set of possible states of the nature. We assume Ω is finite. µ
is a probability measure on Ω denoting the common prior of all agents.

Definition 2.1. A pure exchange economy with a finite set of agentsN , with asym-
metric information is specified with a list of data, Epe =(N, {ui, ei,F i}i∈N , µ).

(i) At each state of the nature, there are l goods available for trade. For every
agent, Rl

+ is the consumption set.

(ii) Preferences of agent i is given by state dependent utility function
ui : Ω × Rl

+ → R.

(iii) Information structure will be described by a collection of fields,
F = {F i}i∈N . The private information of agent i (i ∈ N ) is given
by the field F i which forms a partition PF i on Ω. Specifically, if the true
state of the world is ω then agent i is informed of the unique element PF i(ω)
of PF i that contains ω.

(iv) The function ei : Ω → Rl specifies the endowment vector ei(ω) ∈ Rl of
agent i, for every state ω ∈ Ω. The function ei is F i measurable.

We formalize information sharing between agents using explicitly designed
communication plans. A communication plan C is a collection of fields Ci,
(C = {Ci}i∈N ) such that for every agent i, Ci induces a partition PCi on Ω
which is coarser than PF i,(alternatively for all i ∈ N,F i ⊃ Ci). Specifically,
when the true state of nature is ω, agent i is informed that the event PF i(ω) has
occurred and reveals to other agents that the event PCi(ω) has occurred, as agreed
in communication plan C.

Every state dependent allocation xi : Ω → Rl
+, naturally defines a state de-

pendent net trade vector zi : Ω → Rl, by zi(ω) = xi(ω) − ei(ω). Also for an
allocation xi the expected utility of agent i, conditioned on eventA ⊂ Ω is defined
as:

EU i
(
xi(ω)|A

)
=
∑
ω∈A

ui
(
ω, xi(ω)

)
µ(ω|A)

For simplicity the unconditional expected utility of agent i for a state dependent
allocation xi : Ω → Rl

+ is defined as: EU i
(
xi
)

= EU i
(
xi(ω)|Ω

)
.

The timing of the model consists of two stages. In the first stage there is uncer-
tainty over the states of nature and in this stage agents negotiate on a coalitionally
stable, state contingent trades and an incentive compatible communication plan C,
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which will pool the necessary information to execute the trades. In the second (in-
terim) stage, the state of the nature is realized and agents reveal part of their private
information according to the previously agreed communication plan. Then trades
are executed contingent on the pooled information. The presence of asymmetric
information restricts the set of communication plans over which truthful coopera-
tion is possible. Therefore, during negotiations agents consider only the contracts,
which satisfy Bayesian incentive compatibility conditions which ensure truthful
revelation of the information in the communication stage. These incentive compat-
ibility conditions are appropriate generalizations of the individual BIC conditions
introduced by Hahn and Yannelis in [3].

First, consider agent i in coalition S participating in the communication plan
CS = {Cj}j∈S for the execution of contract xS . Assume that the true state of
nature is ω∗. In the interim stage agent i will learn that the event E = PF i(ω∗)
has occurred.

Agent i knows that, for anyω ∈ E, if everyone inS truthfully participates in the
communication plan, each agent j will signal that the event PCj(ω) has occurred.
Therefore, after information pooling, it will be common knowledge that the event⋂

S PCj(ω) has occurred. Agent i will execute the net trade zi(
⋂

S PCj(ω)) =
zi(ω) and his final utility will be given by ui(ω, xi(ω)).

On the other hand, agent i can signal a wrong messageE′ ∈ PCi, provided that
it will result in a meaningful outcome of the communication plan for all possible
prevailing states of nature if :

For every ω ∈ E, A(ω) = E′ ∩

⎛⎝⋂
j �=i

PCj(ω)

⎞⎠ 	= ∅ (1)

(For some cases of information structures it may be impossible for the agents
participating in the communication plan to infer which agent is causing the conflict.
However we assume that all agents participating in the communication plan are
strongly penalized in the case of conflicting messages. As a consequence each
agent only considers cheating with a deceptive message E′, only if he is certain
that it would not conflict with the truthful messages of the others.)

If the true state isω, this false signal will result in a utility levelui(ω, zi(A(ω))+
ei(ω)). Since any of the ω ∈ E can be the prevailing state, agent iwill benefit from
signaling E′ if:

EU i
(
zi(A(ω)) + ei(ω)|E

)
> EU i

(
xi(ω)|E

)
(2)

Definition 2.3. A state dependent allocation, communication plan pair (xS , CS) is
incentive compatible with the communication system CS , if there exists no agent
i ∈ S and a E ∈ PF i, with a deceptive message E′ ∈ PCi such that (1) and (2)
holds true.

Remark 2.4. Alternatively the incentive compatibility definition in 2.3 can be for-
mulated using the deception function framework adopted by Hahn andYannelis [3].
A deception for agent i is a function αi : PF i → PCi and truth telling α∗i is
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characterized by α∗i(PF i(ω)) ⊃ PF i(ω). A deception vector αS = {αi}i∈S is
compatible with CS if ∀ω ∈ Ω : αS(ω) = ∩i∈Sα

i(PF i(ω)) 	= ∅. If αS is a
compatible deception vector with CS , then [zi ◦ αS ](ω) = zi

(
αS(ω)

)
.

Then, the state dependent allocation, communication plan pair (xS , CS) is in-
centive compatible, if for every i ∈ S, there exists no deception αi : PF i → PCi

and an ω ∈ Ω such that:
(i) (αi, α∗S/{i}) is compatible with CS and
(ii) EU i(ei(ω) + [zi ◦ (αi, α∗S/{i})](ω)|PF i(ω)) > EU i(xi(ω)|PF i(ω))
For a communication plan CS we define the set of implementable allocations

XS(CS) as the set of
∨

S Cj measurable allocations, which form an incentive com-
patible pair with CS .

Definition 2.5. The set of contracts implementable by a coalition S, with a com-
munication plan CS = {Cj}j∈S is defined as:

XS
(
CS
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
{xi}i∈S

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀i ∈ S : zi is
∨

S Cj measurable and there does

not exist E ∈ PF i and E′ ∈ PCi : E 	⊂ E′,

(i) ∀ω ∈ E,A(ω) = E′ ∩

⎛⎝⋂
j �=i

PCj(ω)

⎞⎠ 	= ∅

(ii) EU i
(
zi(A(ω)) + ei(ω)|E

)
> EU i

(
xi(ω)|E

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
It is relatively easy to show that two classes of exogenous measurability re-

strictions adopted in previous literature: common information measurable and pri-
vate measurable contracts can be obtained as special cases of the implementable
contracts considered in this research by choosing an appropriate communication
plan [12].

Next we define an ex ante core concept for the pure exchange economy with
asymmetric information.

Definition 2.6. The ex ante core of the pure exchange economy with endogenous
communication plan (EC-core) consists of all pairs (x, C) of state dependent allo-
cation x = {xi : Ω → Rl

+}i∈N and communication plan C = {Ci}i∈N where
Ci ⊂ F i for every i ∈ N such that:

1. x ∈ X(C) and for all ω ∈ Ω,
∑

N x
j(ω) =

∑
N e

j(ω)
2. there does not exist a coalition S with a communication plan CS

=
{{Ci}i∈S |C

i ⊂ F i for every i ∈ S} such that there exists a state dependent

allocation xS = {xi}i∈S ∈ XS(CS
), such that ∀j ∈ S :

∑
S x

j(ω) =∑
S e

j(ω) and EU j(xj) > EU j(xj)

3 Properties and existence of the EC-core

We first prove a lemma about the nested structure of the set of allocations which
can be implemented with various communication plans. As a corollary to this result
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we note that there exists always an element of the core, that is associated with the
full information revealing communication plan.

Lemma 3.1. (Nested Structure) For a coalition S ∈ N , let CS and CS
be two

communication plans. If PCj is a refinement of PCj
for all j ∈ S, thenXS(CS

) ⊂
XS(CS).

Proof. Let xS = {xi(ω)}i∈S ∈ XS(CS
). First, it is clear that for all i ∈ S,

zi(ω) is
∨

S Cj measurable, since P(
∨

S Cj) is a refinement of P(
∨

S C
j
). There-

fore, to prove that xS ∈ XS(CS) we just need to show that xS forms an incentive
compatible pair with CS : Assume on the contrary that there exists i ∈ S such
that xi(ω) is not incentive compatible with CS . Then, there exists E ∈ PF i and
E′ ∈ PCi : E 	⊂ E′ such that:

∀ω ∈ E : A(ω) = E′ ∩

⎛⎜⎜⎝⋂
j∈S
j �=i

PCj(ω)

⎞⎟⎟⎠ 	= ∅ (3)

EU i
(
zi(A(ω)) + ei(ω)|E

)
> EU i

(
xi(ω)|E

)
(4)

Next, we will show that agent iwould also have the opportunity and the incentive

to cheat under the communication plan CS
, with a deceptive message E

′
defined

as E
′
= PCi

(E′):
First we note that E 	⊂ E′

, because otherwise we would have

∀ω ∈ E : A(ω) = E′ ∩

⎛⎝⋂
j �=i

PCj(ω)

⎞⎠ ⊂ E′ ∩

⎛⎝⋂
j �=i

PCj
(ω)

⎞⎠ ⊂
⋂
j∈S

PCj
(ω)

which implies zi(A(ω)) = zi(ω), (because zi(ω) is
∨

S C
j

measurable) a contra-
diction to (4). Similarly, we can show :

∀ω ∈ E : A(ω) = E
′ ∩

⎛⎝⋂
j �=i

PCj
(ω)

⎞⎠ ⊃ E′ ∩

⎛⎝⋂
j �=i

PCj(ω)

⎞⎠ = A(ω) 	= ∅

(5)

Then, note (5) and
∨

S C
j

measurability of zi(ω) implies zi(A(ω)) = zi(A(ω)),
and we have

EU i
(
zi(A(ω)) + ei(ω)|E

)
> EU i

(
xi(ω)|E

)
(6)

(5) and (6) implies that (xS , CS
) is not incentive compatible, a contradiction.

Lemma 3.1 implies the following theorem about the EC-core strategies:

Theorem 3.2. IfC andC are two communication plans such thatPCj is a refinement

of PCj
for all j ∈ N , then: if (x, C) is an EC-core strategy pair then (x, C) is also

an EC-core strategy pair.
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In particular, if an allocation x forms a core strategy pair with a communication
plan C, then x also forms a core strategy pair with the full information revealing
communication plan F . This shows that if the EC-core is nonempty, then there
exists always an element of the core associated with the full information revealing
communication plan F .

Remark 3.3. We also note that the proof of Lemma 3.1 and Theorem 3.2 can be
extended easily to the case where the individual BIC conditions are replaced by the
stronger coalitional BIC conditions [12]. Following Hahn andYannelis [3] we define
a state dependent allocation, communication plan pair (xS , CS) as coalitionally
incentive compatible if it is not true that there exists a state ω ∈ Ω, a subcoalition
S ⊂ S, and a deception vector αS :

∏
S PF i →

∏
S PCi for coalition S, such

that:

(i) (αS , α∗S/{S}) is compatible with CS and
(ii) For all i ∈ S, EU i(ei(ω) + [zi ◦ (αS , α∗S/{S})](ω)|PF i(ω))

> EU i(xi(ω)|PF i(ω))

To establish conditions for the existence of core strategies, it is more convenient
to work in the abstract framework of NTU games. The associated NTU game is
defined in the characteristic function V : N → Rn form by

V (S) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩u ∈ RN

∣∣∣∣∣∣∣∣∣∣
∃CS =

{
Ci ⊂ F i

}
i∈S

and ∃xS ∈ XS
(
CS
)

:

(i) ∀ω ∈ Ω,
∑
S

xj(ω) =
∑
S

ej(ω)

(ii) ∀i ∈ S : EU i
(
xi
)
≥ ui

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (7)

From Lemma 3.1 we know that XS(CS) ⊂ XS(FS) and therefore V (S)
defined by (7) can be characterized as:

V (S) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩u ∈ RN

∣∣∣∣∣∣∣∣∣∣
∃xS ∈ XS(FS) :

(i) ∀ω ∈ Ω,
∑
S

xj(ω) =
∑
S

ej(ω)

(ii) ∀i ∈ S : EU i
(
xi
)
≥ ui

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
For the special case of affine linear utility functions, we prove the balancedness

of the NTU game given in (7) and therefore the nonemptiness of the EC-core [9].

Theorem 3.4. If for all i ∈ N and ω ∈ Ω, ui(ω, x) = ai(ω) · x+ bi(ω) for some
ai(ω) ∈ Rl

+ and bi(ω) ∈ R, then the EC-core is nonempty.

Proof. Let B be a balanced family, with the associated balancing coefficients
{λS}S∈B and u ∈

⋂
S∈B V (S). Then for all S ∈ B there exists an allocation

x(S) ∈ XS(FS) such that
∑

S x
(S),i(ω) =

∑
S e

i(ω) for all states ω ∈ Ω and
for every agent i ∈ S, EU j

(
x(S),i

)
≥ ui. Now for each state ω ∈ Ω define the
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allocation x = {xj(ω)}j∈N by:

xj(ω) =
∑
S∈B
S�j

λSx
(S),j(ω)

Then the allocation x is feasible at each state ω ∈ Ω.

∀ω ∈ Ω :
∑
j∈N

xj(ω) =
∑
j∈N

∑
S∈B
S�j

λSx
(S),j(ω)

=
∑
S∈B

λS

∑
j∈S

x(S),j(ω)

=
∑
S∈B

λS

∑
j∈S

ej(ω)

=
∑
j∈N

ej(ω)
∑
S∈B
S�j

λS =
∑
j∈N

ej(ω)

⇒ ∀ω ∈ Ω :
∑
j∈N

xj(ω) =
∑
j∈N

ej(ω) (8)

Next we will show that x attains the utility level u by:

∀j ∈ N : EU j
(
xj
)

=
∑
ω∈Ω

uj(ω,
∑
S∈B
S�j

λSx
(S),j(ω))µ(ω)

=
∑
ω∈Ω

∑
S∈B
S�j

λSu
j
(
ω, x(S),j(ω)

)
µ(ω)

=
∑
S∈B
S�j

λS

∑
ω∈Ω

uj
(
ω, x(S),j(ω)

)
µ(ω)

≥
∑
S∈B
S�j

λSuj = uj

⇒ ∀j ∈ N : EU j
(
xj
)
≥ uj (9)

Finally we will show that, x ∈ X(F). First, for every agent j ∈ N , zj(ω) is∨
N F i measurable since for each S, z(S),j(ω) is

∨
S F i (⊂

∨
N F i) measurable.

To prove that the net trades xi is incentive compatible with the communication plan
F for each agent i ∈ N , assume on the contrary that there exists an agent j such
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that xj is not incentive compatible with full information revealing communication
plan F . Then we have:

∃E ∈ PFj ,∃E′ ∈ PFj : E 	= E′ :

(i) ∀ω ∈ E : A(ω) = E′ ∩

⎛⎝⋂
i�=j

PF i

⎞⎠ 	= ∅,

(ii) EU j
(
zj (A(ω)) + ej(ω)|E

)
> EU j

(
xj(ω)|E

)
⇒
∑
ω∈E

[
a(ω) ·

(
zj (A(ω)) + ej(ω)

)
+ b(ω)

]
µ(ω|E)

>
∑
ω∈E

[
a(ω) · xj(ω) + b(ω)

]
µ(ω|E)

⇒
∑
ω∈E

a(ω) ·
∑
S∈B
S�j

λSz
(S),j (A(ω))µ(ω|E)

>
∑
ω∈E

a(ω) ·
∑
S∈B
S�j

λSz
(S),j(ω)µ(ω|E)

⇒
∑
S∈B
S�j

λS

∑
ω∈E

a(ω) · z(S),j (A(ω))µ(ω|E)

>
∑
S∈B
S�j

λS

∑
ω∈E

a(ω) · z(S),j(ω)µ(ω|E)

⇒ ∃S # j :
∑
ω∈E

a(ω) · z(S),j (A(ω))µ(ω|E) >
∑
ω∈E

a(ω) · z(S),j(ω)µ(ω|E)

⇒ ∃S # j : EU j
(
z(S),j (A(ω)) + ej(ω)|E

)
> EU j

(
x(S),j(ω)|E

)
The last equation implies that there exists a coalition S ∈ B and S # j such that
agent j in coalition S with the allocation x(S),j has an incentive and an opportunity
to use the wrong signalE′, if he is informed that the eventE has occurred, because:

Ã(ω) = E′ ∩

⎛⎜⎜⎝⋂
i�=j
i∈S

PF i(ω)

⎞⎟⎟⎠ ⊃ A(ω) 	= ∅

and

EU j
(
z(S),j

(
Ã(ω)

)
+ ej(ω)|E

)
= EU j

(
z(S),j (A(ω)) + ej(ω)|E

)
> EU j

(
x(S),j(ω)|E

)
(because Ã(ω) ∈ P(

∨
S F i) and therefore z(S),j(ω) is constant on Ã(ω)).
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This contradiction with the measurability proves that x ∈ X(F). Combining this
last result with (8) and (9) we have u ∈ V (N).

The restriction of affine linear utility function is a strong condition of risk neu-
trality on the player’s preference relations if the allocations xS(ω) are interpreted
as pure choices in XS . As pointed out by Ichiishi et al [4], if the allocations are
interpreted as correlated strategies over pure choices inXS then the assumption of
linearity is automatically satisfied because the expected utility is linear in proba-
bilities.

Remark 3.5. The affine linear utility assumption can be relaxed in the case of two
person economy with continuous utility functions. For the two person economy, EC-
core allocations are precisely the feasible, individually rational allocations inX(F),
which are (ex ante) pareto optimal among the set of feasible allocations in X(F).
The individually rational and feasible allocations in X(F) form a compact set in
Rl. Since the initial random endowments satisfy these constraints, this compact
set is nonempty. Then, the existence of the EC-core strategies follows from the
continuity of the ex ante utility functions of both agents.

4 Extensions

In this section we extend the results of Section 3, to coalitional production
economies and discuss an example of such an economy where affine linear utility
functions are commonly adopted.

Definition 4.1. A coalition production economy with asymmetric information with
a finite set of agents N , is a list of data Ecpe := (N, {ui, ei,F i}i∈N , µ, Y ).

The production possibilities for coalition S in state ω is given by the production
set Y (ω, S) ⊂ Rl. The allocation schemesXS(CS) which can be implemented by
coalition S using a communication plan CS = {{Ci}i∈S |Ci ⊂ F i for every i ∈ S}
are given by:

XS(CS) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
{xi}i∈S

∣∣∣∣∣∣∣∣∣∣∣∣∣

∀i ∈ S : zi is
∨

S Cj measurable and there does not
exist E ∈ PF i and E′ ∈ PCi : E 	⊂ E′,

(i) ∀ω ∈ E,A(ω) = E′ ∩

⎛⎝⋂
j �=i

PCj(ω)

⎞⎠ 	= ∅

(ii) EU i
(
zi(A(ω)) + ei(ω)|E

)
> EU i

(
xi(ω)|E

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
then the associated NTU game V is defined by:

V (S) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
u ∈ RN

∣∣∣∣∣∣∣∣∣∣∣∣∣

∃y : Ω → Rl : ∀ω ∈ Ω : y(ω) ∈ Y (ω, S),

∃CS = {Cj ⊂ Fj}j∈S and ∃xS ∈ XS(CS) :

(i) ∀ω ∈ Ω :
∑
S

xj(ω) = y(ω) +
∑
S

ej(ω),

(ii) ∀i ∈ S : EU i
(
xi
)
≥ ui

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(10)
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Based on this NTU game, EC-core strategies can be defined for the coalitional
production economy.

Definition 4.2. (x, y, C) is an endogenous communication core (EC-core) strategy
if it results in a utility level in the core of the NTU game V given in (10). The
following lemma is still valid in the CPU framework.

Lemma 4.3. For a coalition S ∈ N , let CS and CS
be two communication plans.

If PCj is a refinement of PCj
for all j ∈ S then XS(CS

) ⊂ XS(CS).

This lemma implies that we can concentrate only on full information revealing
communication plans to find the attainable utility levels for coalition S. Therefore
V (S) consists of precisely the utility vectors using an allocation and production
plan implementable with the full information revealing communication plan.

The NTU game given in (10) can be characterized as:

V (S) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u ∈ RN

∣∣∣∣∣∣∣∣∣∣∣

∃y : Ω → Rl : ∀ω ∈ Ω : y(ω) ∈ Y (ω, S),
and ∃xS ∈ XS(FS) :

(i) ∀ω ∈ Ω,
∑
S

xj(ω) = y(ω) +
∑
S

ej(ω)

(ii) ∀i ∈ S : EU i
(
xi
)
≥ ui

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
The following results are analogous to the theorems given in the previous sec-

tion. The proofs are very similar and therefore omitted.

Theorem 4.4. If C and C are two communication plans such thatPCj is a refinement

of PCj
for all j ∈ S then: if (x, y, C) is an EC-core strategy pair then (x, y, C) is

also an EC-core strategy pair.

Theorem 4.5. The NTU game associated with CPE is balanced if:

(i) ∀ω ∈ Ω :
∑
S∈B

λSY (ω, S) ⊂ Y (ω,N)

(ii) ui(ω, x) = ai(ω) · x(ω) + bi(ω), ai(ω) ∈ Rl
+, bi(ω) ∈ R.

One important model in the cooperative production economy framework is the
model of the firm in multidivisional form (M-form firm, in short) studied by Chan-
dler [2] in 1962.An M-form firm is a corporation in which several divisions (or profit
centers) are operated semiautonomously. Although each division is an independent
decision-maker, they share information with each other and coordinate their pro-
duction activities. Finally a share of the total profit is allocated to each division.
Therefore divisions should agree on specific plans for coordinated activities such as
production and information sharing and a plan to determine final profit imputations.
The divisions can only settle at self enforcing agreements, where no coalition of
divisions can improve upon it by its own effort. Radner [8] recently formulated the
internal organization of an M-form firm as a static model of a profit-center game,
defined the core as the set of self enforcing agreements and studied its properties. In
his cooperative game theoretic model, the utility of agents (divisions) are given by
their final share of profit, which satisfies linearity condition. Therefore the results
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of this chapter are readily applicable to M-form firm models. In particular the main
result of this chapter indicates that the full information revealing principle holds
true for M-form firm models with ex ante contracting.
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Summary. The paper seeks to characterize what information is always available
for contracting, independent of the form of the contract and the probabilities of
different states of nature. The paper denotes such information as contractible. It is
established that it is possible to speak uniquely of maximal contractible information.
Several characterizations are exhibited. In particular, it is shown that if either (a)
punishments are bounded everywhere, or (b) deviations from truth-telling are either
always or never detected, then maximum contractible information coincides with∧

i

∨
j �=i Ej where Ej is the information partition of agent j. An argument is given

for why (b) may be expected to hold.
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1 Introduction

Incentive constraints play a central role in understanding the restrictions imposed by
private information (i.e. information uniquely possessed by single agents). Dual to
this, much of the contract theory literature has assumed that information possessed
by at least two agents can be freely contracted upon, regardless of the nature of
the contract and the probability of different states.1 For instance, in principal-agent
models2 effort is assumed private to the agent, but output is assumed to be observed
by both the principal and agent and hence to be contractible.

� I thank Michael Chwe, Douglas Diamond, Lars Stole, Robert Townsend, Nicholas Yannelis and an
anonymous referee for helpful comments.

1 The exceptions are the implementation theory and incomplete contracting literatures.
2 See, for instance, Mirrlees (1999).
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This paper seeks to extend our understanding of what information is contractible
in three ways. First, what information can be said to be contractible in more complex
informational settings? For example, suppose that in a principal-agent setting the
agent either has malaria, the flu, a cold, or is entirely healthy, but is unable to
distinguish between flu and a cold. Suppose (for the sake of example) that malaria
and the flu produce identical symptoms, and that the principal (but not the agent,
who in this example lacks medical training) is able to identify these symptoms. So
the principal knows when the agent is suffering from malaria or the flu, but not
which, and knows when the agent either has a cold or is healthy, but not which. Is
any aspect of the agent’s health always contractible here? The answer turns out to
depend on whether or not the size of punishments available is bounded.

Second, when there are more than two agents, is information private unless it
is entirely shared by two agents? For instance, suppose effort has two components
– duration and intensity. If the principal observes hours worked, and a coworker
intensity, is the agent’s effort contractible?

Third, is it possible to speak uniquely of maximal contractible information,
in the sense of a uniquely defined maximal amount of information that is freely
contractible? If so, how is such information characterized?

Before proceeding to the analysis, it is worth pausing to note how this paper
differs from the work initiated by Crémer and McLean (1985)3 establishing cir-
cumstances in which incentive compatibility places no constraint on the ability of
an uninformed outsider to extract surplus. This body of work is concerned with
incentive compatibility’s effect on what welfare levels are attainable, and depends
on the assumptions of risk neutral agents and correlated information. In contrast,
the present paper considers what contracts are unaffected by incentive concerns,
and makes only weak assumptions about preferences, and none about stochastic
structure.

I conclude the introduction with a note on methodology. This paper is a mech-
anism design paper, in the sense of being concerned with whether outcomes can be
supported as the equilibria of some pre-specified game. It neglects the concerns of
the parallel implementation theory literature about whether there also exist other
(undesirable) equilibria of these games. It is well known (see Maskin, 1999) that
the multiple equilibrium problem is important in complete information settings
(i.e. those in which agents share all information) when the equilibrium concept
employed is Nash. However, papers by – among others – Matsushima (1993), Arya
et al. (1995), and Duggan (1997) suggest that the multiple equilibrium problem
is of limited importance when information is incomplete. Moreover, in complete
information settings Moore and Repullo (1988) find that multiple equilibria con-
cerns can be avoided if one looks instead at implementation in subgame perfect
equilibria. In this paper I appeal to this broad class of results for justification in
considering the mechanism design problem in isolation.

The paper proceeds as follows. Section 2 gives a general specification of the
problem to be analyzed. Section 3 establishes that maximal contractible informa-
tion is uniquely defined. Section 4 presents several examples. Section 5 shows that

3 See also Crémer and McLean (1988), together with the related work of McAfee and Reny (1992).
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if punishments are unlimited, maximum contractible information has an easy char-
acterization. Section 6 establishes that the same characterization holds with limited
punishments if information satisfies a certain restriction, and gives an argument
for why that restriction is reasonable. Section 7 discusses the case in which pref-
erences as well as probabilities are allowed to vary. Section 8 gives an alternative
characterization of maximum contractible information. Section 9 relates the results
of this paper to previous research.

2 Preliminaries

An economy is a quintuple (Ω,N,A, {ui} , {Ei}) where:

– Ω is the state space, with ω ∈ Ω a typical member. Let M be the (finite)
cardinality of Ω.

– N is the (finite) set of agents.
– A is the (possibly infinite) set of outcomes.
– ui : A × Ω →  is the utility mapping of agent i ∈ N , giving the utility of

each agent given an outcome and state of the world. Agents are assumed to
maximize expected utility.

– Ei is a partition of Ω giving the information4 possessed by agent i ∈ N .

Also, let P be the set of probability mappings p : Ω → (0, 1), where p(ω) is
the probability of state ω. Thus P ⊂ (0, 1)M .

The economy (Ω,N,A, {ui} , {Ei}) and probability mapping p ∈ P are as-
sumed to be common knowledge to the agentsN . We will characterize what infor-
mation is always available for contracting, regardless of the probability mapping p.
That is, if an outside observer sees the preferences and information of each agent
in the economy, what information can that observer infer is always available for
contracting, no matter what the probabilities are? In Section 7 we will also briefly
consider the related question of what information is contractible independent of
agents’ preferences.

Throughout the paper, agents’ preferences will be assumed to satisfy the fol-
lowing two properties:

Condition SP (Strict Preferences): For all states ω ∈ Ω and agents i ∈ N , there
exist outcomes a1 and a2 such that ui(a2;ω) > ui(a1;ω).

Condition FD (Free Disposal): For any finite subset Ak = {a1, . . . , ak} of A,
there exists an outcome a0 ∈ A such that ui(a0, ω) ≤ ui(a, ω) for all agents
i ∈ N , states ω ∈ Ω, and outcomes a ∈ Ak.

Condition SP ensures that agents always have strict preferences over at least
two outcomes, and serves to rule out degenerate cases in which information is
contractible simply because agents face no meaningful choices. Condition FD rep-
resents a generalization of free disposal of goods in the following sense. Suppose

4 See, e.g., Osborne and Rubinstein (1994) for a description of how information can be represented
by partitions of the state space.
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that outcomes relate to the provision of (public or private) goods. Then provided all
agents weakly prefer more goods to less in all states, the outcome a0 just relates to
taking the minimum provision of each good from the outcomes in Ak. Condition
FD ensures that a central planner does not need to have too much information in
order to effectively punish agents. Note that the condition says nothing about the
size of punishments available, a point that will be returned to below.

Throughout the paper, ES will be used to denote the collective information∨
i∈S Ei of a coalition S ⊂ N , and E−i will denote the collective information of

all agents other that agent i, EN\{i}. Also, Ei(ω) (respectively ES(ω), E−i(ω))
will denote the element of the partition Ei (respectively ES , E−i) that contains the
state ω.

Given a particular probability map p, incentive compatibility is defined as nor-
mal:

Definition 1 A mapping f : Ω → A is said to be p-incentive compati-
ble5 if when probabilities are given by p ∈ P , there exists a mechanism
({Mi} , F : ×iMi→A) such that for all ω ∈ Ω there is a Bayesian equilibrium
m(ω) of the mechanism with F (m(ω)) = f(ω).

We are interested in what information can always be contracted upon, inde-
pendent both of the desired outcomes and the particular probabilities of different
states. Such information will be said to be contractible. Informally, information is
contractible if an outside observer who is ignorant of the stochastic structure of
the economy can nonetheless infer that the information is available for contracting.
Formally,

Definition 2 A partition G of Ω is said to be contractible information if whenever
f : Ω → A is G-measurable, then f is p-incentive compatible for all p ∈ P .

Clearly it is never possible to contract on information not possessed by any
agent. That is,

Lemma 1 A partition G is contractible information only if G � EN .

Proof. Suppose not. Then for any p ∈ P there exists a mapping f : Ω → A
and states ω1, ω2 ∈ Ω such that f is p-incentive compatible, f(ω1) 	= f(ω2) and
EN (ω1) = EN (ω2). The latter implies that Ei(ω1) = Ei(ω2) for all i ∈ N . But
the revelation principle implies that there exists a direct mechanism – so

F (E1(ω1), . . . , EN (ω1)) = f(ω1)
F (E1(ω2), . . . , EN (ω2)) = f(ω2)

for some function F : ×iEi → A. But since f(ω1) 	= f(ω2) this gives a contradic-
tion, completing the proof.

5 Note that incentive compatibility is sometimes referred to elsewhere as weak implementability.
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3 Maximal contractible information

3.1 Punishments

Consider the example economies of Figures 1 and 2. The connected points de-
pict the information partitions – so in Figure 1, E1 = {{ω1}, {ω2, ω3}, {ω4}} and
E2 = {{ω1, ω2}, {ω3, ω4}}. The economy of Figure 1 corresponds to the health
example given in the introduction. That is, the statesω1, . . . , ω4 correspond respec-
tively to“malaria”, “flu”, “cold” and “healthy”. Agent 1 is the worker, and cannot
distinguish between the flu and a cold. Agent 2 is the employer, who can spot the
identical symptoms produced by malaria and the flu.

� � � �

� � � �

� � � �

ω1 ω2 ω3 ω4

Malaria Flu Cold Healthy

State space Ω

Agent 1

Agent 2

Figure 1. Information about health

Is the health of the worker available for contracting, independent of the form
of the contract? The answer depends on the size of punishments available. To see
this, consider the situation faced by the employer when she observes the symptoms
associated with malaria and the flu (i.e. when her information is {ω1, ω2}). If she
reports that the worker has no symptoms, the worker will know she is lying if he in
fact has malaria (state ω1), but not if he has the flu or a cold (states ω2, ω3), since
in this case the worker is aware his illness might only be a cold. If it is possible to
heavily punish the employer, then the threat of detection will be enough to keep her
honest, and she will always tell the truth. In this case, contracting upon at least some
aspects of the worker’s health (here, symptoms/no symptoms) is always possible.
But if punishments are more limited, she may (depending on what is at stake) take
the risk of detection and misreport the worker’s medical condition – so arbitrary
contracts cannot be written on any aspect of the worker’s health.

The size of punishments is important here because of the availability of mis-
reports that are detected sometimes, but not always. No such reporting deviations
are available in the economy of Figure 2, and so – as we will see – the size of
punishment available does not play a critical role.

With the above discussion in mind, at each state ω ∈ Ω the agents N are
partitioned into two groups N∞(ω) and N0(ω) as follows: Agent i is in N∞(ω) if
it holds that for all x ∈  there exists a ∈ A such that ui(a, ω) < x. Otherwise
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� � � �

� � � �
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ω1 ω2 ω3 ω4

Malaria Flu Cold Healthy

State space Ω

Agent 1

Agent 2

Figure 2. Alternative information about health

agent i is inN0(ω). That is,N∞(ω) consists of those agents who at state ω can be
punished arbitrarily harshly. For those agents inN0(ω) for whom punishments are
limited, define the maximum level of punishment zi(ω) by

zi(ω) = inf
a∈A

ui(a, ω)

3.2 A candidate partition

Based on the above considerations about types of deviation and size of punishment
available, I start by constructing a candidate partition for the maximum contractible
information.

The revelation principle tells us that we can think in terms of agents truthfully
reporting their information (i.e. elements of Ei), and focuses attention on what
incentives agents must be given to do so. Denote the report of each agent by Ẽi ∈ Ei.
If an agent’s report is always inconsistent with the truthful reports of others (i.e. if
Ẽi ∩ E−i(ω) = ∅ for all ω ∈ Ei, where Ei is agent i’s actual information), then
it will be easy to deter untruthful reports by punishing the agent at these report
combinations. Note that the punishments will not have to very large, since the
deviating agent knows with certainty that he will be detected.

Report deviations that are only sometimes undetected will be harder to deter,
and indeed may be impossible to do so for arbitrary outcome functions f : Ω → A.
With this in mind, for each i ∈ N define a binary relation⇀i on Ω by:

ω1 ⇀i ω2 if and only if ω2 ∈ E−i(ω1)

So the relations⇀i define states which may be contractibly indistinguishable, since
agent i can report Ei(ω2) when her information is Ei(ω1), and escape detection at
least sometimes.

Whether they are or not depends, as we saw above, on the level of punishments
available. With heavy punishments, occasional detection is a powerful deterrent –
but with limited punishments this is not the case. Define a further set of binary
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relations ω1 →i ω2 by

ω1 →i ω2 if and only if ω1 ⇀i ω2 and

i ∈ N0(ω) whenever ω ∈ Ei(ω1) and Ei(ω2) ∩ E−i(ω) = ∅

So if ω1 →i ω2, agent i can report Ei(ω2) at Ei(ω1) knowing that this deviation
will not always be detected, and in those states where it is punishments are limited.

Finally define the graph (Ω,→) by

ω1 → ω2 if and only if ω1 →i ω2 for some i ∈ N

Define E∗ as the partition induced by the components of the graph (Ω,→). Below
it is shown that E∗ is the unique maximal contractible information partition.

First, note that the partition E∗ is coarser than the collective knowledge of all
agents, EN .

Lemma 2 E∗ ( EN .

Proof. Take ω1, ω2 ∈ Ω such that EN (ω1) = EN (ω2). Take any i ∈ N . Then
E−i(ω1) = E−i(ω2) and Ei(ω1) = Ei(ω2). So certainly ω1 ⇀i ω2. Moreover,
since Ei(ω1) ∩ E−i(ω) 	= ∅ for all ω ∈ Ei(ω1), it must also hold that Ei(ω2) ∩
E−i(ω) 	= ∅ for all ω ∈ Ei(ω1). So ω1 →i ω2, completing the proof.

Moreover, E∗ is indeed contractible information:

Lemma 3 E∗ is contractible information.

Proof. Take an arbitrary E∗-measurable function f : Ω → A and probability
mapping p ∈ P . We must show that f is p-incentive compatible. The proof is by
construction, and consists of exhibiting a direct mechanism F : ×i∈NEi → A such
that

F
(
(Ei(ω))i∈N

)
= f (ω) (1)

and such that for all i ∈ N and Ei, Ẽi ∈ Ei the incentive constraint∑
ω∈Ei

p(ω)ui (f(ω), ω) ≥
∑

ω∈Ei

p(ω)ui

(
F
(
Ẽi, E−i(ω)

)
, ω
)

(2)

holds.
First, choose af ∈ A such that for i ∈ N and ω, ω′ ∈ Ω, ui(af , ω) ≤

ui(f(ω′), ω). Such a choice is always possible by Condition FD.
Next, construct a set of functions F i : (×j∈NEj) × Ei → A as follows.

First, if

((
Ẽj

)
j∈N

, Ei

)
∈ (×j∈NEj) × Ei is such that

⋂
j∈N Ẽj 	= ∅, then

set F i

((
Ẽj

)
j∈N

, Ei

)
= f

(⋂
j∈N Ẽj

)
. Note that this is a well-defined choice,

since by assumption f is E∗-measurable and hence EN -measurable by Lemma 2.
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Over the remainder of (×j∈NEj) × Ei, choose F i (·) so that the incentive
constraints∑
ω∈Ei

p(ω)ui (f(ω), ω) ≥
∑

ω∈Ei s.t. Ẽi∩E−i(ω)�=∅
p(ω)ui

(
f
(
Ẽi ∩ E−i(ω)

)
, ω
)

+
∑

ω∈Ei s.t. Ẽi∩E−i(ω)=∅
p(ω)ui

(
F i
(
Ẽi, (Ej(ω))j∈N

)
, ω
)

(3)

are satisfied. That is, F i
(
Ẽi, (Ej(ω))j∈N

)
gives the punishment for agent iwhen

she says Ẽi at Ei(ω), and the remainder of agents say (Ej(ω))j �=i. Any choice of

F i (·) such that these punishments are sufficiently great to make (3) hold is OK.
To see that such a choice is always possible, fix the agent i, her informationEi and
deviation Ẽi and note that one of the following three cases must hold:

1. Ẽi ∩ E−i(ω) = ∅ for all ω ∈ Ei: In this case, F i
(
Ẽi, (Ej(ω))j∈N

)
= af

will satisfy constraint (3).
2. Ẽi ∩ E−i(ω̂) 	= ∅ for some ω̂ ∈ Ei, and i ∈ N0(ω) whenever ω ∈ Ei and
Ẽi ∩ E−i(ω) = ∅: So if ω ∈ Ei is such that Ẽi ∩ E−i(ω) 	= ∅, and if ω′ ∈
Ẽi ∩E−i(ω), then it follows that ω →i ω

′. Thus whenever Ẽi ∩E−i(ω) 	= ∅,

it holds that f(ω) = f
(
Ẽi ∩ E−i(ω)

)
. So setting F

(
Ẽi, (Ej(ω))j∈N

)
= af

whenever Ẽi ∩ E−i(ω) = ∅ will satisfy the constraint.
3. Ẽi ∩ E−i(ω̂) 	= ∅ for some ω̂ ∈ Ei, and there exists ω∗ such that

Ẽi ∩E−i(ω∗) = ∅ and i ∈ N∞(ω∗): Just choose F i
(
Ẽi, E−i(ω∗), Ei

)
such

that ui

(
F i
(
Ẽi, E−i(ω∗), Ei

)
, ω∗
)

is sufficiently low for (3) to hold. Such a

choice is always possible since i ∈ N∞(ω∗).

Finally, construct F : ×i∈NEi → A itself as follows. If e =
(
Ẽi

)
i∈N

∈

×i∈NEi is such that
⋂

i∈N Ẽi 	= ∅, set F (e) = f
(⋂

i∈N Ẽi

)
. (As above, this is a

well defined construction). For all other points in ×i∈NEi, define

Ae =
{
F i (e,Ei) : i ∈ N,Ei ∈ Ei

}
Then choose F (e) = a0 where a0 satisfies ui(a0, ω) ≤ ui(a, ω) for all i ∈ N,ω ∈
Ω and a ∈ Ae. Such a choice is always possible by Condition FD. By construction
F satisfies (1) and (2), establishing that f is p-incentive compatible. Since p ∈ P
and f E∗-measurable were chosen arbitrarily, this completes the proof.

Since E∗ is contractible information, it is clear that any coarser information (i.e.
G ( E∗) is also contractible. I next prove the converse, namely that information is
contractible only if it is a coarsening of E∗. That is, no information finer than E∗

is contractible. Moreover, E∗ is the unique partition with this property. Thus E∗

represents the maximum contractible information.
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Lemma 4 A partition G is contractible information only if G ( E∗.

Proof. The proof is by contradiction. Suppose to the contrary that there exists some
partition G that is contractible information and for which G � E∗. Now, E∗ not finer
than G is equivalent to6

� (∀E ∈ E∗∃G ∈ G s.t. E ⊂ G)

or equivalently

∃Ê ∈ E∗ s.t. ∀G ∈ G, �
(
Ê ⊂ G

)
Take any such Ê, along with ω1, ω2 ∈ Ê such that ω1 → ω2 but G(ω1) 	= G(ω2).
(If no such pair of elements existed, we would have G ∈ G such that Ê ⊂ G). So
ω1 →i ω2 for some i ∈ N .

Define the function f : Ω → A by

f(ω) =
{
a1 if ω ∈ G(ω1)
a2 otherwise

where a1, a2 ∈ A are such that ui(a1, ω1) < ui(a2, ω1). Such a choice is always
possible by Condition SP. Since f is G-measurable, by hypothesis it is p-incentive
compatible for all p ∈ P .

By the revelation principle, there exists a direct mechanism F implementing f .
So it must be the case that F is such that agent i prefers reportingEi(ω1) toEi(ω2)
at Ei(ω1):∑
ω∈Ei(ω1)

p(ω)ui (f(ω), ω) ≥
∑
ω∈B

p(ω)ui (f (Ei(ω2) ∩ E−i(ω)) , ω)

+
∑

ω∈Ei(ω1)\B

p(ω)ui

(
F
(
Ei(ω2), (Ej(ω))j �=i

)
, ω
)

(4)

where B = {ω ∈ Ei(ω1) : Ei(ω2) ∩ E−i(ω) 	= ∅}. Since ω1 →i ω2, Ei(ω2) ∩
E−i(ω1) = EN (ω2) so that (4) can be rewritten

p(ω1) (ui (f(ω2), ω1)− ui (f(ω1), ω1)) ≤∑
ω∈B\{ω1}

p(ω) (ui (f(ω), ω)− ui (f (Ei(ω2) ∩ E−i(ω)) , ω))

+
∑

ω∈Ei(ω1)\B

p(ω) (ui (f(ω), ω)− ui (F (Ei(ω2), E−i(ω)) , ω))

(5)

Since ω1 →i ω2, it follows that i ∈ N0(ω) for all ω ∈ Ei(ω1)\B. So define ε1
and ε2 by

ε1 = max
ω∈B\{ω1}

{|ui(a1, ω)− ui(a2, ω)|}

ε2 = max
ω∈Ei(ω1)\B

{ui(a1, ω)− zi(ω), ui(a1, ω)− zi(ω)}
6 Here, � denotes the logical operator “not”.
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The left hand side of (5) is strictly positive by construction, and is increasing in
p(ω1). On the other hand, the right hand side of (5) is bounded above by (1 −
p(ω1)) max(ε1, ε2). So for all p ∈ P with p(ω1) sufficiently large, inequality (5)
fails to hold, in contradiction to the hypothesis that f is p-incentive compatible.
This completes the proof.

Thus we have:

Proposition 1 The partition E∗ is the unique maximal contractible information
partition.

4 Examples

In the economy of Figure 1, we have ω1 ⇀1 ω2 and also ω1 →1 ω2, and symmet-
rically ω4 →1 ω3. That is, agent 1 is always able to dishonestly claim to have the
flu when he in fact has malaria, and to claim that he has a cold when in fact he is
healthy. Also, ω2 ⇀1 ω3 does not hold, since agent 2 would always recognize a
dishonest claim by agent 1 to have a cold when in fact he has the flu. It follows that
neither ω2 →1 ω3 or ω3 →1 ω2 holds.

To complete the analysis, we need to determine whether or not one ofω2 →2 ω3
or ω3 →2 ω2 holds. Certainly ω2 ⇀2 ω3 and ω3 ⇀2 ω2. Also, ω2 →2 ω3 only if
2 ∈ N0 (ω1) and ω3 →2 ω2 only if 2 ∈ N0 (ω4). That is, for agent 2 to be able to
lie about whether she has observed any symptoms (i.e. whether she has observed
{ω1, ω2} or {ω3, ω4}) then it must be the case that she cannot be punished arbitrarily
heavily when she lies and is found out. This happens if she denies agent 1 has
symptoms when he in fact has malaria, of when she claims agent 1 has symptoms
when in fact he is healthy.

Combining the above statements, we have E∗ = {{ω1, ω2} , {ω3, ω4}} if agent
2 can be punished arbitrarily heavily in both of the states ω1 and ω4, and E∗ = {Ω}
otherwise.

For the economy of Figure 2, it is straightforward to show that E∗ = {{ω1, ω2} ,
{ω3, ω4}} independent of the level of punishments available. This is an instance
of the familiar result that since agent 1 and 2 can both fully distinguish {ω1, ω2}
from {ω3, ω4}, this information is contractible.

For a slightly more complex example, consider an economy with state space
Ω = {ω1, ω2, . . . , ωM}, with M ≥ N . Each agent i ∈ N is a specialist in
identifying state ωi, in the sense that Ei = {{ωi} , {ωj : j 	= i}}. That is, agent
i knows when state ωi occurs, but otherwise cannot distinguish any of the other
states. In such an economy, is the realization of the state available for contracting?

For any agent i, the information collectively possessed by all other agents is

E−i = {{ωj} : j ∈ N\ {i}} ∪ {{ωj : j ∈ (M\N) ∪ {i}}}

Now, ω ⇀i ω
′ if and only if {ω, ω′} ⊂ {ωj : j ∈ (M\N) ∪ {i}} or ω = ω′.

Moreover, if M > N then ωi →i ω
′ for any ω′ ∈ {ωj : j ∈ (M\N)}, since

ωi ⇀i ω
′ and Ei (ω′) ∩ E−i (ωi) = {ωj : j ∈ (M\N)} 	= ∅. So E∗ = {Ω} if

M > N , and E∗ = {{ωi} : i ∈ N} ifM = N .
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That is, if there is a specialist for every state in this economy (M = N ), then
collectively all other agents also know the information, and the specialist cannot
lie. So in such a case all information is available for contracting.

However, introducing even one state that no-one is able to recognize (i.e.M =
N +1) radically alters this conclusion. In this case, for any state ωi the coalition of
agentsN\ {i} is never able to distinguish betweenωi and ωM , which enables agent
i to deny knowledge of state ωi. It then follows that no information is available
for contracting. This conclusion holds independently of the size of punishments
possible.

5 Common knowledge and limited punishments

Contrary to what might have been expected, even in the two-person case maximum
contractible information does not coincide with common knowledge.

Consider again the example of Figure 1. There, if punishments are unlimited
in all states for both agents (i.e. if N∞(ω) = N for all ω ∈ Ω), then E∗ =
{{ω1, ω2}, {ω3, ω4}}whereas E1∧E2 = {Ω}. That is, even though the agents have
no non-trivial common knowledge, it is still possible to contract upon the employer’s
information about the worker’s health, since the employer cannot misreport her
information without a positive probability of detection.

On the other hand, if punishments are everywhere bounded, common knowledge
and maximum contractible information do coincide in this example. This property
is in fact general to two-agent economies, and can be generalized to the N -agent
case as:

Proposition 2 If N0(ω) = N for all ω ∈ Ω, then E∗ =
∧

i∈N E−i.

Proof. The partition
∧

i∈N E−i is that induced by components of the graph (Ω,↔)
where

ω1 ↔ ω2 if and only if E−i(ω1) = E−i(ω2) for some i ∈ N

If ω1 ↔ ω2 then ω1 ⇀i ω2, and then ω1 →i ω2 since punishments are limited
everywhere. Conversely, if ω1 → ω2 then ω1 →i ω2 and thus ω1 ⇀i ω2 for some
agent i, soω2 ∈ E−i(ω1) and henceω1 ↔ ω2. Thus the graphs (Ω,↔) and (Ω,→)
have the same components, and so E∗ =

∧
i∈N E−i, completing the proof.

The following corollary, which holds independently of the boundedness of
punishments, is worth stating separately. The proof is simply the second half of the
proof of Proposition 2.

Corollary 1
∧

i∈N E−i � E∗.

When applicable, this characterization greatly eases the application of Proposi-
tion 1. For instance, consider a three-agent economy in which agent 1 is a worker,
agent 2 is a coworker and agent 3 is an employer. Suppose we are interested solely
in agent 1’s effort, which has two components – hours worked, which can either
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be long (L) or short (S), and intensity, which can either be (H) or low (0). So the
state space isΩ = {ωLH , ωL0, ωSH , ωS0}. Agent 1 knows exactly how hard he has
worked, so E1 = {{ωLH} , {ωL0} , {ωSH} , {ωS0}}. The coworker, agent 2, ob-
serves only the intensity, so E2 = {{ωLH , ωSH} , {ωL0, ωS0}}, and the employer
observes only hours worked, so E3 = {{ωLH , ωL0} , {ωSH , ωS0}}. What aspects
of agent 1’s effort are contractible here? The answer follows easily from Corollary
1. Trivially E−2 = E−3 = E1. Moreover, E−1 = E1. Thus

∧
i∈N E−i = E1 – so all

information is contractible. The fact that agents 2 and 3 separately see different and
incomplete aspects of agent 1’s information does not prevent their joint information
being useful.

6 Acquiring information

From the discussion so far, it should be clear that the availability or otherwise
of unbounded punishments only affects the shape of the maximum contractible
information in cases where deviations from truth-telling are sometimes but not
always detected. Whenever the economy is such that deviations are either always
or never detected, unbounded punishments play no role. In such cases, maximum
contractible information should be again expected to coincide with the partition∧

i∈N E−i, and to reduce to common knowledge in the two-agent case. In this
section I confirm this result, and then give an argument for why the case of always-
or-never detected deviations can be expected to hold.

We start with a couple of definitions which formalize the property that deviations
from truth-telling are either always or never detected. First,

Definition 3 A pair of partitions (G1,G2) is said to have the property of pairwise
intersection if for any element of the common knowledge partition G ∈ G1 ∧ G2
and any pair of partition elementsG1 ∈ G1 andG2 ∈ G2 satisfyingG1 ∪G2 ⊂ G
it holds that G1 ∩G2 	= ∅.

Next,

Definition 4 A set of partitions {Gi}i∈N is said to satisfy global pairwise inter-
section (GPI) if Gi and G−i satisfy pairwise intersection for all i ∈ N .

When applied to information partitions, global pairwise intersection is exactly
the property of single-agent deviations from truth-telling either being always or
never detected when all others tell the truth. We then have

Proposition 3 If {Ei}i∈N satisfy GPI then the maximum contractible information
E∗ is equal to

∧
i∈N E−i.

Proof. Observe that under GPI, ω1 →i ω2 holds if and only if ω1 ⇀i ω2. “Only
if” is immediate from the definitions. For the converse, suppose ω1 ⇀i ω2. So
Ei(ω2) ∩ E−i(ω1) 	= ∅, and so there exists E ∈ Ei ∧ E−i such that Ei(ω2) ∪
E−i(ω1) ⊂ E. So Ei(ω1) ⊂ E, and thus E−i(ω) ⊂ E for all ω ∈ Ei(ω1). By
GPI, Ei(ω2) ∩ E−i(ω) 	= ∅ for all ω ∈ Ei(ω1), and so ω1 →i ω2.

The result then follows exactly as in the proof of Proposition 2.
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Up to this point, the information Ei of agents has simply been taken as given.
Where does this information come from? Suppose that each agent i starts life with
information given by E0

i . The set of information partitions
{
E0

i

}
satisfy GPI if agent

j, based on her own information E0
j ∈ E0

j , is unable to rule out any combination
of other agents information

{
E0

i

}
i �=j

.
GPI would seem a reasonable enough property for these “primal” information

partitions
{
E0

i

}
, but over time agents may acquire new information. Without any

loss of generality, this process can be thought of as occurring in a number of
sequential rounds, r = 1, . . . , R.At each round agents may refine their information
– regardless of the process by which this occurs, it is clear that the refinement must
still be some coarsening of the total information possessed by all other agents. Thus
if Er

i denotes the information of agent i at round r, that agent’s information at round
r + 1 must be of the form

Er+1
i = Er

i ∨ Gr
i

where Gr
i is some coarsening of the combined information of all other agents, Er

−i.
Under this very general description of information acquisition, it can be shown that
information after round r + 1 satisfies GPI whenever the information at round r
did.

To establish this result, it is convenient to start by noting that:

Lemma 5 Let E1, E2,F1,F2 be partitions of Ω. Then E1 ∧ E2 ( (E1∨F1) ∧
(E2∨F2).

Proof. El ( (El∨F l) for l = 1, 2. Thus

E1 ∧ E2 ( (E1∨F1) ∧ E2 ( (E1∨F1) ∧ (E2∨F2)

The key result is then:

Lemma 6 Suppose that E1 and E2 are partitions of a finite set Ω and satisfy pair-
wise intersection. Then if F1 and F2 are coarsenings of E1 and E2 respectively, the
pair of partitions (E1∨F2, E2∨F1) also satisfies pairwise intersection.

Proof. Suppose to the contrary that the pair of partitions (E1∨F2, E2∨F1) does not
satisfy pairwise intersection. So there exist E1 ∈ E1, E2 ∈ E2, F1 ∈ F1, F2 ∈ F2
and F̄ ∈ (E1∨F2) ∧ (E2∨F1) such that E1 ∩ F2 ⊂ F̄ and E2 ∩ F1 ⊂ F̄ but
(E1 ∩ F2) ∩ (E2 ∩ F1) = ∅.

By Lemma 5 ∃Ē ∈ E1∧E2 such that F̄ ⊂ Ē. Then certainly E1, E2 ⊂ Ē, and
soE1∩E2 	= ∅ by the pairwise intersection property of E1 and E2. Next, for i = 1, 2
writeFi =

⋃ni

j=1 Fij withFij ∈ Ei – this is always possible sinceFi is a coarsening
of Ei – and withF1j∩E2 	= ∅ andF2j∩E1 	= ∅. The elementsFij are all contained
in Ē, and so by pairwise intersection again, F1j ∩ F2 =

⋃n2
k=1 (F1j ∩ F2k) 	= ∅,

and thus F1 ∩ F2 =
⋃n1

j=1 (F1j ∩ F2) 	= ∅.

By hypothesis (E1 ∩ E2)∩ (F1 ∩ F2) = ∅. Define F̂ = F̄ ∩
(
Ē\ (F1 ∩ F2)

)
.

Now, F̂ 	= F̄ since F1 ∩F2 	= ∅ by above, and F̂ 	= ∅ sinceE1 ∩E2 is non-empty,
has non-empty intersection with F̄ ∩ Ē, and by hypothesis is disjoint to F1 ∩ F2.
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To complete the proof, it is sufficient to establish that there exists a subset of
F̂ that is a member of (E1∨F2) ∧ (E2∨F1), which since F̂ is a proper subset of
F̄ gives the required contradiction. Take any element G of E1 ∨ F2. Then G ∩
(F1 ∩ F2) ∈ {∅, G} since F1 ∨ F2 ( E1 ∨ F2 and G ∩

(
F̄ ∩ Ē

)
∈ {∅, G} since

(E1 ∨ F2) ∧ (E2 ∨ F1) ( E1 ∨ F2. Thus G ∩ F̂ ∈ {∅, G}. An identical argument
establishes that for any G ∈ E2 ∨ F1, G ∩ F̂ ∈ {∅, G}. Thus there must be some
subset of F̂ that is a member of (E1 ∨ F2) ∧ (E2 ∨ F1).

Applied to any agent i and coalition N\{i}, Lemma 6 ensures that the pair
of partitions (Er+1

i , Er+1
−i ) satisfies pairwise intersection whenever (Er

i , Er
−i) does.

This gives:

Proposition 4 The partitions
{
Er+1

i

}
satisfy GPI provided {Er

i } satisfies GPI.
Thus information at round r satisfies GPI if the information at round 0 satisfies
GPI.

7 Unknown preferences

Up to this point, we have been concerned with characterizing what information
an outside observer can conclude is always available for contracting, given that
the observer knows all features of the economy other than the actual probabilities
of different states (i.e. p). A closely related question is that of what information
is known to be contractible by an observer who does not observe the preferences
of agents,7 {ui} (though it is assumed that he does know the preferences satisfy
Conditions SP and FD).

Now, if an outside observer knows neither the preferences {ui} nor the prob-
ability mapping p, then the maximal information that he can conclude is available
for contracting is again

∧
i∈N E−i. This observation is immediate from Proposition

2 and Corollary 1: If preferences are not known, then it is possible that punishments
are limited for all agents in all states, and so the maximal contractible information
is
∧

i∈N E−i – which we know is weakly coarser than the contractible information
under any other assumption about the boundedness of punishments.

It is worth noting in passing that any
∧

i∈N E−i-measurable function f can be
supported with a mechanism that is independent of the probability mapping p, and
which depends on preferences only to the extent of making use of a punishment
a0 which is worse than any outcome in the range of f for all agents in all states
(see the proof of Lemma 3).8 Thus not only can an outside observer conclude
that

∧
i∈N E−i is contractible information even if he cannot observe preferences

or probabilities, but a planner charged with designing a mechanism to support an

7 Arguably, preferences are easier for an outsider to observe than probabilities. Preferences are usually
believed to be reasonably stable over time, allowing an observer to infer them from agents’ past actions.
On the other hand, if the world is non-stationary then historical data will be of little use in inferring the
probabilities of future events.

8 This is of course just the familiar forcing contract, which punishes agents for inconsistent reports
by imposing an outcome that all agents dislike.
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∧
i∈N E−i-measurable function f can do so without any knowledge of the proba-

bilities, and with only very limited knowledge of the preferences of agents.
What information could an outside observer who did observe probabilities but

not preferences conclude is contractible? Certainly
∧

i∈N E−i will be available for
contracting. Whether or not any additional information is available for contracting
depends on the class from which preferences are being drawn.

On the one hand, if no restrictions are placed on the class of possible preferences
(beyond conditions SP and FD) then one can show that

∧
i∈N E−i is the finest

information partition that an outsider could conclude is definitely available for
contracting. The proof is similar to that of Lemma 4.

On the other hand, a restriction on the preference class as mild as the require-
ment that ui(a, ·) be Ei-measurable for all a ∈ A is enough to lead to probability
mappings p for which strictly more information than

∧
i∈N E−i is available for

contracting even when preferences are arbitrary. To see this, consider the following
simple example. The state space is Ω = {ω1, ω2, ω3, ω4}, there are two agents
N = {1, 2}, and their information is given by E1 = {{ω1, ω2} , {ω3, ω4}} and
E2 = {{ω2, ω3} , {ω4, ω1}}. So∧

i∈N

E−i = E1 ∧ E2 = {Ω}

However, for the probability mapping p defined by p (ω) = 1/4 for all ω ∈ Ω, the
information F ≡ {{ω1, ω3} , {ω2, ω4}} is available for contracting. To see this,
let f : Ω → A be any F-measurable function. We will show that f is p-incentive
compatible.

Without loss, f (ω1) = f (ω3) = a and f (ω2) = f (ω4) = b for some a, b ∈
A. Take the truth-telling mechanism Mi = Ei for i = 1, 2 and F (E1, E2) =
f (E1 ∩ E2). Then agent 1’s truth-telling constraint upon observing {ω1, ω2} is

1
2

(u1 (a, {ω1, ω2}) + u1 (b, {ω1, ω2})) ≥
1
2
(u1 (b, {ω1, ω2}) + u1 (a, {ω1, ω2}))

which is satisfied for any choice of a and b and any specification of preferences.
A similar argument applies to all the other truth-telling constraints. Thus f is p-
incentive compatible as claimed.

To summarize, when an outside observer does not know either the probability
mapping p or the preferences of agents {ui}, then the most information that he
can conclude is definitely available for contracting is

∧
i∈N E−i. However, if the

outside observer knows either probabilities or preferences, then there are circum-
stances under which he can conclude that strictly more information than

∧
i∈N E−i

is available for contracting.

8 Cross reporting

Thus far it has been established that maximum contractible information is a well-
defined concept, and that for two important classes (bounded punishments, and
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information satisfying GPI) of economies is equal to the partition
∧

i∈N E−i. This
finding may seem more intuitive under the following lattice theory result, the proof
of which is in the appendix.

Lemma 7
∧

i∈N E−i =
∨

i∈N (Ei ∧ E−i)

Lemma 7 says that when punishments are bounded or information satisfies
GPI, the maximum contractible information can be thought of as follows. Each
agent i can misreport only that information that is not known by the coalition of
all other agents. Thus agent i can only deviate from truth-telling when deviations
respect the partition Ei ∧ E−i. The maximum contractible information is then that
obtained by combining these restrictions for all agents, resulting in the partition∨

i∈N (Ei ∧ E−i). By Lemma 7 and Propositions 2 and 3, this partition is precisely
the maximum contractible information.

9 Relationship to literature

This is not the first paper to consider what information is easy to contract upon. In
this section, I show how some previous results can be seen as special cases of the
analysis conducted here.

9.1 Harris and Townsend (1981)

An early version of the result that any information shared by at least two agents is
contractible can be found in Harris and Townsend (1981).9 In their framework, the
state space is of the form

Ω = ×m∈MΩm

with typical element ω = (ω1, . . . , ωM ). Each agent i observes a subsetMi of the
M random variables ω1, . . . ωM . Thus the information of agent i is given by

Ei = {{ω : ωMi = θMi} : θMi ∈ ×m∈MiΩm}

It follows that ifM−i is defined byM−i = ∪j �=iMj , then the combined information
of all agents other than i is given by

E−i =
{{
ω : ωM−i = θM−i

}
: θM−i ∈ ×m∈M−iΩm

}
The authors define the private information of agent i as those variables ωm that
are observed only by that agent. Denote these privately observed variables byMP

i .
Harris and Townsend’s Theorem 2 establishes that any allocation satisfying the
incentive constraints

∑
ω̃:ω̃Mi

=ωMi

p(ω̃)ui (f(ω̃), ω̃) ≥
∑

ω̃:ω̃Mi
=ωMi

p(ω̃)ui

(
f(δMP

i
, ω−MP

i
), ω̃
)

9 See Theorem 2 and also Section 10.
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∀i ∈ N,ω ∈ Ω, δMP
i
∈ ×m∈MP

i
Ωm is incentive compatible i.e. the only in-

centive constraints that matter are those related to individuals’ private informa-
tion. An immediate implication is the result that any variable ωm observed by
at least two agents is freely contractible, since there are then no incentive con-
straints to satisfy. Formally, the set of “contractible” random variables is defined
byM∗ = M\⋃i∈N M

P
i , and any allocation that is measurable with respect to

{{ω : ωM∗ = θM∗} : θM∗ ∈ ×m∈M∗Ωm}

is incentive compatible. In light of Lemma 3, this implication is equivalent to simply
noting that under the stochastic restriction imposed by Harris and Townsend, global
pairwise intersection holds and thus

E∗ =
∧
i∈N

E−i = {{ω : ωM∗ = θM∗} : θM∗ ∈ ×m∈M∗Ωm}

9.2 Postlewaite and Schmeidler (1986)

In an implementation theory context, Postlewaite and Schmeidler (1986) define
non-exclusivity of information (NEI) as holding if E−i(ω) = EN (ω) for all states
ω and all agents i ∈ N . They establish that under NEI incentive constraints place no
restrictions on implementability. In terms of this paper, their result can be expressed
as:

∧
i∈N

E−i = EN if E−i(ω) = EN (ω)

In fact,

Lemma 8
∧

i∈N E−i = EN if and only if E−i(ω) = EN (ω) for all ω ∈ Ω and
i ∈ N .

Proof. Suppose first that E−i(ω) = EN (ω) for all ω and i ∈ N . So E−i = EN ,
and the result follows immediately.

Next suppose that
∧

i∈N E−i = EN . Suppose that contrary to the hypothesis,
there exists ω ∈ Ω and j ∈ N such that E−j(ω) 	= EN (ω). Then∧

i∈N

E−i ( E−j ≺ EN

since E−j(ω) 	= EN (ω). But this contradicts E∗ = EN , and so completes the
proof.

From Propositions 2 and 3 it then follows that if either punishments are lim-
ited for all agents (i.e. N0(ω) = N ) or if {Ei}i∈N satisfy GPI, then Postlewaite
and Schmeidler’s NEI condition is both sufficient and necessary for incentive con-
straints to place no restrictions on implementability.
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9.3 The private core of a differential information economy

Yannelis (1991) defines the private core of a differential information economy10

as the class of resource-feasible allocations satisfying private measurability and
the condition that no coalition of agents can redistribute its combined allocation
in a privately measurable way while increasing the utility of all coalition mem-
bers. Koutsougeras and Yannelis (1993) have shown that any allocation satisfying
private measurability will satisfy coalitional incentive compatibility, and hence in-
dividual incentive compatibility. Thus any allocation in the private core is incentive
compatible.

In the current paper, this property of the private core can be seen as follows. In
the differential information economies considered in the above papers, the outcome
set A is effectively a set of net-trade vectors, i.e. commodity transfers that sum to
zero. For any mapping f : Ω → A, let fj denote the net-trade made by agent
j and f−j the net-trade made by the coalition N\ {j}. The mapping f is said to
be privately measurable if fj is Ej-measurable for every agent j ∈ N . Private
measurability clearly implies that f−j is E−j-measurable, and since fj + f−j ≡ 0
it also implies that fj is E−j-measurable. Hence fj is E−i measurable for all i ∈ N ,
and so is

∧
i∈N E−i-measurable. As this is true for any j ∈ N , the mapping f

is also
∧

i∈N E−i-measurable, and hence incentive compatible by Lemma 3 and
Corollary 1.

Although every allocation of the private core is
∧

i∈N E−i-measurable, the con-
verse is clearly not true. For instance, the final example of Section 4 (withN = M )
is an instance of a case in which

∧
i∈N E−i = {{ω} : ω ∈ Ω} and so any map-

ping f : Ω → A is
∧

i∈N E−i-measurable, but in which Ej is strictly coarser than∧
i∈N E−i for all agents j. Thus there exist

∧
i∈N E−i-measurable mappings f that

cannot possibly lie in the private core.

Appendix: Omitted proofs

Proof of Lemma 7. First note that the order relations � and � induce a lattice over
the set of all possible partitions of Ω. This lattice is isomorphic to that induced by
set inclusion over the corresponding set of σ-algebras. It is a standard result that
any lattice of sets is distributive (and hence modular as well).11

The proof is by induction over N . The base case N = 2 is immediate.

10 See also Allen and Yannelis (2001) for a review of work on differential information economies.
11 See, e.g., Davey and Priestley (1990). If a lattice is distributive then

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

for all lattice elements a, b, c. If a lattice is modular then whenever a ≥ c

a ∧ (b ∨ c) = (a ∧ b) ∨ c
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We are required to show that

∧
i∈N

∨
j �=i

Ej =
∨
i∈N

⎛⎝Ei ∧
∨
j �=i

Ej

⎞⎠
Now, take any i0 ∈ N . Then

∧
i∈N

∨
j �=i

Ej =
∨

j �=i0

Ej ∧

⎛⎝∧
i�=i0

∨
j �=i

Ej

⎞⎠
=
∨

j �=i0

Ej ∧

⎛⎝Ei0 ∨
∧
i�=i0

∨
j �=i,i0

Ej

⎞⎠
by distributivity. Then by the inductive step

∧
i∈N

∨
j �=i

Ej =
∨

j �=i0

Ej ∧

⎛⎝Ei0 ∨
∨
i�=i0

⎛⎝Ei ∧
∨

j �=i,i0

Ej

⎞⎠⎞⎠
Next note that

∨
j �=i0

Ej �
∨
i�=i0

⎛⎝Ei ∧
∨

j �=i,i0

Ej

⎞⎠
so that by modularity

∧
i∈N

∨
j �=i

Ej =

⎛⎝∨
j �=i0

Ej ∧ Ei0

⎞⎠ ∨ ∨
i�=i0

⎛⎝Ei ∧
∨

j �=i,i0

Ej

⎞⎠
= (Ei0 ∧ E−i0) ∨

∨
i�=i0

⎛⎝Ei ∧
∨

j �=i,i0

Ej

⎞⎠ (6)

Now

Ei ∧
∨

j �=i,i0

Ej � Ei ∧
∨
j �=i

Ej = Ei ∧ E−i

Thus since (6) is true for arbitrary i0 ∈ N then

∧
i∈N

∨
j �=i

Ej =
∨

i0∈N

⎧⎨⎩(Ei0 ∧ E−i0) ∨
∨
i�=i0

⎛⎝Ei ∧
∨

j �=i,i0

Ej

⎞⎠⎫⎬⎭
=
∨
i∈N

(Ei ∧ E−i) ��
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Summary. The paper analyzes the properties of cores with differential informa-
tion, as economies converge to complete information. Two core concepts are inves-
tigated: the private core, in which agents’ net trades are measurable with respect to
agents’ private information, and the incentive compatible core, in which coalitions
of agents are restricted to incentive compatible allocations.
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1 Introduction

The main focus of this paper can be seen in two ways. First, is the complete informa-
tion core a good predictor in environments with “almost complete” information?
Second, are existing notions of a core with differential information close to the
complete information core when informational asymmetries are small?

We consider two alternative core concepts with differential information that
represent the main approaches in the literature. The first concept is that of the
private core of Yannelis (1991). In his concept coalitions of agents are restricted to
allocations that are measurable with respect to each agent’s private information. The
second concept that we consider is the incentive compatible core of Allen (1994),
Ichiishi and Idzik (1996), and Vohra (1999). In this concept coalitions of agents
are restricted to those allocations that are Bayesian incentive compatible. These
two approaches differ substantially. However, because there is no clear benchmark
against which the predictions of these two very different concepts can be compared

� We wish to thank an anonymous referee for very helpful comments.
Correspondence to: S. Krasa



398 S. Krasa and W. Shafer

when there are significant asymmetries of information, one of the main motivations
of this paper is to compare them when informational asymmetries are small and
when the standard (complete information) core can be used as such a benchmark.

Consider a pure exchange economy with differential information in which each
agent receives a possibly noisy signal about the true state. Thus, agents’ information
can be specified by means of a prior over the signals and the true states. There is
complete information if the prior assigns probability 1 to each agent receiving the
correct signal. In order to describe what it means to be “close to complete infor-
mation,” we use the priors to parameterize economies. Behavior close to complete
information is analyzed by considering sequences of priors that converge to the
complete information prior.

Our first Theorem provides a generic result on the convergence behavior of
the private core. We show that the private core does not converge to the standard
complete information core for all sequences of priors, for which information is
asymmetric before the limit. More precisely, we prove that generically the set of
limit points of private core allocations has empty intersection with the standard
(complete information) core, as the noise in the agents’ signals converges to zero.
Thus, the complete information core cannot be seen as an approximation of private
cores of economies with almost complete information. The intuition for this result
is that the private core models the difficulty of information sharing by assuming
that agents base trades only on their private information. Therefore even “small”
informational asymmetries lead to very different outcomes when compared to the
core with complete information.

Our second and third Theorem analyze the incentive compatible core. In contrast
to the private core, the incentive compatible core need not exist in general (Allen,
1994; Vohra, 1999). However, in Theorem 2 we show that it does exist close to
complete information. Moreover, Theorem 2 also shows that almost every standard
core allocation is the limit point of incentive compatible core allocations. Does this
imply that the incentive compatible core behaves more like the standard core close
to complete information? It turns out that this is not the case. Theorem 3 shows that
there is a robust class of economies for which the set of limit points of incentive
compatible cores is strictly larger than the standard core.

As mentioned above, the two core notions analyzed in this paper are repre-
sentative of two tracks of research. Specifically, in the literature on core concepts
with differential information authors either impose restrictions on how information
is shared by coalitions of agents (see Wilson, 1978; Yannelis, 1991; Allen, 1992;
Berliant, 1992; Koutsougeras and Yannelis, 1993; Koutsougeras, 1998), or they
impose incentive compatibility restrictions on the allocations a coalition of agents
can obtain (Boyd, Prescott and Smith, 1988; Allen, 1994; Ichiishi and Idzik, 1996;
Vohra, 1999; Ichiishi and Sertel, 1998).

In addition to the private core, the first group of papers also investigates other
core concepts, most notably the coarse core and the fine core. In the coarse core,
coalitions of agent are restricted to trades that are measurable with respect to com-
mon knowledge information. In contrast, in the fine core a coalition can use the
pooled information of its members (c.f., Yannelis, 1991; or Koutsougeras and Yan-
nelis, 1993). In this paper, we investigate the private core because it has been shown
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to have desirable properties (c.f., Koutsougeras and Yannelis, 1993). That is, the
private core exists in general, it takes informational asymmetries into account, and
it is incentive compatible.1 Moreover, our main result for the private core implies
that the same result holds for the coarse core.

In the second group of papers, where authors impose incentive compatibility
restrictions, the concepts differ with respect to the participation constrained used,
i.e., whether the blocking notion is ex-ante or interim. In this paper we use the
ex-ante notion, because it avoids information leakage problems that arise when
coalitions can block in the interim period (c.f., Krasa, 1999).

2 The model

Consider an exchange economy with n agents, indexed by i ∈ I = {1, . . . , n}.
There is uncertainty over the state of nature ω ∈ Ω, whereΩ is finite. Each agent i
receives a possibly noisy signalφi ∈ Φi aboutω. For simplicity assume thatΦi = Ω
for all agents i. Let Φ =

∏n
i=1 Φi. Any φ = (φ1, . . . , φn) ∈ Φwill be also denoted

by (φ−i, φi). Let π be a probability on Ω × Φ which is the common prior of all
agents over states and signals. Let µ be the marginal probability on Ω.

Assume there are � goods, and letXi = R�
+ be the consumption space of agent i.

Each agent i’s preference ordering is given by a state dependent von Neumann-
Morgenstern utility function ui : Ω×Xi → R. Note that an agent’s utility depends
directly only on consumption and the true state ω. Consumption itself, however,
will depend on the signals. A consumption bundle for agent i is therefore given by
xi : Ω×Φ→ R�

+. An allocation x is a collection of consumption bundles xi, i ∈ I
for all agents. Agent i’s ex-ante expected utility is then given by

Vi(xi) =
∫

Ω×Φ

ui

(
ω, xi(ω, φ)

)
dπ(ω, φ).

Agent i’s endowment is given by ei : Ω×Φ→ R�
+. We assume that the endowment

ei only depends on the true state ω. Thus, with a slight abuse of notation, we will
often write ei(ω) to denote agent i’s endowment in state ω.

In a complete information economy, each agent i observes the true stateω. Thus,
the signal φ is given by φ = δ(ω) = (ω, . . . , ω). Let ∆ = {(ω, δ(ω))|ω ∈ Ω}.
Then π(∆) = 1 in a complete information economy, and only the consumption in
(ω, δ(ω)) matters. As a consequence, for complete information economies we will
often denote agent i’s consumption in (ω, δ(ω)) by xi(ω).

Finally, we describe our notion of convergence of allocations of the incomplete
information economies to an allocation in a complete information economy.

For each k ∈ N, let xk
i , i ∈ I be an allocation of the incomplete information

economy with prior πk such that limk→∞ πk(∆) = 1. Then xk
i , i ∈ I converges

to xi, i ∈ I if limk→∞ xk
i (ω, δ(ω)) = xi(ω, δ(ω)) for all ω ∈ Ω and all agents i.

1 Krasa and Yannelis (1994) show that if the grand coalition cannot block, then coalitional incentive
compatible notions are fulfilled. These incentive notions are stronger than Bayesian incentive compati-
bility, and therefore imply Bayesian incentive compatibility.
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3 The core concepts

3.1 Complete information economies

Consider an economy, in which the signals perfectly reveal the true state. Thus,
there is uncertainty at t = 0 about the state ω, but ω becomes known to all agents at
t = 1. As mentioned above, a consumption bundle can then be written as a function
of ω alone, i.e., xi : Ω → R�

+. Agent i’s ex-ante expected utility is then given by
Vi(xi) =

∫
Ω
ui(ω, xi(ω)) dµ(ω). Thus, we can use the standard definition of the

core of an exchange economy.

Definition 1 An allocation x is in the core of the complete information economy
if and only if

(i)
∑

i∈I xi =
∑

i∈I ei, µ-a.e. (feasibility);
(ii) The following does not hold:

There exists a coalition S ⊂ I and yi : Ω → R�
+, i ∈ S with

(ii.i)
∑

i∈S yi =
∑

i∈S ei, µ-a.e.;
(ii.ii) Vi(yi) ≥ Vi(xi) for all i ∈ S, where at least one inequality is strict.

An allocation x is a strict core allocation if x is a core allocation and if the same
utilities cannot be obtained by any strict subcoalition, i.e., there do not exist S � I
and yi : Ω → R�

+ with
∑

i∈S yi =
∑

i∈S ei, µ-a.e., and Vi(yi) = Vi(xi) for all
i ∈ S.

For example, it is easy to show that if there exists a competitive equilibrium (x, p)
with the property that

∑
i∈S xi 	=

∑
i∈S ei for all coalitions S � I then x is also

a strict core allocation. Note that under the above assumption, p is no longer a
competitive equilibrium price vector if the economy is decomposed into two parts.
Thus, the existence of a strict core allocation (which we require in Theorem 2
below) can be viewed as an indecomposibility assumption on the economy.

3.2 Economies with differential information

If the signals are noisy, then agents are differentially informed. We provide two
different core notions for differential information economies.

3.2.1 Definition of the private core In the private core of Yannelis (1991), each
agent i is restricted to consumption bundles that are measurable with respect to his
private information Fi. We first provide the definition of the private core, and then
describe in (1) how Fi is derived from the signal φi and the observed endowment
realization ei(ω). Also note that consumption bundles and endowments are now
written as functions of ω and φ.

Definition 2 An allocation x is in the private core of the differential information
economy if and only if

(i)
∑

i∈I xi =
∑

i∈I ei, π-a.e. (feasibility);
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(ii) xi is Fi-measurable for all agents i.
(iii) The following does not hold:

There exist a coalition S ⊂ I and yi : Ω × Φ→ R�
+, i ∈ S with

(iii.i) yi is Fi-measurable for all i ∈ S;
(iii.ii)

∑
i∈S yi =

∑
i∈S ei, π-a.e.;

(iii.iii) Vi(yi) ≥ Vi(xi) for all i ∈ S, where at least one inequality is strict.

Note that the main difference between the private core and the complete information
core is the measurability restriction imposed on the core allocation and on any
blocking allocation. Yannelis (1991) provides a very general existence result for
the private core.

It now remains to describe how each agent i’s private informationFi is derived.
Let σ(ei) be the information generated by ei, which can be interpreted as a partition
of Ω × Φ.2 In addition, agent i knows the signal φi. Thus,

Fi = σ(ei) ∨
{
Ω × Φ−i × {φi}

∣∣∣ φi ∈ Φi

}
. (1)

For example, consider the case where all agents’ signals are accurate. We now
show that any complete information core allocation x corresponds to a private
core allocation x̂. Define x̂i(ω, φ−i, φi) = xi(φi), where (with a slight abuse of
notation) xi(φi) corresponds to agent i’s consumption in the complete information
core allocation if the state is ω = φi. Then each x̂i is Fi measurable. Because the
signal is accurate,

∑
i∈I x̂i =

∑
i∈I ei,π-a.e., i.e., the allocation is feasible. Finally,

x̂ cannot be dominated by another Fi-measurable allocation for any coalition S.
Thus, x̂ is in the private core.

3.2.2 Definition of the incentive compatible core We first provide the standard
definition of incentive compatibility.

Definition 3 A consumption bundle xi is incentive compatible for agent i if and
only if ∫

Ω×Φ−i

ui(ω, xi(ω, φ)) dπ
(
ω, φ−i

∣∣ φi, ei
)

≥
∫

Ω×Φ−i

ui(ω, xi(ω, φ−i, φ
′
i)) dπ

(
ω, φ−i

∣∣ φi, ei
)
,

for all φi, φ
′
i ∈ Φi.

We now provide the definition of the incentive compatible core. The main difference
between this core and the core of a complete information economy is that the core
allocation itself and any allocation used by a blocking coalition are required to be
incentive compatible. The trades of members of coalition S must be measurable
with respect to the pooled information of all of its members. Otherwise, the coalition
could not execute the trades. Again, Fi is given by (1).

2 Thus, σ(ei) is the information generated by the sets of the form {ω|ei(ω) = ēi} × Φ, where
ēi ∈ R�

+.
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Definition 4 An allocation x is in the incentive compatible core of the differential
information economy if and only if

(i)
∑

i∈I xi =
∑

i∈I ei, π-a.e. (feasibility);
(ii) xi is incentive compatible and

∨
i∈I Fi-measurable for all agents i ∈ I .

(iii) The following does not hold:
There exist a coalition S ⊂ I and yi : Ω × Φ→ R�

+, i ∈ S with
(iii.i) yi is incentive compatible and measurable with respect to

∨
i∈S Fi for

all i ∈ S;
(iii.ii)

∑
i∈S yi =

∑
i∈S ei, π-a.e.;

(iii.iii) Vi(yi) ≥ Vi(xi) for all i ∈ S, where at least one inequality is strict.

As indicated in Allen (1994) and Vohra (1999), the incentive compatible core does
not exist in general. However, in Theorem 2 we show that it exists for economies
that are sufficiently close to a complete information economy.

4 The convergence results

In this section we analyze whether or not the private core and the incentive com-
patible core are close to the complete information core if the economy is close to a
complete information economy. Our economies could be parameterized by endow-
ments, preferences, and priors. When we characterize properties of the core with
“almost” complete information, we fix endowments and preferences. An economy
is then close to complete information if π(∆) is close to 1, i.e., if the probability
that all agents receive the correct signal is close to 1. In all of our Theorems we
therefore consider sequences of priors limk→∞ πk = π, where π(∆) = 1, and
investigate whether or not the limit points of sequences of incomplete informa-
tion core allocations coincide with the complete information core. The Theorems
investigate for what type of sequences πk, k ∈ N convergence can be obtained.

4.1 Convergence of the private core

We now show that private core allocations of economies with almost complete
information will in general differ substantially from complete information core al-
locations. In particular, Theorem 1 below shows that generically the set of limit
points of private core allocations has an empty intersection with the complete in-
formation core. We first illustrate the main intuition of Theorem 1 by means of an
example.

Example 1 Assume there are two agents i = 1, 2 and three states ωi, i = 1, 2, 3,
each of which occurs with positive probability. There is one good in each state. The
agents’ preferences are given by

u1(ω, x) =
{√

x if ω = ω1;
x otherwise;

u2(ω, x) = x, for all ω.

Each agent has a state independent endowment of 1 unit of the consumption good.
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Assume that agent 1 can perfectly observeω1, but that his signals about statesω2
and ω3 are incorrect with probability ε > 0. In contrast, agent 2 correctly observes
state 3, but his signals about states ω1 and ω2 are also incorrect with probability ε.
Because the endowments are state independent, agent i’s consumption in the private
core can only depend on φi, and can therefore be denoted by xi(φi). Feasibility
requires that x1(φ1) + x2(φ2) = e1 + e2 for πk a.e. φ = (φ1, φ2). Given the noise
in the signals described above, all φ ∈ Φ occur with positive probability. Thus,
feasibility implies that x1 and x2 are independent of the signals. Hence, the private
core consists only of the agents’ endowments.

In contrast, it easy to see that in a complete information core allocation, trade
will always occur. Agent 1 will give up a strictly positive quantity of the good in
state ω1 in exchange for an increased consumption in states ω2, ω3.

The result illustrated in Example 1 will hold for a generic economy, with gener-
icity over agents’ preferences. It is easy to see that we can only get a generic result.
For example, consider an economy, in which the endowment is Pareto efficient
in the complete information economy. Then no trade is also the only private core
allocation, and both core notions will therefore coincide.

In order to provide a generic result, we parameterize each agent i’s utility
function in state ω ∈ Ω by θi(ω) ∈ Θi,ω where Θi,ω is an open subset of R�.
Agent i’s utility is therefore given by ui(ω, x, θi(ω)). As we allow agent specific
perturbations of utility functions in different states ω, the entire parameter space,
Θ, has dimension �|Ω|n. We say that a result holds for a generic set of economies,
if there exists a set Θ̃ which is closed in Θ and has Lebesgue measure 0, such that
the result holds for all economies except possibly those in Θ̃.

In the following, let θ ∈ Θi,ω , and x ∈ R�
++. For the genericity argument, the

following standard assumptions must be fulfilled.

Assumption A1

(1) Each ui(ω, x, θ) is smooth, has strictly positive first derivatives with respect to
x, and has a negative definite matrix of second derivatives D2

xxui(ω, x, θ).
(2) D2

xθui(ω, x, θ) is non-singular.
(3) For all ω ∈ Ω, and for all sequence xk, k ∈ N, with xk ∈ R�

++ and
limk→∞ xk

l = 0 for some good l, it follows that limk→∞ ‖Dxui(ω, xk, θ)‖ =
∞.

(4) Each agent’s endowment is strictly positive.

The main result of this section, Theorem 1, shows that the private core does
not converge to the complete information core as long as for each agent i, one of
the signals is noisy in a state that agent i does not learn about from the endowment
realization.

Theorem 1 Assume that the economy fulfills Assumption A1 and that there are at
least two goods in each state. Then for a generic set of economies the following
holds:

Let πk → π be an arbitrary sequence of priors that fulfills

1. π(∆) = 1;
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2. for every k ∈ N and for each agent i there exist states ωi 	= ω′
i with ei(ωi) =

ei(ω′
i) and πk(φi = ω′

i

∣∣ ωi) > 0.

Let Ek be the economy with prior πk. For each k ∈ N, let xk be a private core
allocation ofEk. Then none of the limit points ofxk,k ∈ N is a complete information
core allocation.

Before proving the Theorem, we need Lemma 1 below. Lemma 1 shows that
generically Pareto efficient allocations of the complete information economy will
provide agents a different level of consumption in different states. Because there are
n agents, we add more thann independent restrictions on Pareto efficient allocations
if we require each agent i’s consumption to be the same in two different states for
all goods. Lemma 1 therefore follows from the fact that the Pareto set itself has
only dimension n− 1. The proof of Lemma 1 is in the Appendix.

Lemma 1 For all agents i, let ωi 	= ω′
i. Let Pθ be the set of all Pareto efficient,

(ex-ante) individually rational allocations with xi(ωi) = xi(ω′
i), for all agents i.

Then Pθ = ∅ for generic θ.

We now prove Theorem 1.

Proof of Theorem 1. Let ωi 	= ω′
i, i ∈ I be arbitrary. Then Lemma 1 implies

that there exists a generic set of economies such that no Pareto efficient allocation
fulfills xi(ωi) = xi(ω′

i). We next show that the limit of private core allocations
must always fulfill such restrictions.

Let xk be a private core allocation for the economy with prior πk. Then because
each agent i has a noisy signal, there exist φ′

i = ω′
i 	= ωi, such that πk(φ′

i|ωi) > 0.
Then

xk
i (ωi, δ−i(ωi), φ′

i) = xk
i (ω′

i, δ−i(ω′
i), φ

′
i), (2)

because agent i’s consumption must be measurable with respect to his information
Fi (he can neither distinguish the states from observing his signal, nor from learning
the endowment realization). Now note that in state ωi, all agents other than agent i
cannot determine whether agent i received signal φi or signal φ′

i, because the signal
is private information to agent i. Thus xk

j (ωi, δ(ωi)) = xk
j (ωi, δ−i(ωi), φ′

i) in all
private core allocations for all agents j 	= i. Because the aggregate endowment
only depends on ω and not on the signals, and because both φi and φ′

i can occur
with positive probability in state ωi, feasibility implies

xk
i (ωi, δ(ωi)) = xk

i (ωi, δ−i(ωi), φ′
i). (3)

Thus, (2) and (3), and the fact that ω′
i = φ′

i imply

xk
i (ωi, δ(ωi)) = xk

i (ω′
i, δ(ω

′
i)). (4)

Now consider a limit point x(ω) of the sequence xk(ω, δ(ω)), k ∈ N of private
core allocations. We can assume without loss of generality that (4) holds for the
same states ωi, ω′

i, for all elements in the subsequence of xk, k ∈ N that converges
to x. Therefore xi(ωi, δ(ωi)) = xi(ω′

i, δ(ω
′
i)). Thus, for a generic economy the

limit points of private core allocations are not Pareto efficient in the complete
information economy, and therefore not in the complete information core. This
proves the Theorem. ��



Core concepts in economies where information is almost complete 405

4.2 Convergence of the incentive compatible core

We now investigate the convergence of the incentive compatible core. First, we
require that there are at least three agents. If there are only 2 agents, we cannot
expect to get convergence as Example 2 indicates.

Example 2 Assume there are two agents i = 1, 2 and two states ω1, ω2. Each state
occurs with probability 1/2. There is one good in each state. Agents’ preferences
are given by

u1(ω, x) =
{√

x if ω = ω1;
x if ω = ω2;

u2(ω, x) =
{
x if ω = ω1;√
x if ω = ω2.

Each agent has a state independent endowment of one unit of the consumption
good.

First, consider the complete information economy, where each of the agents
learns the state ω when it is realized. It is easy to see that any ex-ante individually
rational and feasible allocationxmust fulfillx1(ω1) ≤ 1;x1(ω2) ≥ 1;x2(ω1) ≥ 1;
and x2(ω2) ≤ 1. Moreover, at least one of the inequalities must be strict for
complete information core allocations. We now show that no such allocation is the
limit of a sequence of incentive compatible core allocations.

Assume that each agent receives a noisy signal aboutω. The signal is correct with
probability 1−ε, and incorrect with probability ε. Letxε be an incentive compatible
core allocations for the economy with noise ε. Without loss of generality assume
that xε(ω, δ(ω)) converges. We denote the limit by x(ω).

Because agents’endowments are state independent, we can write their consump-
tion as a function of the reported signals only. Thus, xε

i (ω, ω
′) denotes agent i’s

consumption if agent 1 reports signal φ1 = ω and agent 2 reports signal φ2 = ω′.
Incentive compatibility of xε implies

EΩ×Φ2

(
u1(·, xε

1(ω1, ·))
∣∣∣ φ1 = ω1

)
≥EΩ×Φ2

(
u1(·, xε

1(ω2, ·))
∣∣∣ φ1 = ω1

)
(5)

EΩ×Φ1

(
u2(·, xε

2(·, ω2))
∣∣∣ φ2 = ω2

)
≥EΩ×Φ1

(
u2(·, xε

2(·, ω1))
∣∣∣ φ2 = ω2

)
(6)

where (5) is the incentive constraint for agent 1 if he observes φ1 = ω1, and (6) is
the incentive constraint for agent 2 if he observes φ2 = ω2.3

If we take the limit on both sides of (5) and (6) for ε→ 0 we get
√
x1(ω1) ≥

lim supε→0

√
xε

1(ω2, ω1) and
√
x2(ω2) ≥ lim supε→0

√
xε

2(ω2, ω1), which im-
plies

x1(ω1) + x2(ω2) ≥ lim sup
ε→0

xε
1(ω2, ω1) + xε

2(ω2, ω1). (7)

Now assume by way of contradiction that x is a complete information core al-
location. Then as noted above x1(ω1) ≤ 1 and x2(ω2) ≤ 1, where at least one
inequality is strict. Thus, (7) implies xε

1(ω2, ω1) + xε
2(ω2, ω1) < 2 for sufficiently

3 Note that the expectation operator itself depends on the prior over Ω × Φ, and therefore depends
on ε.
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small ε, a contradiction to feasibility.4 Therefore any limit of incentive compatible
core allocations is not in the complete information core.

Example 2 demonstrates that if there are only two agents, incentive compatible
core allocations do not necessarily converge to complete information core alloca-
tions. The reason for this result is that incentive compatibility would require that
both agents are penalized by a low level of consumption when reports φ1 = ω2
and φ2 = ω1 are made. If there are more than two agents, penalties can be ex-
ecuted by transferring the consumption good to other agents. In fact, Theorem 2
below shows that with three or more agents convergence can be obtained. That
is, we show that almost every complete information core allocation is the limit of
incentive compatible core allocations. In particular, this result also implies exis-
tence of incentive compatible core allocations close to complete information (see
the first statement in Theorem 2). This is a useful result, because as mentioned
earlier, the incentive compatible core may be empty. In an interesting recent paper,
McLean and Postlewaite (2000) provide alternative conditions under which such
core allocations exist.

In Theorem 2 we use the following regularity assumptions.

Assumption A2

(1) Each ui(ω, x) is smooth, has strictly positive first derivatives with respect to
x ∈ R�

++, and has a negative definite matrix of second derivativesD2
xxui(ω, x).

(2) For all ω ∈ Ω, and for all sequence xk, k ∈ N, with xk ∈ R�
++ and

limk→∞ xk
l = 0 for some good l, it follows that limk→∞ ‖Dxui(ω, xk)‖ = ∞.

(3) Each agent’s endowment is strictly positive.

Theorem 2 Consider an economy where

(i) |I| ≥ 3, (i.e., at least three agents);
(ii) π is a prior over Ω × Φ with π(∆) = 1 (i.e., signals are not noisy under π);
(iii) assumption A2 holds;
(iv) there exists a strict core allocation x in the complete information economy.

Let C be the set of core allocations of a complete information economy. Then
there exists a closed set N of lower dimension than C, such that for all sequences
of priors πk, k ∈ N that converge to the complete information prior π:

1. Incentive compatible core allocations exist in the economy with prior πk for all
sufficiently large k.

2. Every core allocation x ∈ C \ N is the limit of a sequence of incentive com-
patible core allocations of the incomplete information economies with priors
πk.

The proof of Theorem 2 is in the Appendix. We now explain the intuition.
Lemma 3 below demonstrates that any allocation of the complete information

economy is the limit of incentive compatible allocations. Thus, in order to prove
Theorem 2, one must show that the approximating sequence can be chosen to be in
the incentive compatible core.

4 Note that throughout this paper we assume that there is not free disposal.
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The existence of a strict core allocation ensures that the core has full dimension
(i.e., dimension n − 1, where n is the number of agents). Using Lemma 2 below,
one can then show that all complete information core allocations except those in a
setN of lower dimension than n−1 can be approximated by strict core allocations.
Thus, it is sufficient to prove the result for all strict core allocations x.

The proof proceeds by way of contradiction. Assume we have a sequence of
incentive compatible allocations xk, k ∈ N that converges to a core allocation x of
the complete information economy, but that xk is not in the incentive compatible
core for allk. One can show that eachxk can be selected such that the grand coalition
cannot improve uponxk by choosing another incentive compatible allocation. Thus,
if xk is not in the incentive compatible core, there must exist a coalition S � I ,
which can block it. Taking the limit as k →∞ implies that there exists a coalition
S � I which can obtain for its members the same utilities as in the strict core
allocation x, a contradiction that proves the Theorem.

Finally, we state Lemma 2 and Lemma 3. The proofs are in the Appendix.
In the following let U(S) be the set of attainable utilities of coalition S. Thus,

U(S) =
{
w ∈ Rn

∣∣ there existsxwith
∑

i∈S xi =
∑

i∈S ei such thatwi ≤ Vi(xi),
for all i ∈ S

}
. Let bdU(S) be the boundary of this set.

Lemma 2 Assume that A2 holds. Then bdU(S) ∩ bdU(T ) has dimension n− 2
for all coalitions S 	= T with ∅ � S, T � I .

Lemma 3 Assume that:

1. There are at least three agents;
2. x is an allocation with

∑
i∈I xi(ω, δ(ω)) =

∑
i∈I ei(ω) (feasibility if infor-

mation is complete);
3. xi(ω, δ(ω)) ∈ R�

++, for all i ∈ I , ω ∈ Ω;
4. πk, k ∈ N is an arbitrary sequence of priors with πk → π, and π(∆) = 1.

Then there exists a sequence xk, k ∈ N, with limk→∞
∫
ui(·, xk

i (·)) dπk = Vi(xi)
for all i ∈ I , where each xk is a Bayesian incentive compatible allocation for the
economy with prior πk.

Let C̃ be the set of limit points of all sequence of incentive compatible core
allocations, for a given sequence of priors πk, k ∈ N. Let C denote the set of core
allocations of the complete information economy. Theorem 2 shows that C̃ contains
C, except possibly for a negligible set. Are there cases where C̃ is strictly larger
than C? Theorem 3 below shows that this is the case. The intuition for this result
is as follows.

In the incentive compatible core, blocking can be difficult for two agent coali-
tions. We have already pointed this difficulty in Example 2. Thus, in order to find
economies where C̃ is strictly larger than C, it is sufficient to construct economies
in which blocking by two agent coalitions matters. Apart from constructing an
economy that has these required properties, Theorem 3 uses an argument similar to
that of Theorem 2 to show that allocations that can only be blocked by a particular
two agent coalition are limit points of incentive compatible core allocations.

Finally, we state Theorem 3. The proof is in the Appendix.
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Theorem 3 Let |Ω| ≥ 4 and |I| ≥ 3. There exist economies that fulfill all con-
ditions of Theorem 2, but for which the set of limit points of incentive compatible
core allocations C̃ is strictly larger than the complete information core C. The set
C̃ \C is not negligible, and the economies are robust with respect to perturbations
of endowments and preferences.

5 Appendix

Proof of Lemma 1. In this proof, let Ω = {ω1, . . . , ω|Ω|}. For every agent i let
ωki , ωk′

i
be the two states in which consumption should be the same. We now define

agent i’s expected utility by Vi(xi, θi) =
∑

ω µ(ω)ui(ω, xi(ω), θi(ω)). Then let
P̂θ be the set of all (x1, . . . , xn, p, λ2, . . . , λn) which solve

(E1) Dx1V1(x1, θ1)− p = 0;
(E2) DxiVi(xi, θi)− λip = 0, i = 2, . . . , n;
(E3) e−∑n

i=1 xi = 0;
(E4) xi1(ωki

)− xi1(ωk′
i
) = 0, for i < n; and xn2(ωkn

)− xn2(ωk′
n
) = 0.

Clearly, P̂θ is homeomorphic to the set of all Pareto efficient allocations for which
(E4) holds, a set that contains Pθ. Therefore, it is sufficient to prove that P̂θ = ∅
for generic θ.

The matrix of derivatives of this system of equations is given by

E =
(
C̃ B̃

Ã 0

)
,

where C̃, the matrix of derivatives of (E1)–(E3) with respect to x1, . . . , xn, p, λ2,
. . . , λn, is given by⎛⎜⎜⎜⎜⎜⎜⎝

D2
x1x1

V1(x1,θ1) · · · 0 · · · 0 −I · · · 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
0 · · · D2

xixi
Vi(xi,θi) · · · 0 −λiI · · · −p · · · 0

...
. . .

...
. . .

...
...

. . .
...

. . .
...

0 · · · 0 · · · D2
xnxn

Vn(xn,θn) −λnI · · · 0 · · · −p
−I · · · −I · · · −I 0 · · · 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and the matrix of derivatives of (E1)–(E3) with respect to θ1, . . . , θn is

B̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

D2
x1θ1

V1(x1, θ1) · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · D2
xiθi
Vi(xi, θi) · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · D2

xn,θn
Vn(xnθn)

0 · · · 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Finally, Ã = (A1, · · · , An), where Ai is the derivative of (E4) with respect to xi,
λ, and p. The only non-zero entries in matrix Ai correspond to the derivatives with
respect to xi1(ωki) and xi1(ωk′

i
) if i < n, and xn2(ωkn) and xn2(ωk′

n
), otherwise.
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We now show that matrix E has full rank. Thus, consider a linear combination
of the rows of E which is equal to 0. The vector of scalars for the rows are denoted
by w1 for (E1), w2, . . . , wn for (E2); a for (E3); and b for (E4). Matrix B̃ implies
thatwiD

2
xiθ
Vi(xi) = 0, i = 1, . . . , n. BecauseD2

xiθ
Vi(xi) has full rank, it follows

that wi = 0 for i = 1, . . . , n. Let a1,ω,k be the scalar multiplier corresponding to
the part of (E3) that ensures feasibility for good 1 in state ωk. Because wi = 0, the
linear combination of the column elements of E corresponding to the derivative
with respect to xn1(ωki) yields a1,ω,ki = 0. Similarly, it follows that a1,ω,k′

i
= 0.

Now let i < n and consider the linear combination of column elements of E
corresponding to the derivatives with respect to xi1(ωki

). Then since wi = 0 and
a1,ω,ki

= 0 we get bi = 0. Similarly, we can show that bn = 0. This immediately
implies that a = 0. Hence all scalars are equal to 0 and E has therefore full
rank. Because there are more equations than unknowns, the transversality theorem
therefore implies that P̂θ = ∅ except for a set Θ̃ ⊂ R� that has measure 0.

We now show that Θ̃ is closed. Let θk, k ∈ N be a sequence in Θ̃ with
limk→∞ θk = θ. Let (xk, pk, λk) be a solution of (E1)–(E4) given θk. Then the as-
sociated matrixE will not have full rank, i.e. some of the rows ofE will be collinear.
Without loss of generality we can assume that the same rows are collinear for all
k ∈ N. Because feasible allocations are bounded we can assume without loss of
generality that xk converges to x as k →∞. Since all xk are individually rational
and because of assumption A1 it follows that each xi is not on the boundary of
agent i’s consumption set. (E1) therefore implies that pk converges to p, where
p > 0. Thus, (E2) implies that λk also converges. Therefore, the rows of matrix E
are collinear for (x, p, λ) given θ. Thus, θ ∈ Θ̃. ��

Proof of Lemma 2. Let eS and eT be the aggregate endowments of coalitions S
and T , respectively. First, note that u ∈ bdU(S) ∩ bdU(T ) if and only if there
exist allocations x, y with the following properties:
x and y are feasible for coalitions S and T , respectively; x cannot be improved

upon by another allocation x′ with
∑

i∈S x
′
i = eS , and similar for y; ui = Vi(xi)

for i ∈ S and ui = Vi(yi), for i ∈ T .
Without loss of generality we renumber the agents such thatS = {1, . . . , k+j}

and T = {k, . . . , k + j, . . . ,m}, where m ≤ n. Then x and y must fulfill the
following equations:

(E1) DxiVi(xi)− λip = 0, i ∈ S;
(E2) DyiVi(yi)− µiq = 0, i ∈ T ;
(E3) Vi(xi)− Vi(yi) = 0, i ∈ S ∩ T ;
(E4)

∑
i∈S(xi − ei) = 0;

(E5)
∑

i∈T (yi − ei) = 0;

where λi, µi > 0, λ1 = µk = 1, and p, q > 0.
We now show that the matrix of derivatives (A B C) of (E1)–(E5) with respect

to x, y, p, λ, q, has full rank. The matrix A of derivatives with respect to x is given
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by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 . . . xk . . . xk+j

D2
x1x1

V1(x1) . . . 0 . . . 0
...

. . .
...

. . .
...

(E1) 0 . . . D2
xkxk

Vk(xk) . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . D2
xk+jxk+j

Vk+j(xk+j)
0 . . . 0 . . . 0

(E2)
...

. . .
...

. . .
...

0 . . . 0 . . . 0
0 . . . Dxk

Vk(xk) . . . 0

(E3)
...

. . .
...

. . .
...

0 . . . 0 . . . Dxk+j
Vk+j(xk+j)

(E4) I . . . I . . . I
(E5) 0 . . . 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrix B of derivatives with respect to y is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yk . . . yk+j . . . ym

0 . . . 0 . . . 0

(E1)
...

. . .
...

. . .
...

0 . . . 0 . . . 0
D2

ykyk
Vk(yk) . . . 0 . . . 0
...

. . .
...

. . .
...

(E2) 0 . . . D2
yk+jyk+j

Vk+j(yk+j) . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . D2
ymym

Vm(ym)
−Dyk

Vk(yk) . . . 0 . . . 0

(E3)
...

. . .
...

. . .
...

0 . . . −Dyk+j
Vk+j(yk+j) . . . 0

(E4) 0 . . . 0 . . . 0
(E5) I . . . I . . . I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Core concepts in economies where information is almost complete 411

Finally, the matrix C of derivatives with respect to the remaining variables is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p . . . λk . . . λk+j q . . . µm

−I . . . 0 . . . 0 0 . . . 0
...

. . .
...

. . .
...

...
. . .

...
(E1) −λkI . . . −p . . . 0 0 . . . 0

...
. . .

...
. . .

...
...

. . .
...

−λk+jI . . . 0 . . . −p 0 . . . 0
0 . . . 0 . . . 0 −I . . . 0
...

. . .
...

. . .
...

...
. . .

...
(E2) 0 . . . 0 . . . 0 −µk+jI . . . 0

...
. . .

...
. . .

...
...

. . .
...

0 . . . 0 . . . 0 −µm . . . −q
0 . . . 0 . . . 0 0 . . . 0

(E3)
...

. . .
...

. . .
...

...
. . .

...
0 . . . 0 . . . 0 0 . . . 0

(E4) 0 . . . 0 . . . 0 0 . . . 0
(E5) 0 . . . 0 . . . 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We now show that the rows of the matrix (ABC) are linearly independent. That
is, consider an arbitrary linear combination of the rows which is equal to 0. Denote
the vectors of scalar multipliers corresponding to (E1)–(E5) by wi, zi, αi, a, and
b, respectively. We must show that all multipliers are zero.

From the columns corresponding to the derivatives with respect to xi we get

wiD
2
xixi

Vi(xi) + aI = 0, for i < k; (8)

wiD
2
xixi

Vi(xi) + αiλip+ aI = 0, for i ≥ k. (9)

As λ1 = 1, the column corresponding to the derivative with respect to p yield

k+j∑
i=1

λiwi = 0. (10)

Finally, from the derivatives with respect to λi we get pwi = 0 for i ≥ 2. This, and
(10) implies

pwi = 0, for all i ∈ I. (11)

Now multiply from the right both sides of (8) and (9) by wi, and use (11). This
yields wiD

2
xixi

Vi(xi)wi + awi = 0. Then

k+j∑
i=1

[
λiwiD

2
xixi

Vi(xi)wi + λiawi

]
= 0. (12)

Now (10) and (12) imply that
∑k+j

i=1 λiwiD
2
xixi

Vi(xi)wi = 0. However, since
D2

xixi
Vi(xi) is negative definite it follows that wiD

2
xixi

Vi(xi)wi < 0 if wi 	= 0.



412 S. Krasa and W. Shafer

Thus, wi = 0 for i = 1, . . . , k + j. Now equation (8) immediately implies that
a = 0. Equation (9) therefore implies

wi = −αiλip
(
D2

xixi
Vi(xi)

)−1
. (13)

Thus, we get−αiλip
(
D2

xixi
Vi(xi)

)−1
p = 0, when we multiply both sides of (13)

from the right with p, and use (11). Note that p
(
D2

xixi
Vi(xi)

)−1
p < 0 because

p 	= 0. Thus, αiλi = 0. Because λi 	= 0, we therefore get αi = 0.
Similarly, we can prove that zi and b are zero. Thus, the matrix of derivatives of

(E1)–(E5) has full rank. Because there are m− 2 more equations than unknowns,
the set of solutions is therefore a m − 2 dimensional manifold. Thus bdU(S) ∩
bdU(T ) ∩ Rm has dimension m − 2. Consequently, bdU(S) ∩ bdU(T ) has
dimension n− 2. ��
Proof of Lemma 3. First, note that we can assume without loss of generality that
the information an agent receives from observing the endowment realization is
also contained in the signal. Formally, let ωi, ω′

i ∈ Ω with ei(ω) 	= ei(ω′). Then
π(φi = ω|ω′) = 0. We can therefore assume that allocations in the incomplete
information economy depend only on all signals φ = (φ1, . . . , φn) but not on ω.

Now let x be a feasible allocation of the complete information economy. We
define an allocation x̂ of the incomplete information economy as follows.

If φ = (ω, . . . , ω) then x̂i(φ) = xi(ω). If φ = (δ−i(ω), ω′), for ω′ 	= ω then
x̂i(φ) = 0 and x̂j(φ) = xj(ω) + (1/(I − 1))xi(ω). Finally, for all other signal
profiles let x̂i(φ) be the agent’s endowment ei(ω).

We now show that x̂(φ) is incentive compatible given priorπk for all sufficiently
large k. That is, we must show that∫

Ω×Φ−i

ui

(
ω, x̂i(φ−i, φi)

)
dπk(ω, φ−i|φi)

≥
∫

Ω×Φ−i

ui

(
ω, x̂i(φ−i, φ

′
i)
)
dπk(ω, φ−i|φi). (14)

If k → ∞ then πk

(
ω, φ−i

∣∣ φi) converges to 1 if φ−i = δ−i(φi), φi = ω,
and to 0 otherwise. Let ωi = φi. Then the lefthand side of (14) converges
to ui(ωi, x̂(δ(φi))) = ui(ωi, xi(ωi)). The righthand side of (14) converges to
ui(ωi, x̂(δ−i(φi), φ′

i)) = ui(ωi, 0). Because xi(ωi) > 0 and ui is strictly mono-
tone, it follows that

lim
k→∞

∫
Ω×Φ−i

ui

(
ω, x̂i(φ−i, φi)

)
dπk(ω, φ−i|φi) = ui(ωi, xi(ωi))

> ui(ωi, 0) = lim
k→∞

∫
Ω×Φ−i

ui

(
ω, x̂i(φ−i, φ

′
i)
)
dπk(ω, φ−i|φi).

Thus, for each i ∈ I and φi ∈ I there exists Kiφi > 0 such that (14) holds for all
k ≥ Kiφi . Because the number of states and agents is finite, we can find K > 0
such that (14), and hence incentive compatibility holds for all k ≥ K and all φi.
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Because limk→∞ πk = π and x̂(δ(ω)) = x(ω) we get

lim
k→∞

∫
ui(ω, x̂i(ω, φ)) dπk(ω, φ) =

∫
ui(ω, xi(ω, φ)) dπ(ω, φ) = Vi(xi).

Thus, we can define the sequence of allocations as follows: Let xk = x̂ for all
k ≥ K; and let xk be an arbitrary incentive compatible allocation for k < K. This
proves the Lemma. ��

Proof of Theorem 2. We first show that the core has dimensionn−1. More precisely,
the core contains a set which is homeomorphic to an open subset of Rn−1.

Because utility is strictly concave, the function ψ(x) = (V1(x1), . . . , Vn(xn))
is a homeomorphism between Pareto efficient allocations andU(I). By assumption,
there exists a strict core allocation x. Let ū = ψ(x) be the corresponding vector of
utilities. Then by the definition of a strict core allocation ū /∈ U(S) for all S � I .

Now recall that U(I) has dimension n − 1, i.e., it is homeomorphic to a set
containing an nonempty open subset of Rn−1. Since ū /∈ U(S) for all S 	= I and
since the sets U(S) are closed it follows that there exists a neighborhoodW (ū) of
ū in U(I) with W (ū) ∩ U(S) = ∅ for all S 	= I . Thus, W (ū) is homeomorphic
to a subset of the set of core allocations. Because W (ū) has dimension n− 1, the
core has dimension n− 1.

Now define N̂ =
⋃

S �=T ;S,T �=I bdU(S)∩bdU(T ). By Lemma 2, N̂ is a closed

set of dimension at most n−2. LetN = ψ−1(N̂). Then the intersection ofN with
the set of core allocations has at most dimension n− 2.

Let C̃ be the set of all core allocations y with ψ(y) /∈ U(S) for all S 	= I . Let
x be a core allocation with x /∈ N . We now show that x is in the closure of C̃.

Assume that x /∈ C̃. Then ū = ψ(x) ∈ U(S) for a coalition S 	= I . We now
construct a sequence of allocations xk, k ∈ N in C̃ that converges to x.

Let xk, k ∈ N be a sequence of Pareto efficient allocations that fulfill
limk→∞ xk = x and Vi(xk

i ) > Vi(xi) for all i ∈ S. Then ūk = ψ(xk) /∈ U(S).
In order to show that xk ∈ C̃ for sufficiently large k, it is remains to prove that
ūk /∈ U(T ) for all T 	= I .

Assume by way of contradiction that ūk ∈ U(T ) for a coalition T 	= I for all
large k. By construction T 	= S. Because U(T ) is closed, ū ∈ U(T ). Because x is
a core allocation, it follows that ū ∈ bdU(T ). Moreover, by assumption ū ∈ U(S)
and hence ū ∈ bdU(S). This, however, is a contradiction to x /∈ N .

It now remains to prove that every core allocation x /∈ N is the limit of incentive
compatible core allocations of incomplete information economies. Because the set
of limit points of sequences is closed, it is sufficient to provide a proof for all x ∈ C̃.

For any consumption bundle y, let V k
i (yi) =

∫
ui(ω, yi(ω, φ)) dπk. Let x ∈ C̃.

By Lemma 3 there exists a sequence of Bayesian incentive compatible alloca-
tions xk, k ∈ N for the incomplete information economies πk, k ∈ N with
limk→∞ V k

i (xk
i ) = Vi(xi) for all agents i ∈ I . We show that one can assume

xk to be constrained Pareto efficient5 for all k.

5 That is, there does not exist another incentive compatible allocation that makes all agents weakly
and at least some agents strictly better off.
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If xk is not constrained Pareto efficient, choose a constrained Pareto efficient
allocation x̃k with V k

i (x̃k
i ) ≥ V k

i (xk
i ) for all i ∈ I . Then because of compactness,

x̃k
i , k ∈ N has a subsequence that converges. By slight abuse of notation we

denote this subsequence again by x̃k
i , k ∈ N. Let x̃ be the limit. Clearly, Vi(x̃i) =

limk→∞ V k
i (x̃k

i ) ≥ Vi(xi). However, since x is Pareto efficient and because utility
is strictly concave it therefore follows that x̃ = x. Hence, x̃k converges to x.

It now remains to prove that xk is in the core for sufficiently large k. We
proceed by way of contradiction. Without loss of generality we can assume that
there exists a coalition S that blocks xk for all k. Thus, for every k there exist yk

with V k
i (yk

i ) ≥ V k
i (xk

i ) and
∑

i∈S y
k
i =

∑
i∈S ei. By compactness we can assume

without loss of generality that yk converges to an allocation y.6 Then
∑

i∈S yi =∑
i∈S ei. Moreover, Vi(yi) = limk→∞ V k

i (yk
i ) ≥ limk→∞ V k

i (xk
i ) = Vi(xi).

Thus, ψ(x) ∈ U(S), a contradiction to the assumption that x ∈ C̃. ��

Proof of Theorem 3. The proof proceeds as follows. First, we construct an economy
in which blocking by the two agent coalition {2, 3}matters. We denote byE the set
of allocations that are blocked only by {2, 3} but not by any other coalition. In the
economy that we construct, E has the same dimension as the core. The economy
has also strict core allocations. Then we show that these properties are robust if we
perturb agents’ utility functions. The perturbed economies have utility functions
that fulfill assumption A2. Finally, we use an argument similar to that of Theorem 2
to show that the set of limits of incentive compatible core allocations contains E,
and is therefore larger than the core.

To simplify notation in the proof, we will consider the core in the set of attainable
utilities rather than in the set of allocations. In particular, if U(S) denotes the set
of attainable utilities of coalition S, then v is in the core if v ∈ U(I) but not in the
interior of any U(S).

We start by constructing the example economy.
There are n ≥ 3 agents. Assume there are four states, ωi, i = 1, . . . , 4. The

argument immediately generalizes to any number of states greater than four. There
is one consumption good in each state. Agents’ utility functions are given by

u1(ω, x) =
{√

x if ω = ω1;
x otherwise;

u2(ω, x) =
{√

x if ω = ω2, ω3;
x otherwise;

ui(ω, x) =
{√

x if ω = ω2;
x otherwise.

for i ≥ 3

Each agent’s endowment in the four states is (a, a, a, b), where b ≥ (n+1)a.Agents
therefore know at t = 1 whether state 4 has occurred. However, their information
about states ω1, ω2, and ω3 is noisy. Note that state ω4 is included to make utility
functions quasilinear and to avoid boundary problems. Thus, for the case of com-
plete information, the economy can be transformed into a game with transferable
utility. In particular, the set of allocations for a coalition S where marginal rates

6 More precisely, define yk
i = yi for all i /∈ S. The resulting sequence is bounded by the feasibility

restriction for coalition S.
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of substitution are equated have the property that agent i’s consumption is 1/4 in
state ω if ui(ω, x) =

√
x and there exists j ∈ S with uj(ω, x) = x.

Now normalize each agent’s utility function such that E[ui(ei)] = 0. Let z =
a − √a + 1/4. Let m be the number of members of a coalition S. The payoff of
any coalition S with at least two members is then given by

(i) V (S) = (m+ 1)z if 1, 2 ⊂ S;
(ii) V (S) = mz if 1 ∈ S but 2 /∈ S;
(iii) V (S) = z if 2 ∈ S but 1 /∈ S.

The payoff of any single agent coalition is 0. Let v = (v1, . . . , vn) be an allocation
of agents’ expected utilities. Let D be the set of all v that fulfill the following
conditions.
v1 > (n − 1)z, v2 > z, vj > 0, for all j, and

∑n
i=1 vi = (n + 1)z. Then

D is a subset of the core. In fact, D contains only strict core allocations, because∑
i∈S vi > v(S) for all v ∈ D, and for all S � I . Moreover, because D has

dimension n− 1, the core has full dimension n− 1.
Let E be the set of all v that fulfill the following conditions.
v1 = 4z− t1, v2 = t2, v3 = t3, vj = z− tj , for j ≥ 4, ti > 0 for all i, t1 < z,∑

j �=2,3 tj < z, and t2 + t3 =
∑

j �=2,3 tj .
Note that E has dimension n − 1. Moreover, none of the allocations in E is

in the core, because they can be blocked by coalition S = {2, 3}. In particular,
v({2, 3}) = z. However, since

∑n
j �=2,3 tj < z it follows that v2 + v3 < z. Thus,

{2, 3} can block. Also note that {2, 3} is the only coalition that can block. In fact,∑
i∈S vi > v(S), for all coalitions S 	= I, {2, 3}. That is, all allocations of utilities

inE are strict in the sense that the same utilities cannot be obtained for its member
by a coalition S 	= I, {2, 3}.

Because agents’ consumption is strictly greater than 0 in all states, we can
modify agents utility function such that all agents’ marginal utility at 0 is infinite
in all states. We now perturb the utility functions.

Let ε > 0 be arbitrary. Consider the set Uε of all utility functions for the n
agents ũi, i = 1, . . . , nwith

∣∣ui(ω, x)− ũi(ω, x)
∣∣ < ε for all ω ∈ Ω, i ∈ I and for

all 0 ≤ x ≤∑i∈I ei. Clearly, Uε contains preferences which are strictly concave.
Thus, the conditions of Theorem 2 are fulfilled for such preferences. Let U(S) and
Ũ(S) be the set of attainable utilities generated by ui and by ũi, respectively. Then
U(S) and Ũ(S) will differ by less than ε. That is, let v ∈ U(S) be arbitrary. Then
there exists ṽ ∈ Ũ(S) with ‖v − ṽ‖ < ε. Similarly, for all ṽ ∈ Ũ(S) there exists
v ∈ U(S) with ‖v − ṽ‖ < ε.

Let v ∈ D. Then as shown above v /∈ U(S) for all S � I . Now choose
ε < (1/2) dist(x, U(S)). Let Wε(v) be an ε-neighborhood of v. Then v′ /∈ Ũ(S)
for all v′ ∈Wε(v), where Ũ(S) is generated by utility functions ũ ∈ Uε. The core
of the economy with utility functions ũi therefore contains all ṽ ∈ bd Ũ(I) with
ṽ ≥ v′ for some v′ ∈ Wε(v). Thus, ṽ /∈ Ũ(S) for all S � I . Thus, there exist
strict core allocations in the perturbed economy. As a consequence, the core has
full dimension n− 1.

Similarly, we can pick v ∈ E and prove that there exists a neighborhoodWε(v)
such that ṽ ∈ bd Ũ(I) and ṽ /∈ U(S) for all S 	= I, {2, 3}.
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Now pick utility functions in Uε that fulfill the assumptions of Theorem 2. Let
v ∈ E, and ṽ be a vector of utilities generated by a Pareto efficient allocation x
with ṽ ≥ v′ for some v′ ∈ Wε(v). Note that the set of all such allocations x has
dimension n − 1. Moreover, x is not in the core as it can be blocked by coalition
S = {2, 3}. It thus remains to show that x is nevertheless the limit of utilities of
incentive compatible core allocations.

Let πk → π such that agents 2 and 3 are not completely informed about states
ω1, ω2 and ω3, i.e., πk

(
φk = ωi

∣∣ ωj

)
> 0, for i, j = 1, 2, 3 and k = 2, 3. We now

proceed as in the last part of the proof of Theorem 2.
Lemma 3 implies that there exists a sequence of Bayesian incentive compat-

ible allocations xk, k ∈ N for the economies with priors πk, k ∈ N such that
limk→∞

∫
ui(ω, xk

i (ω, φ)) dπk = Vi(xi). Again, one can assume that xk is con-
strained Pareto efficient.

Now suppose there exists a coalition S that can block xk. Than as in Theorem 2
one can conclude that S can block x. Thus, S = {2, 3}. In order to prove that xk

is an incentive compatible core allocation, it therefore remains to prove that {2, 3}
cannot block xk for all sufficiently large k.

In order for agent 2 and 3 to improve through trade and receive an allocation
close to x, agent 2 must make a transfer to agent 3 in state ω3 which is strictly larger
than the transfer in the other states. Thus, similar to Example 2, the trades are not
incentive compatible. Agent 2 is better off reporting s = ω1 if s = ω2 or ω3 has
occurred. Similarly, agent 3 is better off reporting ω3 when ω2 has occurred. Thus,
the resulting allocation is not incentive compatible and agents 2 and 3 can therefore
not block. Hence x is a limit of incentive compatible core allocations. ��
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Summary. In a situation where agents have private information, we investigate the
stability of mechanisms with respect to coalitional deviations. In the cooperative
tradition, we first extend the notion of Core, taking into account the information a
coalition may have when it forms and the conjectures of outsiders. This leads us to
propose a family of Cores rather than a single one. Secondly, we study the stability
of Core mechanisms to secession proposals in simple noncooperative games. The
two different stability analyses, normative and strategic, tend to give support to the
more natural extension of the Core, called Statistical Core, only in situations where
some strong form of increasing returns to coalition is met. Without this property,
arguments for a concept of Core that is non empty in a reasonably large class of
problems are less compelling. Applications to taxation and insurance are given.
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1 Introduction

We consider the stability of arrangements made in a given Society (the Grand
Coalition) when the arrangements may be challenged by subgroups of the Society
(coalitions). However, because information is incomplete and asymmetric, social
choice alternatives, for any coalition, are incentive mechanisms that simultaneously
allow to extract information and to allocate resources. The set of such incentives
devices that are available to the Society, or to its coalitions, depends upon the exact
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nature of the informational gaps that constrain mechanism design. In the cooperative
tradition, we take a viewpoint associated with the concept of Core. But the context
leads to propose a family of plausible Cores rather than a single Core. All make
related assumptions on the information that is available to coalitions but they reflect
different conjectures of outsiders to the coalition. First, attention is focused on the
relationship between these concepts. Second, we study the connections between
the cooperative viewpoint, which the different concepts that are introduced reflect,
and the assessment of secession threats in simple non cooperative games.

A number of recent studies have been concerned with asymmetric information
in cooperative games. It is useful to stress, at the outset, two main possible sources
of differences with ours.

First, we consider problems in which both the mechanism design and the anal-
ysis of objections by coalitions are made at the interim stage, i.e. when agents have
learnt the part of the information that is privately held. This feature can be con-
trasted with the options taken in previous studies. Wilson (1978) in his pioneering
work, or more recently Yannelis (1991), Koutsougeras-Yannelis (1993) are con-
cerned with ex ante arrangements (in an exchange economy) that are challenged,
as we do here, at the interim stage. They do not use however the mechanism design
approach to tackle the revelation problem that appears in case of asymmetric infor-
mation. Instead they consider various degrees of pooling of information among the
members of a coalition when it forms, each one leading to a different Core, such
as the coarse, fine or private Core. Another line of research (Allen, 1992; Vohra,
1997; Forges-Heifetz-Minelli, 1999) studies the ex ante coalitional stability of such
mechanisms (which are implemented at the interim stage).

Second, attention is focused on a framework that is special from the viewpoint
of mechanism design theory. We assume that the distribution of the characteristics
on which there is incomplete information is known at the level of the whole Society.
In line with this assumption, we further assume that the incentives mechanisms used
to extract information are anonymous, in the sense that what an agent receives only
depends on his announcement and on the distribution of announced characteristics.1

These two first options make clear that the present work incorporates preoc-
cupations that are similar to those of the literature on the coalitional stability of
taxation rules or on insurance under adverse selection. Although these two pieces
of literature concentrate on formal models that have substantial differences, in both
insurance and taxation models agents have private information, respectively on
”ability” and ”risk”. Mechanism design as well as stability threats have to be en-
visaged at the interim stage. Earlier studies that take a related viewpoint include
Berliant (1992) who deals with taxation problems, Kahn-Mookherjee (1995) who
are mainly concerned with insurance issues, and Hammond (1989) who, however,
adopts alternative views of the blocking process.2

1 The justifications and properties of such anonymous mechanisms have been the focus of a subset
of the incentives literature that includes Hammond (1979), Guesnerie (1981), Mas Colell-Vives (1993),
Guesnerie (1995) (Chap.1).

2 The paper by Boyd-Prescott (1986) and more recently the work by Vohra (1998) in an exchange
economy also take an interim viewpoint.
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The informational hypothesis underlying the blocking procedure that we are
considering in the present paper deserves special comments at the outset. We as-
sume, throughout the paper, that the information that may be public knowledge
within a coalition is comparable to the information available to the Grand Coali-
tion: in other words, the coalitions have information on the distribution of their
characteristics. Such an assumption is not absent from the theoretical literature,3

although it is debatable on a priori grounds. Furthermore, as we shall argue later,
the assumption is overwhelmingly adopted within the vivid and rapidly growing
literature on the coalitional stability of tax rules in Nations or in Federations. Partly,
our paper may be viewed as an attempt of assessing the validity of the just evoked
most popular informational assumption from basic premises.

As suggested at the beginning of this introduction, we first define a family
of Cores that are immune to blocking threats by coalitions that would be able to
discover the distribution of the characteristics of their members. With the Statisti-
cal Core, the distribution is assumed to be known, whereas in the whole family of
Beliefs-Based Cores such a knowledge is compatible with guesses of the coalitions’
members. Such guesses are triggered by considerations of attractiveness of block-
ing offers, that derive themselves from parameterized beliefs of the outsiders to the
coalition. The Status quo Core, one of our Beliefs Based Cores, corresponds to the
conservative beliefs, à la Rothschild-Stiglitz, that outsiders can keep their standing
utility levels. We show how, in general, all these Cores can be ordered by inclu-
sion. We then introduce notions (effectivity of monotonic blocking) that reflect the
existence of different forms of ”increasing returns to size”, or ”increasing returns
to coalitions”. Under the corresponding assumptions, the general inclusion order
previously alluded to is simplified: in particular, the Statistical Core is identical to
the Status quo Core.

The final part of the paper (Section 4) comes back on the problems just evoked
- the evaluation of the adequacy of the different Core concepts - but now with a
non cooperative perspective. Our concern, in contrast with some recent literature,
is not the ”implementation” of the various Cores - i.e. exhibiting games whose
equilibria lead to the Core4 - but rather a robustness analysis: assuming that a
Core outcome has been implemented, we consider games that are intended to test
the stability of the outcome to outside offers. Our setting and terminology are
reminiscent of the theory of local public goods where the stability of arrangements
is challenged within the framework of ”developer” games.5 The conclusions of
this section reinforce the conclusions of the previous ”cooperative” analysis: when
there are increasing returns to size that imply the identity of the Statistical and the
Status quo Cores, then the corresponding Core mechanisms are the only ones that
are not ”destabilized” – in a sense that refers to robust equilibria associated with
iterative elimination of dominated strategies – in the developer game.

3 In particular, in the just two quoted articles, the assumption is explicitly made in Berliant (1992),
or is an implicit consequence of the approach taken in Kahn-Mokherjee (1995).

4 There is a significant literature on the so-called implementation problem (see e.g. Perry-Reny,
1994), that mainly focuses attention on the complete information case.

5 Such a viewpoint also evokes the durability concept of Holmstrom-Myerson (1983).
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The plan is as follows. Feasible incentives mechanisms are defined for the Grand
Coalition and the coalitions in Section 2. Examples on taxation and insurance illus-
trate the framework. Several notions of Core are introduced, and their relationships
are examined in Section 3. Section 4 defines developer games, studies their equi-
libria and their relationships with the Core outcomes. Conclusions are drawn in
Section 5, and some proofs are gathered in Section 6.

2 The model

We consider a society A, also called the Grand Coalition. Its population consists
of a continuum of infinitesimal agents but definitions are always chosen so that,
in case, they remain congruent with those that would be taken if the number of
agents were finite. The population is endowed with a probability structure (A, λ).
Each individual is characterized by his type θ, his preferences being represented
by a utility function u(., θ). He will be called a θ-agent. There is a finite number of
possible types, also called characteristics, T = {θ1, ..., θp}. The mapping θ̃ : a ∈
A→ θ̃(a) ∈ T describes the agents’ profile of characteristics.

As is well known, the decision or allocation rules that can be used by the society
crucially depend on the nature of public information and on the repartition of private
information. We assume that:

– each agent knows his own type, and this privately held information is neither
publicly verifiable nor observable,

– the individual characteristics are independent draws from a probability distribu-
tion µ on T ,

– the distribution µ is public knowledge.

In the usual terminology, we are at an interim stage where the state of the
world, i.e the exact profile of the individual types, is unknown but agents have
private information on their own type. Each agent only observes the others’ names
and these names are not correlated with types. By the law of large numbers, the
distribution is exactly µ: the measure of agents of type θj is equal to µ(j) for any
j = 1, ..., p.6

A distribution of characteristics is a positive vector µ, the j-th coordinate being
interpreted as the measure of type j. We shall have to consider the set of all possible
distributions:

M =

⎧⎨⎩µ/∑
j

µ(j) ≤ 1, µ(j) ≥ 0, j = 1...p

⎫⎬⎭ .
6 For recent discussions on the law of large numbers when the set A is a continuum, see Al-Najjar

(1995) and Khan-Sun (1999).
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2.1 Feasible and incentive compatible mechanisms

In this set up, the society has to decide upon some allocation mechanism which
both allocates resources and extracts information, i.e. which must satisfy feasibility
and incentive compatibility constraints.

A mechanism specifies the outcome for all members of the society as a func-
tion of the announcements. Feasibility is assumed to depend on the distribution of
characteristics only, as it often occurs in economic examples:X(µ) will denote the
set of feasible outcomes when the distribution of characteristics is µ. Concerning
incentives, we require mechanisms to be incentive compatible in dominant strategy
so that, by the revelation principle, we may restrict attention to direct and truthful
mechanisms.

Finally we consider mechanisms that are anonymous in two ways: first an
agent’s allocation does not depend upon his name ”a”, and second it is influenced
only by the distribution of the characteristics announced by the others and not by
their precise profile. To avoid tedious repetition when we consider coalitions, the
mechanisms are assumed to be defined for all distributions on T of size smaller
than 1, i.e. for any µ inM .

Definition 1 A (direct anonymous) mechanism f is a function defined over T ×M
which assigns to any (θ, µ) an element f(θ, µ), interpreted as the outcome for a
θ-agent belonging to a group whose distribution is µ.

The Grand Coalition. A priori, the set of possible announcements profiles for the
Grand Coalition is:

M(1) =
{
µ ∈M/

∑
j

µ(j) = 1
}

Definition 2 A mechanism is incentive compatible and feasible (ICF) if

u(f(θ, µ), θ) ≥ u(f(θ′, µ), θ),∀θ, θ′ ∈ T, ∀µ ∈M(1) (1)

and

(f(., µ)) ∈ X(µ), ∀µ ∈M(1) (2)

Condition (1) says that truth telling is a dominant strategy. It uses the fact that,
each agent being infinitesimal, his announcement has no effect on the distribution
of announced characteristics. Condition (2) requires more comments. In general,
whether an allocation rule (f(., µ)) is feasible depends not only upon the distribu-
tion of announced characteristics, but also on the true distribution. Hence, except in
some special cases such as the taxation game we shall introduce later on, condition
(2) has to be interpreted as involving feasibility at equilibrium, i.e. when agents
tell the truth, rather than out of equilibrium.7

7 Note that feasibility could have been required only for the true distribution µ since it is exactly
known. However, in the finite population case, the exact distribution is unknown since the profile is
a N−sample of µ. Then, the present formulation introduces no discontinuity between large but finite
populations and infinite ones. Note also that if the distribution of a finite population were known, then
incentive compatibility constraints would not bind, since high punishment mechanisms would implement
first best allocations. However this result is not robust to some uncertainty on the exact distribution,
whatever small, that occurs in an N-sample where a single lie cannot be detected for sure.
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Coalitions. In our framework, a coalition, as the whole society, takes decisions on
the basis of mechanisms that should be feasible and incentive compatible with its
members’ information. A coalition C is a subset of A. It is characterized by the
distributionµC of its members’types, whereµC(j) gives the measure of agents with
type θj in C. Its size s, equal to s =

∑
j µ

C(j) is observable. Relevant coalitions
are of positive size. The set of types who have non zero measure in the coalition is
called its support. Its feasibility set is denotedX(µC). The set of distributions that
are now considered is:

M(s) =

⎧⎨⎩µ ∈M/∑
j

µ(j) = s

⎫⎬⎭ .
Definition 3 A mechanism f is incentive compatible and feasible for a
coalition of size s if

u(f(θ, µ), θ) ≥ u(f(θ′, µ), θ),∀θ, θ′ ∈ T, ∀µ ∈M(s) (3)

and

(f(., µ)) ∈ X(µ), ∀µ ∈M(s). (4)

Definition 3 when applied to the Grand Coalition coincides with Definition 2.
If, in addition, the coalition knows more than its size, for example if it knows its
distribution as we consider further on, we stick to the same definition in line with the
argument that we developed in footnote 7 for the Grand Coalition.8 Also previous
comments on the meaning of feasibility still apply. Note that, as is standard in
cooperative game theory, we view objections as "minmax threats". Accordingly,
what is feasible for a coalition is what it would get on its own without the help of
agents outside the coalition.

Finally it will be convenient to consider mechanisms that are incentive compat-
ible and feasible for all coalitions.

Definition 4 A mechanism is universally ICF or, for short, universal, if it is in-
centive compatible and feasible for all coalitions of positive size.

We shall illustrate this general framework with two examples, a public good
model à la Diamond-Mirrlees (1971), and the insurance model with adverse selec-
tion of Rothschild–Stiglitz (1976).

8 Recall that, in an infinite agents framework, adding a finite number of agents does not affect the
distribution µ, hence the outcome. Therefore, the utility level u(f(θ, µ), θ) is well defined even for
an agent with a type θ outside the support of µ and incentive compatibility is required for any type,
even if the support is known. One may object that if the coalition knows its distribution it knows a
fortiori its support S, and could use such an information. Accordingly, the last part of the incentive
compatibility condition (3) ∀µ ∈ M(s) could be modified into (3)’: ∀µ ∈ M(s) with support S.
However, a mechanism that satisfies (3)’ is always the restriction of a mechanism that satisfies (3): here,
the incentive compatibility constraints for different µ can be analyzed separately. The domain on which
the mechanism is designed introduces significant differences only if restrictions on the outcome, when
the distribution varies, are introduced (such as the continuity restrictions in Mas-Colell-Vives, 1993).
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2.2 Examples

1. A pure public good model There are two private goods, one consumption good
and labor, and a public good. Both consumption and public goods are produced
from labor through technologies with constant returns to scale. Preferences over
private and public goods are separable, and represented for a θ-agent by:

u(x, l, y, θ) = v(x, l, θ) + w(y)

where x, l, y are respectively the amounts of consumption good, labor and public
good. Standard regularity, monotonicity, and concavity assumptions are made.

Some anonymous feasible incentive compatible mechanisms can be associated
with tax systems. More precisely, take labor as the numeraire and consider a spe-
cific tax t on the consumption good together with a uniform lump sum tax (possibly
negative) r. Given such taxes (t, r), let us define an equilibrium.9 Due to the separa-
bility of preferences, one may proceed as follows. The competitive production price
for the private good is equal to its constant average cost c, and the consumption
price to c+ t. The consumer’s demand at that price, x(t, r, θ), l(t, r, θ), solves:

maximize v(x, l, θ) over (x, l), such that (c+ t)x ≤ l − r.

If all collected taxes are used to produce y(t, r, µ) units of public good, of unit cost
1, then, with straightforward notation:

y(t, r, µ) = r + tEµx(t, r, θ).

Consumption good market clearing obtains through an appropriate choice of the
production scale. From that, together with Government Budget balance, the labor
market also clears.

Consider now the mechanism that assigns the equilibrium allocation associated
with the distribution of announced preferences µ: produce Ytr(θ, µ) = y(t, r, µ)
that has just been computed, (and that is independent of θ), and assign to an agent
who has announced θ: Xtr(θ, µ) = x(t, r, θ), and Ltr(θ, µ) = l(t, r, θ) where
x() and l() are as just defined (and are actually independent of µ). The mecha-
nism (Ytr, Xtr, Ltr) associated with tax system (t, r) is incentive compatible and
feasible, and even universal in the sense of definition 4.10

Conversely, if labor revenue is not observable and trade on consumption good
is costless and non verifiable, nothing in our setting is lost in welfare terms when
restricting attention to mechanisms associated with tax systems. The just sketched
identification of tax systems with (anonymous) incentives mechanisms can be ex-
tended to models à la Diamond-Mirrlees (1972).11

The reader should note an important property of the mechanisms just described,
when taxes and lump sum contributions are positive: if new agents enter a coalition,

9 Some conditions on (t, r) have to be imposed, for example r should not be too high.
10 Actually, it is feasible, even ”out of equilibrium” (cf the comment on definition 2).
11 These assertions are substantiated, for example, in Guesnerie (1995), where a key insight is Theorem

4 in chapter 1, and where bibliographical references, starting from Hammond (1979) and Guesnerie
(1981), are given.
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whatever their types, the incentives system is such that the incumbents, the initial
members of the coalition, are necessarily better off. This property, labelled later
full-monotonicity, reflects the existence of sufficiently strong increasing returns to
size in the public good model; such property cannot be expected, as we shall see
now, in an insurance context.

2. Insurance models with adverse selection Individuals are alike except for their
probability θ of having an accident, which costs d. Their income isw. A mechanism
assigns an income w1(θ, .) in case of no accident and w2(θ, .) in case of accident
yielding a utility level of:

(1− θ)u(w1(θ, .)) + θu(w2(θ, .)).

Assuming the law of large numbers, feasibility requires ifµ is the actual distribution
of characteristics:12

Eµ[(1− θ)w1(θ, .) + θw2(θ, .)] ≤ w − dEµ[θ].

The mechanism f of the general model identifies with the vector-function
(w1(., .), w2(., .)). Besides feasibility, incentive compatibility, referred to as self-
selection in the insurance literature, is defined as above.

3 Cores

3.1 Information of coalitions

Now the methodology of our investigation is the following. We are at the interim
stage: private information has been revealed to the agents. What are the objections
that can be made, at the interim stage, at some mechanism f proposed by the
Grand Coalition ? In our framework, a coalition, as the whole society, has to use
mechanisms which should be incentive compatible (see Definition 3). A coalition
blocks (interim) if it is common knowledge for its members that there exists an ICF
mechanism which makes all of them better off. Of course blocking opportunities
crucially depend on any specific information a coalition may acquire at the interim
stage. We shall consider two cases: in the first one, interim information can be seen
as exogenous, in the second case, endogenous.

– statistical information: some coalitions will learn the distribution of their mem-
bers’ characteristics but it is not known which coalition(s) will be informed at the
interim stage. In such circumstances, a mechanism can be viewed as ”stable” if
it is common knowledge that no informed coalition will block. Another possible
justification for considering statistical information is normative. Even if coalitions
are unable to strategically block, one still may be concerned by what they would
achieve if they had access to the same type of information as the Grand Coalition.

12 The next equation makes clear that, as asserted precedently, feasibility depends upon the actual and
the announced distribution of characteristics. Then, contrary to the previous case, the mechanism is not
necessarily feasible if agents lie.
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– beliefs-based information : coalition members infer information from the attrac-
tiveness, for the different types, of seceding proposals. In other words, self-selection
arguments provide information to potentially blocking coalitions.

In our context, the latter approach may a priori look more sensible than the
former one. That statistical information matters either for blocking or for evaluating
the power of coalitions, is however explicitly accepted by a large body of the existing
literature which fits the present framework. It is the case with the contributions
concerned with the coalitional stability of taxation rules, when considering either
the Core or the Shapley value (see for example respectively the survey by Greenberg,
1994; Aumann-Kurz, 1977). Similarly, in the more recent literature concerned with
fiscal federalism, almost all contributions assume that coalitions are sufficiently
informed so that they can predict the level of tax receipts. The fact that this standard
approach is a priori debatable is one of the starting point of the present paper.
For a critical assessment, we undertake here the comparison of the stability of
mechanisms under alternative informational assumptions.

3.2 Blocking and cores

Statistical blocking, as defined below, is the standard blocking condition for a
coalition who knows its distribution.

Definition 5 Let f be an ICF mechanism for the Grand Coalition. A coalition
C, with distribution µC , size s and support S, statistically blocks if there is a
mechanism g that is feasible and incentive compatible for it such that:

u(g(θ, µC), θ) > u(f(θ, µ), θ),∀θ ∈ S. (5)

f is then said to be statistically blocked by coalition C with the mechanism g.

In words any member of C, who knows the distribution µC , correctly expects
a higher utility level from secession with the blocking mechanism than from the
standing mechanism.

”Beliefs-based blocking”, that will be now defined, relies on the idea that a
seceding coalition is able to guess its distribution from selection arguments: the
proposed mechanism is not only preferred by the agents inside the coalition to the
standing mechanism, as above, but, also, is constrained not to be chosen by the
agents outside the coalition. The selection crucially depends on the utility levels
that the latter expect in not joining a successful secession, and on the fact that these
levels are common knowledge.

As a simple benchmark, we shall first assume that an agent expects some
exogenous reservation utility level which only depends on his type. Denote by
u∗ = (u∗(θ1), ..., u∗(θp)) such a vector of reservation levels. In such a context,
agents of a given type cannot be distinguished and, hence, face the same dilemna:
namely either to join or not to join. Therefore the coalitions that may block are
necessarily type-full in the following sense:

Given a subset S of types, S ⊂ T , the S-full coalition is the coalition composed
with all agents whose type belongs to S, the distribution of which is denoted µS

(note that µA = µ).
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Definition 6 An incentive compatible and feasible mechanism f for the Grand
Coalition is u∗-beliefs blocked if for some S, S ⊂ T , the S-full coalition statisti-
cally blocks with an ICF mechanism g i.e.:

u(g(θ, µS), θ) > u(f(θ, µ), θ) for all θ in S (6)

and moreover

u(g(θ, µS), θ) ≤ u∗(θ) for all θ not in S. (7)

Equation (6) expresses the blocking argument for the S-full coalition. (7) states
the self-selection argument introduced above: no single agent with type outside
S wants to join the coalition, although he could without modifying the coalition
distribution, given his exogenous reservation utility level. This allows, assuming
that an agent blocks only if he has a strict incentive to do so, the coalition to be sure
of its composition and to ”learn” µS .

Beliefs-based blocking is more difficult than statistical blocking: not only agents
who block benefit from secession, but also other agents should not be interested
in joining. The lower the exogenous utility reference levels, the more difficult the
latter condition and the larger the corresponding Core (to be defined) is.

The reservation utility levels can be made endogenous. There are a number of
different ways to do so, which may depend upon the context. Here we focus on
the status quo reservation levels which are the utility levels that are obtained at the
standing mechanism when applied to the whole society:13

u∗
f (θ) = u(f(θ, µ), θ)

We now define in the usual way the Cores that correspond to the different blocking
concepts.

Definition 7 The Statistical Core is the set of ICF mechanisms that are not sta-
tistically blocked. The u∗-Beliefs-Based Core (u∗-BB Core) is the set of ICF
mechanisms that are not u∗-Beliefs-Based blocked. Status quo blocking is defined
accordingly, and the Status quo Core14 is the set of ICF mechanisms that are not
status quo blocked.

As usual, an ICF mechanism is said to be (second best) Pareto optimal if there
is no other ICF mechanism under which every type is strictly better off. Second
best comparisons that take into account incentive compatibility constraints are the
meaningful ones. Obviously an ICF mechanism is Pareto optimal if and only if it is

13 In an insurance context, the view adopted here is in line with the Rothschild-Stiglitz approach as
explained below. Other endogenous reservation levels are relevant, and might reflect stories that would
be reminiscent of Riley (1978), or Wilson (1977). For example, if the standing mechanism is universal,
the reservation payoffs could be derived from the standing mechanism applied to the non-deviating
population.

14 In an income taxation model, Berliant (1992) introduces a similar notion that he calls the IC-Core.
Also, in a context of adverse selection, Kahn-Mookherjee (1995) define a concept of coalition-proof
equilibrium that implicitly refers to status quo beliefs. Connections between coalition-proof and strong
equilibria are examined in Konishi-Le Breton-Weber (1999).
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not blocked by the Grand Coalition. As a consequence all Cores are included in the
set of Pareto optima. We gather some simple results on the relationships between
Cores in the next proposition.15

Proposition 1 The following inclusions hold true:

1. The set of Pareto optimal mechanisms coincides with the −∞-BB Core and
contains any Beliefs-Based Core.

2. if u∗ > v∗

+∞-BB Core ⊂ u∗-BB Core ⊂ v∗-BB Core ⊂ −∞-BB Core
3. Statistical Core ⊂ +∞-BB Core

Proof The fact that any Pareto optimum is not blocked for u∗ equal to−∞ follows
from the definition: every agent wants to join the seceding coalition because oth-
erwise he gets −∞. Therefore no coalition, except the Grand Coalition, can block
because of (7). The other assertions follow from earlier remarks. ��

Before going further it is worth noting that in a full information private goods
economy, the Statistical Core, Status quo Core, and u∗-Beliefs-Based Cores would
all be identical for reservation values u∗ above the individual rationality level.
However, in the adverse selection context under consideration, the distinction just
introduced makes sense, as it will be next illustrated.

First, consider the insurance model with two types. Second best optimality
requires full insurance for the high risk agents. The Statistical Core is empty: the
low risk agents, if they could recognize themselves and separate, could fully insure
themselves with a lower premium. Now the conditions of blocking in the status
quo sense closely relate with the conditions of the competition between contracts
considered by Rothschild and Stiglitz: if a coalition of a given type blocks, there
is a contract which, if it is taken only by the agents of this type, (1) is preferred by
them to the standing contracts, (2) is not preferred by the other types (implicitly
assuming that they do not anticipate that, in case of secession, their payoffs might be
modified). It follows that the Status quo Core coincides with the Rothschild-Stiglitz
equilibrium16 if the latter exists and is optimal; otherwise the Status quo Core is
empty.

In simple versions of the public good model, the Statistical Core is not empty
under conditions that have an easy economic interpretation (Guesnerie-Oddou,
1981) and that are generalizable to some extent.17 The Status quo Core is a priori
less easy to analyze: however, the results we present now will show that it (often)
coincides with the Statistical Core.

15 Although, in many applications, it looks sensible to consider exogenous utility levels that are below
the endogenous utility levels obtained in the Grand Coalition, no restriction is put here on their values.

16 The candidate for the Rothschild-Stiglitz equilibrium is the mechanism which, without subsidy
between the two types, fully ensures high risk agents. If it is not dominated by a pooling mechanism,
it is an equilibrium in the sense of Rothschild-Stiglitz where destabilizing offers can consist only of
single contracts. It may be nevertheless dominated by a pair of contracts involving cross subsidization,
in which case it is not in our Core because all coalitions, including the Grand Coalition can propose a
pair of contracts.

17 See Demange-Henriet (1992) and Demange-Guesnerie (1997).
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3.3 Further relationships between the different cores

At the level of generality adopted until now, Proposition 1 exhausts what can be
said about the relationships between the different Cores. We now introduce addi-
tional properties of the game that imply a more specific inclusion relationship. The
properties of Effectivity of monotonic mechanisms say that the game has ”enough”
universal mechanisms that display some form of increasing returns to distribution.

3.3.1 Monotonic mechanisms We first define a concept of monotonicity with re-
spect to a subset of types.

Definition 8 LetR be a nonempty subset of types,R ⊂ T . A universal mechanism
g is R-monotonic if for any coalitions C, D, with distributions µC and µD such
that

µD(j) ≥ µC(j) for any θj ∈ R and µD(j) ≤ µC(j) for any θj /∈ R then

u(g(θ, µD), θ) ≥ u(g(θ, µC), θ) for all θ in R.

A mechanism that is T -monotonic is called full-monotonic.

The universal mechanism under consideration is called R-monotonic because
the welfare of all type-R agents increases when their number increases (increasing
returns to size hold so far as the subgroupR is concerned). In addition, ifR differs
from T , the presence of agents of an other type (in T − R) is not desired by the
R-agents: there is a conflictual dimension in the mechanism that only disappears
if T = R. Indeed T -monotonicity, or equivalently full-monotonicity, says that for
any two coalitions C, D, where D contains C

u(g(θ, µD), θ) ≥ u(g(θ, µC), θ) for all θ.

In words the mechanism g has the property that incumbents (members of C) are
never hurt by newcomers (members of D − C).

Two key points of the analysis are stated in the following lemma.

Lemma 1 Let a mechanism f be statistically blocked by coalition C with a uni-
versal mechanism g. Let S be the support of C.

1. if g is R-monotonic and R ∩ S 	= ∅, then f is also statistically blocked by the
R ∩ S-full coalition. As a consequence f does not belong to the +∞-Beliefs
Based Core.

2. if g is full-monotonic then f is also statistically blocked by the S-full coalition
and status quo blocked by someS′-full coalition withS ⊂ S′. As a consequence
f does not belong to the Status quo Core.

Proof Let f be an ICF mechanism that is statistically blocked by coalition C of
support S with a mechanism g:

u(g(θ, µC), θ) > u(f(θ, µ), θ) for all θ in S.
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1) If g is R-monotonic and R ∩ S 	= ∅, let D be the R ∩ S-full coalition. By
constructionD contains at least as many agents with type inR thanC and no agent
with type in T −R. Hence R-monotonicity implies:

u(g(θ, µD), θ) ≥ u(g(θ, µC), θ) for all θ in R,

and finally

u(g(θ, µD), θ) > u(f(θ, µ), θ) for all θ in R ∩ S
2) If g is full-monotonic, because µS ≥ µC we have:

u(g(θ, µS), θ) ≥ u(g(θ, µC), θ) > u(f(θ, µ), θ) for all θ in S,

so that the S-full coalition (statistically) blocks. Now consider all the S′-full coali-
tions that block f with g and such that S ⊂ S′. Take a maximal S′. Maximality
implies that (7) is also met i.e.:

u(f(θ, µ), θ) ≥ u(g(θ, µS′), θ), for any θ not in S′.

If not, u(g(θ′, µS′), θ′) > u(f(θ′, µ), θ′) for some θ′ not in S′ so that by full-
monotonicity the S′ ∪ {θ′}-full coalition would block f with g as well, in contra-
diction with the maximality of S′. Hence the S′-full coalition status quo blocks f .
��

3.3.2 Effectivity of monotonic mechanisms Per se, the existence of universal
mechanisms being R-monotonic, for some R, is a rather weak18 restriction. Ef-
fectivity properties, that are now stated, bear on the whole set of mechanisms of
the game. They assert, in which sense and to which extent, standard mechanisms
can be extended to monotonic mechanisms.

Definition 9 Effectivity of monotonic mechanisms (EMM) holds if:
For any mechanism g ICF for a coalition C, there exist R, a nonempty subset of
the support S of C, and a (universal) R-monotonic mechanism g′ such that

u(g′(θ, µC), θ) ≥ u(g(θ, µC), θ) for all θ in R (8)

In words, given any ICF mechanism applied to a coalition, there always exists
a subgroup of types R which may be at least as well off under some R-monotonic
mechanism. As we shall see from the examples, the property is not too demanding.
One may also require, in the same spirit, that the mechanism g′ is full-monotonic,
a much stronger property indeed.

Definition 10 Effectivity of full-monotonic mechanisms (EFMM) holds if:
For any mechanism g ICF for a coalition C, there exist a nonempty subsetD of C
and a universal full-monotonic mechanism g′ such that

u(g′(θ, µD), θ) ≥ u(g(θ, µC), θ) for all θ in the support of D (9)

If, in the above definition, D may always be taken equal to C we say that strong
Effectivity of full-monotonic mechanisms holds.

18 It is for example implied by the fact that a type acting as a dictator in a coalition can take advantage
of an increasing size, a fact that holds in most models where congestion effects are ruled out.
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Strong Effectivity of full-monotonic mechanisms implies that, as far as statisti-
cal blocking is concerned, nothing is lost by considering full-monotonic blocking
mechanisms. This is no longer the case if Effectivity is not strong. EFMM however
is enough for our purpose and is a much weaker property as we shall see below in
a public finance context.

Let us discuss these properties in the models introduced in Section 2.
In the insurance model, Effectivity of monotonic mechanisms holds. If for ex-

ample the support of a coalition consists of both types, a mechanism can be extended
to a ”low-risk"-monotonic mechanism, that would give more to the low-risk agents,
when there are more low-risk agents and less high-risk agents.19 However, it can-
not be extended to a full-monotonic mechanism: with more high risk agents and
the same number of low-risk agents, some group is necessarily losing. Therefore
EFMM does not hold.

Consider now the public good model with non observable income. A mech-
anism ICF for a coalition is payoff-equivalent to a tax system associated with a
consumption tax and a poll tax. If both taxes are positive, the mechanism can
straightforwardly be extended to a full-monotonic mechanism, the one that mimics
the same tax levels, whatever the coalition.Accordingly, if mechanisms are required
to involve no subsidy, strong Effectivity of full-monotonic mechanisms holds.

However, if a poll tax may be negative, i.e. if it is a subsidy, the mechanism
can only be extended to aR-monotonic mechanism, whereR is the set of types the
overall fiscal contributions of which are positive. Accordingly, if redistribution is
allowed, without further specification, we can only say that Effectivity of monotonic
mechanisms holds.

Nevertheless, the difficulty partly relates here with the linearity of the income
tax system, which is only justified if revenue is not observable. Let us now consider
that the public good is financed through a (possibly) non-linear income tax system.
Let g(w) be the after tax revenue for an agent who earns w. Consider a mechanism
that statistically blocks through g in C. If g entails no subsidies, i.e. if g(w) ≤ w
for any possible w, then g is (can be extended to) a full-monotonic mechanism.
Assume now that the previous condition does not hold for all w. We claim that
the subcoalition composed of all agents who are not subsidized may be at least as
well off by using a full-monotonic mechanism. For that it suffices to change g into
g′ defined as g′(w) = min(g(w), w). Effectivity of full-monotonic mechanisms
holds although strong Effectivity does not. To sum up, in a public finance context,
EFMM is always satisfied if the tax system is fully non linear (which implicitly
assumes full observability of consumption and revenue) or if subsidies go through
the non linear part of the tax systems.

Theorem 1

1. Under Effectivity of monotonic mechanisms, the Statistical Core is identical to
the +∞-Beliefs Based Core.

2. Under Effectivity of full-monotonic mechanisms, the Statistical Core, the +∞-
Beliefs Based Core and the Status quo Core are identical.

19 This property extends to a model with more than two types.
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Proof Let f be statistically blocked by a coalitionC through an ICF mechanism g.
Under Effectivity of (resp. full) monotonic mechanisms, it is blocked by a mech-
anism that satisfies condition 1), (resp. 2), of Lemma 1: hence f does not belong
to the +∞-beliefs-based Core (resp. Status quo). The conclusion follows from the
inclusions in Proposition 1. �

As a consequence of the theorem, in many versions of the public good model,
the three just mentioned Cores do coincide. This provides an argument in favour
of the stability analysis often adopted in the taxation literature that more or less
explicitly refers to the Statistical Core. The statement also suggests an entry into
the understanding of the cases where the Statistical Core and the Status quo Core
differ: in view of the previous example, a mechanism that statistically blocks may
not block in the sense of the status quo because it has some redistributive features
too much attractive or generous.

3.4 Relationships with the coarse core

Statistical information is the maximal information a coalition can reasonably be
supposed to have at the interim stage. One may also consider the opposite situation
in which a coalition gets no information. This leads to ideas that are reminiscent of
those associated with the concept of coarse Core introduced by Wilson20 (1978). In
our framework this concept is typically rather weak but provides a good benchmark.
Indeed consider a coalition that is formed. Agents recognize themselves from their
names a, and only observe the size s of the coalition. No information is inferred
from the fact that the coalition is formed. Therefore, under our assumption that
the names are not correlated with the characteristics, µC is perceived as a random
variable, the distribution of which is conditioned by the size s of the coalition; and
this is the only fact that is common knowledge. Under the assumption of an infinite
number of agents, the law of large numbers suggests that µC is almost surely sµ:
the coalition is a smaller replica of the grand coalition. Therefore, under some weak
form of increasing returns to size,21, a quite innocuous assumption in the absence
of congestion effects, a mechanism that is blocked by a coalition is blocked by the
whole society as well.As a consequence the coarse Core is non empty and coincides
with the set of second best Pareto optima22.

20 Wilson’s set up is slightly different: in a private economy, agents choose ex ante contracts contingent
on a state of a world which will be observed ex post but on which agents learn some private information
interim

21 More precisely if [u(f(θ, s.µ), θ), θ ∈ T ] is increasing with s for any mechanism. The effect of
an increase in s is truly a ”size” effect, without the ”composition” -change in the distribution- effect
that has been introduced before. This idea is developed in a previous version of this paper where the
corresponding concept of Core was labelled generic rather than coarse. In a context such similar to ours,
i.e. an adverse selection economy with a continuum of agents, Hammond (1989) also considers that
coalitions do not get information at the interim stage. If one restricts attention to anonymous mechanisms,
one would fall back to the so called "generic" viewpoint.

22 In an exchange economy, Koutsougeras-Yannelis (1993) also note that the coarse Core is "too
large", i.e. is constituted with all the individually rational and Pareto optimal allocations. The private
Core, introduced by Yannelis (1991), which is nonempty in their framework, is more sensible.
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4 Extensive form stability of the cores

Under complete information, the Core concept, besides of normative justification,
can be viewed as capturing strategic stability - secession is not plausible. In our
complete information framework, we introduce some extensive form games, here-
after called developer games, that provide further evaluation of the strategic stability
of the different Core concepts that have just been defined.

4.1 Developer games

As a reference starting point, let us consider a complete information framework, in
which the agents’ characteristics are known and verifiable.

4.1.1 Complete information The following simplistic game helps to assess the
”stability” associated with the standard Core concept.

Developer game: Let f be the standing allocation. First the ”developer” makes a
public announcement of a feasible proposal to some coalitionC of positive measure.
Second, the members ofC are asked to say yes or no. The outcome is the following:

– If almost all the members of C say yes, secession succeeds: the developer
implements the proposal and receives ε > 0 and the agents get the secession
utility minus ε/s.23.

– If a subset of non-zero measure ofC says no, the Grand CoalitionA implements
f .

The developer’s behaviour is not fully defined. We only assume that he reacts
to the incentives of a positive reward ε, even very small, by making a successful
proposal whenever it is possible to do so ; however when there are many such
successful proposals, we say nothing on which one is chosen.

Let f be the standing allocation. Consider first the Nash equilibria of the devel-
oper game. If secession succeeds, the seceding coalition C is a blocking coalition:
f does not belong to the Core. The converse is not entirely true: if f does not belong
to the Core and the developer makes a proposal to a blocking coalition, there is
a trivial Nash equilibrium in which every player says no, because he expects the
other members of the coalition to say no. But such strategies are weakly dominated:
if they are deleted, secession succeeds. Therefore, if one sticks to strategies that
satisfy some robustness criterium, the developer may "destabilize" the standing
allocation if and only if it does not belong to the Core.

4.1.2 Incomplete information We now adapt the developer game in order to take
into account the incomplete information aspects of our problem. Within the com-
plete information framework, the outcome of the developer game does not depend
upon what happens to the agents who are not invited to secede. With incomplete
information, the developer is unable to check the precise characteristics of the

23 ε can be viewed as the equivalent of a monetary payment made to the developer by seceding agents.
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seceding group. Any agent may join and his decision depends not only on the pro-
posal itself but also on his outside options. We define here the developer game,
by assuming that the outside option gives everybody the status quo utility levels
u∗

f (θ) = u(f(θ, µ), θ) defined above. Such an outside option may reflect, for ex-
ample, the fact that, in the outside world, there are similar communities where the
standing mechanism f or an equivalent mechanism prevails.

The developer game. Let f be the standing mechanism. A developer proposes a
minimal size s, 0 < s ≤ 1 for the coalition to be formed and a mechanism g,
feasible and incentive compatible for all coalitions of size larger than s.

– Stage 1: Each agent is asked to say yes or no. All agents play simultaneously.
Two cases occur depending on the size of the group of agents who choose yes:
If the size is strictly smaller than s, the game is over, and the Grand CoalitionA
implements f ; if it is at least s, secession succeeds and a second stage is played:

– Stage 2: Agents who said no at the first stage are asked whether they join or not
join.
CallC the coalition formed with the agents who said either yes at the first stage
or join at the second stage. The developer implements g on C and receives
ε > 0 from the members of C. Agents outside C get the standing level under f
applied to the whole population, u(f(θ, µ), θ).

Note that the game introduced by Holmstrom and Myerson (1983) in their study
of durability is a special case of the game considered here in which the developer
was required to ask for unanimity (s = 1), a case in which, in particular, the second
stage is irrelevant.

4.2 Nash equilibria

We first concentrate on Nash equilibria.

Proposition 2 Let f be a feasible and incentive compatible mechanism for A and
consider the developer game.

1. If f belongs to the Statistical Core, then whatever the proposal and whatever
ε > 0, secession never succeeds at a Nash equilibrium.

2. If f does not belong to the Status quo Core, letC be a blocking S-full coalition.
Then, there is some proposal such that C secedes at a Nash equilibrium for
ε > 0 small enough.

Proof 1. At a Nash equilibrium, an agent correctly expects the others’strategies. As
a consequence, if secession succeeds the distribution µC of the seceding coalition
is correctly expected. Therefore:

u(g(θ, µC), θ) > u(f(θ, µ), θ) + ε/s,∀θ ∈ S

so that C statistically blocks, a contradiction.

2. Consider a S-full coalitionC that blocks with g. Choose ε > 0 small enough
so that the members ofC still block even if they pay ε/s. Let the developer propose
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g, s equal to the size of C, and ε. Consider the following strategies: the members
of C say yes at the first stage, agents outside C say no and not join at the first and
second stages. They form a Nash equilibrium at which C secedes. ��

4.3 Destabilization

As in the complete information case, assertion 2 of Proposition 2 is not entirely
satisfactory. There are always trivial Nash equilibria without successful secession.
Our aim now is to get rid of them and to find conditions under which a proposal
is successful at all ”robust” equilibria. In order to define robustness some care
is needed. Since the population is infinite, an agent has no influence on whether
secession occurs or not: he is never “pivotal“ as might be the case with a finite
population. As a consequence some strategies are payoff equivalent: for example
the strategy yes at the first stage is equivalent to the strategy: no at the first stage
and join at the second stage, if any. However it is sensible to assume that an agent
favors the outcome he most prefers in cases where there is no ambiguity.

Positive influence. Consider a step in the process of elimination of dominated
strategies. A player eliminates no and says yes at the first stage of the game if

u(g(θ, µ), θ) > u(f(θ, µ), θ)

for any possible distribution µ of a seceding coalition, that may occur when taking
into account the eliminated strategies at this step.

Definition 11 A mechanism is said to be destabilized if there is a proposal and ε > 0
such that secession occurs at all equilibria obtained by successive elimination of
dominated strategies under the assumption of positive influence.

Proposition 3 Let f be a feasible and incentive compatible mechanism for A. If it
is strongly Pareto dominated, it is destabilized.

Proof Assume that f is strongly Pareto dominated by some g. Let the developer
propose g and a minimal size equal to 1. If secession occurs, any agent is strictly
better off than under the standing mechanism. Therefore, from the assumption of
positive influence,24 all say yes, at the first stage. ��

If positive influence is not assumed, secession may fail at an equilibrium even
if a strictly Pareto improving mechanism is proposed: the strategy no join is payoff
equivalent to yes. Contrary to what would happen in the finite population case, weak
dominance arguments do not help here to eliminate such a trivial equilibrium.

Theorem 2 Suppose that Effectivity of full-monotonic mechanisms holds true. Let
f be a feasible and incentive compatible mechanism for A that does not belong to
the Statistical Core. Then it is destabilized in the developer game.

24 Note that, in view of the above remark on the Holmstrom-Myerson game,the statement shows that
in our framework (second best) Pareto optimality and durability coincide. This could have been checked
in another way: interim information does not modify the vector of utility payoffs that can be obtained
by the agents contingent on their types.
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The Proof of Theorem 2 is more intricate than the preceding ones and is post-
poned to the appendix. An idea of the proof can be given. Under EFMM, a mech-
anism that is not in the Statistical Core is blocked by a type-full coalition with a
maximal support and the blocking mechanism can be chosen full-monotonic (see
Lemma 1). Let the developer propose this mechanism and a minimal size equal to
the size of this blocking coalition. The process of elimination of dominated strate-
gies is as follows. We construct recursively sets of types included in T − S: T1
is the set of types of the agents who are always worse off by being in a secession
than under the initial situation: they have no and not join as a dominant strategy.
Knowing that no agent with a type in T1 will ever secede, a new set of agents, who
will never join the secession, is found, with types in T2, and so on until exhausting
all types outside S. Then the agents with types in S know that if secession occurs
they will be all together and they say yes. Therefore secession succeeds and the
mechanism is destabilized.

Combining the above Theorem 2 together with Proposition 1 and Theorem 1,
we get one of the main results of the paper:

Theorem 3 Assume Effectivity of full-monotonic mechanisms. Let f be a feasible
and incentive compatible mechanism for A. The three properties are equivalent:

1. f is not destabilized
2. f belongs to the Statistical Core
3. f belongs to the Status quo Core.

This result hopefully provides a convincing illustration of the duality between
the ”normal form” approach, that suggests the definition of the Statistical Core,
and the ”extensive form” approach that has been chosen to assess robustness to
secession proposals.

We stress again that the result provides support for the consideration of the
concept of Statistical Core whenever Effectivity of full-monotonic mechanisms
holds.

A final remark can be made. Different after-secession stories would lead to
different developers games, as in Hellwig (1987). The beliefs would then be en-
dogenous and would depend upon the outcome of a continuation game taking place
after stage 2. Although the analysis would be different being possibly more intri-
cate, the understanding obtained here on the mechanics of destabilization would
likely remain precious.

5 Conclusion

This paper attempts at providing reasonable criteria for assessing the stability of a
society that faces interim asymmetries of information. Our analysis is conducted
within an abstract framework and follows lines of reflection associated with the
Core concept.

The first lesson of our investigation is that both concepts, blocking and seces-
sion, are significantly more complex and ambiguous under asymmetric informa-
tion than under symmetric information. This is of no surprise in view of the role
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of beliefs, adverse selection, acquisition of information that previous literature has
already emphasized. However, the precise nature of increased complexities and am-
biguities is enlightening: beliefs of outsiders and information of insiders are crucial
to trigger blocking so that a family of concepts is relevant rather than a single one.
Also, the inclusion relationship that orders this family of Cores is significantly sim-
plified when some increasing returns to coalitions, such as those trigerred by the
assumption Effectivity of full-monotonic mechanisms, are present.

A second lesson is both more specific and positive. In taxation like situations,
where some enough strong form of increasing returns prevail, then our analysis
gives a lot of support to the concept of Statistical Core: on the normative side,
this Core coincides with the Status quo Core that refers to conservative but well
defined beliefs of the agents, on the stability side this Core basically coincides with
the mechanisms that are not destabilized in our developer games. We have then
provided a cluster of arguments in order to identify the stability of an arrangement
with the fact that it belongs to the Statistical Core.

At the opposite, and this is our third lesson, in games in which such a form of
increasing returns do not hold, the compelling arguments supporting the statistical
Core are weakened when at the same time the emptiness of this Core is becoming
likely. There is furthermore no Core concept that would provide a fully convincing
alternative to the previous one, even if the Status quo Core keeps some merits in
view of our previous results.

6 Appendix

Proof of Theorem 2. Let f be not in the Statistical Core.As in the Proof of Lemma 1,
because of Effectivity of full-monotonic mechanisms, there is a blocking coalition
C that satisfies: it blocks through a full-monotonic mechanism g, it is S-full, and
it has a maximal support among the coalitions that block f with g. Therefore since
C blocks with g, there is ε > 0 such that:

u(g(θ, µC), θ) > u(f(θ, µ), θ) + ε/s any θ in S

and since g is a full-monotonic mechanism g:

u(g(θ, µD), θ) > u(f(θ, µ), θ) + ε/s any θ in S, any D ⊇ C (P1)

Secondly, by maximality of S, for any S′, S ⊂ S′, S 	= S′ there exists θ in S′ (but
not in S) such that

u(f(θ, µ), θ) ≥ u(g(θ, µS′), θ). (P2)

Let the developer propose g, a minimal size equal to the size of C, and fee ε.
The process of elimination of dominated strategies is as follows. We construct

recursively sets of types included in T −S: T1 are the types of the agents who have
no at all stages as a dominant strategy. Knowing that the agents whose type belongs
to T1 never secede, a new set of agents who will never join the secession is T2 of
types, and so on until exhausting all the types that are not in S. Then the agents
with types in S know that if secession accurs they will be all together and they say
yes.
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Step 1

* case a: C is the whole setA. We are done: g strongly Pareto dominates f and we
fall back on Proposition 7.

* case b: C is not A, and therefore S is a strict subset of T . Applying (P2) to
S′ = T we know that there is some θ not in S

u(f(θ, µ), θ) ≥ u(g(θ, µ), θ). (P3)

Call T1 the set of types such that (P3) is true. By monotonicity of g

u(f(θ, µ), θ) ≥ u(g(θ, µ), θ) ≥ u(g(θ, µD), θ) any D ⊂ A, θ ∈ T1

Therefore, because of the fee, A player with type in T1 is strictly worse off by
joining the secession when it occurs than under the standing mechanism. It means
that (no,not join ) is a dominant strategy for him.

Step 2

*case a: T1 = T − S. We are done: agents with types in S know that they are
the only ones to say yes. Because of the size requirement, it implies that secession
occurs only if almost of all of them say yes. Therefore the final seceding coalition
surely contains C. From (P1) and the positive influence assumption, members of
C eliminate no. Secession succeeds and f is destabilized.

*case b: T1 is a strict subset of T − S. Apply (P2) to S′ = T − T1. There are
surely some types not in T1 (and not in S) such that

u(f(θ, µ), θ) ≥ u(g(θ, µS′
), θ) (P4)

Call T2 the set of types for which (P4) is true. By monotonicity of g, if θ is in T2:

u(f(θ, µ), θ) ≥ u(g(θ, µD), θ) for any D with support ⊂ T − T1 (P5)

Everybody knows that only the agents with types outside T1 may join the secession
either at the first or at the second stage of the game. Therefore, by (P5), agents with
characteristics in T2 have (no, not join) as a dominant strategy.

One goes to Step 3, etc... and proceeds as follows.

Step k

At the beginning of step k, there are sets Tj , j = 1, .., k−1. Everybody knows that
the agents belonging to them will never join a secession. Two cases occur.

* case a:: any type not in S belongs to one of the set Tj , j = 1, .., k−1; the process
stops as in case a of step 1: S secedes.

* case b: one constructs a non empty subset Tk, not intersecting any Tj nor S such
that all agents with types in Tk says (no not join). The process surely stops since
there are a finite number of types. ��
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Summary. The paper analyzes an economy with two-sided adverse selection, fo-
cusing on equilibria that satisfy a refinement based on the notion of strategic sta-
bility. In the familiar case of one-sided adverse selection, agents reveal all of their
private information as long as the contract space is rich enough. However, with two-
sided adverse selection, the sufficient conditions for separation are much stronger.
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1 Introduction

One of the classical problems in the analysis of markets with incomplete informa-
tion is to discover conditions under which agents reveal their private information.
There are several reasons why this problem is important. The market has long been
recognized as a mechanism for facilitating the transfer of information. If agents have
an incentive to withhold information, the resulting equilibrium may be information-
ally inefficient. The vast empirical and theoretical literature on the informational
efficiency of financial markets attests to the interest of this issue. At the same time,
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it is well known that the attempt to signal private information can cause distortions
that make the market allocation inefficient. For example, in markets with adverse
selection, an agent’s choice of education, insurance, or borrowing may reveal his
private information about his productivity, probability of having an accident, or the
riskiness of his project. The early papers of Spence (1973) on market signaling
and Rothschild and Stiglitz (1976) on screening provide sufficient conditions for
the existence of equilibria in which agents reveal their private information. These
models are further refined by Wilson (1977) and Riley (1979). In order to signal
their private information, agents have to incur a private cost (otherwise their signal
could be imitated). The cost of signaling is a deadweight loss from society’s point
of view and for this reason equilibria in which agents can signal their private infor-
mation are typically inefficient. An analysis of the efficiency properties of signaling
equilibria is contained in Gale (1996).

This paper focuses on the conditions that ensure agents signal their private
information. The theoretical results in the literature are mixed. While screening
models sometimes have no equilibrium, signaling models have a multiplicity of
equilibria in which the amount of information revealed varies from full revelation to
no revelation. If we want to reduce the set of equilibria and make tighter predictions
about information revelation, some refinement of equilibrium is needed.

Refinements of the Nash equilibrium were developed for games of incom-
plete information in the nineteen-eighties (Kohlberg and Mertens (1986), Banks
and Sobel (1987), Grossman and Perry (1986) and Mailath, Okuno-Fujiwara, and
Postlewaite (1993)). Applications to signaling games by Cho and Kreps (1984)
and Cho and Sobel (1990) select a separating equilibrium, in which agents’ actions
reveal their type, as the only outcome that satisfies a (strong) refinement. There are
exceptions, however. Hellwig (1987) adds a third stage to the canonical signaling
game, to capture the flavor of the Wilson (1977) equilibrium, and finds that for
some parameter values the pooling equilibrium is the unique equilibrium satisfying
the Kohlberg-Mertens refinement.

The classical signaling game is special in a number of respects.

– There are only two agents, an informed agent and an uninformed agent.
– The informed agent has private information (his type) and moves first.
– The uninformed agent observes the informed agent’s action before choosing

his own action.

The signaling game can also be interpreted as a market game. Instead of a single
informed agent with a probability distribution of types, the market-game inter-
pretation assumes a continuum of informed agents with a known cross-sectional
distribution of types. Under certain conditions (e.g., the uninformed agents are
risk-neutral firms) the reactions of a continuum of uninformed agents mimics the
response of a single uninformed agent to a single informed agent with a random
type.
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The signaling game provides a simple and tractable framework in which to study the
informational properties of equilibrium, but it has limitations. There are many ways
in which the signaling game could be extended. One alternative framework, which
accommodates a richer set of environments and has proved to be very tractable, is
developed in Gale (1991, 1992, 1996). A complete set of contracts represents all
the possible forms of interactions between agents on the two sides of the markets.
Agents choose the contracts they most prefer, taking into account the information
revealed by the contract choices of the other agents. Thus, information is symmet-
rically and simultaneously revealed by equilibrium contract choices and used by
agents in making those choices.

In contrast to the signaling game, this framework allows for adverse selection
on one or both sides of the market.

– There is a continuum of ‘buyers’ and ‘sellers’, each of whom may have private
information.

– All agents simultaneously choose the contracts they would like to exchange.
– The ‘buyers’ and ‘sellers’ who have chosen a given contract are randomly

matched.

Because agents move simultaneously, they do not observe any information prior
to their choice of contract. However, in equilibrium they know the strategies of
the other agents and correctly assess the probability of being matched with a given
type of ‘buyer’or ‘seller’conditional on the contract they choose. Because there is a
large number (non-atomic continuum) of agents, the market is competitive. This is
reflected in the fact that agents take as given the matching probabilities conditional
on each choice of contract. The matching probabilities play the role of prices in the
classical theory of competitive equilibrium, that is, they determine which contracts
can be traded and which cannot.

The refinements of Nash equilibrium developed in the game theory literature
have natural counterparts here. Gale (1992) uses a refinement derived from the
Kohlberg-Mertens concept of strategic stability to select a unique separating equi-
librium allocation in which each agent chooses to reveal his private information.
The selection theorem in Gale (1992) is restrictive in one important respect, how-
ever. While it allows for heterogeneous types on each side of the market, there is
only adverse selection on one side. More precisely, in a market consisting of buyers
and sellers, there are several types of buyers but the sellers do not care which type
of buyer they trade with. This model allows for assortative matching, which can-
not occur in the standard signaling game, but it avoids the difficulties of analysing
two-sided adverse selection.

The present paper has two objectives. First, it is argued that when there is one-
sided uncertainty (OSU), separation will always occur if the space of contracts
traded in the economy is sufficiently rich relative to the type space. Secondly, it
is argued that the case of two-sided uncertainty (TSU) is much more difficult to
analyze and requires stronger conditions to ensure full revelation of information.

The reason for the greater difficulty of analyzing TSU is that, roughly speaking,
with OSU an informed agent has preferences over contracts but not over types of
agents on the other side of the market. For example, if the sellers are workers with
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different productivities and the buyers are identical, risk neutral firms, then the
sellers have preferences over different contracts (specifications of wages, hours of
work, and education) but do not care what kind of firm they work for. Thus, beliefs
(about the buyers’ types) do not affect the sellers’ behavior in a significant way.
By contrast, in the case of TSU, an informed agent has preferences over contracts
and the types of agents on the other side of the market. For example, if there are
different types of firms and workers care about the type of firm they work for, then
workers have to take into account both the nature of the contract they choose and
the type of firm that is likely to offer that particular contract.

Refinements of equilibrium work by restricting ‘plausible’ out-of-equilibrium
beliefs. With TSU it becomes much more difficult to say whether an out-of-
equilibrium belief is ‘plausible’ or not. An agent’s choice of contract depends both
on the physical characteristics of the contract and the probability distribution of
types with which an agent will be matched. This means that in order to discuss
what is a reasonable or plausible belief, one has to look at both sides of the market
simultaneously. For example, a seller may have the belief that a particular contract
is traded by a bad type of buyer. This belief may discourage the seller from choosing
that contract. In order to determine whether the buyer’s belief is plausible, we have
to ask whether it is plausible to expect a bad buyer to choose that contract. That
in turn will depend not just on the bad buyer’s preferences over contracts, but also
on his beliefs about the type of seller he will be matched with if he chooses that
contract. But then we have to ask whether the buyer’s belief is plausible and that in
turn depends on the sellers’ behavior, that is, on the preferences and beliefs of the
sellers.

The theory developed in this paper focuses on decentralized and uncoordinated
decision making under incomplete information. Other theories focus on the op-
timality properties of competitive markets (Harris and Townsend, 1982; Prescott
and Townsend, 1984; Yannelis, 1991; Myerson, 1993; Koutsougeras and Yannelis,
1993; Krasa andYannelis, 1994; Jerez 1999). The two approaches should be thought
of as complementary. There is no single paradigm of competitive markets with in-
complete information.

The rest of the paper is organized as follows. The basic model of an economy
with incomplete information is presented in Section 2, where equilibrium is defined
and a refinement of equilibrium is introduced. This refinement is shown to impose
restrictions on beliefs about matching probabilities. In Section 3 these restrictions
are applied to an economy with OSU. Under conditions that are weaker than the
standard Spence-Mirrlees monotonicity conditions, the only kind of equilibrium
that satisfies the refinement is a separating equilibrium. An economy with TSU is
analyzed in Section 4, where two sets of sufficient conditions for separation are
discussed. Proofs are gathered in Section 5.

2 An economy with incomplete information

The economy consists of two mutually exclusive classes of agents who are con-
ventionally referred to as buyers and sellers. There is a finite number of different
types of agents. Let K = S ∪ T denote the set of types, where S denotes the set
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of seller types and T denotes the set of buyer types. Each type k ∈ K consists of a
non-atomic continuum of identical agents whose measure is N(k) > 0.

The objects traded in this economy are contracts. The set of all possible contracts
is denoted byΘ. Initially,Θ is assumed to be finite. Later the theory is extended to
an infinite set of contracts.

Contracts are exchanged between buyers and sellers, with one buyer and one
seller for each contract. If a seller of type s and a buyer of type t exchange a contract
of type θ, the seller’s payoff is u(θ, s, t) and the buyer’s payoff is v(θ, s, t). Each
agent is assumed to have an outside option that determines his utility if he chooses
not to trade a contract. The payoff functions are normalized so that the value of
each agent’s outside option is equal to 0.

Agents are allowed to trade at most one contract. Under this assumption, the
equilibrium choices of all the agents can be described by an allocation f : Θ×K →
R+, where f(θ, k) is the measure of type-k agents who choose a contract θ. An
allocation is attainable if it satisfies the adding-up condition∑

θ

f(θ, k) ≤ N(k),

for every k. The number of agents of type k who choose not to trade is N(k) −∑
θ f(θ, k) ≥ 0. Let F denote the set of attainable allocations.
To avoid some pathological cases, it is assumed that there is a small disutility

of participating in a market. Let c(k) > 0 denote the participation cost for agents
of type k. Note that an agent has to pay the participation cost c(k) even if he is
rationed and unable to trade. Only agents who choose not to participate avoid this
cost.

Let E = {S, T,N, u, v, c} denote the economy with incomplete information.

2.1 Equilibrium

The buyers and sellers who want to trade contract θ are randomly matched. An
agent does not know the type of agent he will be matched with, but he does know
the probability of being matched with any particular type of agent. The equilibrium
matching probabilities are described by a probability assessmentµ : Θ×K → R+,
whereµ(θ, t) denotes the probability that a seller choosing contract θwill exchange
the contract with a type-t buyer and µ(θ, s) denotes the probability that a buyer
choosing contract θ will exchange the contract with a type-s seller.

The number of buyers and sellers who want to trade θ may not be equal. In
that case, the market clears through rationing. A buyer’s probability of trading θ is∑

s µ(θ, s). Likewise, a seller’s probability of trading θ is
∑

t µ(θ, t). Thus, the set
of admissible probability assessments is

M =

{
µ : Θ ×K → R+|

∑
s

µ(θ, s) ≤ 1,
∑

t

µ(θ, t) ≤ 1

}
.

The probability of being rationed (unable to trade) is 1 −∑s µ(θ, s) ≥ 0 for
buyers and 1 −∑t µ(θ, t) ≥ 0 for sellers. Note that the equilibrium probability
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assessment µ is common for all agents. Thus, all sellers have identical beliefs about
the trading possibilities open to them and all buyers have identical beliefs about
trading possibilities open to them.

It is important to distinguish contracts which are demanded by a positive mea-
sure of agents from those which are not demanded by anyone. Matching probabili-
ties are well defined in markets for contracts that are traded in equilibrium, but for
non-traded contracts the matching probabilities can be more or less arbitrary. Since
Θ is supposed to represent the set of all possible contracts, most of the contracts
in Θ will not be actively traded in equilibrium. This means that the equilibrium
probability assessment µ is to a large extent arbitrary and this arbitrariness can give
rise to a large set of equilibria, as we shall see.

For any attainable alloction f , let λf (θ) measure the long side of the market
for contract θ, that is,

λf (θ) = max

{∑
s

f(θ, s),
∑

t

f(θ, t)

}
.

The market for contract θ is called active if λf (θ) > 0. Otherwise, the market for θ
is called inactive. In active markets, beliefs are determined by rational expectations
and the random matching process. Since the random matching process treats all
buyers and all sellers symmetrically, the probability assessment µ(θ, ·) must be the
same for all agents if the market for θ is active. If the market is inactive, however,
the agents’ beliefs are more or less arbitrary (i.e., not determined by the matching
technology) and here the assumption of common beliefs represents a mild symmetry
condition.

The matching rules treat all agents on the same side of the market identically and
maximize the probability of trade. A probability assessment is consistent with an
allocation if it reflects the actual matching probabilities determined by the allocation
in each active market. Formally, the probability assessment µ is consistent with the
allocation f if

λf (θ)µ(θ, k) = f(θ, k),

for any θ and any k. If the market for θ is active, then λf (θ) > 0 and the probability
µ(θ, k) is uniquely determined by the allocation f . If λf (θ) = 0, the consistency
condition is automatically satisfied and does not place any restrictions on the equi-
librium probability assessment.

Now we are ready to define an equilibrium. Intuitively, an equilibrium requires
each agent to choose the contract that maximizes his expected utility, taking as given
the probability assessment, that is, the probability of trading each contract and the
distribution of types with whom he may be matched. The probability assessment
is determined jointly by the choices of all the agents. Formally, an equilibrium
consists of an attainable allocation f and a consistent probability assessment µ
such that, for every type s and any contract θ, a positive measure f(θ, s) > 0 of
agents choose θ only if it is optimal∑

t

u(θ, s, t)µ(θ, t) = u∗(s) = max
θ

{∑
t

u(θ, s, t)µ(θ, t)

}
≥ c(s),
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and for every type t and any contract θ, a positive measure f(θ, t) > 0 of agents
choose θ only if it is optimal

∑
s

v(θ, s, t)µ(θ, s) = v∗(t) = max
θ

{∑
s

v(θ, s, t)µ(θ, s)

}
≥ c(t).

The significance of the participation cost is simply to ensure that the equilibrium
payoff from trading is positive if agents choose to participate. That is, u∗(s) > 0 if
f(θ, s) > 0 for some θ and v∗(t) > 0 if f(θ, t) > 0 for some θ.

2.2 Perfection and stability

As has already been noted, the probability assessmentµ(θ, ·) is more or less arbitrary
when the market for θ is inactive. The problem this poses for the theory is that there
may be many different equilibrium allocations supported by different beliefs about
trading probabilities in inactive markets. Some of these equilibria are of little interest
because they depend on implausible beliefs about the trading possibilities in inactive
markets. For example, if we assume that µ(θ0, k) = 0 for some fixed but arbitrary
θ0 and any k, then it is easy to see that no one will attempt to trade the contract
θ0 in equilibrium. Then f(θ0, k) = 0 for every k, and the probability assessment
µ(θ0, ·) will be consistent with the allocation f(θ0, ·). In this way we can “close” the
market for any contract θ0 without violating the equilibrium conditions. By closing
markets, we can generate a large number of different equilibrium allocations; but
these equilibria are not very interesting.

To rule out such trivial equilibria, it is usually assumed that markets must
be orderly, which means that at most one side of the market can be rationed in
equilibrium (Hahn and Negishi, 1962; Dreze, 1975; Hahn, 1978). The probability
assessment µ is orderly if, for every θ,

max

{∑
t

µ(θ, t),
∑

s

µ(θ, s)

}
= 1.

This restriction rules out some equilibria, but it does not eliminate the multiplicity of
equilibria caused by arbitrary beliefs in inactive markets. To rule out these equilibria,
a further restriction of beliefs in inactive markets is required. There are various
strategies for refining an equilibrium concept. One is based on the idea of the
‘trembling hand’ introduced by Selten (1975). Here it is the ‘invisible hand’ of
the market that ‘trembles’. The essential idea is to perturb the economy so that
all markets are active, find an equilibrium for the perturbed economy, and then let
the perturbation become vanishingly small. The limit of this sequence of perturbed
equilibria will be an equilibrium of the unperturbed economy.

Formally, a perturbation is an attainable allocation g such that λg(θ) > 0 for all
θ. For any perturbation g, denote the set of attainable allocations of the perturbed
economy by F (g), where

F (g) = {f ∈ F |f ≥ g}.
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The perturbed economy is denoted by E(g) = {S, T,N, u, v, c, g}. Note that the
parameters are the same as in the original economy E ; only the set of attainable
allocations F (g) has changed.

Define an equilibrium for the perturbed economy E(g) to be an attainable allo-
cation f ∈ F (g) and a consistent probability assessment µ such that, for each type
s,

f(·, s) ∈ arg max
F (g)

∑
θ

f(θ, s)

{∑
t

u(θ, s, t)µ(θ, t)− c(s)
}

and, for each type t,

f(·, t) ∈ arg max
F (g)

∑
θ

f(θ, t)

{∑
s

v(θ, s, t)µ(θ, s)− c(t)
}
.

A perfect equilibrium is the limit (f0, µ0) of a sequence of equilibria {(fn, µn)}
where, for each n, (fn, µn) is an equilibrium of the perturbed economy E(n−1 ·g).
Standard arguments suffice to show that there exists a perfect equilibrium for any
economy E .

In the perturbed economy, all markets are active, so the equilibrium probability
assessment µ is uniquely determined by the equilibrium allocation f ∈ F (g). A
perfect equilibrium, being the limit of perturbed equilibria, has a probability assess-
ment that is the limit of probability assessments generated by attainable allocations.

Note that an equilibrium of a perturbed economy is orderly by construction. For
any θ,λf (θ) > 0 so the consistency condition implies thatµ(θ, k) = f(θ, k)/λf (θ)
and

max

{∑
t

µ(θ, t),
∑

s

µ(θ, s)

}
= max

{∑
t f(θ, t)
λf (θ)

,

∑
s f(θ, s)
λf (θ)

}
=

max {∑t f(θ, t),
∑

s f(θ, s)}
λf (θ)

=
λf (θ)
λf (θ)

= 1.

A perfect equilibrium, being the limit of a sequence of orderly equilibria, is also
orderly.

Although perfection imposes some restrictions on the equilibrium beliefs, they
are pretty mild. In order to restrict beliefs further we have to use a stronger refine-
ment. This refinement is related to the notion of strategic stability introduced by
Kohlberg and Mertens (1986). A perfect equilibrium (f, µ) is robust to a single
perturbation g in the sense that, for any ε > 0 and each n sufficiently large, there is
an equilibrium of the perturbed economy E(n−1 ·g) which is ε-close to (f, µ). The
Kohlberg-Mertens notion of stability requires this kind of robustness in the face of
all possible perturbations. It may not be possible to find a single equilibrium that
has such a property, so we consider sets of equilibria. Call S a stable set if it is a
minimal set of equilibria with the property that:
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for any perturbation g and any ε > 0 there exists a number n0 > 0 such
that for any n > n0 there exists an equilibrium of the perturbed economy
E(n−1 · g) that is ε-close to S.

One reason why we need to consider sets of equilibria is that by choosing different
perturbations we generate different probability assessments in the inactive markets.
So sequences of equilibria corresponding to different perturbations may have dif-
ferent limiting probability assessments. However, this may be the only difference
between the equilibria belonging to the stable set. In that case, there is a unique
allocation that satisfies the stability criterion. If all the equilibria in S have the same
allocation f then f is called a unique stable allocation. When there is no risk of
ambiguity we refer to f as a stable allocation for short.

The existence of a unique stable allocation is established for generic
economies with incomplete information in Gale (1992).

2.3 Stable beliefs

When an economy is perturbed, the probability assessments are forced to change.
If the probability assessments change in a way that makes some unused contract
θ more attractive, it may cause a large number of agents to deviate to θ, in which
case the original equilibrium is deemed to have been non-robust or unstable. On
the other hand, if the number of agents deviating to θ is small and if the probability
assessment changes in such a way that no one strictly prefers θ to the equilibrium
payoff, then a small perturbation has led to a small change in the equilibrium and the
equilibrium is considered robust. In other words, if an allocation is stable then any
perturbation can be stabilized by the endogenous re-allocation of a small number
of agents. This principle plays a crucial role in what follows. The next step is to
characterize exactly what this means for beliefs in a stable equilibrium.

Let f be a stable allocation and let g be a fixed but arbitrary perturbation. There
is a sequence of equilibria {(fn, µn)}, where (fn, µn) is an equilibrium of the
perturbed economy E(n−1 · g) for each n and

lim
n→∞(fn, µn) = (f, µ) ∈ S.

As was noted above, the probability assessment µ may depend on the particu-
lar sequence {(fn, µn)}. Let u∗(k) denote the equilibrium payoff of type k in
the limiting equilibrium (f, µ). Suppose that for some fixed but arbitrary con-
tract θ1, u∗(s) >

∑
t µ(θ1, t)u(θ1, s, t). Since the payoff functions are continu-

ous, maxθ

∑
t µ

n(θ, t)u(θ, s, t) >
∑

t µ
n(θ1, t)u(θ1, s, t), for all n sufficiently

large and this implies that no agent of type s voluntarily chooses contract θ1, i.e.,
fn(θ1, s) = n−1 · g(θ1, s), for all n sufficiently large. A symmetric conclusion
holds for buyers. Thus, we have established that, for any contract θ,[

u∗(s) >
∑

t

µ(θ, t)u(θ, s, t)

]
=⇒

[
µn(θ, s) =

n−1g(θ, s)
λn(θ)

]
,∀s[

v∗(t) >
∑

s

µ(θ, s)v(θ, s, t)

]
=⇒

[
µn(θ, t) =

n−1g(θ, t)
λn(θ)

]
,∀t,
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for all n sufficiently large. Taking limits as n → ∞ immediately proves the fol-
lowing result.

Theorem 1 Suppose that f is a unique stable allocation and g is a fixed but arbi-
trary perturbation. Then there exists a probability assessment µ such that (f, µ) is
an equilibrium and, for any contract θ and for some constant γ(θ) ≥ 0,[

u∗(s) >
∑

t

µ(θ, t)u(θ, s, t)

]
=⇒ [µ(θ, s) = γ(θ)g(θ, s)] ,

for any seller type s and[
v∗(t) >

∑
s

µ(θ, s)v(θ, s, t)

]
=⇒ [µ(θ, t) = γ(θ)g(θ, t)] ,

for any buyer type t.

To sum up, a perturbation changes the equilibrium probability assessment, but
exactly how it changes depends on the equilibrium responses of the agents. So the
relationship between the equilibrium probability assessment and the perturbation
in the market for a contract θ depends on whether agents find it optimal to choose
that contract in equilibrium. In particular, if no one finds it optimal to choose θ in
equilibrium, then fn(θ, ·) = n−1g(θ, ·) and the probability assessment µn(θ, ·) is
determined by the perturbation n−1g(θ, ·). On the other hand, if the perturbation
g(θ, ·) by itself would have made θ attractive to some types (would give them a
payoff higher than their equilibrium payoff) then in equilibrium a small number of
agents must be endogenously re-allocated to θ in order to make θ less attractive and
prevent a large deviation by other agents. So one way to show that an allocation is
not stable is to find a perturbation g that cannot be stabilized by a small re-allocation
of agents.

2.4 General contract spaces

Even in finite games, the definition of a perturbation requires some care (see
Kohlberg and Mertens, 1986). There is no comparable development of the the-
ory for infinite games or economies with an infinite number of contracts. Similarly,
the existence of equilibrium in an economy with a finite number of contracts is a
straightforward matter (it uses a standard fixed point argument) but the existence
of a unique stable allocation is more difficult (see Gale, 1992). Again, the theory
has not been developed to deal with an infinite number of contracts.

The assumption of a finite number of contracts is a convenient simplification,
but for some purposes it is more convenient to have a continuum of contracts. In
particular, when it comes to characterizing the degree of separation in equilibrium it
is nice to be able to consider neighboring contracts. The theory can be extended from
a finite to an infinite set of contracts by taking limits (this was the approach taken
in Gale, 1992), but for simplicity an alternative approach is adopted here. I take
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as a definition of stability the characterization of stable beliefs derived in Theorem
1. From now on it is assumed that Θ is an open subset of some finite-dimensional
Euclidean space endowed with the usual topology. The payoff functions u(·, s, t)
and v(·, s, t) are assumed to be continuously differentiable functions of θ onΘ, for
every pair (s, t).

When the contract space is infinite, an allocation is represented by a measure.
To keep things simple (and it really does not make much difference to the analysis
to follow), we assume that the number of contracts traded in equilibrium is finite. In
that case, we can continue to define an allocation as a function f : Θ ×K → R+
with finite support, where f(θ, k) is the number of agents of type k that choose
θ ∈ Θ. The allocation f is attainable if

∑
θ

f(θ, k) ≤ N(k),∀k.

An orderly probability assessment is a measurable function µ : Θ×K → R+ such
that

max

{∑
t

µ(θ, t),
∑

s

µ(θ, s)

}
= 1,∀θ.

The probability assessment µ is consistent with an attainable allocation f if

λf (θ)µ(θ, k) = f(θ, k)

for every θ, where λf (θ) = 0 for all but a finite number of contracts θ.
An attainable allocation f is said to be stable if it satisfies the condition that

for any attainable allocation g, there exists an orderly probability assessment
µ consistent with f such that for any contract θ and some constant γ(θ) ≥ 0,

[
u∗(s) >

∑
t

µ(θ, t)u(θ, s, t)

]
=⇒ [µ(θ, s) = γ(θ)g(θ, s)] (1)

for any seller type s and

[
v∗(t) >

∑
s

µ(θ, s)v(θ, s, t)

]
=⇒ [µ(θ, t) = γ(θ)g(θ, t)] (2)

for any buyer type t, where u∗(s) and v∗(t) are the payoffs of types s and
t respectively in the allocation f .
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3 Separation with one-sided uncertainty

Paralleling the familiar signaling models in the literature, we first consider the
special case of an economy in which there is a single type of buyer T = {t0}. This
is a special case of one-sided uncertainty (OSU).1 We can suppress the reference
to the buyers’ type and write the payoff functions as u(θ, s) and v(θ, s). Normalize
the number of buyers to 1. Then the economy E = {S,N,Θ, u(·), v(·), c(·)} is
defined by the set of seller types S, the distribution of seller types N(s), the set
of contracts Θ, the payoff functions u(θ, s) and v(θ, s), and the participation cost
function c(k).

The result presented in this section gives conditions that are sufficient to rule
out pooling of different types of sellers at a single contract if the allocation is stable.
We are only interested in contracts that are actually traded in equilibrium, so there
is no loss of generality in focusing attention on a contract θ0 such that∑

s

f(θ0, s) > 0 and f(θ0, t0) > 0.

Let S0 denote the set of seller types that find θ0 optimal, that is,

S0 = {s ∈ S|µ(θ0, t0)u(θ0, s) = u∗(s)}.

Then it is assumed that there is a single type s0 in S0 that is most preferred by the
buyers, that is,

v(θ0, s0) > v(θ0, s),∀s ∈ S0, s 	= s0.

This condition merely rules out ties and avoids some complications that do not
seem to be important in the general analysis. The main condition in the theorem is
that there exists a contract θ1 that is arbitrarily close to θ0 and that is preferred by
type s0 and not by any types s ∈ S0, s 	= s0:

(S1) u(θ1, s0) > u(θ0, s0)
(S2) u(θ1, s) < u(θ0, s),∀s ∈ S0, s 	= s0.

This condition is much weaker than the famous single-crossing property, although
it is implied by the latter. It requires only that we can find some dimension of the
contract and some direction in that dimension that is preferred by type s0 and only

1 An economy is characterized by OSU (one-sided adverse selection) if the agents on one side of the
market, say the sellers, are indifferent about being matched with different types of buyers. If there is
only one type of buyer, this condition is automatically satisfied, but it would also be satisfied when there
are heterogeneous types of buyers, as long as sellers do not care which type of buyer they are matched
with. Formally, OSU requires u(θ, s, t) = u(θ, s, t′) for every θ, s, t and t′. Since sellers do not care
about the buyers’ types, they do not face an adverse selection problem and this simplifies the analysis
considerably. The existence of heterogeneous types of buyers may still be important in equilibrium,
however. Because different buyer types have different preferences over contracts and types of sellers,
they will typically choose different contracts in equilibrium. Gale (1992) shows how this can lead to
positive assortative matching in equilibrium. This phenomenon, which cannot arise when all buyers are
identical, illustrates one way in which the model encompasses a richer set of equilibrium possibilities
than the classical signaling game, even when they are superficially similar.
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by that type. Beyond this, the argument is much the same as in the standard analysis,
except that it works through perturbations of the game and has to take account of
the possiblity of rationing, which does not appear in models with market-clearing
prices.

Under these conditions, it is impossible for two types of sellers to pool at a
contract θ0. The formal proof is left until Section 5. A heuristic proof follows. First,
consider a perturbation of the game that assigns only type s0 to contracts that are
not used in the stable allocation f . If no type finds θ1 weakly optimal, then buyers
must believe that only type s0 will exchange contract θ1. By assumption, sellers
of type s0 prefer θ1 to θ0 and, for θ1 close to θ0, buyers will always prefer to
trade θ1 with s0 rather than trade θ0 with a mixture of s0 and less desirable types.
Since markets are orderly, some agents can trade θ1 with probability one and this
contradicts the definition of stability. So at least one type of seller other than s0
must find θ1 weakly optimal, but then condition (S1) implies that s0 strictly prefers
θ1 to θ0, again contradicting the stability condition.

This proves the following result.

Theorem 2 Let f be a stable allocation and let θ0 be a contract inΘ that is traded
in equilibrium: f(θ0, s) > 0 for some s and f(θ0, t0) > 0. Suppose (i) that there
is a unique best type s0 ∈ S0 = {s : µ(θ0, t0)u(θ0, s) = u∗(s) ≥ c(s)}, and (ii)
that for any ε > 0 there is a contract θ1 that is ε-close to θ0 and satisfies conditions
(S1) and (S2). Then f(θ0, s) = 0 for any s 	= s0.

While Theorem 2 provides conditions under which at most one type chooses
θ0, it will often be the case that θ0 will be optimal for more than one type. In other
words, the self-selection constraint is binding in equilibrium.

3.1 Discussion

The model analyzed in this section is a special case of the model described in Gale
(1992). In particular, Gale (1992) allows for private information on one side of the
market and heterogeneous agents on both sides. However, the assumptions used in
Gale (1992) to prove separation are much stronger than the assumptions of Theorem
2. In particular, in order to prove that all private information is revealed in a stable
equilibrium, Gale (1992) assumes that preferences satisfy the Spence-Mirrlees or
single-crossing condition.

The separation conditions (S1-S2) say that, for any contract θ0, we can find a
nearby contract θ1 that is better for s0 and worse for every type s ∈ S0, s 	= s0. Since
S0 is determined endogenously, conditions (S1-S2) are not an assumption about
primitives. However, it is easy to find a condition on primitives that is sufficient for
conditions (S1-S2). Say that s < s0 if v(θ0, s) < v(θ0, s0). Then assume that for
any s0 and all s < s0 there exists a contract θ1 arbitrarily close to θ0 such that

u(θ1, s0) > u(θ0, s0)

and

u(θ1, s) < u(θ0, s),∀s < s0.
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This condition can be interpreted as a condition on the ‘richness’ of the contract set
Θ. More precisely, it is a joint condition on the rank of the Jacobian matrix

[
∂u(θ0, s)
∂θ

]

and the dimension of the contract spaceΘ. If the dimension ofΘ is greater than |S|
and the Jacobian matrix has full rank, then the conditions (S1-S2) will be satisfied.
We can thus see the conditions (S1-S2) as a combination of a regularity assump-
tion and an assumption on the relative dimensions of Θ and S. This discussion is
formalized in the following result.

Corollary 3 Let f be a stable allocation and let θ0 be a contract inΘ that is traded
in equilibrium: f(θ0, s) > 0 for some s and f(θ0, t0) > 0. Suppose (i) that there
is a unique best type s0 ∈ S0 = {s : µ(θ0, t0)u(θ0, s) = u∗(s) ≥ c(s)}, and (ii)
the dimension of Θ is greater than |S| and the Jacobian matrix has full rank. Then
f(θ0, s) = 0 for any s 	= s0.

Note that it is not enough to assume that Θ is ‘big’ because some dimensions
of Θ may not be payoff relevant. That is why the regularity (full rank) condition
has to be added.

4 Separation with two-sided uncertainty

Returning to the ‘general’ model of an economy with two-sided uncertainty (TSU),
it is interesting to see how the conditions for separation change. Theorem 2 shows
that conditions on preferences over contracts are sufficient for equilibrium separa-
tion of types. More precisely, conditions on preferences over contracts ensure that
s0 is more likely to choose θ1 than any other type of seller and this ensures that the
pooling equilibrium is destabilized when a small measure of type s0 are assigned
to θ1.

In an economy with TSU, things are more complicated. For all agents, the
payoff to a contract θ1 	= θ0 depends on both the contract θ1 and the distribution
of types µ(θ1, ·) associated with θ1. Looking at it from the point of view of sellers,
one cannot say which type of seller will be attracted to θ1 until one knows the
distribution of buyers that are expected to trade θ1. Similarly, one cannot say which
type of buyer will be attracted to θ1 until one knows the distribution of sellers that
are expected to trade θ1. Even if sellers of type s0 prefer θ1 to θ0, other things being
equal, the probability assessment µ(θ1, t) can make θ0 more attractive than θ1.
Furthermore, Theorem 1 tells us that a reasonable probability assessment µ(θ1, t)
depends on which types of buyers find it optimal to choose θ1. For this reason, one
cannot determine what is a reasonable probability assessment µ(θ, ·) by looking at
one side of the market only. To determine what is a reasonable belief one must look
at both sides of the market simultaneously.
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4.1 The inclusion principle

To generalize the separation condition used in the case of OSU, we need to be able
to make the following kind of statement: if s0 chooses a contract θ0 then there
exists a nearby contract θ1 such that whenever a less desirable type s < s0 finds θ1
weakly optimal, s0 will find θ1 strictly optimal. In other words,[∑

t

µ(θ1, t)u(θ1, s, t) ≥
∑

t

µ(θ0, t)u(θ0, s, t)

]

=⇒
[∑

t

µ(θ1, t)u(θ0, s0, t) >
∑

t

µ(θ0, t)u(θ0, s0, t)

]
.

If this is true for all contracts θ1 arbitrarily close to θ0 then, given the continuity of
the payoff functions, we can take the limit as θ1 → θ0 to get[∑

t

[m(t)− µ(θ0, t)]u(θ0, s, t) ≥ 0

]
(3)

=⇒
[∑

t

[m(t)− µ(θ0, t)]u(θ0, s0, t) ≥ 0

]
,

wherem(t) represents the limit of the probability assessments µ(θ1, t) as θ1 → θ0.
Since we have little information about the probability assessments that might obtain
in equilibrium, if we want the implication (3) to hold in equilibrium we will have to
assume that it holds for all possible probability assessments. That is, for any vector
of weights λ = (λ(t)) we must assume that[∑

t

λ(t)u(θ0, s, t) ≥ 0

]
=⇒

[∑
t

λ(t)u(θ0, s0, t) ≥ 0

]
. (4)

The implication (4) is generally valid if and only if u(θ0, s, ·) is a positive scalar
multiple of u(θ0, s0, ·), that is,

u(θ0, s, t) = α(θ0, s)u(θ0, s0, t),∀t,

for any s < s0 and for some constant α(θ0, s) > 0.
If this relationship holds for every contract θ and every type s (how else can we

guarantee that it will hold in equilibrium as required?), then the payoff functions
can be written in the form

u(θ, s, t) = a(θ, s)b(θ, t),∀(θ, s, t) ∈ Θ × S × T.

In other words, the preferences are separable and each type of seller has identical
marginal preferences over different types of buyers. This is a strong but natural
condition that is sufficient for extending the argument used in Section 3 to the case
of TSU. Later, we consider the extent to which this condition might be necessary
as well.
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4.2 Separation with separable preferences

Assume that all the agents on one side of the market have similar preferences over
the types of agents on the other side and vice versa, that is,

u(θ, s, t) = a(θ, s)b(θ, t)
v(θ, s, t) = c(θ, t)d(θ, s).

Let f be a stable allocation and θ0 a contract that is traded in f . Let S0 =
{s|∑t µ(θ0, t)u(θ0, s, t) = u∗(s) ≥ c(s)} be the set of seller types for which
θ0 is an optimal choice. We assume that there is a unique best type s0 ∈ S0. Then
s ∈ S0 and s 	= s0 imply that d(θ0, s) < d(θ0, s0). We shall also assume that
d(θ0, s0) 	= d(θ0, s) for any s /∈ S0. The separation condition is the following: for
any ε > 0 there is a contract θ1 that is ε-close to θ0 and satisfies

(S3) a(θ1,s0)
a(θ0,s0)

> a(θ1,s)
a(θ0,s) ,∀t,∀s # d(θ0, s) < d(θ0, s0).

Note that the separation condition (S3) restricts the preferences of all the types s
that are less attractive than s0 to buyers, and not just the types s ∈ S0, s 	= s0. A
similar condition is required for the other side of the market:

(S4) c(θ1,s0)
c(θ0,s0)

> c(θ1,s)
c(θ0,s) ,∀s,∀t # b(θ0, s) < b(θ0, s0).

Note that (S3-S4) does not require that θ1 is preferred to θ0 by types s0 and t0
other things being equal. This would be an implausible condition given the nature
of trade. Rather, it requires that types s0 and t0 dislike θ1 relatively less than types
s < s0 and t < t0, respectively.

With these assumptions we can show that a stable allocation must be separating.

Theorem 4 Suppose that the payoff functions have the additively separable form

u(θ, s, t) = a(θ, s)b(θ, t)
v(θ, s, t) = c(θ, t)d(θ, s).

Let f be a stable allocation and θ0 a contract belonging to the interior ofΘ that is
traded in equilibrium. Let S0 (resp. T0) denote the set of seller types (resp. buyer
types) that find θ0 optimal in equilibrium. Let s0 (resp. t0) denote the best type in
S0 (resp. T0). Assume that d(θ0, s) 	= d(θ0, s0) if s 	= s0 (resp. b(θ0, t) 	= b(θ0, t0)
if t 	= t0) and that for any ε > 0 we can find a contract θ1 that is ε-close to θ0
and satisfies (S3-S4). Then f(θ0, s) = 0 for s ∈ S0, s 	= s0 and f(θ0, t) = 0 for
t ∈ T0, t 	= t0.

Proof. See Section 5. ��
Again, we can see condition (S3-S4) is implied by the joint assumption that the

space of contracts Θ is sufficiently rich (has a high dimension) and that the payoff
functions are regular (the Jacobian matrix has full rank).
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Corollary 5 Suppose that the payoff functions have the additively separable form
and let f be a stable allocation and θ0 a contract belonging to the interior of Θ
that is traded in equilibrium. Let s0 (resp. t0) denote the best type in S0 (resp.
T0), the types of sellers (resp. buyers) that find θ0 optimal in equilibrium. Assume
that d(θ0, s) 	= d(θ0, s0) if s 	= s0 (resp. b(θ0, t) 	= b(θ0, t0) if t 	= t0). If Θ has
a sufficiently high dimension and the payoff functions are regular (the Jacobian
matrix has full rank) then f(θ0, s) = 0 for s ∈ S0, s 	= s0 and f(θ0, t) = 0 for
t ∈ T0, t 	= t0.

Separability is a natural assumption to make in this context in order to extend
the argument used in the OSU case. Nonetheless, separability is restrictive so it is
important to ask how far one can relax this assumption and still guarantee separation
of types in a stable allocation.

4.3 Separation without separability

Without separability, there is no hope of applying the general line of argument
used above, but there is additional structure that might be used to argue that private
information will be fully revealed even if preferences are not separable. To illustrate
the problems and possibilities of this approach, consider the case where there are
two types on each side of the market, S = {s1, s2} and T = {t1, t2}.

To simplify, the types are ranked in order of attractiveness to the other side of
the market. Types s2 and t2 are the ‘good’ types and s1 and t1 are the ‘bad’ types.
This means that, for any contract θ, and for any seller type s

u(θ, s, t1) < u(θ, s, t2),

and for any buyer type t

v(θ, s1, t) < v(θ, s2, t).

Suppose that f is a stable allocation and let θ0 be a traded contract. Let S0 and
T0 denote the types of sellers and buyers, respectively, for whom θ0 is an optimal
choice. If S0 and T0 are singletons, there is nothing to prove; if one of them is a
singleton, the argument used in Section 3 will suffice to establish separation. So,
without loss of generality, we can assume that S0 = {s1, s2} and T0 = {t1, t2}.

Suppose then, contrary to what we want to prove, that f(θ0, s1) > 0 and
f(θ0, t1) > 0. Let θ1 be an arbitrary contract that is very close to θ0. Consider a
perturbation g such that g(θ1, s2) = g(θ1, t2) > 0 and g(θ1, s1) = g(θ1, t1) = 0.
Let (f, µ) be the equilibrium satisfying (1-2) relative to the perturbation g.

Markets are orderly, so at most one side of the market is rationed. Suppose that
the buyers are constrained in the market for the contract θ1 (the other case is exactly
symmetrical). Then the sellers are unconstrained and their probability of trade is∑

t µ(θ1, t) = 1.
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For any θ1 sufficiently close to θ0, the continuity of the payoff functions and
the assumption that type t2 is better (more desirable) than type t1 implies that

u(θ1, s2, t2) >
∑

t

µ(θ0, t)u(θ0, s2, t)

= u∗(s2).

So the optimality conditions require that µ(θ1, t2) < 1 and µ(θ1, t1) > 0. Given
the construction of the perturbation g and the stability condition (2) this can only
be true if

v∗(t1) =
∑

s

µ(θ1, s)v(θ1, s, t1). (5)

There are two cases to consider.

Case 1. First, suppose that θ1 is not optimal for sellers of type s1. Then (1) and
the construction of g imply that µ(θ1, s1) = 0. Then the optimality condition (5)
reduces to ∑

s

µ(θ0, s)v(θ0, s, t1) = µ(θ1, s2)v(θ1, s2, t1).

and the optimality condition for buyers of type t2 can be written∑
s

µ(θ0, s)v(θ0, s, t2) ≥ µ(θ1, s2)v(θ1, s2, t2).

Dividing these conditions by v(θ1, s2, t1) and v(θ1, s2, t2) respectively and letting
θ1 converge to θ0 gives

µ(θ0, s1)
v(θ0, s1, t1)
v(θ0, s2, t1)

+ µ(θ0, s2) = m(s2)

and

µ(θ0, s1)
v(θ0, s1, t2)
v(θ0, s2, t2)

+ µ(θ0, s2) ≥ m(s2),

where m(s) denotes the limiting value of µ(θ1, s) as θ1 → θ0. These conditions
are mutually inconsistent if the relative variation in payoffs for type t1 is greater
than for type t2:

v(θ, s1, t2)
v(θ, s2, t2)

>
v(θ, s1, t1)
v(θ, s2, t1)

,∀θ. (6)

Thus, condition (6) is sufficient to rule out pooling in this case.

Case 2. The second case assumes that θ1 is optimal for sellers of type s1. Then∑
t

µ(θ1, t)u(θ1, s1, t) =
∑

t

µ(θ0, t)u(θ0, s1, t). (7)
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We need to show that condition (7) implies that sellers of type s2 will strictly prefer
the contract θ1. The following two conditions will be shown to be sufficient. The
first condition is that type s2 is more sensitive than type s1 to the type of buyer he
is matched with:

u(θ, s2, t2)− u(θ, s2, t1) > u(θ, s1, t2)− u(θ, s1, t1) (8)

for any contract θ. The second condition is that type s1 has a stronger relative
preference for θ0 over θ1 than does type s2:

0 < u(θ0, s1, t)− u(θ1, s1, t) > u(θ0, s2, t)− u(θ1, s2, t),∀t. (9)

The condition (7) can be rewritten as∑
t

[µ(θ1, t)− µ(θ0, t)]u(θ1, s1, t) =
∑

t

µ(θ0, t) [u(θ0, s1, t)− u(θ1, s1, t)] .

(10)

The right hand side of (10) is positive (condition (9) says that s1 prefers θ0 to θ1) so
the left hand side must be positive and this implies that the probability distribution
µ(θ1, t) puts more weight on type t2 relative to µ(θ0, t):

µ(θ1, t2)− µ(θ0, t2) > 0 > µ(θ1, t1)− µ(θ0, t1).

Then condition (8) implies that∑
t

[µ(θ1, t)− µ(θ0, t)]u(θ1, s2, t) >
∑

t

[µ(θ1, t)− µ(θ0, t)]u(θ1, s1, t)

and condition (9) implies that∑
t

µ(θ0, t) [u(θ0, s1, t)−u(θ1, s1, t)]>
∑

t

µ(θ0, t) [u(θ0, s2, t)−u(θ1, s2, t)] .

Combining these conditions with (10) gives∑
t

[µ(θ1, t)− µ(θ0, t)]u(θ1, s2, t) >
∑

t

[µ(θ1, t)− µ(θ0, t)]u(θ1, s1, t)

=
∑

t

µ(θ0, t) [u(θ0, s1, t)− u(θ1, s1, t)]

>
∑

t

µ(θ0, t) [u(θ0, s2, t)− u(θ1, s2, t)] ,

which proves the θ1 is strictly preferred to θ0 by type s2, contradicting the optimality
conditions.

A symmetric argument applies for the case in which the sellers are constrained
in the market for θ1, but note that in order to deal with both cases we need to find a
single contract θ1 that satisfies the condition (6) for the buyers and the analogue for
sellers, and that satisfies conditions (8) and (9) for sellers and their analogues for the
buyers. These are not innocuous conditions but they are not extremely restrictive
either. They are, however, much more restrictive than the conditions required in
Section 3.
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Theorem 6 Suppose that there are two types of buyers and sellers, S = {s1, s2}
and T = {t1, t2}, and that the types can be ranked as follows:

u(θ, s, t1) < u(θ, s, t2),∀s,

v(θ, s1, t) < v(θ, s2, t),∀t.
Let f be a stable allocation and θ0 a contract belonging to the interior ofΘ that is
traded in equilibrium. Assume that for any contract θ

v(θ, s1, t2)
v(θ, s2, t2)

>
v(θ, s1, t1)
v(θ, s2, t1)

,

u(θ, s2, t1)
u(θ, s2, t2)

>
u(θ, s1, t1)
u(θ, s1, t2)

,

and that

u(θ, s2, t2)− u(θ, s2, t1) > u(θ, s1, t2)− u(θ, s1, t1)
v(θ, s2, t2)− v(θ, s1, t2) > v(θ, s2, t1)− v(θ, s1, t1).

For any ε > 0 suppose that there is a contract θ1 that is ε-close to θ0 and that

0 < u(θ0, s1, t)− u(θ1, s1, t) > u(θ0, s2, t)− u(θ1, s2, t),∀t,
0 < v(θ0, s, t1)− v(θ1, s, t1) > v(θ0, s, t2)− v(θ1, s, t2),∀s.

Then if θ0 is optimal for types s2 and t2, it is not traded by types s1 and t1, that is,
f(θ0, s1) = 0 = f(θ0, t1).

4.4 Discussion

For the case of OSU, Theorem 2 shows that conditions on preferences over con-
tracts (S1-S2) are sufficient for separation of types in a stable allocation. With
the assumption of separability, it is possible to extend this result to the case of
TSU. Theorem 4 shows that separation of types in a stable allocation is implied
by the conditions (S3-S4), which only refer to agents’ preferences over contracts.
Furthermore, these conditions on preferences over contracts can be interpreted as
requiring that the contract space be “sufficiently rich”.

Separability is a natural condition to impose if we want to extend the separation
argument from OSU to TSU.At the same time it is restrictive and so it would be nice
to relax it. The 2×2 example suggests that sufficient conditions for full revelation of
private information will have to be much stronger under TSU without separability
than under OSU or under TSU with separability. Essentially, we have seen that
with OSU a stable allocation will be fully revealing as long as the contract space is
sufficiently rich. With TSU, a lot more structure has to be placed on the preferences
of the agents to ensure that a stable allocation is separating. In particular, we need
to put restrictions on the intensity of agents’ preferences over the different types of
agents on the other side of the market.

The conditions obtained so far are sufficient but not necessary. However, the
restrictiveness of the sufficient conditions does suggest that full revelation may be
less likely under TSU without separability than in the other cases.
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5 Proofs

Proof of Theorem 2. Let θ1 be a contract arbitrarily close to θ0 that satisfies con-
ditions (S1) and (S2). Let g denote a perturbation such that for any choice of θ1
close to θ0

g(θ1, s) =
{
δ > 0 s = s0
0 s 	= s0

.

From the definition of a stable allocation, there exists an equilibrium (f, µ) whose
probability assessment satisfies conditions (1-2).

I claim that µ(θ1, s) = 0 for any s 	= s0. To prove this, we start by noting that
the equilibrium condition for s0 implies that

µ(θ1, t0)u(θ1, s0) ≤ µ(θ0, t0)u(θ0, s0). (11)

From conditions (S1-S2), we know that u(θ1, s0) > u(θ0, s0) > 0, so inequality
(11) implies that

µ(θ1, t0) < µ(θ0, t0). (12)

This fact is enough to show that θ1 is not optimal for any s /∈ S0. To see this, we
consider two cases. If µ(θ1, t0)u(θ1, s) < 0, the conclusion is obvious so suppose
that 0 ≤ µ(θ1, t0)u(θ1, s) ≤ µ(θ0, t0)u(θ1, s). If θ0 is not optimal for s, then either
some other contract is strictly preferred or no trade is strictly preferred:

µ(θ0, t0)u(θ0, s)− c(s) < max{u∗(s)− c(s), 0}. (13)

Then (12) and (13) imply that

µ(θ1, t0)u(θ1, s)− c(s) < max{u∗(s)− c(s), 0}

because u(θ1, s) is approximately equal to u(θ0, s) for θ1 arbitrarily close to θ0. In
other words, θ1 is not an optimal choice for s /∈ S0, as claimed.

Now consider the types s ∈ S0, s 	= s0. To show that θ1 is not an optimal
choice for s there are three cases that need to be considered. If µ(θ1, t0) = 0 there
is nothing to prove since u∗(s) > 0. If µ(θ1, t0) > 0 and u(θ1, s) < 0 then again
there is nothing to prove since µ(θ1, t0)u(θ1, s) < 0 violates individual rationality.
So we are left with the case whereµ(θ1, t0) > 0 andu(θ1, s) ≥ 0. Thenµ(θ1, t0) <
µ(θ0, t0) and u(θ1, s) < u(θ0, s) imply µ(θ1, t0)u(θ1, s) < µ(θ0, t0)u(θ0, s) as
required.

We have shown that θ1 is not an optimal choice for any s 	= s0 if θ1 is chosen
close enough to θ0. Then (S1) and the definition of g imply that µ(θ1, s) = 0 for
every s 	= s0, as claimed.

Orderliness and µ(θ1, t0) < 1 imply that buyers are not rationed at θ1, that is,
µ(θ1, s0) =

∑
s µ(θ1, s) = 1. The optimality condition for type t0 requires

µ(θ1, s0)v(θ1, s0) =
∑

s

µ(θ1, s)v(θ1, s)

≤
∑

s

µ(θ0, s)v(θ0, s).
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For θ1 sufficiently close to θ0, we have v(θ1, s0) ≈ v(θ0, s0) > v(θ0, s) for every
s ∈ S0, s 	= s0, so the equilibrium condition will only be satisfied if µ(θ0, s) = 0
for every s ∈ S0, s 	= s0. Since θ0 is traded in equilibrium, this implies that
f(θ0, s) = 0 for all s 	= s0. ��

Proof of Theorem 4. Let θ1 be a contract arbitrarily close to θ0 that satisfies (S3-S4).
We want to show that θ1 is not optimal for any type s such that d(θ0, s) < d(θ0, s0).
The optimality condition

∑
t

µ(θ1, t)u(θ1, s0, t) ≤
∑

t

µ(θ0, t)u(θ0, s0, t)

can be rewritten as

a(θ1, s0)
a(θ0, s0)

∑
t

µ(θ1, t)b(θ1, t) ≤
∑

t

µ(θ0, t)b(θ0, t). (14)

If
∑

t µ(θ1, t)b(θ1, t) = 0 then θ1 is clearly not optimal for any type s so without
loss of generality we can assume that

∑
t µ(θ1, t)b(θ1, t) > 0. Then (14) and the

separation condition imply that

a(θ1, s)
a(θ0, s)

∑
t

µ(θ1, t)b(θ1, t) <
∑

t

µ(θ0, t)b(θ0, t),

for s such that d(θ0, s) < d(θ0, s0) and this last inequality can be reorganized to
give

∑
t

µ(θ1, t)u(θ1, s, t) <
∑

t

µ(θ0, t)u(θ0, s, t)

for s such that d(θ0, s) < d(θ0, s0). This proves that θ1 is not optimal for s < s0.
A similar argument applies to the other side of the market.
To complete the proof, consider a perturbation g such that

g(θ1, k) =
{
δ > 0 k = s0, t0
0 k 	= s0, t0

.

Since f is stable there exists a consistent probability assessment µ satisfying the
conditions (1-2), which tells us that µ(θ1, s) = 0 if d(θ0, s) < d(θ0, s0) and
µ(θ1, t) = 0 if b(θ0, t) < b(θ0, t0). The orderly markets condition requires that
either

∑
t µ(θ1, t) = 1 or

∑
s µ(θ1, s) = 1. Then for some θ1 sufficiently close to

θ0, some types will strictly prefer θ1 to θ0, contradicting the equilibrium conditions,
unless f(θ0, s) = 0 for s 	= s0 and f(θ0, t) = 0 for t 	= t0. This proves the desired
result. ��
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Summary. We study the process of learning in a differential information economy,
with a continuum of states of nature that follow a Markov process. The economy
extends over an infinite number of periods and we assume that the agents behave
non-myopically, i.e., they discount the future. We adopt a new equilibrium concept,
the non-myopic core. A realized agreement in each period generates information
that changes the underlying structure in the economy. The results we obtain serve
as an extension to the results in Koutsougeras and Yannelis (1999) in a setting
where agents behave non-myopically. In particular, we examine the following two
questions: 1) If we have a sequence of allocations that are in an approximate non-
myopic core (we allow for bounded rationality), is it possible to find a subsequence
that converges to a non-myopic core allocation in a limit full information economy?
2) Given a non-myopic core allocation in a limit full information economy can we
find a sequence of approximate non-myopic core allocations that converges to that
allocation?
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1 Introduction

In this paper, we address the issue of learning in a differential information economy
i.e., an economy with a finite number of agents, where each agent is characterized
by a state dependent utility function, a state dependent initial endowment, a private
information set (which is a partition of an exogeneously given probability measure
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space) and a prior. The equilibrium concept we employ is the non-myopic core
which is an extension of the private core (seeYannelis, 1991) to dynamic economies
with non-myopic agents. Our economy extends over an infinite number of periods
and agents discount the future. Consequently, the utility functions depend not only
on current consumption, but also on future consumption. Agents are risk averse
and hence they want to smooth their consumption. In each period, they agree upon
a contract that specifies the terms of exchange, contingent on the states of nature.
This agreement is based on each agent’s private information and has the property
that there does not exist a coalition of agents who can redistribute their initial
endowments using their private information and make everybody in the coalition
better off. A realized agreement in each period generates information that changes
the underlying information structure in the economy.

We are studying the exchange of goods and information that takes place at the
interim stage i.e., after the agents have observed the events that contain the realized
state of nature. To be more precise, all contracts are negotiated at the beginning
of the history of the economy and from then on all actions are determined by the
already chosen acts. There is no need to revise any strategies, because the choice of
the strategies has already taken account of the structure of information in the future
i.e., what information will be available at each date. The process through which
learning occurs is the following: At the end of each period the agents observe the
non-myopic core equilibrium outcome plus the endowments of the current period
and they refine their information partitions. The link between today and the future
is the information that each agent possesses. So, agents by deciding upon the trade
that will take place today, affect their information partitions tomorrow, which in
turn affects the future expected utility. Learning itself is not the goal of the agents,
but rather a result of actions by agents who are concerned with the expected utility.

It becomes apparent from the above discussion that the information agents
possess restricts their consumption and trade choices. A question that naturally
arises, and the one we address is: Can the agents through the process of exchange
reach a non-myopic core equilibrium allocation that is in a limit full information
economy? (i.e., in an economy where everything that could be learned has been
learned.)

This work draws upon the results obtained by Koutsougeras andYannelis (1999).
They addressed the issue of learning in a pure exchange economy with differential
information using the private core (Yannelis, 1991) as an equilibrium concept by
assuming that the agents behave myopically.1 In their model agents only care about
current consumption and their utility does not depend on future allocations at all.

There is a substantial literature that deals with the issue of non-myopic learning
in dynamic games, a small subset of which are the papers by: Kalai and Lehrer
(1993), Nyarko (1998) and Serfes and Yannelis (1998). However, they put the
problem in a different setting than we do. In particular, the first two papers con-
sider an infinitely repeated game where agents have subjective beliefs about their
opponents’ strategies. They prove convergence of the actual play to Nash equilib-
rium (Kalai and Lehrer), or convergence of beliefs to subjective Nash equilibria

1 Henceforth, we will be calling the equilibrium concept in Koutsougeras andYannelis, myopic core.
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(Nyarko). Serfes andYannelis (1998) address the same questions that are addressed
in this paper in an infinitely repeated game setting by employing the Bayesian Nash
as the equilibrium concept.

What we add to the existing literature and in particular to Koutsougeras and
Yannelis (1999), is the study of the learning problem when agents behave non-
myopically and the states of nature follow a Markov process. To do this, we intro-
duce a new equilibrium concept, the non-myopic core. The result is that we may get
allocations and learning processes that may differ, depending on the equilibrium
concept i.e., myopic versus non-myopic core. Our equilibrium concept is more
general, since as the discount factor goes to zero, our model reduces to that of
Koutsougeras and Yannelis (1999).

The paper contains the following results: We prove the non-emptiness of the
set of non-myopic core allocations. Next, we define the concept of a limit full
information economy and ask the following: If we have a sequence of allocations
that are in an approximate non-myopic core (allowing for bounded rationality), is it
possible to find a subsequence that converges to a non-myopic core allocation in a
limit full information economy? And given a non-myopic core allocation in a limit
full information economy can we find a sequence of approximate non-myopic core
allocations that converges to that allocation?

The rest of the paper is organized as follows. In Section 2, we have collected
the results that we are going to use in the sequel. In Section 3, we present the
myopic core. In Section 4, we outline our model and prove the existence theorem.
In Section 5, we describe the learning process, present an example and state the
main Theorems. Finally, in Section 6 we prove our main learning theorems.

2 Mathematical preliminaries

If X and Y are sets, the graph of the set-valued function (or correspondence),
φ : X → 2Y is denoted by

Gφ = {(x, y) ∈ X × Y : y ∈ φ(x)}.

Let (Ω,F , µ) be a complete, finite measure space, and X be a separable Banach
space. The set-valued function φ : Ω → 2X is said to have a measurable graph if
Gφ ∈ F ⊗ β(X), where β(X) denotes the Borel σ-algebra on X and ⊗ denotes
the product σ-algebra. The set-valued function φ : Ω → 2X is said to be lower
measurable or just measurable if for every open subset V of X , the set

{ω ∈ Ω : φ(ω) ∩ V 	= ∅}

is an element of F .
Let (Ω,F , µ) be a finite measure space and X be a Banach space. Follow-

ing Diestel-Uhl (1977) the function f : Ω → X is called simple if there exist
x1, x2, ..., xn inX andα1, α2, ..., αn inF such that

∑n
i=1 xiχαi whereχαi(ω) = 1

if ω ∈ αi and χαi(ω) = 0 if ω /∈ αi. A function f : Ω → X is said to be µ-
measurable if there exists a sequence of simple functions fn : Ω → X such that
limn→∞ ‖fn(ω) − f(ω)‖ = 0 for almost all ω ∈ Ω. A µ-measurable function
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f : Ω → X is said to be Bochner integrable if there exists a sequence of simple
functions {fn : n = 1, 2, ...} such that

lim
n→∞

∫
Ω

‖fn(ω)− f(ω)‖dµ(ω) = 0.

In this case we define for each E ∈ F the integral to be∫
E

f(ω)dµ(ω) = lim
n→∞

∫
E

fn(ω)dµ(ω).

It can be shown (see Diestel-Uhl, 1977, Theorem 2, p.45) that if f : Ω → X is a µ-
measurable function then, f is Bochner integrable if and only if

∫
Ω
‖f(ω)‖dµ(ω) <

∞.
For 1 ≤ p < ∞, we denote by Lp(µ,X) the space of equivalence classes of

X-valued Bochner integrable functions x : Ω → X normed by

‖x‖p = (
∫

Ω

‖x(ω)‖pdµ(ω))
1
p .

It is a standard result that normed by the functional ‖· ‖p above,Lp(µ,X) becomes
a Banach space (see Diestel-Uhl, 1977, p.50).

Let X : Ω → 2Y , be a correspondence, where Y is a Banach space. Also let
u : Ω × Y → R be a real-valued function. Ω can be decomposed into an atomless
part Ω1 and a countable union of atoms Ω2. A result due to Balder and Yannelis
(1993), [Theorem 2.8] says that if: 1. a.e. in Ω1, X(ω) is convex and closed, 2.
u(ω, · ) is concave and upper semicontinuous on X(ω), 3. u(ω, · ) is integrably
bounded, 4. for all ω ∈ Ω2,X(ω) is weakly closed, and 5. u(ω, · ) is weakly upper
semicontinuous on X(ω) then,

U(x) =
∫

Ω

u(ω, x(ω))dµ(ω)

is weakly upper semicontinuous on the weakly closed set LX = {y ∈ L1(µ, Y ) :
y(ω) ∈ X(ω) and y is F −measurable}.

Another result due to Balder and Yannelis (1993), [Theorem 2.1] tells us that
if X(ω) is convex and closed a.e. in Ω1 and weakly closed a.e. in Ω2, then LX is
weakly closed.

Now we present some basic results on Banach lattices (see Aliprantis-
Burkinshaw, 1985). Recall that a Banach lattice is a Banach space L equipped
with an order relation≥ (i.e.,≥ is reflexive, antisymmetric, and transitive relation)
satisfying:

(i) x ≥ y implies x+ z ≥ y + z for every z in L,
(ii) x ≥ y implies λx ≥ λy for all λ ≥ 0,
(iii) for all x, y in L there exists a supremum (least upper bound) x ∨ y and an

infimum (gretest lower bound) x ∧ y,
(iv) |x| ≥ |y| implies ‖x‖ ≥ ‖y‖ for all x, y in L.
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As usual x+ = x∨ 0, x− = (−x)∨ 0 and |x| = x∨ (−x) = x+ +x−; we call
x+, x− the positive and negative parts of x, respectively and |x| the absolute value
of x. The symbol ‖· ‖ denotes the norm on L. If x, y are elements of the Banach
lattice L, then we define the order interval [x, y] as follows:

[x, y] = {z ∈ L : x ≤ z ≤ y}.

Note that [x, y] is norm closed and convex (hence weakly closed). A Banach lattice
L is said to have an order continuous norm if, xα ↓ 0 2 in L implies ‖xα‖ ↓ 0.
A very useful result that will play an important role in the sequel is that if L is a
Banach lattice then the fact that L has order continuous norm is equivalent to weak
compactness of the order interval [x, y] = {z ∈ L : x ≤ z ≤ y} for every x, y in
L [see for instance Aliprantis-Brown-Burkinshaw (1990), Theorem 2.3.8, p.104 or
Lindenstrauss-Tzafriri (1979), p.28 ].

We note that Cartwright (1974) has shown that if X is a Banach lattice with
order continuous norm (or equivalentlyX has weakly compact order intervals) then
L1(µ,X), has weakly compact order intervals, as well.

We close this section by defining the notion of a martingale and stating the
martingale convergence theorem. Let I be a directed set and let {Fi : i ∈ I} be a
monotone increasing net of sub σ-fields of F (i.e., Fi1 ⊆ Fi2 for i1 ≤ i2, i1, i2 in
I). A net {xi : i ∈ I} in L1(µ,X) is a martingale if

E(xi|Fi1) = xi1 ,∀i ≥ i1.

We will denote the above martingale by {xi,Fi}i∈I . The proof of the following
martingale convergence theorem can be found in Diestel-Uhl (1977, p.126). A
martingale {xi,Fi}i∈I in L1(µ,X) converges in the L1(µ,X)-norm if and only if
there exists x in L1(µ,X) such thatE(x|Fi) = xi for all i ∈ I . Finally, recall (see
for instance Diestel–Uhl, 1977, p.129) that if the martingale {xi,Fi}i∈I converges
in the L1(µ,X)-norm to x ∈ L1(µ,X), it also converges almost everywhere, i.e.,
limi→∞ xi = x almost everywhere.

3 The Yannelis core

The definition of the core of an exchange economy with differential information is
given as follows (see also Yannelis, 1991).

Let Y , which denotes the commodity space,3 be a separable Banach lattice
with an order continuous norm and Y+ be its positive cone. Let (Ω,F , µ) be a
probability space. An exchange economy with differential information,

E = {(Xi, ui, ei,Fi, qi) : i = 1, 2, ..., n}

is a set of quintuples (Xi, ui, ei,Fi, qi) where,
(1) Xi : Ω → 2Y+ is the random consumption set of agent i.

2 xα ↓ 0, means that xα is a decreasing net with infα xα = 0.
3 It is important to note that even if we assume that our commodity space is Y = Rl, the space

Lp(µ, Rl), 1 ≤ p ≤ ∞ is still infinite dimensional (in view of the continuum of states). Hence, even
with one good we still need to work with an infinite dimensional space.
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(2) ui : Ω × Y+ → R is the random utility function of agent i.
(3) Fi is a sub-σ-algebra of (Ω,F) which denotes the private information of agent
i.
(4) ei : Ω → Y+ is the random initial endowment of agent i, ei(· ) isFi-measurable,
Bochner integrable and ei(ω) ∈ Xi(ω) for all i, µ− a.e..
(5) qi : Ω → R++ is the prior of agent i, (i.e., qi is the Radon-Nikodym derivative
having the property that

∫
t∈Ω

qi(t)dµ(t) = 1).
Denote by LXi , the set of all Bochner integrable andFi-measurable selections

from the consumption set Xi of agent i, i.e.,

LXi = {xi ∈ L1(µ, Y+) : xi : Ω → Y+is Fi −measurable

and xi(ω) ∈ Xi(ω), µ− a.e.}.

For each i, (i = 1, 2, . . . , n) denote byEi(ω) the event inFi containing the realized
state of nature ω ∈ Ω and suppose that

∫
t∈Ei(ω) qi(t)dµ(t) > 0. Given Ei(ω) in

Fi define the interim expected utility of agent i, Vi : Ω × LXi
→ R by,

Vi(ω, xi) =
∫

k∈Ei(ω)
ui(k, xi(k))qi(k|Ei(ω))dµ(k)

where

qi(k|Ei(ω)) =

{
0 if k /∈ Ei(ω)

qi(k)∫
k∈Ei(ω) qi(k)dµ(k) if k ∈ Ei(ω).

Below we give the definitions of the core and the ε-core of the above economy.

Definition 3.1 (Yannelis, 1991). We say that x = (x1, x2, ..., xn) ∈ Πn
i=1LXi

is a
core allocation for E if,
i)
∑n

i=1 xi =
∑n

i=1 ei and,
ii) it is not true that there exists S ⊂ {1, 2, ..., n} and y ∈ Πi∈SLXi , such that∑

i∈S yi =
∑

i∈S ei, and Vi(ω, yi) > Vi(ω, xi),∀i ∈ S and for almost all ω.

Definition 3.2 (Yannelis, 1991).An allocation x ∈ Πn
i=1LXi , is said to be an ε-core

allocation for E if in addition to i) above it satisfies
ii′) it is not true that there exists S ⊂ {1, 2, ..., n} and y ∈ Πi∈SLXi

such that∑
i∈S yi =

∑
i∈S

ei, and Vi(ω, yi) > Vi(ω, xi) + ε,∀i ∈ S and for almost all ω.

Theorem 3.1 (Yannelis, 1991). Suppose that an exchange economy with differential
information satisfies for each agent i the following assumptions,
(a.3.1) Xi : Ω → 2Y+ is a convex, closed, non-empty valued and F-measurable
correspondence.
(a.3.2) for each ω ∈ Ω, ui(ω, · ) is continuous and integrably bounded and,
(a.3.3) for each ω ∈ Ω, ui(ω, · ) is concave.

Then a private core allocation exists in E .
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4 The non-myopic core

LetT be a countable set denoting the time horizon. LetY be a Banach lattice with an
order continuous norm and (Ω,F) be a measurable space with initial probability
measure λ0 and transition function Q.4 The set Ω contains the states of nature
which follow a Markov process overtime. Let (Ω∞,F∞, µ∞(λ0, · )) be an infinite
product probability measure space. The interpretation is that any sequence of shocks
will lie in this space and µ∞ gives the probability of that sequence occurring. Each
state in Ω∞ determines the entire history of all aspects of the economy that are
beyond the control of any of the agents (see Savage, 1974, Ch. 2, for a detailed
discussion of this concept).

Now let xit : Ω∞ → Y+ be a vector-valued function that denotes the allocation
of agent i in period t contingent on the history of realizations up to that period.
We denote by x̄i = (xi1, . . . , xit, . . . ) an infinite sequence of such vector-valued
functions for agent i. By x̄ we denote such a sequence for all agents. Hence, x̄ can
be viewed as a stochastic process on (Ω∞,F∞, µ∞(λ0, · )). Also the endowments
eit : Ω∞ → Y+, t = 1, 2, . . . define a stochastic process on the same space. All
contracts are negotiated at the beginning of the history of the economy, and from
then on all actions are determined by already chosen strategies. Such strategies may,
of course, take account of new information as it becomes available. An exchange
economy with differential information is actually a sequence of economies

{Et : t ∈ T}

where for each t,

Et = {(Xi, ui, eit,Fit, qi) : i = 1, 2, . . . , n}

is a set of quintuples (Xi, ui, eit,Fit, qi) where,
(1) Xi : Ω∞ → 2Y+ , is a random consumption correspondence of agent i.
(2) ui : Ω∞ × Y+ → R, is a state dependent utility function of agent i.
(3) Fit is a sub-σ-algebra of (Ω∞,F∞) which denotes the private information of
agent i in period t.
(4) eit : Ω∞ → Y+ is the random initial endowment of agent i in period t, eit(· ) is
Fit-measurable, Bochner integrable and eit(ω∞) ∈ Xi(ω∞) for all i, µ∞ − a.e..
(5) qi : Ω∞ → R++ is the prior of agent i, (i.e., qi is the Radon–Nikodym
derivative having the property that

∫
k∈Ω∞ qi(k)dµ∞(k) = 1).

As in R.J. Aumann (1987), we assume that the economy is common knowledge.
Denote byLXit , the set of all Bochner integrable andFit-measurable selections

from the consumption set Xi of agent i, in period t i.e.,

LXit = {xit ∈ L1(µ∞, Y+) : xit : Ω∞ → Y+ is Fit −measurable and

xit(ω∞) ∈ Xi(ω∞), µ∞ − a.e.}.
Thus, x̄i = (xi1, . . . , xit, . . . ) is an element of LX̄i

= LXi1 × . . .× LXit
× . . . .

4 A transition function is a function Q : Ω × F → [0, 1] such that,
a. for each ω ∈ Ω, Q(ω, · ) is a probability measure on (Ω, F); and
b. for each A ∈ F , Q(· , A) is a F -measurable function.
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For each i, (i = 1, 2, . . . , n) and t ∈ T , denote by Eit(ω∞) the event
in Fit containing the realized state of nature ω∞ ∈ Ω∞ and suppose that∫

k∈Eit(ω∞) qi(k)dµ(k) > 0 for all t ∈ T .
For each i, (i = 1, 2, . . . , n) and ω∞ define the total discounted interim ex-

pected utility of agent i, V̄i : Ω∞ × LX̄i
→ R by

V̄i(ω∞, x̄i) =
∞∑

t=0

δt

∫
k∈Eit(ω∞)

ui(k, xit(k))qi(k|Eit(ω∞))dµ(k) (4.1)

where δ ∈ [0, 1) is the discount factor and qi(k|Eit(ω∞)) was defined in Section 3.
We are now ready to define the first central notion of the paper.

Definition 4.1. We say that x̄ = (x̄1, x̄2, . . . , x̄n) ∈ Πn
i=1LX̄i

is a non-myopic
core allocation for the economy {Et : t ∈ T} if,

(i)
∑n

i=1 xit =
∑n

i=1 eit, for all t ∈ T and,
(ii) it is not true that there exist S ⊂ {1, 2, ..., n} and (ȳi)i∈S ∈ Πi∈SLX̄i

such
that

∑
i∈S yit =

∑
i∈S eit, for all t ∈ T and V̄i(ω∞, ȳi) > V̄i(ω∞, x̄i),∀i ∈ S

and for almost all ω∞.5

Definition 4.2. We say that x̄ = (x̄1, x̄2, . . . , x̄n) ∈ Πn
i=1LX̄i

is an approximate
or ε-non-myopic core allocation for the economy {Et : t ∈ T} if in addition to (i)
above it satisfies,

(ii′) it is not true that there existS ⊂ {1, 2, ..., n} and (ȳi)i∈S ∈ Πi∈SLX̄i
such

that
∑

i∈S yit =
∑

i∈S eit, for all t ∈ T and V̄i(ω∞, ȳi) > V̄i(ω∞, x̄i)+ ε,∀i ∈ S
and for almost all ω∞.

We are now ready to state our first main result:

Theorem 4.1. Let {Et : t ∈ T} be an exchange economy with differential in-
formation as defined above which satisfies the following assumptions, for each i,
(i = 1, 2, . . . , n),

(a.4.1) Xi : Ω∞ → 2Y+ is convex, closed, non-empty valued, and F∞-
measurable correspondence.

(a.4.2) for each ω∞, ui is upper semicontinuous on Xi(ω∞) and integrably
bounded.

(a.4.3) for each ω∞, ui is concave.
Then the set of non-myopic core allocations for {Et : t ∈ T} is a non-empty

subset of Πn
i=1LX̄i

.

Lemma 4.1. Under assumptions (a.4.1)–(a.4.3), the total discounted interim ex-
pected utility V̄i (4.1) is weakly upper semicontinuous for each i and for each
ω∞.

Proof. By assumption, the utility function ui is upper semicontinuous. Then, by
Theorem 2.8 in Balder and Yannelis (1993) (see also Section 2),∫

k∈Eit(ω∞)
ui(k, xit(k))qi(k|Eit(ω∞))dµ(k)

5 What we mean is “for µ∞ almost all ω∞ ∈ Ω∞," but for convenience from now on we simply
write “for almost all ω∞."
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is weakly upper semicontinuous.
By another application of the same Theorem and since T consists of a countable

union of atoms, V̄i is weakly upper semicontinuous as well. ��
Next we present the proof of our Theorem.

Proof of Theorem 4.1. The set LX̄i
is convex since each LXit is convex. It is also

weakly closed, since again each LXit is weakly closed (see Thm. 2.1 in Balder and
Yannelis (1993)). Now let’s define an n-person game V̂ by

V̂ (S) = {x ∈ Rn : there exists an allocation ȳ ∈ AS such that

xi ≤ V̄i(ω∞, ȳi),∀i ∈ S and for almost all ω∞}
where AS is defined as

AS = {ȳ ∈ Πi∈SLX̄i
:
∑
i∈S

yit =
∑
i∈S

eit, for all t ∈ T}.

Notice thatAS is weakly compact because ȳi ∈ [0,
∑
ei1]× [0,

∑
ei2]× . . . ,∀i ∈

S, the order intervals [0,
∑n

i=1 eit],∀t ∈ T are weakly compact (by Cartwright’s
Theorem) and Πi∈SLX̄i

is weakly closed. It is also nonempty since eit ∈ LXit ,
for all t ∈ T .

The n-person game satisfies the properties of Scarf’s Theorem (Scarf, 1967).
Notice that the comprehensiveness follows immediately. The fact that V̂ is bounded
from above follows from the fact that ∀i ∈ N , V̄i is a weakly upper semicontinuous
real-valued function (Lemma 4.1) on the non-empty, weakly compact set AS .

We need to show that V̂ (S) is closed. To this end, let a sequence (xk
1 , ..., x

k
n) of

some V̂ (S) satisfy (xk
1 , ..., x

k
n) → (x1, .., xn) inRn. We must show that (x1, .., xn)

belongs to V̂ (S). For each k pick an allocation (ȳk
1 , . . . , ȳ

k
n) satisfying xk

i ≤
V̄i(ω∞, ȳk

i ),∀i ∈ S and for almost all ω∞, and
∑

i∈S y
k
it =

∑
i∈S eit, for all

t ∈ T . Since yk
it ∈ [0, et] (where et =

∑n
i=1 eit, for all t ∈ T ) holds for all i and

all k and [0, et] is weakly compact, we can assume by passing to an appropriate
subsequence that ȳk

i → yi weakly for all i. Clearly, (y1, ..., yn) is an allocation and∑
i∈S yit =

∑
i∈S eit, for all t ∈ T . Since V̄i is weakly upper semicontinuous it

follows that

xi = lim sup
k

xk
i ≤ lim sup

k
V̄i(ω∞, ȳk

i ) ≤ V̄i(ω∞, yi)

for all i ∈ S and for almost all ω∞. Therefore, (x1, ..., xn) ∈ V̂ (S) and so each
V̂ (S) is closed. Hence the market game (V̂ , N) is balanced and has therefore a
non-empty core (Scarf’s Theorem). Standard arguments now can be applied (see
for instance Aliprantis, Brown and Burkinshaw, 1990, pp.48–49) to show that non-
emptiness of the core of the game (V̂ , N) implies non-emptiness of the core of the
economy {Et : t ∈ T}. ��

Also an approximate or ε-private non-myopic core allocation exists since the
set of all non-myopic core allocations, denoted by C({Et : t ∈ T}), is a subset of
the set of all ε-private non-myopic core allocations denoted by Cε({Et : t ∈ T}).

Next we turn to the question of learning.
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5 Convergence and approximation theorems
for the non-myopic private core and ε-non-myopic private core

5.1 The process of learning

Let T be any countably infinite set denoting the time horizon. We are going to
study the learning process described by Koutsougeras and Yannelis (1999), by
using the non-myopic core as the equilibrium concept of our economy. There are
two advantages of using the non-myopic core. First, it is a general concept and
one can recover all the fundamental results of Koutsougeras and Yannelis (1999)
by simply letting the discount factor go to zero. Second, and most important, the
agents in our framework look into the future which may capture allocations and
learning processes that cannot be captured by the myopic core. We also make a
further generalization by allowing the states of nature to follow a Markov process.

The economy extends over an infinite number of periods. Since the agents are
risk-averse, they want to smooth their consumption. Therefore, in each period they
agree upon a contract which specifies the terms of the exchange contingent upon
the realized state of nature.

Hence, each agent’s private information in each period is generated by his/her
endowment in current and all past periods, his/her utility function and the equilib-
rium allocations in previous periods i.e.,

Fit = σ({eit′ , t′ = 1, . . . , t}, ui, {xt′ , t′ = 1, . . . , t− 1}).

In this scenario, the private information of agent i in period t+1 will beFit together
with the information that the endowment, the utility function and the private core
allocations generate i.e.,

Fit+1 = Fit ∨ σ(eit+1, xt).

Clearly, in period t + 2 the private information set of agent i will be, Fit+2 =
Fit+1 ∨ σ(eit+2, xt+1) and so on. Consequently, for each agent i and each time
period, we have that

Fit ⊆ Fit+1 ⊆ Fit+2 ⊆ . . . .

The above expression represents a learning process for agent i and it generates a
sequence of differential information economies i.e., {Et : t ∈ T}.

Next we define a limit full information economy,

E∞ = {(Xi, ui, ei∞, F̄i, qi) : i = 1, 2, ..., n}

to be the set of quintuples (Xi, ui, ei∞, F̄i, qi) where, F̄i = ∨∞
t=0Fit is the pooled

information of agent i over the entire time horizon, Xi, ui, qi have been defined
previously and ei∞ denotes an endowment function in a limit full information
economy which is F̄i-measurable.

Denote by C(E∞) and Cε(E∞) the set of all limit full information non-myopic
core allocation and the limit full information non-myopic ε-core allocation respec-
tively for the economy E∞.
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Throughout our analysis we will assume that a private information economy
{Et : t ∈ T} as well as a limit full information economy E∞, satisfy the as-
sumptions (a.4.1), (a.4.2) and (a.4.3) and therefore, C({Et : t ∈ T}) 	= ∅ and
C(E∞) 	= ∅. Since, C({Et : t ∈ T}) ⊂ Cε({Et : t ∈ T}) the latter set is
non-empty as well.

It is apparent that the information structure of the economy largely determines
the resulting allocation. The example we present next illustrates the above argument
as well as how the learning takes place in our economy.

5.2 Example

Consider the following two person economy (I = {1, 2}) with two commodities
i, j, (X = R2

+) and four different states (Ω = {a, b, c, d}). To simplify the exam-
ple, the economy extends to only two periods t and t+1. To be consistent with our
notation in the previous section the state space in each period is Z = {ω1, ω2} and
Ω = Z × Z. Hence, a = ω1ω1, b = ω1ω2, . . . . The idea as Debreu (1960) puts
it is the following: Nature makes a choice (state) from a number of possibilities
(states). These possibilities are states at time t+1 (in our example). Once a state is
given, atmospheric conditions, technological knowledge, natural disasters, . . . are
determined for the entire period under consideration. At time t economic agents
have some information about the state at t + 1 which will occur. This knowledge
in our economy comes from observing the endowments. Additional knowledge in
each period is acquired by the allocation in the previous period. This information
can be described by a partition of the set of states at t+ 1 into sets called events at
t.

Each state occurs with probability 1
4 . The random initial (period t) endowment

and private information sets are given by

e1t = ((10, 0), (10, 0), (10, 0), (10, 0)),F1t = {{a, b, c, d}}

e2t = ((0, 10), (0, 10), (0, 0), (0, 0)),F2t = {{a, b}, {c, d}}.
Note that the initial endowment of each agent is measurable with respect to his/her
partition. The utility function of both agents is given by

u(ω, x) =
√
xi +

√
xj , for all ω.

The agents before they observe any event they will agree on the following contract.
In period t there will be no trade due to measurability constraints. Note that the
net trade must be measurable with respect to each agent’s private information at
period t. Since agent 1 has trivial information the net trade must be constant across
all states. But agent 2 has nothing to give at states c and d. Thus, the net trade must
be zero. This implies that the allocation in period t is

x1t = ((10, 0), (10, 0), (10, 0), (10, 0))

x2t = ((0, 10), (0, 10), (0, 0), (0, 0)).
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The information that this allocation generates is

σ(xt) = {{a, b}, {c, d}}.

Hence, the agents in the second period (t+1) will possess the following information
(we assume that the endowments are the same)

F1t+1 = F1t ∨ σ(xt) = {{a, b}, {c, d}}

F2t+1 = F2t ∨ σ(xt) = {{a, b}, {c, d}}
and the allocation in that period will be

x1t+1 = ((5, 5), (5, 5), (10, 0), (10, 0))

x2t = ((5, 5), (5, 5), (0, 0), (0, 0)).

Notice that the allocation is measurable with respect to each agent’s information
and that both agents became better off. Therefore, the agreed upon contract is

x = (xt, xt+1)

as described above.
Below we state and prove the main theorems of this section.

5.3 Learning theorems

We assume that the sequence of endowments satisfies the following condition:
There exists

∑
i∈S ei∞ ∈ L1(µ, Y ) such that for all S ⊂ N

E[
∑
i∈S

ei∞| ∧i∈S Fit] =
∑
i∈S

eit,∀t ∈ T.

Theorem 5.3.1. Let {Et : t ∈ T} be a sequence of private information economies
satisfying the following assumption:

∀S ⊂ N , whereN is the set of agents, {∑i∈S eit,∧i∈SFit}t∈T is a martingale.
If the sequence {xt : t ∈ T} belongs toCε({Et : t ∈ T}), then we can extract a

subsequence {xtm : m = 1, 2, ..., } from the sequence xt which converges weakly
to x∗ ∈ C(E∞).

Theorem 5.3.2. Let {Et : t ∈ T} be a sequence of private information economies
satisfying the following assumptions:

(i) ∀i, {eit,Fit}t∈T is a martingale,
(ii) {

∑n
i=1 eit,∧n

i=1Fit}t∈T is a martingale.
Let x∗be a limit full information non-myopic core allocation for the economy

E∞, i.e., x∗ ∈ C(E∞). Then, there exists a t′ ∈ T big enough and a sequence of
allocations {xt : t ∈ T} such that {xt}t≥t′ ∈ Cε({Et : t ≥ t′}) and {xt}t∈T

converges in the L1-norm to x∗.

An immediate conclusion of Theorem 1 is the following result.
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Corollary 5.3.1. Let {Et : t ∈ T} be a sequence of private information economies
satisfying assumption the of Theorem 5.3.1. If the sequence {xt : t ∈ T} belongs to
C({Et :, t ∈ T}), then we can extract a subsequence from the sequence xt which
converges weakly to x∗ ∈ C(E∞).

Discussion: In both Theorems, the aggregate endowments in the economy obey
a “stability" property given by the Martingale assumption. For a more detailed
discussion about the assumptions see Koutsougeras and Yannelis (1999). Theorem
5.3.1 states that non-myopic and non-fully-rational agents can, by repetition, reach
an equilibrium allocation in an economy that everything that could be learned has
been learned. Theorem 5.3.2 states the converse. That is, given an equilibrium
allocation in such an economy, non-myopic and non-fully-rational agents will find
the way through trading to reach that allocation. This may be viewed as a kind of
“stability" property of the non-myopic core.

Remark 1. When the discount factor δ goes to zero, the above two Theorems reduce
to the ones in Koutsougeras and Yannelis (1999) i.e., Theorems 3.3.1 and 3.3.2.

Remark 2. For the above two Theorems we want the total discounted interim ex-
pected utility (4.1) to be weakly continuous and not just weakly upper semicon-
tinuous. If in addition we assume that for all i, Fit is a partition, and the utility
function ui is weakly continuous, then V̄i is weakly continuous [for more details
see Yannelis (1991), Claim 4.1 and Balder and Yannelis (1993), Corollary 2.9].

6 Proofs of the theorems

6.1 Proof of Theorem 5.3.1

For each i, let L̄Xi
be the set of all Bochner integrable and F̄i-measurable selections

from the consumption correspondence Xi i.e.,

L̄Xi = {xi∞ ∈ L1(µ∞, Y+) : xi∞ : Ω∞ → Y+ is F̄i −measurable and

xi∞(ω∞) ∈ Xi(ω∞), µ∞ − a.e.}.
An allocation in a limit full information economy belongs in the above set

i.e., x∗
i ∈ L̄Xi

. Let ei∞ ∈ L̄Xi
,6 be the endowments for agent i in a limit full

information economy. Note that for each t, each feasible consumption xit ∈ LXit
,

lies in the order interval [0,
∑n

i=1 eit] ⊂
∑n

i=1 LXit . By the Cartwright Theorem,
[0, et] (and any order interval) (where et =

∑n
i=1 eit), is weakly compact. Finally,

V̄i(ω∞, · ) is weakly continuous for each i and for each ω∞.
Let x̄ = {xt : t ∈ T} be in Cε({Et : t ∈ T}). Obviously, xit ∈ [0,

∑n
i=1 eit],

for all i and t ∈ T . Since et is a martingale, it converges to e∞ in the L1(µ, Y )-
norm. Moreover,L1(µ, Y ) is a Banach lattice. By a standard result [e.g. Aliprantis-
Burkinshaw (1985)] we can extract a subsequence (for convenience we still denote
it by et) and find a positive element z in L1(µ, Y ) such that |et − e∞| < 1

2k z,
(where the superscript k is the index of the subsequence). Hence, we can conclude

6 Notice, that since we are working with partitions, the allocations are essentially in l1.
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that the subsequence et is order bounded above by an element say v in L1(µ, Y )
and below by 0 i.e., et belongs to the order interval [0, v] in L1(µ, Y ). Therefore,
a subsequence of the allocation x̄ = {xt : t ∈ T} belongs to the order interval
[0, v]. By the Eberlein-Smulian Theorem we can extract a further subsequence
(still denoted by {xt}) which converges weakly to x∗ ∈ [0, v]n (where [0, v]n is
the n-fold product of [0, v]). Notice that in what follows we are dealing with the
subsequence of the subsequence of the original allocation x̄ and endowments et for
which we kept the same indices.

We need to show that x∗ is in C(E∞). Note that for each t ∈ T,∑n
i=1 xit =∑n

i=1 eit, {xt}t∈T converges weakly to x∗ and {et}t∈T converges weakly to e∞
(since by the Martingale Convergence Theorem eit converges in the L1-norm to
ei∞ and hence weakly). So, we conclude that

∑n
i=1 x

∗
i =

∑n
i=1 ei∞. Thus, x∗

i ∈
[0, e∞] ⊂ ∑n

i=1 L̄Xi (where e∞ =
∑n

i=1 ei∞), and therefore each x∗
i is F̄i-

measurable.
Hence, all it remains to be shown is that
there is no coalition S and y∞ ∈ Πi∈SL̄Xi

such that
∑

i∈S yi∞ =
∑

i∈S ei∞,
and V̄i(ω∞, yi∞) > V̄i(ω∞, x∗

i ),∀i ∈ S and for almost all ω∞.
Suppose by way of contradiction that this is not true. Then, there exists

a coalition S and y∞ ∈ Πi∈SL̄Xi
such that

∑
i∈S yi∞ =

∑
i∈S ei∞, and

V̄i(ω∞, yi∞) > V̄i(ω∞, x∗
i ),∀i ∈ S and for almost all ω∞.

For each i ∈ S and each t ∈ T , let yit = E[yi∞| ∧i∈S Fit]. Notice that

E[yi∞|∧i∈SFit] = E[E[yi∞|∧i∈SFit′ ]|∧i∈SFit] = E[yit′ |∧i∈SFit], for t′ ≥ t.

Hence, {yit,∧i∈SFit}t∈T is a martingale and

∑
i∈S

yit =
∑
i∈S

E[yi∞| ∧i∈S Fit] = E

[∑
i∈S

yi∞| ∧i∈S Fit

]

= E

[∑
i∈S

ei∞| ∧i∈S Fit

]
=
∑
i∈S

eit.

This is true for all t ∈ T and hence {yit}t∈T is feasible for the coalition S.
By virtue of the Martingale Convergence Theorem, {yit}t∈T converges to yi∞

in the L1-norm and therefore weakly. Since {xt}t∈T also converges weakly to x∗

and V̄i is weakly continuous we may choose t′ ∈ T so that

|V̄i(ω∞, yi∞)− V̄i(ω∞, {yit}t≥t′)| < δ − ε
2

and

|V̄i(ω∞, {xit}t≥t′)− V̄i(ω∞, x∗
i )| <

δ − ε
2

where δ = V̄i(ω∞, y∞
i )− V̄i(ω∞, x∗

i ) > ε. Thus,

|V̄i(ω∞, yi∞)− V̄i(ω∞, {yit}t≥t′) + V̄i(ω∞, {xit}t≥t′)− V̄i(ω∞, x∗
i )|

≤ |V̄i(ω∞, yi∞)− V̄i(ω∞, {yit}t≥t′)|+ |V̄i(ω∞, {xit}t≥t′)− V̄i(ω∞, x∗
i )|

<
δ − ε

2
+
δ − ε

2
= δ − ε.



Non-myopic learning in differential information economies 479

Therefore, V̄i(ω∞, yi∞)−V̄i(ω∞, {yit}t≥t′)+V̄i(ω∞, {xit}t≥t′)−V̄i(ω∞, x∗
i ) <

δ − ε ⇐⇒ −V̄i(ω∞, {yit}t≥t′) + V̄i(ω∞, {xit}t≥t′) < −ε or ε +
V̄i(ω∞, {xit}t≥t′) < V̄i(ω∞, {yit}t≥t′),∀i ∈ S and for almost all ω∞.

So, the allocation yt is feasible and V̄i(ω∞, {yit}t≥t′) > V̄i(ω∞, {xit}t≥t′) +
ε,∀i ∈ S and for almost all ω∞, a contradiction to the fact that x̄ ∈ Cε({Et : t ∈
T}). ��

6.2 Proof of Theorem 5.3.2

Let x∞ be an element of C(E∞). Consider the allocation xt = E[x∞| ∧n
i=1 Fit]

and notice that for r ≥ t

xt = E[x∞| ∧n
i=1 Fit] = E[E[x∞| ∧n

i=1 Fir]| ∧n
i=1 Fit] = E[xr| ∧n

i=1 Fit].

Hence {xt,∧n
i=1Fit}t∈T is a martingale and by virtue of the Martingale Conver-

gence Theorem {xt}t∈T converges in the L1-norm to x∞. By the definition of the
conditional expectation we know that for each i and t ∈ T , xit is Fit-measurable.
We must show that there exists a t′ big enough such that the sequence {xt : t ≥ t′}
lies in Cε({Et : t ≥ t′}). We first show that {xt}t∈T is feasible for the grand
coalition. Note that, for all t ∈ T

n∑
i=1

xit =
n∑

i=1

E[xi∞| ∧n
i=1 Fit] = E[

n∑
i=1

xi∞| ∧n
i=1 Fit] = E[

n∑
i=1

ei∞| ∧n
i=1 Fit]

=
n∑

i=1

eit,

and we can conclude that {xt}t∈T is feasible. We now show that there exists a t′

such that the allocation {xt}t≥t′ cannot be ε-blocked by any coalition i.e.,
there do not exist coalition S and allocation {yt}t≥t′ ∈ Πi∈SLX̄i

such that∑
i∈S yit =

∑
i∈S eit, for all t ≥ t′ and V̄i(ω∞, {yit}t≥t′) > V̄i(ω∞, {xit}t≥t′)+

ε,∀i ∈ S and for almost all ω∞.
Suppose by way of contradiction that the above statement is false. Then, there

exists a coalition S and a sequence {yt}t∈T , yt ∈ Πi∈SLXit ⊂ Πi∈SLX̄i
having

the property that
∑

i∈S yit =
∑

i∈S eit, for all t ∈ T and V̄i(ω∞, {yit}t≥t′) >
V̄i(ω∞, {xit}t≥t′) + ε,∀i ∈ S for almost all ω∞ and for all t′.

By adopting an argument similar to the one in the previous proof, {yt}t∈T lies in
the order interval [0, v]|S| which is weakly compact (recall Cartwright’s Theorem).
Hence, by the weak compactness of [0, v]|S| we can find a further subsequence
{ytm

} that converges weakly to y∞ ∈ [0, v]|S|. For this subsequence we have∑
i∈S

yitm =
∑
i∈S

eitm , for all tm ∈ T.

Since eitm
converges to ei∞ in the L1-norm and hence weakly and yitm converges

to yi∞ weakly we have that ∑
i∈S

yi∞ =
∑
i∈S

ei∞.
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By our assumption, we also have that

V̄i(ω∞, {yitm}tm≥t′) > V̄i(ω∞, {xitm}tm≥t′) + ε

∀i ∈ S, for almost all ω∞ and for all t′. By the weak continuity of V̄i(ω∞, · ),
V̄i(ω∞, yi∞) ≥ V̄i(ω∞, xi∞) + ε,∀i ∈ S and for almost all ω∞. Hence,
V̄i(ω∞, yi∞) > V̄i(ω∞, xi∞),∀i ∈ S and for almost all ω∞ and consequently
the coalition S qualifies to block x∞ a contradiction to the fact that x∞ ∈ C(E∞).

��
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PART 5 

VALUE ALLOCATIONS AND 
THE BARGAINING SET



Cooperative games with incomplete information�

R.B. Myerson

Kellogg Graduate School of Management; Northwestern University, Evanston, L 60201, USA

Summary. A bargaining solution concept which generalizes the Nash bargaining
solution and the Shapley NTU value is defined for cooperative games with in-
complete information. These bargaining solutions are efficient and equitable when
interpersonal comparisons are made in terms of certain virtual utility scales. A
player’s virtual utility differs from his real utility by exaggerating the difference
from the preferences of false types that jeopardize his true type. In any incentive-
efficient mechanism, the players always maximize their total virtual utility ex post.
Conditionally transferable virtual utility is the strongest possible transferability
assumption for games with incomplete information.

1 Introduetion

In a cooperative game the players must bargain to select an outcome which is effi-
cient for them. Each player wants to demand the outcome that is best for himself, so
the players inust moderate their demands to reach a feasible agreement. In general,
the amount that a player can realistically demand in such bargaining will depend
on his power in the game situation. Here, power means the ability to alternatively
help or hurt other players at will, and to defend oneself against the threats of oth-
ers. A solution concept in cooperative game theory is an attempt to systematically
predict which outcomes on the Pareto frontier would be selected by the players, in
any cooperative games in such a way that each player’s payoff is commensurate
with his power. This paper will develop a general solution concept for games with
incomplete information.

The Nash [1950, 1953] bargaining solution, defined for two-Person bargaining
problems, and the Shapley [1953] value, defined for n-person games with trans-

� Research for this paper was supported by the Kellogg Center for Advanced Study in Managerial
Economics and Decision Sciences, and by a research fellowship from I.B.M.
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ferable utility, are the most conceptually elegant and appealing solution theories in
cooperative game theory. Each is derived as the unique fair allocation rule satisfying
a set of compelling and (seemingly) weak axioms. Harsanyi [1963] showed that
these two important solution concepts are special cases of a more general solution
concept, called a nontransferable-utility value or NTU value, that is defined for
all complete-information cooperative games, with any number of players, with or
without transferable utility. Shapley [1969] developed a simplified version of the
NTU value. These solution concepts may be viewed as generalizations and exten-
sions of the equal-gains principle (that any two players should gain equally from
cooperating with each other) to games with more than two players and without
obvious symmetries or interpersonally-comparable utility scales.

Harsanyi/Selten [1972] developed a generalized Nash solution for games with
incomplete information, a modified version of which was presented by Myerson
[1979]. However, this solution concept had serious theoretical drawbacks, and non-
person generalization value could be found. Myerson [1983] analyzed the problem
of inscrutable selection of a mechanism by a player who has all of the bargaining
ability but also needs to conceal his preferences and private information. This work
led to a new generalization of the Nash bargaining, solution for two-player games
with incomplete information where both players have equal bargaining ability. This
new generalized Nash solution was derived from axioms in Myerson [1982].

In this paper, we will construct a bargaining solution concept that will extend the
solution concept of Myerson [1982] and the NTU value of Shapley [1969] to general
cooperative games with incomplete information, using the Bayesian formulation of
Harsanyi [1967–68]. Our bargaining solution will not be derived from axioms here.
Its justification will be that it generalizes and unifies the three basic axiomatically
derived theories of Nash [1950], Shapley [1953], and Myerson [1982].

It is reasonable to ask why we should be interested in finding unified cooperative
solution concepts of such great generality. One goal is to have a common framework
within which to analyze and compare a wide variety of games: Another goal is to
use generalizability as a test of solution concepts themselves. That is if there are
two solution concepts which appear equally plausible for a limited class of games,
but only one is naturally generalizable to a much broader class, then that is evidence
in favor of the conceptual significance of the generalizable concept. In this sense,
perhaps the bargaining solution concept in this paper should be viewed as a further
justification of the Shapley value and the Nash bargaining solution.

But the most important gain from developing a unified solution concept for
general cooperative games with incomplete information maybe that it forces us to
systematically survey the basic logical issues involved in cooperation under uncer-
tainty. In this paper, we will be developing conceptual structures and perspectives
which may prove to have significance beyond the specific solution concept to which
they are applied in this paper. In particular, the ideas of virtual utility and maximal
linear extensions; developed in Sections 3 and 4 respectively, might also be applied
to develop alternative solution concepts for cooperative games with incomplete
information. Also, the interpretation of the rational-threats criterion developed in
Section 6 may also help justify the Shapley NTU value against the recent criticism
of Roth [1980] and Shafer [1980].
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In Section 2, the general structure of cooperative games with incomplete in-
formations formalized: Incentive-efficient mechanisms for, such games satisfy a
parametric linear programming problem, which is characterized in Section 3. Vir-
tual utility is defined so that the Lagrangian function for this parametric optimization
problem can be expressed as the expected sum of the players’virtual utility. Thus, in
an efficient agreement subject to incentive constraints, it may appear ex post that the
players have maximized their virtual utilities, rather than their real utilities. This
suggests the following virtual utility hypothesis: that when incentive constraints
(necessary for players to trust each other) are binding in bargaining situation, play-
ers may act as if they want to maximize their virtual utilities, rather than their real
utilities.

The concept of transferable utility was extremely important in the first develop-
ment of cooperative game theory. However, for games with incomplete information,
linear activities like side payments can serve a signalling purpose as well as a trans-
fer purpose, which makes matters more complicated. In Section 4, it is shown that,
for a game with incomplete information, the most transferability that can be al-
lowed, without totally replacing the efficient frontier, is transferability of virtual
utility conditionally on the state of information in the game.

In Section 5, the ideas of Sections 3 and 4 are applied to construct the general
solution concept. With complete information, a Shapley NTU value is an allocation
for which there exist nonnegative weighting factors for all players’ utility scales
such that the allocation would be both equitable (as evaluated by the Shapley value)
and efficient if interpersonal comparisons and transfers could be made in terms of
these weighted utility scales. For games with incomplete information, a bargaining
solution is an incentive-compatible mechanism for which there exist virtual utility
scales such that the mechanism would be both equitable and efficient if interpersonal
comparisons and transfers could be made in terms of these virtual utility scales.
The main results of this paper are the existence and individual rationality of these
general bargaining solutions.

The rational-threat criterion used in our solution concept is reconsidered in
Section 6. We show that the rational-threat criterion may be most appropriate in
games where the coalitions can commit themselves to threats in advance, when
they anticipate only a small probability of actually carrying out the threats. In such
a situation, a single coalition’s threat against its complement does not need to be
either equitable or incentive compatible. Instead, it should be evaluated as part of
a plan of threat and agreement that must be equitable and incentive-compatible
overall.

Section 7 contains the longer proofs.

2 Basic definitions

Let N = {1, 2, ..., n} denote the set of players, and CL denote the set of possible
conditions or nonempty subsets of N , so that

CL = {S|S ⊆ N,S 	= ∅}.
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For any coalition S, we letDS denote the set of collective actions or decisions
feasible for the members of S if they cooperate with each other. For example, in a
market game,DS might be the set of possible trades among the members of S. For
any two disjoint coalitions R and S, we assume that

DR ×DS ⊆ DR∪S .

That is, R ∪ S can implement any decisions: feasible for R and S separately, if
R ∩ S = ∅.

For any player i in N , we let Ti denote the set of possible types for player i,
where each type ti in Ti is a complete description of i’s private information about
preferences, endowments, and any other factors relevant to the players. For any
coalition S, we let

TS = X
i∈S
Ti,

so any tS in TS denotes a possible combination of types for the members of S. For
mathematical simplicity, we will assume that all Ti and DS are nonempty finite
sets. The decision spaces and type spaces for the grand coalition N will play a
major role here, so we may drop the subscript N for these sets; that is,

D = DN , T = TN .

For any d in D and t in T , we let ui(d, t) denote the payoff to player i, measured
in some von Neumann-Morgenstern utility scale, if t is the combination of types
for the players and d represents the decisions made by the players.

Throughout this paper, whenever t, tS , and ti appear in the same formula, then
ti denotes the i-th componentof the vector t in T , and tS = (tj)j∈S . We also use
the notationN − i−N\{i}, and we may write t = (tN−i, ti). Similarly, tN−i, si)
is the vector of types differing from t, in that the i-th component is changed to si.

For any t in T , we let pi, (tN−i|ti) denote the conditional probability that tN−1
is the combination of types for players other than i, as would be assessed by player
i if ti were his type. We will assume that these probabilities are consistent in the
sense of Harsanyi [1967–68]. That is, there exists some probability distribution p
over T such that

pi(tN−i|ti) = p(t)/pi(ti) ∀i ∈ N, ∀t ∈ T (2.1)

where

pi(si) =
∑

sN−i∈TN−i

p(s) ∀i ∈ N, ∀si ∈ Ti. (2.2)

We will also assume that no types-vector has zero probability, so

p(t) > 0, ∀t ∈ T. (2.3)

(These consistency and positivity assumptions (2.1)–(2.3) will be needed only to
simplify the interpretation of our results. The solution concept developed in this
paper will satisfy the probability-invanance axiom described in Myerson [1982],



Cooperative games with incomplete information 485

and so it can be extended using this axiom to games without consistent positive
probability distributions.)

Thus a cooperative game with incomplete information is defined by these struc-
tures:

Γ = ((DS)S∈CL, (Ti, ui)i∈N , p).

We assume that this structure Γ is common knowledge among the players when
they play the game, plus each player also knows in own true type. We may refer to
a vector of the players’ types as a state of the game.

Any coalitionS, if it were to form, could plan to determine its collective decision
randomly as a function of its members’ information. We let MS devote the set of
all functions from TS into the set of probability distributions over DS . That is,
µS ∈MS iff

µS(dS |tS) ≥ 0 and
∑

cS∈DS

µS(cS |tS) = 1 ∀dS ∈ DS , ∀tS ∈ TS . (2.5)

Any such µS inMS may be referred to as a mechanism for coalition S.
If R ∩ S = ∅, then we can embed MR ×MS in MR∪S in the obvious way.

That is, if µR ∈MR and µS ∈MS , then (µR, µS) inMR∪S is defined by

(µR, µS)(dR, dS |tR, tS) = µR(dR|tR) · µS(dS |tS)
if (dR, dS) ∈ DR ×DS ⊆ DR∪S ,

and
(µR, µS)(dR∪S |tR, tS) = 0 if dR∪S /∈ DR ×DS .

We shall assume that, in the cooperative game, only the mechanism chosen by the
grand coalitionN will actually be implemented.As a threat during bargaining, each
coalition S may commit itself to some mechanism µS in MS , to be carried out if
the other players refuse to cooperate with the members of S. Such threats will be
significant only to the extent that they may influence the mechanism µN chosen
by the grand coalition. In the rest of this section and in Sections 3 and 4, we will
only consider mechanisms inMN , to develop the theory of efficient mechansm for
the grand coalition. In Section 5 we will reconsider the threats of all coalitions and
construct our bargaining solution.

We letU∗
i (µN , si|ti) denote the expected utility for player i from the mechanism

µN in MN „ if i’s true type is ti but he reports type si, while all other players are
expected to report their types truthfully. That is

U∗
i (µN , si|ti) =

=
∑

tN−i∈TN−i

pi(tN−i|ti)
∑
d∈D

µN (d|tN−i, si)ui(d, t). (2.6)

We let

Ui(µN |ti) = U∗
i (µN , ti|ti)

=
∑

tN−i∈TN−i

pi(tN−i|ti)
∑
d∈D

µN (d|t)ui(d, t). (2.7)



486 R.B. Myerson

That is, Ui(µN |ti) is the expected utility for player i from the mechanism µN , if
i’s true type is ti and all players are expected to report their types truthfully in
implementing µN .

We shall assume that each player’s type is not observable by other players, so
that the types are unverifiable. Thus, if a player had some incentive to lie about his
type when the grand coalitionN implements its mechanism µN , then he would do
so. A mechanism is incentive compatible [or, more correctly, Bayesian incentive
compatible in the sense of d’Aspremont/Gerard-Varet [1979]] iff

Ui(µN |ti) ≥ U∗
i (µN , si|ti) ∀i ∈ N, ∀ti ∈ Ti, ∀si ∈ Ti. (2.8)

That is, µN is incentive compatible iff it would be a Bayesian Nash equilibrium for
all players to plan to report their types honestly in the mechanismµN , assuming that
they are asked to report their types simultaneously and confidentially. Thus, with
unverifiable types, the players must choose an incentive-compatible mechanism
if honest reporting of types is to be induced. It has been argued elsewhere [See
Myerson, 1979, for example] that any Bayesian equilibrium of possibly dishonest
reporting strategies in any mechanism can be simulated by an equivalent incentive-
compatible mechanism with honest reporting. So without loss of generality, we may
assume that the mechanism selected by the grand coalition N must be incentive
compatible.

In some games, it may be possible for some types to costlessly prove that other
types are false.1 For example, if a person can play the piano, then he can prove
that he is not a non-pianist simply by playing a few bars. On the other hand, the
nonpianist cannot prove that he is not really a pianist unless he is given the proper
incentives. If player i, when si is his true type, could costlessly prove that he is not
type ti, then we should drop the corresponding constraint (saying that ti must not
be tempted to report si) in (2.8). With this modification, our analysis in this paper
can be extended to cover the case of verifiable or semi-verifiable types. Henceforth
in this paper we will consider only the case of unverifiable types.

3 The primal and dual problems and virtual utility

A mechanism µN in MN is incentive-efficient iff it is incentive compatible and
there does not exist any other incentive-compatible mechanism µ̂N such that

Ui(µ̂n|ti) ≥ Ui(µN |ti), ∀i ∈ N, ∀ti ∈ Ti, (3.1)

with Uj(µ̂N |tj) > Uj(µN |tj) for at least one type tj of some player j. If the
players can bargain effectively, then they should be able to ultimately agree on
some incentive-efficient mechanism. Otherwise, it would be common knowledge
that all players could agree to a change to some other mechanism µ̂N satisfying
(3.1). See Holmström/Myerson [1983] for an analysis of this and other concepts of
efficiency for games with incomplete information.

1 I am indebted to Paul Milgrom for pointing out this issue.
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Let Λ be the following simplex in Xi∈NRTi ,

A =

⎧⎨⎩λ ∈ X
i∈N

RTi |λi(ti) ≥ 0, ∀i ∈ N, ∀ti ∈ Ti,
∑
j∈N

∑
sj∈Tj

λj(sj) = n

⎫⎬⎭ .
(3.2)

Let Λ◦ denote the relative interior of Λ,

Λ◦ = {λ ∈ Λ|λi(ti) > 0, ∀i ∈ N, ∀ti ∈ Ti} . (3.3)

Since we are assuming thatD andT are finite sets, the set of all incentive-compatible
mechanisms is a closed convex polyhedron inMN , defined by the linear inequalities
(2.5) and (2.8). (Notice that Ui(µN |ti) and U∗

i (µN , si|ti) are both linear functions
µN .) Thus, by the supporting hyperplane theorem, µN , is incentive-efficient iff
there exists some λ in Λ◦ such that µN is an optimal solution to the-problem

maximize
µN ∈MN

∑
i∈N

∑
ti∈Ti

λi(ti)Ui(µN |ti) (3.4)

subject to the incentive constraints (2.8).
We shall refer to this optimization problem (3.4) as the primal problem for λ.
Givenλ, the primal (3.4) is a linear programming problem. Let us now formulate

its dual. We shall generally let αi(si|ti) denote the dual variable (or shadow price)
corresponding to the incentive constraint (2.8) that asserts that player i should not
be tempted to claim to be type si if his true type is ti. We let

A∼
=
{
α ∈ X

i∈N
RTi×Ti |αi(si|ti) ≥ 0, αi(ti|ti) = 0

∀i ∈ N, ∀ti ∈ Ti, ∀si ∈ Ti

}
. (3.5)

That is, A∼
is the set of all possible vectors of dual variables for the incentive

constraints. ((2.8) holds trivially when si = ti, so the shadow price αi(ti|ti) will
be zero.)

We now come to an important definition. Given any λ and Λ and α in A∼
, let

vi(d, t, λ, α) = ((λi(ti) +
∑

si∈Ti

αi(si|ti))pi(tN−i|ti)ui(d, t)

−
∑

si∈Ti

αi(ti|si)pi(tN−i|si)ui(d, (tN−i, si)))/p(t) (3.6)

for any i inN , d inD, and t in T . We shall refer to vi(d, t, λ, α) as player i’s virtual
utility for decision d in state t, with respect to λ and α.
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If we multiply the incentive constraints by their dual variables and add them
into the primal objective function, then we get the following Lagrangian function:∑

i∈N

∑
ti∈Ti

λi(ti)Ui(µN |ti)

+
∑
i∈N

∑
ti∈Ti

∑
si∈Ti

αi(ti|si)(Ui(µn|ti)− U∗
i (µN , si|ti))

=
∑
t∈T

p(t)
∑
d∈D

µN (d|t)
∑
i∈N

vi(d, t, λ, α). (3.7)

The equality in (3.7) follows by straightforward manipulation from the Definitions
(2.6), (2.7) and (3.6). So the Lagrangian function for the primal problem is just the
expected sum of the players’ virtual utilities.

By standard Lagrangian analysis, an incentive-compatible mechanism µN will
be an optimal solution of the primal problem for λ if and only if there is some α in
A∼

such that

αi(si|ti)(Ui(µN |ti)− U∗
i (µN , si|ti)) = 0, ∀i ∈ N, ∀ti ∈ Ti,∀si ∈ Ti,

and µN maximizes the Lagrangian function subject only to the probability con-
straints (2.3). Obviously, this Lagrangian function is maximized by putting all
probability weight, in each µN (·|t) distribution, on the decisions that maximize the
sum of the players’ virtual utilities. That is, µN maximizes the Lagrangian function
over all mechanisms inMN if and only if∑

d∈D

µN (d|t)
∑
t∈T

vi(d, t, λ, α)

= maximum
d∈D

∑
i∈N

vi(d, t, λ, α), ∀t ∈ T. (3.8)

The appropriate vector a for use in this Lagrangian analysis is the vector that solves
the dual of (3.4). This dual problem for λ can be written

minimize
α∈A∼

∑
t∈T

p(t) ·maximum
d∈D

∑
i∈N

vi(d, t, λ, α). (3.9)

Each vi(d, t, λ, α) is linear inα, so this dual problem is indeed a linear programming
problem.

The virtual utility functions will play an important role in our theory of bar-
gaining, so it is worthwhile to try to develop some intuitive understanding of them.
So let us assume that µN is an incentive-efficient mechanism. Let λ in Λ◦ and α
in A∼

be such that µN solves the primal for λ and α solves the dual for λ. We say

that one type si jeopardizes another type ti of player i, in the incentive-efficient
mechanism µN iff the constraint that says si should not gain by claiming to be ti
is binding (that is, Ui(µN |si) = U∗

i (µN , ti|si)) and its shadow price αi(ti|si) is
positive. Then player i’s virtual utility when he is of type ti differs from his real
utility in a way that exaggerates the difference from the types that jeopardize ti.
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That is, equation (3.6) defines i’s virtual utility for d at t as a positive multiple of
his real Utility for d at t, minus a multiple of what his utility for d would be if his
type were changed to a type that jeopardizes ti. To see this more clearly, notice that
(3.6) may be rewritten as

pi(ti)vt(d, t, λ, α) = (λi(ti) +
∑
si

αi(si|ti))ui(d, t)

−
∑
si

αi(ti|si)ui(d, (tN−i, si))(pi(tN−i|si)/pi(tN−i|ti)),

where the probability-correction ratio in the last term vanishes to one if the players’
types are stochastically-independent.

For type ti of player i, the expected virtual utility from the mechanism µN

(honestly implemented) is∑
tN−i∈TN−i

∑
d∈D

pi(tN−i|ti)µN (d|t)vi(d, t, λ, α) (3.10)

= ((λi(ti) +
∑
si

αi(si|ti))Ui(µN |ti)−
∑
si

αi(ti|si)U∗
i (µN , ti|si))/pi(ti).

If µN solves the primal for λ and a solves the dual for λ, then by complementary
slackness this formula can be further simplified to

((λi(ti) +
∑
si

αi(si|ti))Ui(µN |ti)−
∑
si

αi(ti|si)U(µN |si))/pi(ti). (3.11)

Let us consider now an application of the virtual utility concept. An incentive-
efficient mechanism need not be efficient ex post, after the players learn each other’s
type. That is because, in order to satisfy incentive constraints, it may be necessary
to accept a positive probability of an outcome that is bad for both players. For
example, in union-management negotiations, if the management is of the “type”
that can only afford to pay lower wages, then it might have to accept a positive
probability of a strike before it can get a reduction in the wage rate. The strike is
needed to prove to the workers that management is not of the type with high ability
to pay. But it may be difficult to understand how the players can commit themselves
to implement a strike of any duration, since management’s low type is revealed as
soon as the strike begins, and then both sides would prefer to settle at a low wage.

By (3.8), an incentive-efficient mechanism always maximizes the sum of the
players’ virtual utilities (with respect to the appropriate λ and α) in every state t.
Thus an incentive-efficient mechanism would appear efficient ex post if the players’
payoffs were measured in virtual utility, instead of real utility. Instead of saying that
the incentive constraints (2.8) force the players to accept ex post inefficiency, we
may say that the incentive constraints force each player to transform his effective
preferences from his real to his virtual utility, function, to exaggerate the difference
between his true type and the false types that jeopardize it. This idea, that players
in bargaining may act as if they want to maximize their virtual utilities instead of
their actual utilities, may be referred to as the virtual-utility hypothesis.
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In Section 5, we will extend this virtual-utility hypothesis by assuming that
the players also make interpersonal equity comparisons in terms of virtual utility,
to compute their fair payoffs or warranted claims. But first, we consider general-
izations of the classical tansferable-utility assumption for games with incomplete
information.

4 Transferable utility and linear activities

The assumption of transferable utility has played an important role in the develop-
ment of cooperative game theory. Of course, bounded utility transfers can be ac-
comodated within the model described in Section 2 (by interpreting, the decisions
in each DS as including specifications of how much utility should be transferred
between each pair of players in S), so there is very little loss of generality in re-
stricting ourselves to this model. Nevertheless, to understand cooperation under
uncertainty, it is useful to see how the assumption of tansferable utility extends to
games with incomplete information.

Transfer of utility between players is just a special kind of linear activity which
could be permitted in a game. In general, a linear activity can be represented by a
function f : T → Rn, such that fi(t) is the utility gained by player i in state t if the
players do one unit of activity f . Let F be any finite set of such activities, so that F
is a subset of RN×T . Given Γ as in (2.1), the game Γ extended by F refers to the
game in which the grand coalition can also use any linear combination of activities
in F as a function of the players type-reports. (More generally, we could introduce
a set of feasible linear activities FS for each coalition S, with FS ⊆ FR if S ⊆ R,
but we will only be concerned with the grand coalition N in this section.)

In the extended game with linear activities, the set of mechansm forN becomes
MN ×RF×T . That is, a mechanism is a pair (µN , e) inMN ×RF×T where e(f |t)
is interpreted as the level of activity f to be performed if the players report their
vector of types as t. Notice that we allow that e(f |t) maybe positive or negative.

The expected utility gained by a player i from linear activities in the mechanism
(µN , e), given that i’s type is ti, is

Gi(e|ti) =
∑

tN−i∈TN−i

pi(tN−i|ti)
∑
f∈F

fi(t)e(f |t) (4.1)

if all players are honest, and is

G∗
i (e, si|ti) =

∑
tN−i

pi(tN−i|ti)
∑

f

fi(t)e(f |tN−i, si) (4.2)

if all players are honest except for i who reports si. The mechanism (µN , e) is
incentive-compatible iff

Ui(µN |ti) +Gi(e|ti) ≥ U∗
i (µN , si|ti) +G∗

i (e, si|ti)
∀i ∈ N, ∀ti ∈ Ti, ∀si ∈ T. (4.3)
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With linear activities, the extended primal problem for λ is defined to be

maximize
µN ,e

∑
i∈N

∑
ti∈Ti

λi(ti)(Ui(µN |ti) +Gi(e|ti)) (4.4)

subject to µN ∈MN and (4.3).

This extended primal problem differs from the original primal problem (3.4) only
in that it has more variables, in the vector e. Thus, the extended dual problem for
λ differs from the original dual problem (4.9) in that it has more constraints, one
new constraint for each variable e(f |t), as follows:∑

i∈N

((λi(ti) +
∑

si∈Ti

αi(si|ti))pi(tN−i|ti)fi(t)

−
∑

si∈Ti

αi(ti|si)pi(tN−i|si)fi(N−i, si)) = 0, ∀f ∈ F, ∀t ∈ T. (4.5)

(Notice that (4.5) is a linear constraint on α.)
The assumption of transferable utility means that, for any two players j and k,

F includes an activity of transfering one unit of utility from j to k. We may denote
this activity by f jk, where

f jk
j (t) = +1, f jk

k (t) = −1, f jk
i (t) = 0 if i /∈ {j, k}, ∀t ∈ T.

Let us suppose that the players’ types are stochastically independent random vari-
ables, so that

p(t) = Π
i∈N

pi(ti), ∀t ∈ T.

Then (4.5) for f = f jk becomes

(λj(tj) +
∑

sj∈Tj

αj(sj |tj)−
∑

sj∈Tj

αj(tj |sj)) Π
i∈N−j

pi(ti)

= (λk(tk) +
∑

sk∈Tk

αk(sk|tk)−
∑

sk∈Tk

αk(tk|sk))
∑

j∈N−k

pi(ti), ∀t ∈ T.

Dividing both sides of this equation by p(t) gives us⎛⎝λj(tj) +
∑
sj

αj(sj |ti)−
∑
sj

αj(tj |sj)

⎞⎠ /pj(tj) (4.6)

= (λk(tk) +
∑
sk

αk(sk|tk)−
∑
sk

αk(tk|sk))/pk(tk), ∀tj ∈ Tj , ∀tk ∈ Tk.

Thus, if the players’ types are independent and if utility is transferable between all
players then, for any λ and Λ, a satisfies the dual constraint (4.5) iff

λi(ti) +
∑

si∈Ti

αi(si|ti)−
∑

si∈Ti

αi(ti|si) = pi(ti), ∀i ∈ N, ∀ti ∈ Ti. (4.7)
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(The constant ratio in (4.6) must be 1, because the at λi(ti) sum to n, for λ in Λ.
Recall (3.2).)

Equation (4.7) can be very helpful for solving applied problems. However, it
also illustrates why transferable utility is less useful as an assumption for games
with incomplete information than it was for games with complete information. With
complete information each player has only one type, so that (4.7) becomes simply
λi(ti); that is, all players must be given equal weight in the primal problem or else
the dual is infeasible and the primal has no finite optimum. Thus, transferable utility
with complete information implies that all efficient mechanisms solve the same
primal problem, and the Pareto-efficient frontier is a hyperplane. With incomplete
information, (4.7) implies that∑

ti∈Ti

λi(ti) = 1, ∀i ∈ N,

but this still leaves
∑

i∈n(|Ti| − 1) degrees of freedom in choosing λ, and the
dual problems are generally nontrivial to solve. Under incomplete information; the
incentive-efficient frontier in Xj∈NRTi is generally not a hyperplane for games
with transferable utility.

To get a conceptual simplification comparable to that offered by transferable
utility under complete information, we must introduce a larger class of linear ac-
tivities. So let us re-examine (4.5), but think of it now as a constraint on f for some
given λ andα. The expression in brackets in (4.5) is just p(t) times i’s virtual utility
for one unit of activity f in state t. Thus, (4.5) asserts that f must transfer virtual
utility between the players in each state.

Thus, instead of transferable utility, let us consider the assumption of condi-
tionally transferable virtual utility. Given any two players j and k and given any
type-vector in T , let gjks denote the activity that transfers one unit of virtual utility
(with respect to λ and α) from player j to player k conditionally on s being the
true vector of types, and that transfers zero units of virtual utility otherwise. That
is, gjks satisfies the following equations, for every i in N and t in T :

((λi(ti) +
∑

ri∈Ti

αi(ri|ti))pi(tN−i|ti)giks
i (t)

−
∑

ri∈Ti

αi(ti|ri)pi(tN−i|ri)gjks
i (tN−i, ri))/p(t) (4.8)

=

⎧⎨⎩
−1 if i = j and t = s
+1 if i = k and t = s

0 if i /∈ {j, k} or t 	= s.

If λ ∈ Λ◦, α ∈ A∼, and all pi(tN−i|ti) > 0, then (4.8) has a unique solution gjks,

and this vector satisfies:

gjks
i (t) = 0 if i /∈ {j, k} or tN−i 	= sN−i

gjks
j (sN−j , tj) ≤ 0 ∀tj ∈ Tj

gjks
k (sN−k, tk) ≥ 0 ∀tk ∈ Tk.
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(These properties follow from (4.8) using Lemma 1 in Sect. 7). Notice that, although
gjks gives no virtual utility to player k except in state s, gjks may in fact give him
positive amounts of real utility in states where his own type differs from sk.

Given any λ in Λ◦ and α in A∼
, we let F̄λα denote the set of all such gjks

generated by λ and α. That is:

F̄λα = {gjks|j ∈ N, , k ∈ N, s ∈ T, and (4.8) is satisfed with λ and α}.

If Γ is extended by F̄λα then we may say that virtual utility with respect to λ and
α is conditionally transferable. (Here “conditionally transferable” refers to the fact
that the transfers can be conditioned on the players’ true types, rather than just their
reported types. So conditional transferability is a stronger property than simple
transferability).

The following theorem states that, if we try to extend a game in such a way
as to preserve at least one of its incentive-efficient mechanisms, then the maximal
extension is to allow conditionally-transferable virtual utility.

Theorem 1. Let Γ be as in (2.1) and let µN be an incentive-efficient mechanism
for the grand coalition in Γ . Let F be any set of linear activities. Then (µN , 0∼

) is

incentive-efficient in Γ extended by F if and only if there exists some λ in Λ◦ and
α in A∼

such that µN is an optimal solution of the primal problem for λ, α is an

optimal solution of the dual problem for λ, and F is contained in the linear span of
F̄λα (here (µN , 0∼

) is just µN without using any activities in F ).

Proof. (µN , 0∼
) is incentive-efficient in Γ extended by F if and only if there is

some λ in Λ◦ such that (µN , 0∼
) is optimal in the extended primal for λ. But this

holds if and only if there is some α in A∼
such that α is feasible in the extended

dual for λ and the value of the primal objective function at µN , equals the value
of the dual objective function at α. This in turn holds if and only if µN is optimal
in the (unextended) primal for λ, α is optimal in the (unextended) dual for λ, and
α is feasible in the extended dual. But the linear span of F̄λα is just the set of all
activities f that satisfy (4.5) for λ and α. (To check this, observe that all activities
in F̄λα satisfy (4.5); there are (n−1)|T | linearly independent vectors gjks in F̄λα;
and the set of vectors satisfying (4.5) has (n− 1)|T | dimensions.) So α is feasible
in the extended dual for λ if and only if F is contained in the linear span of F̄λα.

��
To understand Theorem 1, it is helpful to recognize that linear activities in games
with incomplete information can be used for signalling, that is, for helping to
satisfy incentive compatibility, as well as for transferring utility. For example, if
real utility (instead of virtual utility) were conditionally transferable, then a player
could perfectly signal his type by agreeing to transfer large amounts of utility to
other players conditionally on his type being anything other than what he reports.
In general, any linear activity that affects different types of a player differently may
be used for signalling, to help prove that the player is not of the type that loses
more from the activity. The activity gjks, which transfers virtual utility from j to k
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conditionally on state s, can affect the real utility payoffs of j or k in states other
than s; so its potential for signalling purposes is less than that of an activity that
transfers real utility from j to k conditionally on state s.

5 The general bargaining solution

The construction of Shapley’s NTU value for games with complete information may
be sketched as follows. First, select any outcome on the Pareto-efficient frontier for
the grand coalition. Now extend the game by a maximal collection of linear activities
such that the selected outcome is still on the efficient frontier of the extended game.
These linear activities can be characterized as transfers of weighted utility between
players, where each player’s “weighted utility” payoff is some constant λi, times
his original utility. In the extended game, let each coalition choose a threat; let the
worth of each coalition be the total weighted utility that would be earned by its
members if it and its complement both carried out their threats; and let the grand
coalitionN act so as to give each player weighted utility equal to his Shapley-value
allocation computed from these coalitional worths. If this hypothetical behavior in
the extended game, when each coalition chooses its threat optimally for its members,
turns out to give the players payoffs equal to what they were getting in the originally
selected outcome (which was feasible in the original game), then we say that that
outcome is a Shapley NTU value for the original game. That is, the Shapley NTU
value is defined as a Shapley value for an extended game with transfers, that is also
feasible in the original game without transfers.

In Section 3 we saw that, when players face binding incentive constraints, they
may appear to act according to the preferences of their virtual utility functions. In
Section 4 we saw that, with incomplete information, the maximal linear extension
(without completely replacing the efficient frontier) is to let virtual utility (w.r.t.
some λ and α) be conditionally transferable in every state. Thus, to follow the
logic of the Shapley NTU value, we should let coalitional worths and Shapley
values be computed in terms of virtual utilities. This key insight, to look at the
game with transferable virtual utility rather than weighted utility, was not evident
to this author until after eight years of search; but with it we can readily construct a
bargaining solution which generalizes the Shapley-NTU value and has satisfactory
mathematical properties, including individual rationality and existence.

In our model of bargaining, every coalition makes a threat against the comple-
mentary coalition, and then these threats form the basis for computing the warranted
claims of each player. We let

M = X
S∈CL

MS

denote the set of possible combinations of mechanisms that the coalitions might
select as threats. That is, any vector µ = (µS)S∈CL in M includes a specification
of the mechanism µS that each coalition S ⊂ N threatens to use in the case that its
complement N\S refuses to cooperate with it.

For any coalition S, we letWS(µ, t, λ, α) denote the sum of the virtual utilities
(with respect to λ and α) that the members of S would expect in state t, if S and
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N\S carried out their threats. That is, if S 	= N ,

WS(µ, t, λ, α) = (5.1)

=
∑

dS∈DS

∑
dN\S∈DN\S

µS(dS |tS)µN\S(dN\S(dN\S |tN\S)

×
∑
i∈S

vi((dS , dN\S), t, λ, α).

In the case of S = N , there is no complementary coalition to threaten, so (5.1)
simply reduces to:

WN (µ, t, λ, α) =
∑
d∈D

µN (d|t)
∑
i∈N

vi(d, t, λ, α).

We let W (µ, t, λ, α) = (WS(µ, t, λ, α))S∈CL denote the characteristic function
game with these coalitional worths. Its Shapley value for player i is:

φi(W (µ, t, λ, α)) =
∑

S∈CL
S⊇{i}

(|S| − 1)!(n− |S|)!
n!

·

·(WS(µ, t, λ, α)−WN\S(µ, t, λ, α)). (5.2)

(This formula is equivalent to the more familiar formula with S − i replacing
N\S. We let WΦ = 0.) Thus, if the coalitions make threats µ in the game with
conditionally transferable virtual utility, then the Shapley value gives type ti of
player i on expected virtualutility payoff equal to:∑

tN−i∈TN−i

pi(tN−i|ti)φi(W (µ, t, λ, α)).

We want to know what allocation of real utility corresponds to this allocation of
virtual utility. By (3.11) we know that, if each type si of player i gets expected
(real) utility ωi(si) from an incentive-compatible mechanism which maximizes the
sum of the virtual utilities, then the corresponding virtual utility expected by type
ti is:

((λi(ti) +
∑
si

αi(si|ti))ωi(ti)−
∑
si

αi(ti|si)ωi(si))/pi(ti).

Equating these two formulas (and multiplying through by pi(ti)) we see that the
allocation of real expected utilities corresponding to the Shapley value allocation
of virtual utilities should satisfy:

(λi(ti) +
∑

si∈Ti

αi(si|ti))ωi(ti)−
∑

si∈Ti

(ti|si)ωi(si)

=
∑

tN−i∈TN−i

p(t)φi(W (µ, t, λ, α)), ∀i ∈ N, ∀ti ∈ Ti. (5.3)
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A vector ω in Xi∈NRTi which satisfies (5.3) is said to be warranted by λ, α, and
µ; ωi(si) is then the warranted claim of type si. Thus, the warranted claims are
real utility payoffs corresponding to an allocation which would give each type of
each player his expected Shapley value, if the players made interpersonal equity
comparisons in terms of their virtual utility scales.

For any λ in Λ◦ and α in A∼
, equations (5.3) have a unique solution in ω,

by Lemma 1 in Section 7. Furthermore, these solutions are monotone increasing
(weakly) in the right-hand sides. That is, inereasing the right-hand side of (5.3) for
any type of player i weakly increases the warranted claims of all types of player i.
Thus, to maximize i’s warranted claim in any type, player i wants to maximize his
expected virtual allocation from the Shapley value in all his types.

The threat µS affects the Shapley value allocation only through the difference
WS −WN\S , which all members of S want to maximize. Thus we say that µ in
M is a vector of rational threats with respect to λ and α if∑

t∈T

p(t)(WS(µ, t, λ, α)−WN\S(µ, t, λ, α)) = (5.4)

= max
νS∈MS

∑
t∈T

p(t)(WS(µS , νS), t, λ, α)−WN\S((µS , νS)t, λ, α)), ∀S∈CL.

(Here (µ−s, νS) is the vector where νs replaces µS in µ.) Notice that (5.4) really
depends only on µS and µN\S , so the two complementary coalitions are involved
in a two-person zero-sum game when they choosing their rational threats. We do
not require that rational threats to be incentive compatible; we only require that µS

must be in MS , satisfying the probability constraints (2.5). (The set of incentive-
compatible mechanisms for coalitionS could depend discontinuously on the mech-
anism chosen by N\S. So the threat-selection game between S and N\S would
be a pseudogame and would not necessarily have any equilibrium, if we required
that each threat be incentive-compatible given the other.)

Condition (5.4) includes the case of S = N , using Wφ = 0. Thus, if µ is a
vector of rational threats with respect to λ and α then

WN (µ, t, λ, α) = max
d∈D

∑
i∈N

vi(d, t, λ, α).

That is, µN maximizes the Lagrangian function (3.7).
The essential idea in defining our general bargaining solution is that if the war-

ranted claims for a set of rational threats can actually be achieved by an incentive-
compatible mechanism, then this mechanism may be called a bargaining solution
for the game. Some care is needed in formulating this idea precisely, to permit an
existence theorem to be proven. The problem is that the warrant equations (5.3) are
only known to be solvable if all λi(ti) are strictly positive, so that λ ∈ Λ◦. But the
Kakutani [1941] fixed point theorem cannot be applied to the interior of a simplex.
We solve this dilemma by allowing that some of our positive λi(ti) weights may
be infinitesimal. In standard analysis, this is done by considering a sequence of
vectors in Λ0, some of whose components may converge to zero.
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(This dilemma also arises in the case of complete information, where the resolu-
tion proposed by Shapley [1969] is not quite satisfactory. For Shapley’s definition, if
there is a dummy in a game then any feasible allocation will be an NTU value, with
all nondummies having λi = 0. The definition developed below refines Shapley’s
definition in a way that rules out such perverse solutions without losing existence.)

We say that µ̄N is a bargaining solution (or an NTU value) for Γ iff µ̄N is an
incentive-efficient mechanism and there exists a sequence {(λk, αk, µk, ωk)}∞

k=1
such that

αk ∈ A∼, µ
k ∈M, and λk ∈ Λ0 (so all λk

i (ti) > 0,∀k; (5.5)

µk is a vector of rational threats for λk and αk, ‘ ∀k; (5.6)

ωk is warranted by λk, αk, and µk, ∀k; (5.7)

lim sup
k→∞

ωk
i (ti) ≤ Ui(µ̄N |ti), ∀i ∈ N, ∀ti ∈ Ti. (5.8)

That is, a bargaining solution is an incentive-efficient mechanism such that there
is a vector of warranted claims, supported by positive utility-weights and rational
threats, in which no type’s warranted claim exceeds the utility that it expects from
the mechanism by more than an arbitrarily small amount.

We can now state our main existence and individual-rationality theorems.

Theorem 2. There exists at least one bargaining solution µ̄N for Γ .

Theorem 3. If µ̄N is a bargaining solution then

Ui(µ̄N |ti) ≥ minimum
µN−i∈MN−i

maximum
µi∈M{i}

Ui(µN−i, µi|t) ∀i ∈ N, ∀ti ∈ Ti.

Proofs are deferred to Section 7.
For any positive number δ, (5.5)–(5.8) imply that, for all sufficiently large k,

ωk(ti) ≤ Ui(µ̄N |ti) + δ for every i and ti, and so∑
t∈T

p(t) max
d∈D

∑
i∈N

vi(d, t, λk, αk) (5.9)

=
∑
t∈T

p(t)WN (µk, t, λk, αk)

=
∑
t∈T

p(t)
∑
i∈N

φi(W (µk, t, λk, αk))

=
∑
t∈T

∑
i∈N

λk
i (ti)ωk

i (ti)

≤
∑
i∈N

∑
ti∈Ti

λk
i (ti)Ui(µ̄N |ti) + nδ.

(Here the first equality holds because µk
N is a rational strategy for N with respect

to λk and αk. The second equality is the Pareto-optirnality of the Shapley value.
The third equality follows from summing the warrant equations (5.3) over i and
ti. The final inequality follows from (5.8) and the fact that the λi(ti) sum to n,
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since λ ∈ Λ0.) But µ̄N is incentive compatible; so by duality, if δ > 0 then, for all
sufficiently large k, µ̄N and αk are respectively within nδ of the optimum in the
primal and dual problems for λk.

The following theorem follows from (5.9), and lists some convenient necessary
conditions for a bargaining solution. Notice that these conditions seem to be well.
determined, in the sense that (5.10)–(5.13) can determine µ̄N , α, µ, and ω, and
(5.14) has one equation for each component in λ. This suggests a conjecture that
the set of bargaining solutions might be generically finite.

Theorem 4. If µ̄N is a bargaining solution for Γ then there exist (λ, α, µ, ω) such
that

µ̄N is an optimal solution of the primal problem for λ; (5.10)

α is an optimal solution of the dual problem for λ; (5.11)

µ is a vector of rational threats for λ and α, and µN = µ̄N ; (5.12)

ω is warranted by λ, α, and µ; (5.13)

λi(ti) ≥ 0, ωi(ti) ≤ Ui(µ̄N |ti), and (5.14)

λi(ti)ωi(ti) = λi(ti)Ui(µ̄N |ti), ∀i ∈ N, ∀ti ∈ Ti;
(λ, α) 	= (0∼

, 0∼
). (5.15)

(That is, λmay be any vector in the nonnegative orthant Xi∈NRTi
+ , not necessarily

in the simplexΛ. But, to avoid trivial solutions,λ andα cannot both be zero vectors.)
See Section 7 for the proof of this theorem.

6 Interpretation of the rational-threat criterion

Our rational-threat criterion (5.4) postulates that each coalition should seek to maxi-
mize the expected difference between the total virtual utility that its members would
earn and the total virtual utility that the complementary coalition would earn, if both
carried out their threats. The rational threats for coalitions other thanN are not re-
quired to satisfy any equity or incentive-compatibility constraints. These aspects
of our rational-threat criterion deserve some interpretive discussion.

In any bargaining situation, a coalition’s threat normally has both defensive and
offensive objectives. The defensive objective is to show that the coalition could
maintain high payoffs for its members if the complementary coalition refused to
cooperate. The offensive objective is to show that the complementary coalition’s
members would be hurt by such a breakdown in cooperation. Obviously, a threat that
is strong both defensively and offensively would be the ideal; but the best defensive
threat will generally not be the best for offensive purposes. Thus, a coalition may
have to make some tradeoff between these two objectives. As observed by Harsanyi
[1963], the Shapley value implicitly defines such a tradeoff, since it only depends on
the differenceWS −WN\S . The defensive and offensive objectives are combined
with this tradeoff in our rational-threats criterion.

This interpretation of the rational-threat criterion relies on our identifying WS

as the natural defensive objective function for coalition S. Once this identification
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is made, then the natural offensive objective function is −WN\S (the opposite of
the complement’s defensive objective), and WS − WN\S is a natural combina-
tion of defensive and offensive objectives. But, in what sense is WS(µ, t, α, λ) an
appropriate measure of the defensive strength of coalition S?

We can best understand the purely defensive aspect of threats by studying games
in which each coalition can only influence its own members’ payoffs, so that there
are no offensive possibilities to consider. In the terminology of Shapley/Shubik
[1973], these are games with orthogonal coalitions. That is, a gameΓ has orthogonal
coalitions iff,

ui((dS , dN\S), t) = ui((dS , d̂N\S), t) (6.1)

∀S ∈ CL, ∀i ∈ S, ∀dS ∈ DS , ∀dN\S ∈ DN\S , ∀d̂N\S ∈ DN\S , ∀t ∈ T,

so that the threat of coalition N\S cannot affect the payoffs to members of S.
Market games of pure exchange are examples of games with orthogonal coalitions.

In a game with orthogonal coalitions, suppose i ∈ S. Then, we can let ui(dS , t)
denote the utility payoff for i in state t if dS inDS is carried out. That is, ui(dS , t) =
ui((dS , dN\S), t) for any dN\S inDN\S . (RecallDS×DN\S ⊆ D.) We similarly
define vi(dS , t, λ, α) as vi((dS , dN\S), t, λ, α) for any dN\S . Then for any µS in
MS , the obvious generalizations of (2.6), (2.7) and (5.1) are:

U∗
i (µS , ri|ti) =

∑
tN−1

pi(tN−i|ti)
∑
dS

µS(dS |tS−i, ri)ui(dS , t)

Ui(µS |ti) = U∗
i (µS , ti|ti)

WS(µS , t, λ, α) =
∑
dS

µS(dS |tS)
∑
j∈S

vj(dS , t, λ, α).

Let us now consider what threats would be defensively optimal for a given player,
say player 1, in a game with orthogonal coalitions. To be specific, suppose that
player 1 is acting as a coordinator or leader for all the coalitions to, which he can
belong. Suppose that, to maintain his leadership, player 1 must use a threat-plan that
offers each type ti of each player i at least some minimal expected utility wi(ti).
For any coalition S ⊇ {1}, let qS denote the probability that S will be the coalition
forming under player 1’s leadership. Ordinarily, qS would depend on how much
player 1 offers the other players, but for simplicity let us suppose that qN will be
some fixed number close to one and all other qS will be small positive numbers,
for any threat-plan that gives all players at least their wi(ti) payoffs. (Then qS for
S 	= N may be thought of as a "trembling-hand" probability of the coalition S
forming instead of N .)

In such a situation, if player 1’s type is t1, then he wants to choose his
threat-plan (µS)S⊆{1} in XS⊇{1}MS so as to maximize his expected utility∑

S⊇{1} qSU1(µS |ti) subject to the minimum payoff constraints

∑
S⊇{1,i}

qSUi(µS |ti) ≥

⎛⎝ ∑
S⊇{1,i}

qS

⎞⎠wi(ti), ∀i ∈ N − 1, ∀ti ∈ Ti, (6.2)
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and the incentive-compatibility constraints∑
S⊇{1,i}

qSUi(µS |ti) ≥
∑

S⊇{1,i}
qSU

∗
i (µS , ri|ti), ∀i ∈ N, ∀ti ∈ Ti, ∀ri ∈ Ti.

(6.3)

This constraint (6.3) asserts that no player i should have any incentive to lie about
this type when agreeing to follow player 1 in a coalition. We assume that 1 can
negotiate separately with each other player i; so that i agrees without knowing
which coalition S ⊇ {1, i} will actually form.

To conceal his own type, player 1 must use a threat-plan which achieves some
balance between the objectives of his various types. [See Myerson, 1983 for detailed
discussion of this issue.] At the very least, however, player 1 should choose a
threatplan such that there is no other threat-plan satisfying (6.2) and (6.3) that gives
higher expected utility to all types t1 in T1 . For any such undominated threat-plan
there must exist some vector λ such that (µS)S⊇{1} maximizes∑

t1∈T1

λ1(t1)
∑

S⊇{1}
qSU1(µS |t1) (6.4)

subject to the constraints (2.6) and (6.3).
So optimal defensive threats for player 1 should maximize (6.4) over (µS)S⊇{1},

subject to (6.2) and (6.3). The Lagrangian for this problem can be written as follows∑
t1∈T1

λ1(t1)
∑

S⊇{1}
qSU1(µs|t1) (6.5)

+
∑

i∈N−1

∑
ti∈Ti

λi(ti)
∑

S⊇{1,i}
qS(Ui(µS |ti)− wi(ti))

+
∑
i∈N

∑
ti∈Ti

∑
ri∈Ti

αi(ri|ti)
∑

S⊇{1,i}
qS(Ui(µS |ti)− U∗

i (µS , ri|ti))

=
∑

S⊇{1}
qS

(∑
t∈T

p(t)WS(µS , t, λ, α)−
∑

i∈S−1

∑
ti∈Ti

λi(ti)wi(ti)

)
.

(This equality follows straightforward from the definitions of Ui, WS , and virtual
utility).

Thus, by (6.5), in any plan of optimal defensive threats for player 1, there must
exist some λ and a such that every coalition is choosing a threat that maximizes
the expected sum of its members’ virtual utilities with respect to λ and α. The
maximum value of 1’s weighted objective function (6.4) is equal to the expected
sum of these virtual utilities for the coalition forming around player 1, minus terms
in (6.5) that do not depend on the threat-plans. This is exactly the result that we
wanted, since it shows that the sum of virtual utilities can be a valid measure of the
defensive strength of a coalition.

In particular, suppose that qN is almost one, and all other qS are only infinitesi-
mal probabilities. Then constraints (6.2) and (6.3) require that µN must be (almost)
incentive compatible and equitable overall. Thus, our rational-threat criterion can
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be justified in situations where the coalitions commit themselves to their threats
and gather type-reports from their members before the realized coalition structure
is determined, provided that all players believe that the probability of the grand
coalition forming is close to one. In such situations, the value of a threat for a
coalition S(S 	= N) depends on what it can contribute to the required utility and
incentive-compatibility of the overall plan. With appropriate shadow prices λ and
α, expected virtual utility WS measures this contribution. For S 	= N , the threat
µS does not need to be either equitable or incentive compatible itself, because the
members of S do not expect to carry out this threat when they agree to make it part
of their threat-plans.

7 Proofs

First, we cite a basic lemma.

Lemma 1. Given any player i, α in A∼
, λ in Λ◦, and hi in RTi , there is a unique

vectorWi in RTi satisfying

(λi(ti) +
∑
si

αi(Si|ti))wi(ti)−
∑
si

αi(ti|si)wi(si) = hi(ti), ∀ti ∈ Ti.

(7.1)

Furthermore, the solution wi to these linear equations is increasing in the vector
hi. (That is, if h′

i(ti) ≥ hi(ti)∀ti, and w′
i solves (7.1) for h′

i instead of hi, then
w′

i(ti) ≥ wi(ti)∀ti.)
This result is proven as "Lemma 1" in Myerson [1983].

Lemma 2. Suppose that µ is a vector of rational threats with respect to λ and α,
and w is the vector of warranted claims for λ, α, and µ, where λ ∈ Λ0 and α ∈ A∼.

Then

wi(ti) ≥ minimum
νN−i∈MN−i

maximum
νi∈M{i}

Ui(vN−i, vi|ti).

for any player i and type ti.

Proof. Let i be any fixed player. For any coalition S ⊆ {i}, let µS
i be a mechanism

inM{i} such that

µS
i ∈ argmax

νi∈M{i}
Ui(µS−i, νi, µN\S |ti)

for every ti and Ti. That is, µS
i (di|ti) > 0 only if di would be a best response for

player i if this type were ti and the coalitions S − i and N\S were expected to
independently implement their threats from µ. Then let µ̂ inM be defined so that

µ̂S = (µS−i, µ
S
i ) if i ∈ S

µ̂S = µS if i /∈ S.
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For the threat-vector µ̂, no coalition changes its threat when player i joins it. So
WS(µ̂, t, λ, α) and WS−i(µ̂, t, λ, α) differ only by the addition of i’s expected
virtual utility in state t when µS−i, µ

S
i , and µN\S are carried out. Thus, for any ti,∑

tN−i

p(t)(WS(µ̂, t, λ, α)−WS−i(µ̂, t, λ, α))

= (λi(ti) +
∑
ri

αi(ri|ti))Ui(µS−i, µ
S
i , µN\S |ti)

−
∑
ri

αi(ti|ri)U∗
i ((µS−i, µ

S
i , µN\S), ti|ri).

Let

ηi(ti) =
∑

S⊆{i}

(|S > −1)!(n− |S|)!
n!

Ui(µS−i, µ
S
i , µN\S |ti)

η∗
i (ti|ri) =

∑
S⊇{i}

(|S| − 1)!(n− |S|)!
n!

U∗
i ((µS−i, µ

S
i , µN\S), ti|ri).

Since (µS
i · |ri) is the best response for type ri against (µS−i, µN\S), for each S,

it follows that ηi(ri) ≥ η∗
i (ti|ri).

Consider now the following chain of inequalities

(λi(ti) +
∑
ri

αi(ri|ti)ηi(ti)−
∑
ri

αi(ti|ri)ηi(ri)

≤ (λi(ti) +
∑
ri

αi(ri|ti))ηi(ti)−
∑
ri

αi(ti|ri)η∗
i (ti|ri)

=
∑
tN−i

p(t)
∑

S⊇{i}

(|S| − 1)!(n− |S|)!
n!

(WS((µ̂, t, λ, α)−WS−i(µ̂, t, λ, α))

=
∑
tN−i

p(t)
∑

S⊇{i}

|S| − 1)!(n− |S|)!
n!

(WS((µ−S , µ̂S), t, λ, α)−

−WN\S((µ−S , µ̂S), t, λ, α))

≤
∑
tN−i

p(t)
∑

S⊇{i}

(|S| − 1)!(n− |S|)!
n!

(WS(µ, t, λ, α)−WN\S(µ, t, λ, α))

= (λi(ti) +
∑
ri

αi(ri|ti))wi(ti)−
∑
ri

αi(ti|ri)wi(ri).

In this chain, the fourth line holds because WS(µ̂, t, λ, α) and WN\S(µ̂t, λ, α)
depend only on µ̂S and µ̂N\S = µN\S . Then the next inequality uses the fact that
µ is a vector of rational threats, and the last equality uses the fast thatw is the vector
warranted claims.

Since the above chain of inequalities holds for all ti, Lemma 1 implies that
wi(ti) ≥ ηi(ti) for all ti. But ηi(ti) is an average of best-response payoffs for type
ti against a variety of mechanisms for N − i, and so ηi(ti) is not smaller than the
right-band side of the inequality in Lemma 2. ��
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Proof of Theorem 2. We begin with some definitions. For any k larger than∑n
i=1 |Ti|, let

Λk = {λ ∈ Λ|λi(ti) ≥ 1/k. ∀i, ∀ti}.

There exists a compact convex set A∼
∗ such that A∼

∗ ⊆ A∼ and, for each λ in Λ there

is some α in A∼
∗ such that α is an optimal solution of the dual for λ. The proof of

this fact is given in the proof of Theorem 6 in Myerson [1983].
Let

B = maximum
i,d,t

|ui(d, t)|+ 1

and let

X =
{
w ∈ X

i∈N
RTi | −B ≤ wi(ti) ≤ B, ∀i, ∀ti

}
.

For each k greater than
∑

i∈N |Ti|, we define a correspondenceZk : M×A∼
∗×X×

Λk ⇒ M × A∼
∗ ×X × Λk so that (µ̂, α̂, ŵ, λ̂) ∈ Zk(µ, α,w, λ) iff the following

conditions are satisfied

µ̂N is an optimal solution of the primal problem for λ; (7.2)

µ̂S ∈ argmax
vS∈MS

∑
r∈T

p(t)(WS((µ−S , νS)t, λ, α)−WN\S((µ−S , vS), λ, α)). (7.3)

α̂ is an optimal solution of the dual for λ; (7.4)

ŵi(ti) = max{−B,min{B, w̃i(ti)}},∀i,∀ti, where w̃ is the vector

of claims warranted by λ, α, and µ; (7.5)

λi(ti) = 1/k for every ti such that

wi(ti)− Ui(µN |ti) < maximum
j,sj

(wj(sj)− Uj(µN |sj)). (7.6)

By the Kakutani fixed-point theorem, for each k there exists some (µk, αk, wk, λk)
such that

(µk, αk, wk, λk) ∈ Zk(µk, αk, wk, λk). (7.7)

Since this sequence of fixed points is in a compact domain, there exists a convergent
sequence, converging to some (µ̄, ᾱ, w̄, λ̄ inM ×A∼

∗ ×X ×Λ. We will show that

µ̂N is a bargaining solution.
By the fixed-point condition, each µk is a vector of rational threats for λk

and αk.
Let w̄k be the vector of claims warranted by λk, αk, and µk. By Lemma 2, since

w̃k is a vector of warranted claims supported by rational threats, w̃k
i (ti) ≥ −B for

every i and ti. Thus wk
i (ti) can differ from w̃k

i (ti) only if w̃k
i (ti) > B, in which

case wk
i (ti) ≤ w̃k

i (ti).
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By summing the warrant equations, we get∑
i∈N

∑
ti∈Ti

λk
i (ti)w̃k

i (ti) =
∑

ti∈Ti

λk
i (ti)Ui(µk

N |ti).

For any i and ti, if w̃k
i (ti) < Ui(µk

N |ti) then, by (7.6) and (7.7), λk(ti) = 1/k;
thus

if lim inf
k→∞

w̃k
i (ti) < Ui(µ̄N |ti) then lim

k→∞
λk

i (ti) = 0 (7.8)

Now, suppose that there were some j and rj such that

lim sup
k→∞

w̃k
j (rj) > Uj(µ̄N |rj) = lim

k→∞
Uj(µk

N |rj). (7.9)

Then (7.8) could be strengthened to:

if lim inf
k→∞

w̃k
i (ti) ≤ Ui(µ̄N |ti) then lim

k→∞
λk

i (ti) = 0.

Since each λk is in the simplex Λ, we could find some j and rj , satisfying (7.9)
such that λ̄j(rj) > 0. But then we would get

0 < lim sup
k→∞

λk
j (rj)(w̃k

j (rj)− Uj(µk
N |rj))

= lim sup
k→∞

∑
(i,tj)�=(j,rj)

λk
i (ti)(Ui(µk

N |ti)− w̃k
i (ti)) ≤ 0,

using (7.8) (and the fact that w̃k
i (ti) does not diverge to −∞ as k →∞, since it is

bounded below by −B) to get the last inequality. But 0 < 0 is impossible, so no
j, rj) pair satisfying (7.9) can exist. That is, for every i and ti,

lim sup
k→∞

w̃k
i (ti) ≤ Ui(µ̄N |ti).

So {(λk, αk, µk, w̃k)}∞
k=1 form a sequence verifying (5.5)–(5.8) for µ̄N . ��

Proof of Theorem 3. Theorem 3 follows immediately from Lemma 2 and the
definition of a bargaining solution. ��
Proof of Theorem 4. Given the bargaining solution µ̄, let {(λk, αk, µk, wk)}∞

k=1
satisfy (5.5)–(5.8). Let λ̂k and α̂k be defined by

λ̂k
i (ti) = λk

i (ti)/(|λk|+ |αk|)
α̂k

i (ri|ti) = αk
i (ri|ti)/(|λk|+ |αk|)

where

|λk|+ |αk| =
∑
i∈N

∑
ti∈Ti

(λk
i (ti) +

∑
ri∈Ti

αk
i (ri|ti)) ≥ n.

So for each k, (λ̂k, α̂k) lies in a unit simplex. By the linear homogeneity of all
formulas concerned, µk is a vector of rational threats for λ̂k and α̂k, as well as for
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λk and αk, and wk is warranted by λ̂k, α̂k , and µk. By Lemma 2 and condition
(5.8), each wk must lie within the compact set X defined in the proof of Theo-
rem 2, and each µk is in the compact, set M . So there must exist a subsequence
{(λ̂k, α̂k, µk, wk)}k that is convergent to some limit (λ, α, µ, w).

The vectors λ andα cannot both be zero, because (λ, α) has a summation-norm
of one. By continuity of the rational-threat and warranted-claim conditions, µ is a
vector of rational threats for λ and α, and w is warranted by λ, α, and µ. By (5.8),
wi(ti) ≤ Ui(µ̄N |ti) for every i and ti. From (5.9) (dividing through by |λk|+ |αk|,
and letting δ → 0 as k →∞, we get∑

t∈T

p(t) max
d∈D

∑
i∈N

vi(d, t, λ, α) ≤
∑

i

∑
ti

λi(ti)Ui(µ̄N |ti),

and so by duality µ̄N and α are optimal solutions of the primal and dual for λ,
respectively. Duality also implies that the above inequality must be an equality,
which gives us the complementary slackness conditions in (5.14).

Thus we have all of the conditions in Theorem 4, except that letting µN =
limk→∞ µk

N does not imply µN = µ̄N . However, since µ̄N is an optimal solution
of the primal for λ, it must also maximize the sum of the virtual utilities in every
state.Thus, if we redefineµN as being equal to µ̄N , we do not changeWN (µ, t, λ, α)
for any t, and so w is still warranted by λ, α, µ. ��
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tion equilibrium. Thus, we analyze the informational structure of an economy with
differential information from a different and new viewpoint.
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1 Introduction

The concept of a (cardinal) value allocation was first introduced by Shapley (1969).
Roughly speaking, it is defined as a feasible allocation which yields to each agent
in the economy a “utility level” which is equal to the sum of the agent’s expected
marginal contributions to all coalitions that he/she is a member of. Because the
Shapley value measures the sum of an agent’s expected marginal contributions to
coalitions, we argue in this paper that it provides an interesting way to measure the
“worth” of an agent’s information advantage in an economy with differential in-
formation. This feature of the Shapley value allocation is not necessarily shared by
the traditional rational expectation equilibrium. Thus, we analyze the informational
structure of an economy with differential information from a different viewpoint.
In particular, we address the following questions: How can one measure the infor-
mation advantage or superiority of an agent? How do coalitions of agents share
their private information? Is each agent’s private information verifiable by all other
members of a coalition? Do agents have an incentive to report their private infor-
mation truthfully? What is the correct concept of a value allocation in the presence
differential information? Do value allocations exist in an economy with differential
information? We provide answers to each of these questions.

Similar to Radner (1968), we consider a two-period economy where each agent
i is characterized by a utility function, a random second period endowment, a prior
belief about the distribution of all agents’ second period endowments, and private
information about the actual endowment realizations after uncertainty is resolved
in the second period. Although the value allocation is a cooperative solutions
concept, there is a non-cooperative aspect inherent in a private information
economy framework. In particular, a coalition of agents might agree on how to
share their own private information. Nonetheless, some agents within the coalition
may have an incentive to misreport their true private information. For example,
consider an economy in which agents are exposed to idiosyncratic endowment
shocks (cf., Example 1). Although a coalition of agents might agree ex-ante on
insuring its members if they report a low endowment realization, once the state of
nature is realized, some members of this coalition may have an incentive to agree on
misreporting their actual endowments to the other agents. In particular, even if they
did not receive a low endowment realization, they may report differently in order
to obtain the insurance payment. As long as the coalition includes all agents who
would be able to verify these reports using their own private information, agents of
the complementary coalition cannot detect that they are being cheated (although
they might suspect it). In order to alleviate this problem, we consider two incentive
compatible ways of information sharing which we refer to as weak and strong
coalitional incentive compatibility, respectively. The central idea of both notions
is that it should not be profitable for coalitions of agents to agree on misreporting
their information in such a way that none of the remaining agents are able to detect
the misreports. We then provide conditions under which strong coalitional in-
centive compatibility implies that no actual exchange of information is taking place.
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Formally, this means that each agent’s net-trade must be measurable with respect
to his/her own information.1

We define three alternative notions of a value allocation. In the weak and the
strong value allocation information sharing within coalitions must fulfill weak and
strong coalitional incentive compatibility, respectively. In the private value alloca-
tion each agent’s net-trade must be measurable with respect to his/her information.
This corresponds to the (private) core notion of Yannelis (1991). We first show that
in the private value allocation information asymmetries matter. That is, an agent
with superior private information can make a Pareto improvement to the economy,
and he/she will be rewarded for it. This can happen, even if the agent has zero
initial endowment. It also indicates that agents can benefit from the information
of other agents even if they do not acquire that information for themselves. More-
over, we show that the private value allocation fulfills strong coalitional incentive
compatibility. It should be noted that in the weak value allocation agents with su-
perior information are rewarded as well. In this case agents not only benefit from
the information of other agents, but they exchange information as well. It seems to
us, however, that the private value is the most useful of these concepts, since it is
technically very tractable and also has properties which are very similar to those of
the weak and the strong value, i.e., agents are rewarded for superior information.
In contrast, both the weak and the strong value allocation are technically not as
tractable.

Before we proceed we would like to mention two early seminal papers in coop-
erative game theory with incomplete information which differ from our paper. The
first is by Wilson (1978) who analyzed the core of an economy with differential
information. The second is by Myerson (1984) who extended the Nash bargain-
ing solution and the NTU value to an incomplete information setting. It should be
noted that Myerson analyzes a mechanism design problem whereas our approach
considers an exchange economy with differential information.

The paper proceeds as follows: Section 2 contains the description of the model
(i.e., the exchange economy with differential information). In Section 3 we intro-
duce the alternative notions of value allocation with differential information. The
interpretation of the private value is discussed in Section 4. Section 5 discusses
other concepts of a value allocation. Finally, Section 6 contains some concluding
thoughts.

2 The economy with differential information

Consider an exchange economy which extends over two time periods t = 0, 1
where consumption takes place at t = 1. Let Rl

+ denote the commodity space.2 At
t = 0 there is uncertainty over the state of nature described by a probability space
(Ω,F , µ). Let I = {1, . . . , n} denote the set of all agents. At t = 0 agents agree
on net-trades which may be contingent on the state of nature at t = 1. However,

1 This essentially means that an agent cannot make his consumption contingent on two states between
which he/she cannot distinguish.

2 Rl
+ denotes the positive cone of Rl.
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they have differential information with respect to the true state of nature that will be
realized. This is modeled as follows:At t = 1 agents do not necessarily know which
state ω ∈ Ω has actually occurred. They know their own endowment realization,
and every agent i may also have some additional information about the state. This
information is described by a measurable partition Fi ofΩ.3 Hence if ω̄ is the true
state of the economy at t = 1 agent i observes the event Ei(ω̄) in the partition Fi

which contains ω̄. Since agents always observe their own endowment realization,
we can assume without loss of generality that agent i’s endowment is measurable
with respect to Fi.4

In summary, an exchange economy with differential information is given by
E = {(Xi, ui, ei,Fi, µ) : i = 1, . . . , n} where

(1) Xi = Rl
+ is the consumption set of agent i;

(2) ui : Rl
+ → R is the utility function of agent i;5

(3) Fi is a partition of Ω denoting the private information of agent i;
(4) ei : Ω → Rl

+ is the initial endowment of agent i, where each ei is Fi-
measurable and ei(ω) ∈ Xi µ-a.e.;

(5) µ is a probability measure on Ω denoting the common prior of each agent.

Finally, the expected utility of agent i is given by
∫

Ω
ui(xi(ω)) dµ(ω).6

Throughout the paper, we assume that the utility function ui of each agent i is
monotone, continuous, concave and integrably bounded.

3 Value allocations in economies with differential information

3.1 Coalitional incentive compatibility

When agents have differential information, arbitrary allocations are not generally
viable. In particular, arbitrary allocations might not be incentive compatible in the

3 A measurable partition of Ω is a collection of sets Aj , j ∈ J , with the following properties: (a)
J is finite or countable; (b) Aj ∈ A for every j, i.e., the sets are measurable; (c)

⋃
j∈J Aj = Ω; (d)

Aj ∩ Ak = ∅ for all j �= k.
4 By (slight) abuse of notation we identify the partition with the σ-algebra generated by the partition.
5 All the results of the paper remain valid if we assume the utility function is random, i.e., ui is a

real valued function defined on Ω × Rl
+.

6 Bayesian updating of priors can be introduced as follows: Let qi : Ω → R++ be a Radon-Nikodym
derivative (density function) denoting the prior of agent i. For each i = 1, . . . , n, denote by Ei(ω) the
event in Fi containing the realized state of nature ω ∈ Ω and suppose that

∫
t∈Ei(ω) qi(t) dµ(t) > 0.

Given Ei(ω) ∈ Fi, define the conditional expected utility of agent i as follows:∫
t∈Ei(ω)

ui(t, xi(t))qi(t|Ei(ω)) dµ(t),

where

qi(t|Ei(ω)) =

⎧⎨
⎩

0 if t /∈ Ei(ω)

qi(t)∫
t∈Ei(ω) qi(t) dµ(t) if t ∈ Ei(ω).

As in Yannelis (1991) all results of the paper remain valid under this conditional expected utility for-
mulation, but we choose not to do so for the simplicity of the exposition.
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sense that groups of agents may misreport their information without other agents
noticing it, and hence achieve different payoffs ex post. To obviate this problem,
we introduce in Definitions 1 and 2 below two alternative notions of incentive
compatibility.

The cooperative solution concept which we apply to economies with differential
information captures the idea that groups of agents come together, exchange infor-
mation, or trade with each other given their informational constraints. However,
this exchange of information has a non-cooperative aspect. In particular, although
agents might agree to exchange information, they might not have an incentive to
reveal their information truthfully. We take this into account by considering two
alternative definitions of coalitional incentive compatibility.

Definition 1. Let x : Ω →∏n
i=1Xi be a feasible allocation.7 Then x fulfills strong

coalitional incentive compatibility if and only if the following does not hold:
There exists a coalition S ⊂ I and states a, b, a 	= b which members of I \ S
are unable to distinguish (i.e., a and b are in the same event of the partition for
every agent not in S) and such that after an appropriate endowment redistribution
members of S are strictly better off by announcing b whenever a has actually
occurred. Formally, strong coalitional incentive compatibility implies that there
does not exist a coalition S, states a, b with b ∈ Ei(a) for every i /∈ S and a
net-trade vector zi, i ∈ S such that

∑
i∈S z

i = 0, ei(a)+xi(b)−ei(b)+zi ∈ Rl
+

for every i ∈ S and

ui(ei(a) + (xi(b)− ei(b)) + zi) > ui(xi(a)), for every i ∈ S. (C1)

Strong coalitional incentive compatibility models the idea that it is impossible
for any coalition to cheat the complementary coalition by misreporting the state
and making side-payments to each other which agents who are not members of
this coalition cannot observe.8 The restriction ei(a) +xi(b)− ei(b) + zi ∈ Rl

+ for
every i ∈ S is obviously required in order to ensure that the consumption of the
agents is still in the commodity space.

When side-payments are observable we get the following weaker notion of
incentive compatibility. (Set zi = 0 for every i ∈ S in (C1) to get weak coalitional
incentive compatibility.) Formally, we have the following definitions.

Definition 2. Let x : Ω → ∏n
i=1Xi be a feasible allocation. Then x fulfills weak

coalitional incentive compatibility if and only if the following does not hold:
There exists a coalition S ⊂ I and states a, b, a 	= b which members of I \ S are
unable to distinguish (i.e., a and b are in the same event of the partition for every
agent not in S) and such that members of S are strictly better off by announcing b
whenever a has actually occurred. Formally, b ∈ Ei(a) for every i /∈ S, ei(a) +
xi(b)− ei(b) ∈ Rl

+ for every i ∈ S and

ui(ei(a) + (xi(b)− ei(b)) > ui(xi(a)), for every i ∈ S. (C2)

7 An allocation x : Ω → ∏
i∈I Xi is said to be feasible if

∑
i∈I xi =

∑
i∈I ei.

8 If we want incentive compatibility to hold almost everywhere then it must be required that states
in which agents misreport occur with probability zero.
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Weak incentive compatibility is weaker in the sense that allocations which fulfill
strong coalitional incentive compatibility must also fulfill weak coalitional incen-
tive compatibility. It is easy to find examples where the reverse is not true. In what
follows we discuss both notions. It turns out that in certain cases strong coalitional
incentive compatibility is analytically more tractable since it corresponds to indi-
vidual measurability of the net-trade of each agent as proved in Lemma 1 below.
We now introduce some notation. In particular, let Uw(S) and Us(S) denote the
utility allocations which coalition S can attain, and which fulfill weak and strong
coalitional incentive compatibility, respectively. That is
Uw(S) = {(w1, . . . , w|S|) ∈ R|S| : there exists an allocation xi, i ∈ S such

that
∑

i∈S xi =
∑

i∈S ei, where xi, i ∈ S fulfills weak coalitional incentive
compatibility, and where wi ≤

∫
ui(xi) dµ for every i ∈ S}.

Us(S) = {(w1, . . . , w|S|) ∈ R|S| : there exists an allocation xi, i ∈ S such
that

∑
i∈S xi =

∑
i∈S ei, where xi, i ∈ S fulfills strong coalitional incentive

compatibility, and where wi ≤
∫
ui(xi) dµ for every i ∈ S}.

For both notions of incentive compatibility we will analyze the corresponding
concept of a value allocation. The definitions are introduced in Section 3.3.

3.2 Private measurability of allocations

We now continue by characterizing the set Us(S). It turns out that Us(S) corre-
sponds to the attainable utility allocations which fulfill individual measurability of
the net-trade of each agent for an economy with one commodity per state.

LetUp(S) = {(w1, . . . , wn) : there exist net-trades zi such that
∑

i∈S zi = 0,
where zi is Fi-measurable , and wi ≤

∫
ui(ei + zi) dµ}.

Lemma 1. Assume that there is one commodity per state; then Up(S) = Us(S).

Proof. We first show that Up(S) ⊂ Us(S). Let w ∈ Up(S). Then there exist an
allocation xi, i ∈ S such that for every agent i ∈ I the net-trades yi = xi − ei
are Fi-measurable,

∑
i∈S yi = 0, and wi ≤

∫
ui(xi) dµ. Now assume by way of

contradiction that strong coalitional incentive compatibility does not hold. Then
there exist a coalition T ⊂ S, and two states a, b which members of S \ T cannot
distinguish, such that members of T are strictly better off by redistributing zi, i ∈ T
(that is

∑
i∈T zi = 0) and by reporting bwhenevera has actually occurred. Since net

trades are individually measurable it follows that
∑

i∈S\T yi(a) =
∑

i∈S\T yi(b).
Thus, since the feasibility constraint holds with equality we get

∑
i∈T yi(a) =∑

i∈T yi(b). Since there is one commodity per state and preferences are monotonic
it follows that yi(b) + zi > yi(a) for every i ∈ T . We therefore get∑

i∈T

yi(b) =
∑
i∈T

(yi(b) + zi) >
∑
i∈T

yi(a) =
∑
i∈T

yi(b),

which provides the contradiction.
It remains to prove that Us(S) ⊂ Up(S) for every S. Suppose by way of

contradiction that the net-trade of one agent, say agent j is not Fj-measurable.
Hence, there exist two states a and bwhich agent j cannot distinguish and for which
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zj(a) 	= zj(b). Without loss of generality assume that zj(a) > zj(b). Then in state
b the coalition T = S \ {j} can announce state a and agent j is unable to verify
it and they can redistribute their excess income and make all members of T better
off. This provides the contradiction to strong coalitional incentive compatibility.
Hence Us(S) ⊂ Up(S). This concludes the proof.

Lemma 1 implies that when there is one commodity per state of nature the sets
Us(S) and Up(S) coincide for every S. The fact that strong coalitional incentive
compatibility—i.e., the assumption that coalitions of agents can trade with each
other in such a way that agents of the complementary coalition cannot observe
that such trades are taking place—implies individual measurability of net-trades,
means that no exchange of information takes place. That is, after the state of nature
is realized agents still only know the event of their own information partition which
contains the true state. Nevertheless, agents can benefit from each other’s informa-
tion as we show in Examples 1 and 2 below. In contrast, we show in Example 4 that
agents may exchange information and benefit from each others information if we
require only weak coalitional incentive compatibility. Which of the two incentive
compatibility assumptions is more appropriate will clearly depend on the specific
economic question which we want to analyze.

In the case of more than one commodity, Lemma 1 does not apply, and we can
therefore define a third concept of information sharing. In particular, we assume that
all net-trades are individually measurable, i.e., no actual exchange of information
takes place. As mentioned earlier agents can nevertheless benefit from each others
information. More importantly, however, private information sharing is analytically
more tractable than weak or strong coalitional incentive compatibility. At the same
time the results are qualitatively not very different. This seems to indicate that
private information sharing is the most useful concept to analyze economies with
private information.

3.3 Value allocations

The strategy in this section is to derive a game with transferable utility from the
economy with differential information, E , in which each agent’s utility is weighted
by a factorλi which allows interpersonal utility comparisons. In the value allocation
itself no side-payments are necessary. This claim is justified by appealing to the
principle of irrelevant alternatives: “If restriction of the feasible set, by eliminating
side-payments, does not eliminate some solution point, then that point remains a
solution” (Shapley (1969)).9 We thus get a game with side-payments as follows:

Definition 3. A game with side-payments Γ = (I, V ) consists of a finite set of
agents I = {1, . . . , n} and a superadditive, real valued function V defined on 2I

such that V (∅) = 0. Each S ⊂ I is called a coalition and V (S) is the “worth” of
the coalition S.

9 See Emmons and Scafuri (1985, p. 60) or Shafer (1980, p. 468) for further discussion.
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The Shapley value of the game Γ , (Shapley (1953)) is a rule which assigns to
each agent i a “payoff” Shi given by the formula10

Shi(V ) =
∑
S⊂I

S⊃{i}

(|S| − 1)!(|I| − |S|)!
|I|! [V (S)− V (S \ {i})].

The Shapley value has the property that
∑

i∈I Shi(V ) = V (I), i.e., the Shapley
value is Pareto optimal. Moreover, it is individually rational, i.e., Shi(V ) ≥ V ({i})
for all i ∈ I .

We now start by defining the private value allocation. For each economy with
differential information E and each set of weights {λi : i = 1, . . . , n}, we can now
associate a game with side-payments (I, V p

λ ), (we also refer to this as a “transferable
utility” (TU) game) according to the rule:

For S ⊂ I let

V p
λ (S) = max

xi

∑
i∈S

λi

∫
ui(xi(ω)) dµ(ω) (3.1)

subject to

(i)
∑
i∈S

xi(ω) =
∑
i∈S

ei(ω), µ-a.e.

(ii) the net trades xi − ei are Fi-measurable for every i ∈ S.

We now define the private value allocation for economies with differential in-
formation.

Definition 4. An allocation x : Ω → ∏n
i=1Xi is said to be a private value allo-

cation of the economy with differential information E if the following holds:

(i) The net trade ei − xi, is Fi measurable for all i ∈ I .
(ii)

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω), µ-a.e.

(iii) There exist λi ≥ 0, for every i = 1, . . . , nwhich are not all equal to zero, with
λi

∫
ui(xi(ω)) dµ(ω) = Shi(V

p
λ ) for every i, where Shi(V

p
λ ) is the Shapley

value of agent i derived from the game (I, V p
λ ), defined in (3.1).

Condition (i) says that net-trades must be measurable with respect to private infor-
mation; (ii) is a market clearing condition; and (iii) says that the expected utility of
each agent multiplied by his/her weight λi must be equal to his/her Shapley value
derived from the TU game (I, V p

λ ).
Alternatively, we can also define the weak and the strong value allocation. In

order to define the weak value allocation, first replace (ii) in (3.1) by (ii’) xi, i ∈ S
fulfills weak coalitional incentive compatibility.
We thus derive a TU-game V w

λ . In order to define the weak value allocation, just
substitute V w

λ for V p
λ in Definition 4 and replace (i) in Definition 4 by (i’) xi, i ∈ I

fulfills weak coalitional incentive compatibility.

10 The Shapley value is the sum of the expected marginal contributions an agent can make to each
coalitions of which he/she is a member (see Shapley (1953)).
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Similarly, we can define a strong value allocation by replacing replace (ii) in (3.1)
by (ii”) xi, i ∈ S fulfills strong coalitional incentive compatibility.
This defines the TU-game V s

λ . We now define the strong value allocation in the
obvious way. However, by Lemma 1 the strong and the private value allocation
coincide if there is one commodity per state.We therefore only discuss the properties
of the private and the weak value allocations in the examples in the subsequent
sections.

3.4 Existence and incentive compatibility of the private value allocation

A private value allocation always exists for a differential information economy. This
follows from the existence results in Emmons and Scafuri (1985) or Shapley (1969).
Specifically, these papers show that if agents’ utility functions are concave, and
continuous; and if the consumption set of each agent is bounded from below, closed
and convex; then a value allocation exists.

In order to apply their existence results, we first define the consumption space
to be the set of all functions xi : Ω → Rl

+ which are Fi-measurable. One can then
show that the expected utility is (weakly) continuous on this consumption set. Thus,
the above results can be applied (for details see Krasa and Yannelis (1991)).

We next show that the private value fulfills strong coalitional incentive com-
patibility. In the case of one commodity per state this follows from Lemma 1. In
the case of more than one commodity, we add to Definition 1 the requirement that
agents in coalition S must agree on the state a that they misreport, i.e., equation
(C1) must hold for every s ∈ ∧i∈S Ei(a).11 In other words the event in which the
agents in coalition S cheat must be common knowledge to its members.12

Lemma 2. The private value allocation fulfills strong coalitional incentive com-
patibility.

Proof. Let xi, i ∈ I be a private value allocation. Assume by way of contradiction
that the allocation does not fulfill strong coalitional incentive compatibility. Let
T ⊂ I be a coalition for which it is optimal to report state b whenever state a has
actually occurred. Members in I \ T cannot distinguish state a from state b. Since
net-trades are individually measurable it follows thatxi(a) = ei(a)+(xi(b)−ei(b))
for every i ∈ I \T . Let zi, i ∈ T denote the redistribution within coalition T . Then
we define a new allocation x∗

i , i ∈ I as follows: For every i ∈ T let

x∗
i (s) =

{
ei(s) + (xi(b)− ei(b)) + zi for every s ∈ ∧i∈T Ei(a);

xi(s) otherwise.

Let x∗
i = xi for every i ∈ I \ T . Then x∗

i is a feasible allocation and all net-trades
xi−ei areFi-measurable. Furthermore, members ofT are strictly better off with the
new allocation than with the original allocation. Members of I \ T are indifferent.

11 ∧
i∈S Ei(a) is the event in

∧
i∈S Fi which contains a.

12 For related incentive compatibility results for the core of an economy with differential information
see Koutsougeras and Yannelis (1993).
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This, however, is a contradiction to the Pareto efficiency of the value allocation.
Thus, the value allocation must fulfill strong coalitional incentive compatibility.

4 Interpretation of the value allocation

4.1 The private value allocation

In this section we discuss the properties of the private value allocation. We illustrate
these properties by way of simple examples. In the first example, we consider an
economy in which two agents, denoted by I and J are subject to independent
endowment shocks in the second period. Specifically, each agent’s endowment can
be either high or low. Neither of the agents, however, is able to verify whether
or not the other agent’s endowment is high or low. We assume that there is a
third agent, denote by K, in the economy whose superior information potentially
allows verification of the endowment shocks. Example 1 addresses the question to
what extend the superior information of agentK makes an insurance arrangement
between agents I andJ possible. Moreover, it is also shown that agentK is rewarded
for his/her superior information.

Example 1. Consider an economy with three agents denoted by I , J , and K, and
four states of naturea, b, c, and d.Assume there is only one consumption commodity
in each state. The random endowment of the agents are given by (4, 4, 0, 0) for
I; (4, 0, 4, 0) for J ; and (1, 1, 1, 1) for K. Agent K has an information set FK .
We consider the case where FK is trivial – i.e., FK = {{a, b, c, d}} – and the
case where FK corresponds to full information – i.e., FK = {{a}, {b}, {c}, {d}}.
Further, assume that agent I cannot distinguish statea from b, and state c fromd; and
finally, agentJ cannot distinguish a from c, and b from d, i.e.,FI = {{a, b}, {c, d}}
andFJ = {{a, c}, {b, d}}. Let all agents have the same von Neumann-Morgenstern
utility function

√
x, and assume that each state occurs with the same probability.

Consider first the case where agentK has full information.We now derive the set
of all attainable utility allocations for the private value allocation. For the one-agent
coalitions we get:Up({i}) = {wi : wi ≤ 1}, for i = I, J,K. Further, all trades be-
tween agents I and J must be state independent.13 However, since each agent’s con-
sumption must be non negative it follows that no trade between agents I andJ is pos-
sible. Thus,Up({I, J}) = {(wI , wJ) : wI ≤ 1, andwJ ≤ 1}. This, does not apply
to the other two agent coalitions. Up({I,K}) = Up({J,K}) = {(w1, w2) : w1 ≤
(1/2)

√
4 + t1 + (1/2)

√
t2, w2 ≤ (1/2)

√
1− t1 + (1/2)

√
1− t2, such that−1 ≤

t1 ≤ 1 and 0 ≤ t2 ≤ 1, for i = 1, 2}. Similarly, Up({I, J,K}) = {(w1, w2, w3) :
there exist state independent net-trades zi, i = I, J,K where zi is Fi-measurable
for i = J,K, where

∑
i=I,J,K zi = 0, and wi ≤

∑
s=a,b,c,d(1/4)

√
ei + zi,

for i = I, J,K}. In view of Section 3.4, a strong value exists. Further, it is

13 This follows immediately since the net-trade z between both agents must be measurable with
respect to the information of each agent. However, only state independent net-trades are measurable
with respect to both agents’ information.
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obvious that V p
λ ({I, J,K}) ≥ V p

λ ({I, J}) + V p
λ ({K}) for all λ > 0.14 More-

over, V p
λ ({i,K}) > V p

λ ({i}) + V p
λ ({K}), i = I, J for all λ > 0.15 Hence,

ShK(Vλ) >
∫
uK(eK) dµ, i.e., agent K must get a higher utility than he/she

derives from the initial endowment.16

Next consider the case where FK is trivial. Now only constant net-trades are
possible within all coalitions. Since the private value allocation is individually
rational all agents must consume their initial endowment.

Example 1 shows that agent K’s information clearly matters. It shows that
when agentK has full information and I , J do not, he/she can use this information
advantage to act as an intermediary to allow trade between agents I andJ that would
not otherwise be possible. This becomes clear when looking at Up({I, J,K, })
and Up({I, J}). Without agent K, agents I and J cannot make any beneficial
trades. This changes when agent K enters the coalition. Now all trades basically
go through agent K since Up({I, J,K, }) is essentially the union of Up({I,K})
and Up({J,K}). It is important to note that agents do not exchange their private
information. Nonetheless, using the superior information of agent K, trade made
everybody in the economy better off. Moreover, agentK is compensated for his/her
intermediation service by getting a strictly higher utility than in the case where
he/she is less well informed and is unable to facilitate trade. However, it is essential
for agent K to have a strictly positive endowment in every state. If agent K’s
endowment is for example 0, then he/she is not able to trade with agents I and
J , i.e., to increase their consumption in the low-income state and decrease it in
the high-income state since this would require agent K to hold a positive initial
endowment in state d. The private value allocation in such a case assigns to every
agent the initial endowment. This changes immediately if we consider endowments
which are not independent.17

We now consider the case where endowments are not independent in the context
of another simple example. This modification of the previous example demonstrates

14 This inequality is true in general since the game derived from the differential information economy
is superadditive. In particular, the sum of the utilities of the agents must be at least as great when utility
is jointly maximized than when utility is only maximized for agents I and J , and agent K consumes
his/her initial endowment.

15 This follows immediately from the first order condition. Note that V p
λ ({i, K}) can be found by

solving

max
ti,t′

i

λi

2

√
4 + t′i +

λi

2

√
ti +

λK

2

√
1 − t′i +

λK

2

√
1 − ti,

where i = I, J . The first order conditions imply that it is optimal to choose the transfer ti to be strictly
positive. Thus the agents are strictly better off by trading than by consuming their initial endowment
which implies that the strict inequality holds.

16 The Shapley value of agent K is a weighted sum of K’s marginal contribution V (S)−V (S\{K})
to all coalition S of which agent K is a member of. By the above arguments we have V (S) − V (S \
{K}) ≥ V p

λ ({K}) for all coalitions S which contain K. Moreover, the strict inequality holds if
S = {I, K} and if S = {I, J}. Thus, agent K must receive a higher utility in the value allocation
than V p

λ ({K}).
17 Let L and H denote the endowment realizations in the low and in the high states respectively. Then

independence of endowments means that P ({eI = L}) = P ({eI = L | eJ = L}) = P ({eI = L |
eJ = H}), and similar for the high state and for the other agents (where P denotes the probability).
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that the information superiority of an agent can matter, even though this agent may
have no initial endowment at all.As long as this agent’s private information is useful
to the rest of the economy, he/she can always trade his/her superior information for
actual goods.

Example 2. Consider an economy as in Example 1 but assume that the endowments
of agent I and J are given by (4, 4, 0, 4) and (4, 0, 4, 4), respectively. Assume
that FI = {{a, b, d}, {c}}, FJ = {{a, c, d}, {b}}, and that agent K has full
information. We also assume that agentK has a zero endowment in all states. The
derivation of Up(S) is similar to the derivation in Example 1. We therefore omit
any specification of the set of attainable utility allocations and show directly that
ShK(V p

λ ) > 0 for every λ ≥ 0.18

We now show that V p
λ ({I, J,K}) > V p

λ ({I, J}). Let ti be the net-trade of
agent i = I, J in the low-income state, and let t′i denote the net-trade of agent
i = I, J in the high-income state.

We first consider the case whereλK > 0. The first order conditions immediately
imply that it is never optimal to choose ti = t′i for i = I, J .19 This, however, means
that the weighted sum of the expected utilities will always be lower if we restrict
agents I , J , and K to state-independent net trades. However, state-independent
trades are the only ones which are incentive compatible in the two agent coalition
{I, J}. Thus, V p

λ ({I, J,K}) > V p
λ ({I, J}).

We now consider the case where λK = 0. The first order conditions imply that it
is never optimal to choose ti = t′i = 0.20 In addition, agents I and J cannot receive

18 By λ ≥ 0 we mean that some, but not all of the weights can be zero. In particular, we must consider
the case where λK > 0.

19 The agents solve

max
ti,t′

i

∑
i=I,J

[
3λi

4

√
4 + t′i +

λi

4

√
ti

]
+

λK

2

√
−t′I − t′J +

λK

4

√
−t′I − tJ +

λK

4

√
−tI − t′J .

Without loss of generality assume that λI > 0. Then the first order conditions with respect to tI and
t′I are

3λI√
4 + t′I

=
2λK√

−t′I − t′J
+

λK√
−t′I − tJ

λI√
tI

=
λK√

−tI − t′J
.

If t′I = tI and t′J = tJ then the first order conditions yield
√

4 + tI =
√

tI = 1, which is clearly
impossible. Thus, there does not exist a solution if t′I = tI and t′J = tJ .

20 The argument is similar as the one above. Just consider the first order conditions of

max
tI ,t′

I

3λI

4

√
4 + t′I +

λI

4

√
tI +

3λJ

4

√
4 − tI +

λJ

4

√
−t′I ,

and choose tI = t′I = 0. We can substitute the constraints tI + t′J ≤ 0 and t′I + tJ ≤ 0 in the
maximization problem, since they must obviously hold with equality.
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a negative net-transfer in all states since this would imply negative consumption.
Thus, it can never be the case that ti = t′i 	= 0.

Since there cannot be state-independent net-transfers in the value allocation, it
follows that V p

λ ({I, J,K}) − V p
λ ({I, J}) > 0 for all weights λ which are candi-

dates for utility comparison weights. Consequently agent K must have a positive
Shapley value,21 and he/she must get positive consumption in the value allocation.
Moreover, it is also the case that the value allocation assigns agent K a strictly
positive consumption in all states. This follows since the value allocation must be
a solution to the Pareto problem in which each agent i’s utility is multiplied with
weight λi. Since λK > 0, the first order conditions stated in footnote 19 immedi-
ately implies the result, i.e., that agent K’s consumption is strictly positive in all
states.

Now compare this result with the case where agentK has no information (i.e.,
Fk = {{a, b, c}}). Then his/her Shapley value is 0, and the initial allocation is the
only equilibrium. This demonstrates that information superiority matters. Finally,
note that any notion of a rational expectation equilibrium in this economy give zero
consumption to agentK since his/her budget set is zero.

When agentK has useful private information the value allocation assigns posi-
tive consumption to agentK if the endowments of agents I and J are not indepen-
dent, but assigns zero consumption if the endowments are independent. This occurs
for the following reason: In both cases agents I and J attempt to insure against
low-income realizations. Because of differential information, however, they need
agent K as an intermediary to execute the correct trades. This arrangement works
even if agent K has a zero-endowment as long as only one of the agents has a
low endowment realization, because the claim of this particular agent can then be
covered by the agent who has the high endowment-realization. This is the essence
of Example 2. If both agents have low endowment realizations at the same time
(which can occur if endowments are independent as in Example 1) then they both
want a positive net-transfer. Agent K cannot fulfill his/her payment obligations
because his/her endowment is zero, andK claims insolvency. However, this claim
is problematic because agents I and J cannot verify whether agent K is in fact
insolvent. Thus, the problem is to find an incentive compatible way to let agentK
announce bonafide insolvencies. Clearly this is possible if agents I and J are able
to observe state d.22

An alternative way to permit bonafide insolvencies by agentK is to weaken the
incentive compatibility requirements. We do this in Example 4

21 This follows immediately, since (1/3)
(
V p

λ ({I, J, K}) − V p
λ ({I, J})

)
is one of the summands

in the formula for the Shapley value. None of the summands is negative since the game is superadditive
(see footnote 16).

22 This can be done simply by assuming in Example 1 that the information partitions of agents I
and J are given by {{a, b}, {c}, {d}} and {{a, c}, {b}, {d}}, respectively. The proof that agent K’s
Shapley value (and hence consumption) is strictly positive is along the same lines as Example 2.
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4.2 Risk sharing versus informational effects: The Shafer example

Readers familiar with the Roth (1980) and Shafer (1980) examples (as well as the
debate on the value allocation Aumann (1985, 1987), Roth (1983), Scafuri and
Yannelis (1984),Yannelis (1983)) will notice that our Examples 2 and 3 have a sim-
ilar flavor in the sense that an agent with a zero endowment ends up with positive
consumption. In the Roth and Shafer examples this effect may be attributed to risk
aversion: the agent with a zero initial endowment is less risk averse. However, this
is clearly not the case in our setting since all agents have identical utility functions.
Also notice that in our Example 2 agentK gets zero consumption in the value allo-
cation if he/she has no information and this is also the only Shapley value allocation.
However, the agent gets positive consumption if he/she has full information. In fact,
when agents I and J implicitly “use” agentK’s information, this leads to a Pareto
improvement for the whole economy. Thus, it is solely informational effects that
drive our Examples rather than risk sharing. To illustrate this point we introduce
differential information in the Shafer example (1980, Example 2, pp. 471–472).

Example 3. Assume there are three agents denoted by I , J ,K, two possible states
of nature a, b, and one commodity per state. The endowments of agents I and J are
given by (4, 0) and (0, 4), respectively. Of course, I and J have full information.
That is FI = FJ = {{a}, {b}}. They have the same utility function given by

W i(xa, xb) =
(
(1/2)

√
xa + (1/2)

√
xb

)2
for i = I, J . Agent K’s endowment is

(0, 0) and he/she is risk neutral, i.e., the utility function is given byWK(xa, xb) =
(1/2)xa + (1/2)xb. Shafer’s example corresponds in our differential information
framework to the complete information case, i.e., FI = FJ = FK . It can be
shown23 that for λI = λJ = λK = 1 there exists a value allocation which gives
positive consumption to the agent with zero initial endowment. In particular, in
the value allocation, agents I and J receive (11/6, 11/6) and agent K receives
(2/6, 2/6).

Now consider the case where agent K has trivial information, i.e., FK =
{{a, b}} and agents I and J have full information, i.e., FI = FJ = {{a}, {b}}.
We will show that the private value allocation assigns zero consumption to agentK
(despite the fact that agent K is less risk averse). Assume by way of contradiction
that there exists a private value allocation which assigns positive consumption to
agentK. In such a value allocationKmust also have a positive weightλK . However,
agentK cannot enter into any trades with agent I or with agent J separately, since
those trades would have to be state-independent and would therefore assign negative
consumption to one of the agents in each state (so agents I and J both prefer
their initial endowment in a two agent coalition with K). Thus, Vλ({I,K}) =
Vλ({J,K}) = Vλ({I}) = Vλ({J}), where the first and the third equality follow
from symmetry. Furthermore,Vλ({K}) = 0, sinceK has a zero initial endowment.
Thus,K’s Shapley value is given by

ShK(Vλ) =
1
3

(
Vλ({I, J,K})− Vλ({I, J})

)
. (4.1)

23 For explicit computations see Yannelis (1983, pp. 291–292).
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Let (xI , xJ , xK) be the private value allocation. Then since no side-payments are
necessary in the value allocation we must have

Vλ({I, J,K}) =
∑

i=I,J,K

λiW
i(xi). (4.2)

Furthermore, since xI + xJ ≤ eI + eJ = (4, 4) it follows that

Vλ({I, J}) ≥ λIW
I(xI) + λJW

J(xJ). (4.3)

(4.1), (4.2) and (4.3) imply

ShK(Vλ) ≤ 1
3
λKW

K(xK) < λKW
K(xK).

However, this means that agent K gets strictly more than his/her Shapley value, a
contradiction to the fact that (xI , xJ , xK) is assumed to be a value allocation. Thus,
the only value allocation which exists in this example assigns zero consumption
and a weight of zero to agentK.

The introduction of differential information in the Shafer example enables us
to draw the following two conclusions.

(a) It resolves the problem noted by Roth and Shafer that a “dummy player” ends
up with positive consumption.

(b) More importantly, the example indicates that there is an essential difference
between the risk aversion effect which drives the Roth-Shafer examples and
the informational asymmetries which drive our results.

It is important to note that in all our examples all agents have the same utility
function and therefore the same risk attitude. Nonetheless, in situations where an
agent with zero consumption ended up with positive consumption this was due
purely to the information superiority of the agent. Furthermore, if we consider
the economy as a transferable utility game (i.e., we fix the weights λ and allow
side-payments in equilibrium), our Examples 1 and 2 show that the agent with
superior information gets strictly positive consumption. This is independent of the
agent’s risk aversion and holds for any choice of λ, i.e., even if the agent with a
zero endowment has zero weight. The agent with a zero endowment still receives
a strictly positive Shapley value due to his/her superior information.

5 Other value concepts

5.1 The weak value allocation

In all of our examples, the private and the strong value coincide. In contrast, weak
incentive compatibility increases in general the set of attainable utility allocations,
thus resulting in a different value allocation. Similar to the private value allocation,
the weak value allocation rewards agents with superior information. On the other
hand, however, in the weak value allocation agents do not only benefit from each
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others’ information but they can also exchange information. Consider the following
example.

Example 4. Consider the economy of Example 1, except assume that agent K’s
endowment is given by (0, 0, 0, 0) and that the agent has full information. We now
analyze the weak coalitional incentive compatible value.

It is clear that the Up(S) = Uw(S) for the coalitions S = {I}, S = {J}
and S = {I, J}. Further, for the coalitions S = {I,K} and S = {J,K} we can
derive Uw(S) by a similar procedure as Up(S), taking into account that agent K
has zero endowment. The attainable utility allocations differ in an interesting way
when we consider the grand coalition. We show that Uw({I, J,K}) corresponds
to the attainable utility allocations under full information:

Consider an allocation (xI , xJ , xK) which is Pareto optimal under full informa-
tion. Let xi(s) denote the consumption of agent i in state s. We now show that this
allocations fulfills weak coalitional incentive compatibility. Clearly, xi(b) = xi(c)
for i = I, J,K, since the aggregate endowment in states b and c coincides. Further,
xK(a) ≥ xK(b) ≥ xK(d) since the aggregate endowment in state a is higher than
the aggregate endowment in state b, and since the aggregate endowment in state b is
higher than the aggregate endowment in state d. Note that agentK cannot misreport
if state d occurs because one of the other agents will disagree.24 The same is true
if state b or state c occurs. Finally, agentK has no incentive to misreport in state a
since this is the state where he/she gets the highest net-transfer.

The remainder of the argument is similar to that in Example 2. We must show
that agent K must get a strictly positive consumption of the good in each state
of nature in the value allocation.25 This, however, follows immediately since the
above computations imply that V w

λ ({I, J,K}) − V w
λ ({I, J}) > 0 for every λ

and hence ShK(V w
λ ) > 0.26 Since ShK(V w

λ ) = λk

∫
uK(xK) dµ, where xK is

the consumption assigned to agent K in the value allocation, xK must be strictly
positive.

The weak, and the private value allocations explicitly take into account an
agent’s information superiority in an economy with differential information. Ex-
ample 1 shows that the information of agentK matters (as does the relative lack of
information of all other agents) and Examples 2 and 4 show that agentK can be an
“intermediary” between agents I and J even without having a positive endowment
(agentK simply announces the true state of nature and as compensation gets a pos-
itive net-transfer for this service). However, in the weak value allocation exchange
of information takes place. Consider the above example. Agent I’s and agent J’s
net-trades assigned in the weak value allocation are not individually measurable.

24 Agent K can only announce either states b or c when attempting to misreport the occurrence of d.
Hence either agent I or J must agree. Without loss of generality assume it is agent I . This, however,
is impossible since I would have to pay a net-transfer corresponding to a high income state. Such a
transfer is always strictly higher than the net-transfer in a low income state.

25 Note that the sets Uw(S) are compact and convex, and that superadditivity is fulfilled. Hence
the conditions for the existence of a value allocation hold (cf., Shapley (1969) or Emmons and Sca-
furi (1985)). Hence a value allocation exists.

26 The inequality follows since the grand coalition can attain all unconstrained Pareto efficient allo-
cations. None of them can be attained via state-independent net-transfers.
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Specifically, the agents’ net-trades are different in the four states. Thus, once the
state of nature is realized, there is no differential information ex-post. In this sense,
agents I and J have “received information” from agentK.

The role of agent K in Examples 2 and 4 is also interesting in connection with the
literature on financial intermediation. For example, Boyd and Prescott (1986) argue
that coalitional structures, i.e., cooperative games with differential information, are
important for understanding financial intermediation. As our examples indicate, the
Shapley value can be an interesting tool for such an analysis and might provide an
alternative to the core which Boyd and Prescott use. It is important to point out, that
we do not need to assume the existence of a “state verification technology” at the
outset as it is standard in this literature. Rather, verification evolves endogenously
in our model. Whenever there is “doubt” about the state of the economy, agent I
and agent J can turn to agentK who then announces the true state. Further, agent
K is compensated for this service by a positive net-transfer. This net-transfer to
agent K can be interpreted as a “cost of state verification” paid by agent I and
agent J , and the magnitude of this cost is determined endogenously. For further
work on intermediation and the relationship between intermediation and media of
exchange in a differential information economy with pairwise trade see Huggett
and Krasa (1993).

5.2 The Coarse and the Fine Value

We now define the Coarse and the Fine Value Allocation.

(a) A coalition of agents S always pools all the information of its members. For-
mally, letFi be the information partition of agent i, then the pooled information∨

i∈S Fi is given by the union of the information partitions of the individual
agents.27

(b) A coalition of agents makes their trades contingent solely on common knowl-
edge information. This can be interpreted as assuming that trades within a
coalition must be verifiable by all members of the coalition. Formally, common
knowledge information is given by

∧
i∈S Fi which is the intersection of the

information partitions Fi of all agents. 28

Wilson (1978) refers to the core with information sharing as in (a) as the fine core,
and to the core with information sharing as in (b) as the coarse core. In this section
we want to discuss briefly the analogous definitions for the Shapley value, and show
that they are problematic.29 By exchanging constraint (ii) in (3.1) by “xi − ei is∨

i∈S Fi-measurable for every i ∈ S” and (i) in Definition 6 by “xi−ei is
∨

i∈I Fi-
measurable for every i ∈ I” we get the definition of the “fine value.” Similarly, we
can define a “coarse value.”

27 Strictly speaking, we must take the coarsest partition which contains the information partition of
every agent. Thus, two states a and b are indistinguishable for the coalition S if and only if for all
Ai ∈ Fi it is the case that

⋂
i∈S Ai �= ∅ implies {a, b} ⊂ ⋂

i∈S Ai.
28 Thus, two states a and b are indistinguishable with respect to the common knowledge information

of coalition S, if and only if there exists an agent i ∈ S and a set Ai ∈ Fi such that {a, b} ⊂ Ai.
29 For subsequent work on the coarse and the fine core see Koutsougeras and Yannelis (1993).
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The first obvious problem of the fine value is that allocations will in gen-
eral not be incentive compatible. Consider, for example two agents I , J with the
same endowments and the same utility functions as I and J in Example 1. Since
agents pool their information, there is full information in coalition S = {I, J}.
Consequently arbitrary trades can be achieved. For example, agent I can promise
agent J the net-trade (−1,−1, 1, 1). However, since J’s information partition is
FJ = {{a, c}, {b, d}}, agent I always has the incentive to announce state a. Such
trades are ruled out by weak as well as strong coalitional incentive compatibility
as well as by the private value allocation. However, they are admissible in the fine
value.

The second problem of the fine value is that information asymmetries are not
taken into account. In particular, consider again the economy of Example 1. Since
the coalition S = {I, J} always has full information, the information of K is
irrelevant. In contrast to the value concepts discussed above, agentK is not needed
since there are no informational problems between I and J any more. Similarly,
the value allocation will not change if we change the information of I and J .30 It
is relatively easy to see that this observation is true in general. Thus, the fine value
does not seem to be a useful concept.

On the other hand, although the coarse value takes information asymmetries
into account, it has some rather strange features. For example, add to an arbitrary
economy an agent who has zero initial endowment and no information. Then the
common knowledge information of the grand coalition immediately becomes triv-
ial, and hence only trivial net-trades are possible. Thus, an agent who should be
irrelevant in the economic allocation process, influences the outcome in the coarse
value in a major way. The reason is that “bad” information of one agent poses a
negative externality on all other agents in the economy. Thus, rather than measur-
ing the marginal contributions of an agent, the coarse value measures this negative
externality of an agents on all other coalitions. This seems to us to be very much
against the general idea of what the Shapley value is supposed to describe.

For a more thorough discussion of these two concepts see Krasa and Yan-
nelis (1991). There the existence of the fine value as well as examples of non-
existence of the coarse value are presented. Independently of our work,Allen (1991)
has also examined the existence and the non-existence of the coarse, the private
and the fine value.

6 Concluding remarks

In this paper we study several value allocation concepts in an economy with differ-
ential information. We show that the private value allocation provides an interesting
way to measure the “worth” of an agents’s information advantage. In particular, the
Shapley value provides an explicit way not only to measure the information superi-
ority of an agent, but also to reward the agent for making a Pareto improvement for
the economy as a whole by using his/her informational advantage. Moreover, this

30 In this particular example this means that the agent has more information, since the initial endow-
ment of an agent must always be measurable with respect to his/her information.
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concept ensures truthful revelation of information within a coalition because in-
centive compatibility is inherent in it. Furthermore, our examples suggests that the
value allocation may be suitable for analyzing problems of financial intermediation.

It should be noted that our different value allocation concepts do not provide a
dynamic procedure which explains how the final equilibrium outcome is reached.
However, we know from the work of Winter (1992) that the Shapley value of a
TU-game can be rationalized as a solution to a non-cooperative game in extensive
form.31 His results require convex games and risk neutrality which are stronger
conditions than those adapted in our modeling. It would be of interest to see if one
can provide non-cooperative foundations of our results, and explain the dynamics
of reaching equilibrium outcomes. This seems to be an important open question.

Finally, it is well known that cardinal value allocations characterize Walrasian
equilibrium allocations in large economies. However, in a differential information
economy framework it is not only unknown to us whether such a result can be
obtained, but it is not even clear what should be the correct definition of a Walrasian
equilibrium in a differential information economy.
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Existence and properties of a value allocation
for an economy with differential information�

Stefan Krasa and Nicholas C. Yannelis

Department of Economics, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA

Summary. We prove the existence of a private value allocation for an economy with
differential information where the commodity space may be infinite dimensional,
and there is a continuum of states. We also discuss the existence, non-existence,
and properties of two alternative value allocation concepts.

1 Introduction

In a companion paper Krasa andYannelis (1994) introduced the concept of a private
value allocation for an economy with differential information. This concept was
presented as an alternative to the rational expectation equilibrium notion. In par-
ticular, we demonstrated that the private value allocation is coalitionally incentive
compatible and it takes into account the informational advantage or superiority of
an individual. Moreover, we showed by means of examples that the private value
allocation yields sensible and reasonable outcomes in situations where any rational
expectation equilibrium notion fails to do so.

In view of the fact that the private value allocation seems to be a successful
alternative of the rational expectation equilibrium it is important to know conditions
that guarantee its existence. Although in Krasa and Yannelis it was mentioned that
the private value allocation may exist under fairly mild assumptions, no existence
proof was provided. It is the main purpose of the present paper to present sufficient
conditions for the existence of a private value allocation. Moreover, we examine
the existence and interpretation of two alternative value allocation concepts, i.e.,
the coarse and the fine value allocation.

It should be noted that for the deterministic value allocation (either ordinal
or cardinal value) several general existence results are available in the literature,

� We wish to thank two anonymous referees for helpful comments. As always we are responsible for
any remaining errors. This research was supported by the Campus Research Board of the University of
Illinois.
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e.g., Shapley (1969), Shafer (1980), Yannelis (1983), Emmons and Scafuri (1985).
However, none of these results can be applied to differential information economies
directly. In particular, the presence of a continuum of states even with a finite di-
mensional commodity space necessitates the use of functional analytic and measure
theoretic methods.

The paper proceeds as follows. In Section 2 the economy with differential
information is introduced. Section 3 defines the private value allocation. Section 4
is focused on the existence proof, and finally Section 5 discusses the coarse and the
fine value allocations.

2 The model

Let Y denote the commodity space. In our existence result in Section 4, Y may
be infinite dimensional. Hence infinitely many commodities are permissible.1 We
consider an exchange economy which extends over two time periods t = 0, 1 where
consumption takes place in t = 1. At t = 0 there is uncertainty over the state of
nature described by a complete probability space (Ω,F , µ). Let I = {1, . . . , n}
denote the set of all agents. In t = 0 agents will agree on net-trades which may
be contingent on the state of nature in t = 1. However, agents are differentially
informed with respect to the true state of nature. Specifically, we assume that at
t = 1 agents do not necessarily know which state ω ∈ Ω has actually occurred.
They know their own endowment realization and every agent i might have some
additional information about the state described by a σ-algebra Fi with Fi ⊂ F .
Although all our results we will be proved for arbitrary information σ-algebras, it
easier to understand the interpretation of the information σ-algebras by considering
partitions. Thus, assume for example that Fi is generated by a countable partition
Ak, k ∈ N. Let ω̄ be the true state of the economy in t = 1. Then agent i observes
the eventAk which contains ω̄. However, he/she does not know which stateω ∈ Ak

has actually occurred.
By assumption agents can always observe their own endowment realization.

Thus, we can assume without loss of generality that agent i’s initial endowment ei
is measurable with respect to Fi.

In summary, an exchange economy with differential information is given by
E = {(Xi, ui, ei,Fi, µ) : i = 1, . . . , n} where

(1) Xi : Ω → 2Y+ is the consumption set of agent i;
(2) ui : Y+ → R+ is the utility function of agent i;2

(3) Fi is a σ-algebra with Fi ⊂ F denoting the private information of agent i;
(4) ei : Ω → Y+ is the initial endowment of agent i, where each ei is Fi-

measurable, (Bochner) integrable3 and ei(ω) ∈ Xi(ω) µ-a.e.;

1 Y can be any Banach lattice with an order continuous norm. Y+ denotes the positive cone of Y
(see Section 4 for the appropriate definitions).

2 One may also assume that the utility function is random, i.e., ui is a real valued function defined
on Ω × Y . All the results of the paper will remain valid.

3 See Section 4 for a definition of the Bochner integral. If X = Rn this is the standard Lebesgue
integral.
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(5) µ is a probability measure on Ω denoting the common prior of each agent.

The expected utility of agent i is given by∫
Ω

ui(xi(ω)) dµ(ω).4

Throughout the paper, we assume that the utility function ui of each agent i is
(weakly) continuous, concave and bounded.

3 The private value allocation

We now describe the notion of a private value allocation. This notion is the analog of
the private core ofYannelis (1991) and was introduced in Krasa andYannelis (1994).
The main idea for this concept is that each agent i’s trades are restricted to those
which are measurable with respect to their private information. Since the Shapley
value measures the marginal contribution of each agent to any coalition the agent
is member off, the assumption that an agent’s trade within the coalition must be
measurable with respect to the agent’s information implies that information asym-
metries matter. Since the main focus of this paper is to provide a general existence
result, the interested reader is referred to Krasa and Yannelis (1994) for a further
discussion of the properties of the private value allocation.

As in the definition of the standard value allocation concept, we must first
derive a transferable utility (TU-) game in which each agent’s utility is weighted by
a factor λi which allows interpersonal utility comparisons. In the value allocation
itself no side-payments are necessary.5 A game with side-payments is then defined
as follows.

Definition 1 A game with side-payments Γ = (I, V ) consists of a finite set of
agents I = {1, . . . , n} and a superadditive, real valued function V defined on 2I

such that V (∅) = 0. Each S ⊂ I is called a coalition and V (S) is the “worth” of
the coalition S.

The Shapley value of the game Γ , [Shapley (1953)] is a rule which assigns to
each agent i a “payoff” Shi given by the formula6

Shi(V ) =
∑
S⊂I

S⊃{i}

(|S| − 1)!(|I| − |S|)!
|I|! [V (S)− V (S \ {i})].

The Shapley value has the property that
∑

i∈I Shi(V ) = V (I), i.e., the Shapley
value is Pareto efficient.

4 Different priors and updating of priors could be introduced as in Krasa and Yannelis (1994, foot-
note 7).

5 See Emmons and Scafuri (1985, p. 60) or Shafer (1980, p. 468) for further discussion.
6 The Shapley value measures is the sum of the expected marginal contributions an agent can make

to all the coalitions that he/she is a member of [see Shapley (1953)].
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We now define for each economy with differential information E and for each
set of weights {λi : i = 1, . . . , n} the associated game with side-payments (I, V p

λ )
[we also refer to this as a “transferable utility” (TU) game] as follows:

For every coalition S ⊂ I let

V p
λ (S) = max

xi

∑
i∈S

λi

∫
ui(xi(ω)) dµ(ω) (3.1)

subject to

(i)
∑
i∈S

xi(ω) =
∑
i∈S

ei(ω), µ-a.e.

(ii) xi − ei is Fi-measurable for every i ∈ S.
We are now ready to define the private value allocation.

Definition 2 An allocation x : Ω →
∏n

i=1 Yi with xi(ω) ∈ Xi(ω) µ-a.e. for all i
is said to be a private value allocation of the economy with differential information
E if the following holds:

(i) Each net-trade xi − ei is Fi-measurable.
(ii)

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω), µ-a.e.

(iii) There exist λi ≥ 0, for every i = 1, . . . , n which are not all equal to zero,
with λi

∫
ui(xi(ω)) dµ(ω) = Shi(V

p
λ ) for all i, where Shi(V

p
λ ) is the Shapley

value of agent i derived from the game (I, V p
λ ), defined in (3.1).

Condition (i) requires individual measurability of net-trades, i.e., net-trades
can only be contingent on each agent’s individual informationFi. (ii) is the market
clearing condition. (iii) says that the expected utility of each agent multiplied with
his/her weight λi must be equal to his/her Shapley value derived from the TU game
(I, V p

λ ).
An immediate consequence of Definition 2 is that Shi(V

p
λ ) ≥ λi

∫
ui(ei) dµ for

every i, i.e., the value allocation is individually rational. This follows immediately
from the fact that the game (V p

λ , I) is superadditive for all weights λ. Similarly,
efficiency of the Shapley value for games with side payments immediately implies
that the value allocation is constrained Pareto efficient.

We now state our main existence result.

Theorem 1. Let E = {(Xi, ui, ei,Fi, µ) : i = 1. . . . , n} be a finite exchange
economy with differential information satisfying the following assumptions for each
agent:

(A1) The commodity space Y+ is the positive cone of a Banach lattice Y with an
order continuous norm.

(A2) Xi : Ω → 2Y+ is a convex, closed, non-empty valued correspondence.
(A3) ui : Y → R+ is weakly continuous, bounded and concave.

Then a private value allocation exists in E .

The technical conditions in (A1) are explained in the following section. Note
that (A1) is automatically fulfilled for all finite dimensional spaces. Other basic
examples of Banach lattices with an order continuous norm are the Lebesgue spaces
Lp, 1 ≤ p <∞ of Rn valued functions.
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4 The existence proof

The goal of this section is to provide a general existence result. In particular we
show that private value allocations exists in a setting where there is an infinite
number of commodities and an infinite number of states of nature. Before proving
our existence result, we outline some mathematical preliminaries.

4.1 Mathematical preliminaries

Let (Ω,F , µ) be a probability space, andX be a Banach space.We denote byL1
X(µ)

the space of all equivalence classes of X-valued Bochner integrable7 functions
f : Ω → X normed by

‖f‖ =
(∫

‖f(ω)‖p dµ(ω)
) 1

p

.

It is a standard result that when normed by the functional ‖1‖· above, L1
X(µ)

becomes a Banach space [see Diestel and Uhl (1977), p. 50].
We now collect some basic results on Banach lattices [for an excellent treatment

see Aliprantis and Burkinshaw (1985)]. Recall that a Banach space X is a Banach
lattice if there exists an ordering ≥ on X with the following properties:

(i) x ≥ y implies x+ z ≥ y + z for every z ∈ X;
(ii) x ≥ y implies λx ≥ λy for every scalar λ ≥ 0;
(iii) for all x, y ∈ X there exists a supremum (denoted by x ∨ y) and an infimum

(denoted by x ∧ y).
(iv) |x| ≥ |y| implies ‖x‖ ≥ ‖y‖ for all x, y ∈ X .

As usual, x+ = x ∨ 0, x− = (−x) ∨ 0, and |x| = x+ + x−, we call x+ and
x− the positive and negative parts of x, respectively and |x| the absolute value of
x. For x, y ∈ X we define the order interval [x, y] as follows:

[x, y] = {z ∈ X : x ≤ z ≤ y}.

Note that [x, y] is convex and norm closed, hence weakly closed (recall Mazur’s
Theorem). A Banach lattice L is said to have an order continuous norm if xα ↓ 08

in L implies ‖xα‖ ↓ 0. A very useful result which will play an important role is
that if X is a Banach lattice then the fact that X has an order continuous norm is
equivalent to the weak compactness of order intervals [see for example Aliprantis
and Burkinshaw (1985)].

We finally note that Cartwright (1974) has shown that if X is a Banach lattice
with order continuous norm (or equivalentlyX has weakly compact order intervals)
thenL1

X(µ) has weakly compact order intervals, as well. Cartwright’s Theorem will
play a crucial role in our existence proof.

7 The Bochner integral of a function f can be obtained by approximating f by a sequence of simple
functions fn (for a definition of simple functions see footnote 15). This is the same construction which
is used to define the Lebesgue integral for X = Rn.

8 xα ↓ 0, means that xα is a decreasing net with infα xα = 0.
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4.2 Proof of Theorem 1

Let {(Xi, ui, ei) : i = 1, 2, . . . , n} be an exchange economy where

(a) Xi ⊂ Rl
+ is the consumption set of agent i;

(b) ui : Xi → R+ is the utility function of agent i;
(c) ei ∈ Xi is the initial endowment of agent i.

Given an economy {(Xi, ui, ei) : i = 1, 2, . . . , n} and a set of weights {λi:
i = 1, . . . , n}, where λi ≥ 0 for every i and

∑n
i=1 λi = 1, define the game

Vλ(S) = max
xi∈Xi

∑
i∈S

λiui(xi), subject to
∑
i∈S

xi =
∑
i∈S

ei.

Denote by Shi(Vλ) the Shapley value of agent i. The allocation

x = (x1, . . . , xn) ∈
n∏

i=1

Xi

is said to be a λ-transfer value allocation or a cardinal value allocation for the
economy {(Xi, ui, ei) : i = 1, . . . , n} if

(i)
∑n

i=1 xi =
∑n

i=1 ei, and
(ii) there exist {λi ≥ 0: i = 1, . . . , n} with

∑n
i=1 λi = 1 such that λiui(xi) =

Shi(Vλ) for each i.

Emmons and Scafuri (1985) or Shapley (1969) show that if ui is concave, and
continuous; and if Xi is bounded from below, closed and convex; then a cardinal
value allocation exists for the economy {(Xi, ui, ei) : , i = 1, . . . , n}. Let LXi

denote the set of all functions xi : Ω → Y which are Fi-measurable, Bochner
integrable, and for whichxi(ω) ∈ Xi(ω),µ-a.e. DefineWi : LXi → R byWi(x) =∫
ui(xi(ω)) dµ(ω).

Following Bewley’s (1972) argument, we will prove our Theorem by consider-
ing its trace in finite dimensions and appealing to the Emmons and Scafuri (1985)
existence result. We first need to prove some simple facts:

(F1) LXi
is non-empty.

(F2) LXi
is convex, norm closed and bounded from below.

(F3) Wi is weakly upper semi-continuous on LXi
.

(F4) Wi is concave on LXi .

Fact (F1) follows immediately. Since by assumption ei is Fi-measurable and
Bochner integrable, we can conclude that ei ∈ LXi

. Fact (F2) follows directly from
assumption (A2). Fact (F3) is proved in Balder and Yannelis (1993, Theorem 2.8)
and (F4) follows directly from the concavity of ui.

Now consider the economy Ē = {(LXi
,Wi, ei) : i = 1, . . . , n}, where LXi

denotes the consumption set of agent i, whereWi is the utility function of agent i,
and where ei ∈ LXi denotes the initial endowment of agent i. Note that the existence
of a value allocation in Ē implies the existence of a value allocation for the original
economy E .
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Let A be the set of all finite dimensional subspaces of L1
Y (µ) containing the

initial endowments. For each α ∈ A, let Lα
Xi

= LXi ∩ α be the consumption set
of agent i and Wα

i : Lα
Xi

→ R be the utility function of agent i. Note that Wα
i

is continuous, since it is the expected utility over a finite dimensional space.9 For
each α ∈ A, we have an economy Ēα with a finite dimensional consumption space.
Further, for each α ∈ A, the economy Ēα fulfills the assumptions of Emmons and
Scafuri (1985). Thus, there exists a value allocation, i.e., there existxα ∈∏n

i=1 L
α
Xi

such that

(i)
∑n

i=1 x
α
i =

∑n
i=1 ei;

(ii) there exist λα
i ≥ 0 with

∑n
i=1 λ

α
i = 1, such that λα

i W
α
i (xα

i ) = Shi(VλαW α)
for every i, where Shi(VλαW α) is the Shapley value of agent i derived from
the game (I, VλαW α).10

By (i) we have that

0 ≤
n∑

i=1

xα
i =

n∑
i=1

ei = e.

Hence each xα
i lies in the order interval [0, e] in

∑n
i=1 LXi ⊂ L1

Y (µ), which is
weakly compact by Cartwright’s Theorem [see Cartwright (1974) or Section 4.1].

Order the set A by inclusion. Then {(xα
1 , . . . , x

α
n, λ

α
1 , . . . , λ

α
n) : α ∈ A} is a

net in K =
∏n

i=1[0, e] × ∆, where ∆ denotes the (n − 1)-dimensional simplex.
Since K is compact we can therefore assume without loss of generality that the
net converges to a point (x1, . . . , xn, λ1, . . . , λn).11 To complete the proof we
must show that this limit is a value allocation of our original economy E , i.e., that
conditions (i) and (ii) in Definition 2 hold. (i) follows immediately since by Mazur’s
Theorem LXi is weakly closed and hence contains the limit points of the net xα

i ,
α ∈ A.

We now prove (ii). We first show that limα VλαW α(S) = VλW (S). Note that
weak upper-semicontinuity implies that

lim sup
α

VλαW α(S) = lim sup
α

∑
i∈S

λα
i W

α
i (xα

i )

=
∑
i∈S

lim sup
α

λα
i Wi(xα

i )

≤
∑
i∈S

λiWi(lim
α
xα

i )

=
∑
i∈S

λiWi(xi) = VλW (S).

9 This follows automatically from the Lebesgue dominated convergence theorem since each ui is by
assumption continuous and bounded.

10 Clearly, the game (I, VλαW α ) is defined as follows: For every coalition S ⊂ I let

VλαW α (S) = max
xi∈Lα

Xi

∑
i∈S

λα
i W α

i (xi) subject to
∑
i∈S

xi =
∑
i∈S

ei.

11 More precisely, there exists a subnet which converges. For simplicity, we choose again A as the
index set.
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Hence,
lim sup

α
VλαW α(S) ≤ VλW (S). (4.1)

Now choose x∗
i such that VλW (S) =

∑
i∈S λiWi(x∗

i ).
12 Then for every ε > 0

there exist ᾱ such that

VλW (S) =
∑
i∈S

λiWi(x∗
i ) ≤

∑
i∈S

λα
i Wi(x∗

i ) + ε, (4.2)

for every α > ᾱ. Now choose β̄ > ᾱ such that β̄ contains the space spanned by
{x∗

1, . . . , x
∗
n}. Then∑
i∈S

λα
i Wi(x∗

i ) ≤ max
xi∈LXi

∩α

∑
i∈S

λα
i Wi(xi) = VλαW α(S), (4.3)

for all α > β̄ since x∗
i ∈ LXi ∩ α. Thus, (4.2) and (4.3) imply

lim inf
α

VλαW α(S) ≥ VλW (S). (4.4)

Hence, (4.1) and (4.4.) imply that limα VλαW α(S) = VλW (S). It follows from the
continuity of the Shapley value that limα Shi(VλαW α) = Shi(VλW ). By taking the
lim sup on both sides of the equation λα

i W
α
i (xα

i ) = Shi(VλαW α) and by using the
weak upper semicontinuity ofWi we can conclude that

λiWi(xi) ≥ lim sup
α

λα
i Wi(xα

i ) = lim sup
α

Shi(VλαW α) = Shi(VλW ). (4.5)

However, the Pareto efficiency of the Shapley value implies that the equality must
hold in (4.5). Thus, condition (ii) for a Shapley value allocation holds. This com-
pletes the proof of the theorem.

5 The coarse and the fine value allocation

5.1 Definitions

In this section we introduce two alternative notions of a value allocation for an
economy with differential information. The difference stems from the measurability
restriction on the type of allocations that are allowed. Both notions are the analogs of
the coarse and the fine cores of Wilson (1978). We begin by defining these concepts.
First, note that for arbitrary σ-algebras Fi, i = 1, . . . , n, common knowledge
information is given by

∧n
i=1 Fi which is the intersection of all σ-algebras Fi,

i = 1, . . . , n. In contrast
∨n

i=1 Fi which is the σ-algebra generated by the union
of the σ-algebras Fi, i = 1, . . . , n is the pooled information.

For each economy with differential information E and each set of weights
{λi : i = 1, . . . , n}, we associate a game with side-payments (I, V c

λ ), [we also
refer to this as a “transferable utility” (TU-) game] according to the rule:

12 Note that x∗
i exists since each Wi is weakly upper semicontinuous, and since the xi in the optimiza-

tion problem in footnote 5 are restricted to the weakly compact order interval
[
0,

∑
i∈S ei

]
because of

feasibility.
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For every coalition S ⊂ I let

V c
λ (S) = max

xi

∑
i∈S

λi

∫
ui(xi(ω)) dµ(ω) (5.1)

subject to

(i)
∑
i∈S

xi(ω) =
∑
i∈S

ei(ω), µ-a.e.

(ii) xi − ei is
∧
i∈S

Fi-measurable for every i ∈ S.

The coarse value allocation can now be defined by replacing condition (i) in Defi-
nition 2 by:

Each net-trade xi − ei is
∧n

i=1 Fi-measurable; and by replacing V p by V c in
condition (iii).

Thus, in contrast to the private value we now require that net-trades within a
coalition can only be based on the common knowledge information of an agent.

The second concept that we introduce in this section is the fine value. For
each economy with differential information E and each set of weights {λi : i =
1, . . . , n}, we associate a game with side-payments (I, V f

λ ) according to the rule:

V f
λ (S) = max

xi

∑
i∈S

λi

∫
ui(xi(ω)) dµ(ω) (5.2)

subject to

(i)
∑
i∈S

xi(ω) =
∑
i∈S

ei(ω), µ-a.e.

(ii) xi − ei is
∨

i∈S Fi-measurable for every i ∈ S.

The fine value allocation can now be defined by replacing condition (i) in Defini-
tion 2 by:

Each net-trade xi − ei is
∨n

i=1 Fi-measurable; and by replacing V p by V f in
condition (iii).

Thus, in contrast to the private value and the coarse value we now require that
net-trades within a coalition can only be based on the pooled information of a
coalition.

5.2 The fine value allocation

One can easily check that the existence of a fine value allocation follows immedi-
ately from the existence result for the private value allocation. However, it does not
take information asymmetries into account as the Theorem below indicates.

Theorem 2. Let E be a differential information economy for which the conditions
of Theorem 1 hold. Let Ẽ denote the economy with complete information, i.e., where
we replace each Fi by F . Then for every fine value allocation xi, i ∈ I of E there
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exists a fine value allocation x̃i, i ∈ I for the economy Ẽ such that weights λi and
the agents’ expected utilities in both economies are the same.

In order to prove the Theorem we need the following result.

Lemma 1. Let Gi be the σ-algebra generated by ei and let G =
∨

i∈S Gi. Then for
every allocation xi, i ∈ S which is feasible for coalitionS there exists an allocation
x̃i, i ∈ S which is feasible for coalition S such that∫

ui

(
x̃i(ω)

)
dµ(ω) ≥

∫
ui

(
xi(ω)

)
dµ(ω), (5.3)

for every i ∈ S and such that each x̃i is G-measurable.

Proof. We prove Lemma 1 in two steps. In Step 1 we assume that G can be
represented by a partition Ak, k ∈ N of Ω. In Step 2 we prove the general case.

Step 1. Without loss of generality we can assume that µ(Ak) > 0 for every k ∈ N
since we can modify xi, i ∈ S arbitrarily on sets of measure 0. Let eS =

∑
i∈S ei.

Then eS is G-measurable and therefore constant on each set Ak. For each agent
i ∈ S and for each k ∈ N define

cki =
1

µ(Ak)

∫
Ak

xi(ω) dµ(ω). (5.4)

Let x̃i =
∑

k∈N
cki 1Ak

, where 1Ak
denotes the characteristic function of the set

Ak.13 Note that Jensen’s inequality14 and (5.4) implies that

ui(cki ) ≥ 1
µ(Ak)

∫
Ak

ui(xk
i ) dµ(ω). (5.5)

Now (5.3) follows by first multiplying both sides of (5.5) with µ(Ak) and then
summing both sides with respect to k ∈ N.

We must now prove that xi, i ∈ S is feasible for the coalition S. This follows
immediately by summing both sides of (5.4) with respect to i ∈ S. Thus, for any
ω̄ ∈ Ak we get∑
i∈S

x̃i(ω̄) =
∑

i∈S c
k
i

=
1

µ(Ak)

∑
i∈S

∫
Ak

xi(ω) dµ(ω)

=
1

µ(Ak)

∫
Ak

∑
i∈S

xi(ω) dµ(ω)

=
1

µ(Ak)

∫
Ak

eS(ω) dµ(ω) =
1

µ(Ak)
eS(ω̄)µ(Ak) = eS(ω̄).

13 That is, 1Ak
(ω) = 1 if and only if ω ∈ Ak and 1Ak

(ω) = 0, otherwise.
14 If E denotes the expected value and if u is concave and bounded then Jensen’s inequal-

ity implies u
(
E(f)

) ≥ E
(
u(f)

)
, for any integrable function f . In our case, E(f) =(

1/µ(Ak)
) ∫

Ak
f(ω) dµ(ω).
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Note that we can take eS out of the integrals since eS is constant on Ak. Hence x̃i,
i ∈ S is feasible. This concludes the proof of Step 1.

Step 2. We now use an approximation argument to prove the result for arbitrary G.
Note that by the definition of the Bochner integral there exists a sequence of simple
functions15 eni such that eni converges in the norm to ei as for each i ∈ S and for
which eni ≤ ei. Similarly, we can also find a sequence of functions xn

i , n ∈ N such
that xn

i converges in the norm to xi and
∑

i∈S x
n
i =

∑
i∈S e

n
i for each n ∈ N.

Let Gn
i be the σ-algebra generated by eni and define Gn =

∨
i∈S Gn

i . Moreover,
we can assume that

∨
n∈N

Gn ⊂ G. Step 1 implies that for each n ∈ N there exist
an allocation x̃n

i , i ∈ S which is feasible for coalition S, which is Gn-measurable
and for which ∫

ui

(
x̃n

i (ω)
)
dµ(ω) ≥

∫
ui

(
xn

i (ω)
)
dµ(ω) (5.6)

holds. Since eni ≤ ei it follows that each x̃n
i is an element of the order interval

[0, eS ] (recall that x̃n
i , i ∈ S is feasible for the coalition S). Since by Cartwright’s

Theorem the order interval [0, eS ] is weakly compact, we can assume without loss
of generality that each x̃n

i converges weakly to x̃i. Since the set of all Bochner
integrable and G-measurable functions is weakly closed (recall Mazur’s Theorem)
it follows that each x̃i isG-measurable. Moreover, the allocation x̃i, i ∈ S is feasible
for coalition S. It now remains to take the limit on both sides of (5.6). Since u is
bounded and continuous, the expected utility is norm continuous by virtue of the
Lebesgue Dominated Convergence Theorem. Thus, the right-hand side of (5.6)
converges to the right-hand side of (5.3). Since the expected utility is weakly upper
semicontinuous16 the lim sup of the left-hand side of (5.6) is less or equal to the
left-hand side of (5.3). This proves Lemma 1.

It should be clear that in Step 1 the function x̃i is the conditional expectation ofxi

given G and that we use in essence Jensen’s inequality for conditional expectations.
The approximation argument in Step 2 can be used to show the existence of a
conditional expectation for Bochner integrals and to extend a version of Jensen’s
inequality. This would provide an alternative proof of Theorem 4 (Chapter 5) of
Diestel and Uhl (1977).

We are now ready to prove Theorem 2.

Proof of Theorem 2. In order to prove the Theorem we first show the following.

Claim. Let xi, i ∈ S be a solution to

max
xi

∑
i∈S

λi

∫
ui(xi(ω)) dµ(ω) (5.7)

subject to∑
i∈S

xi(ω) =
∑
i∈S

ei(ω), µ-a.e.

15 A function f is simple if and only if there exists a countable partition Ai, i ∈ N of Ω and bi ∈ Y ,
k ∈ N such that f =

∑∞
i=1 bk1Ak

(recall that Y is the Banach space).
16 See Balder and Yannelis (1993, Theorem 2.8).
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Then there exist an alternative allocation x̃i, ∈ S which is feasible for coalition S,
which is G-measurable, and which gives the same expected utility to the agents as
allocation xi, i ∈ S.

In order to prove this claim note that Lemma 1 implies the existence of an
allocation x̃i, i ∈ S which is feasible for coalition S, which is G-measurable and
for which (5.3) holds. Since the original allocation xi, i ∈ S is a solution to (5.7)
the equality must hold in (5.3) for all agents i ∈ S. This, proves the claim.

The Theorem now follows immediately from the claim. First note that each G-
measurable function is automatically

∨
i∈S Fi measurable. This follows since by

assumption (iv) in Section 2 each ei is Fi-measurable. Hence, the information σ-
algebras do not matter in the optimization problems. As a consequence, the induced
TU-game is independent of the information σ-algebras. Moreover, if xi, i ∈ I is
a fine value allocation for E then xi, i ∈ I must solve (5.7) for S = I . Thus,
we can use again the claim to replace xi, i ∈ I by a G-measurable allocation x̃i,
i ∈ I without affecting the agents’ expected utilities. Thus, x̃i, i ∈ I is a fine value
allocation. This concludes the proof of the Theorem.

Theorem 2 demonstrates that the fine value allocation does not take into account
the information superiority of an agent. Intuitively, this is the case because the only
information which is relevant to a coalition S are the endowment realizations of all
members. However, this information is contained in

∨
i∈S Gi and hence in

∨
i∈S Fi.

As a consequence, the fine value allocation does not appear to be a useful concept
for measuring informational asymmetries. This together with the fact that the fine
value allocation need not be coalitionally incentive compatible [see Krasa and
Yannelis (1994)] make this concept less attractive than the private value allocation
which takes information asymmetries into account and which is also coalitionally
incentive compatible.

5.3 The coarse value allocation

The TU-game (V c
λ , I) derived from a differential information economy need not be

superadditive,17 i.e., there can exist coalitions S, T , with S ∩ T = ∅ and V c
λ (S) +

V c
λ (T ) > V c

λ (S ∪ T ). On the one hand this causes problems with the existence of
a coarse value allocation. On the other hand, and (most importantly) this indicates
that the coarse value allocation does not measure the marginal contributions of an
agent to the coalitions he/she is member off. In particular, consider an agent iwhose
information is relatively coarse.Assume that i joins a coalitionS. Then trades within
S ∪ {i} must be measurable with respect to the common knowledge information∧

i∈S∪{i} Fi. As a consequence, the trading opportunities of the members of S
decrease, and members of S become worse off if agent i joins. Thus, V c

λ (S ∪
{i}) − V c

λ (S) < 0, which indicate that we measure the disutility agent i imposes

17 Allen (1991) has made a related observation for the TU case which also applies to our framework.
She has also proved existence results using different argument than ours. Also, Myerson (1984) has
proved existence results for the Nash bargaining solution with incomplete information. However, all of
these results are of different nature and do not cover our differential information economy framework.
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on members of S rather than agent i’s contribution to S. This is clearly not in the
spirit of the Shapley value.

In order to illustrate this point, consider the following example.

Example 1. Consider and economy with three agents denoted by I , J and K
and two states Ω = {a, b}. Each state occurs with the same probability. There is
one commodity in each state. All agents have the same von Neumann-Morgenstern
utility function u(x) =

√
x. The endowments are given by eI = (9, 0), eJ = (0, 9)

and eK = (0, 0). Assume that I and J have full information, and that agentK has
only trivial information (i.e., FI = FJ = {{a}, {b}}, and FK = {{a, b}}.

In this economy, the coalition {I, J} can achieve perfect risk sharing. However,
whenever agentK joins, only state independent net-trades are possible. This leads
to Shapley values of agents I , J which are so high that they cannot be compensated
any more by state-independent net-trades within the grand coalition. Similarly, the
Shapley value of agentK is negative for all weights λi, i = I, J,K.

In order to see this, note that the marginal contributionV c
λ (S∪{K})−V c

λ (S) ≤
0 for all coalitions S. Moreover, if S = {I, J} the strict inequality holds, since
the agents can trade before K joins. However, in the grand coalition no trade is
feasible.18 Since the Shapley value of agentK is the weighted sum of these marginal
contributions, we can conclude that ShK(V c

λ ) < 0. However, since expected utility
is strictly positive it therefore follows that there cannot exist an allocation xi, i ∈ I
such that Shi(V c

λ ) = λiWi(xi), for all agents i.

In the above example, we choose agent K’s endowment to be zero in order to
simplify the presentation. The continuity of the Shapley value immediately implies
that ShK(V c

λ ) < 0 also holds if we perturb the endowment slightly. Hence, the
non-existence result is robust.
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1 Introduction
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mutually beneficial trades. A difficulty of the core as a solution concept is that
when a coalition threats to break an agreement it does not take into account how
other coalitions may react to this threat; i.e., coalitional objections to a proposed
allocation are not required to be robust to possible counterobjections. To address
this issue, Aumann and Maschler (1964) introduce the notion of bargaining set for
cooperative games with finitely many players. In the definition of the bargaining set,
coalitional objections to a proposed agrement that admit counterobjections are dis-
regarded; that is, when demanding improvements, coalitions must take account of
the reactions of other coalitions–for a discussion of this issue (see Maschler, 1976,
1992). Mas-Colell (1989) introduces a new notion of bargaining set and shows
that in a complete information exchange economy with a continuum of traders it
coincides with the set of competitive allocations. [The equivalence of the core, the
set of value allocations and the set of competitive equilibrium allocations in this
context was established by Aumann (1964, 1975).]

Radner (1968, 1982) introduces a model of exchange economy with differential
information in which every trader is characterized by a state dependent utility
function, a random initial endowment, an information partition, and a prior belief.
In this framework, traders arrange contingent contracts for trading commodities
before they obtain any information about the realized state of nature. Radner (1968)
extends the notion of Arrow-Debreu competitive equilibrium to this model. In the
definition of competitive equilibrium (in the sense of Radner), the information
of an agent places a restriction on his feasible trades (i.e., his budget set): better
information allows for more contingent trades (i.e., enlarges the agent’s budget
set). Thus, a Radner competitive equilibrium rewards the information advantage of
a trader.

In this paper we study the relation of the Mas-Colell bargaining set and the
set of competitive allocations of an economy with differential information and a
continuum of traders. Our aim is not only to determine whether there are equivalence
results similar to those found for complete information economies, but also to
explore whether the bargaining set discriminates between traders with differential
information.

In the context of exchange economies with differential information and finitely
many traders, Yannelis (1991) introduces the concept of private core, and proves
that it is non-empty. Krasa andYannelis (1994) introduce the notion of private value
allocation, and discuss examples where the private value rewards the information
advantage of a trader. In this approach, the traders of a coalition use only their private
information (i.e., there is no information exchange). Einy, Moreno and Shitovitz
(1998) show that in a Radner type economy with a continuum of traders the private
core coincides with the set of Radner competitive equilibrium allocations, and
Einy and Shitovitz (1998) establish the analogous result for the set of private value
allocations. Thus, as pointed out by Koutsougeras and Yannelis (1993) and Krasa
and Yannelis (1994), the private core and private value reward the information
advantage of a trader.

Our findings in the present paper confirm these results: we introduce the notion
of Mas-Colell private bargaining set, and we show that in a Radner type economy
with a continuum of traders this set coincides with the set of Radner competitive
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allocations. Our proof that the Mas-Colell private bargaining set coincides with the
set of Radner competitive equilibrium allocations is along the lines of the proof
of Mas-Colell (1989), although the details of some of the arguments require more
involved constructions because we must deal with the measurability restrictions
imposed by the traders differential information, and also with the possibility that
competitive prices may not be strictly positive.

An interesting question is whether the information advantage of a trader is
rewarded when we account for the possibility that traders in a coalition may com-
municate and share some of their information. These possibilities are captured by
the notion of fine core due to Wilson (1978). Einy, Moreno and Shitovitz (1998)
show that the set of (weak) fine core allocations of a Radner type economy with a
continuum of traders coincides with set of competitive equilibrium allocations of
an associated symmetric information economy in which each trader has the “joint
information” of all the traders in the original economy. Einy, Moreno and Shitovitz
(1999) establish an analogous result for fine value allocations.

These results suggest that when the possibility of sharing information is intro-
duced the information advantage of a trader is worthless. Interestingly, this is not
the case when we use the weak fine bargaining set as the solution concept: we find
that in a Radner type economy with a continuum of traders the weak fine bargaining
set contains the competitive allocations of the associated symmetric information
economy, albeit it may also contain other allocations where the traders with an
information advantage are more favorably treated. Thus, in contrast with the weak
fine core and the set of weak fine value allocations, the weak fine bargaining set
may reward the information advantage of a trader.

2 The model

We consider a Radner-type exchange economy E with differential information (e.g.,
Radner (1968, 1982)).

The space of traders is a measure space (T,Σ, µ), where T is a set (the set of
traders),Σ is a σ-field of subsets of T (the set of coalitions), and µ is a non-atomic
measure onΣ. The commodity space is l

+. The space of states of nature is a finite
set Ω. The economy extends over two time periods, τ = 0, 1. Consumption takes
place at τ = 1. At τ = 0 there is uncertainty over the state of nature; in this period
traders arrange contracts that may be contingent on the realized state of nature at
τ = 1. At τ = 1 traders do not necessarily know which state of nature ω ∈ Ω
actually occurred, although they know their own endowments, and may also have
some additional information about the state of nature. We do not assume, however,
that traders know their own utility function.

The information of a trader t ∈ T is described by a partitionΠt ofΩ.We denote
by Ft the field generated by Πt. If ω0 is the true state of nature, at τ = 1 trader t
observes the member ofΠt which containsω0. Every trader t ∈ T has a probability
distribution qt on Ω which represents his prior beliefs. The preferences of a trader
t ∈ T are represented by a state dependent utility function, ut : Ω ×  l

+ →  
such that for every (t, x) ∈ Ω ×  l

+, the mapping (t, x) → ut(ω, x) is Σ × B
measurable, where ω is a fixed member of Ω, and B is the σ-field of Borel subsets
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of  l
+. If x is a random bundle (i.e., a function fromΩ to  l

+) we denote by ht(x)
the expected utility of trader t ∈ T from x. That is

ht(x) =
∑
ω∈Ω

qt(ω)ut(ω, x(ω)).

An assignment is a function x : T × Ω →  l
+ such that for every ω ∈ Ω the

function x(·, ω) is µ-integrable on T. There is a fixed initial assignment e; e(t, ω)
represents the initial endowment of trader t ∈ T in the state of nature ω ∈ Ω.We
assume that e(t, ω) is in  l

++ for every (t, ω) ∈ T × Ω, and for every t ∈ T the
function e(t, ·) is Ft-measurable.

In the rest of the paper, an economy E is an atomless economy with differential
information as described above.Also we use the following notation: For two vectors
x = (x1, . . . , xl) and y = (y1, . . . , yl) in  l we write x ≥ y when xk ≥ yk for
all 1 ≤ k ≤ l, x > y when x ≥ y and x 	= y, and x ! y when xk > yk for all
1 ≤ k ≤ l.

Let E be an economy. A private allocation is an assignment x such that

(2.1) for almost all t ∈ T the function x(t, ·) is Ft-measurable, and

(2.2)
∫

T
x(t, ω)dµ ≤

∫
T

e(t, ω)dµ for all ω ∈ Ω.

A price system is a non-zero function p : Ω →  l
+. Let t ∈ T. Write Mt for the

set of all Ft-measurable functions from Ω to  l
+. For a price system p, define the

budget set of t by

B(p, t) =

{
x | x ∈Mt and

∑
ω∈Ω

p(ω) · x(ω) ≤
∑
ω∈Ω

p(ω) · e(t, ω)

}
.

A competitive equilibrium (in the sense of Radner) is a pair (p,x) where p is a price
system and x is private allocation such that

(2.3) for almost all t ∈ T the function x(t, ·) maximizes ht on B(p, t), and

(2.4)
∑

ω∈Ω p(ω) ·
∫

T
x(t, ω)dµ =

∑
ω∈Ω p(ω) ·

∫
T

e(t, ω)dµ.

A competitive allocation is a private allocation x for which there exists a price
system p such that (p,x) is a competitive equilibrium.

Note that since Ω is a finite set there is a finite family {Πi}n
i=1 of partitions of

Ω such that for all t ∈ T there is 1 ≤ i ≤ n withΠt = Πi.We assume that for all
1 ≤ i ≤ n, the set Ti = {t ∈ T | Πt = Πi} is measurable, and µ(Ti) > 0. For all
1 ≤ i ≤ n we denote by Fi the field generated by Πi.

Throughout the paper we assume that for all t ∈ T and ω ∈ Ω the function
ut(ω, ·) is strictly increasing and continuous on  l

+. (A function u :  l
+ →  is

strictly increasing if for all x, y ∈  l
+, x > y implies u(x) > u(y). )

Einy, Moreno and Shitovitz (1998) have shown that if the utility functions of the
traders are continuous and strictly increasing, and if every commodity is present in
the market (i.e.,

∫
T

e(t, ω)dµ ! 0 for all ω ∈ Ω), then a competitive equilibrium
(in the sense of Radner) exists when the economy is irreducible (see Theorem A
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in Einy, Moreno and Shitovitz, 1998). Since in our model the initial endowments
of the traders are in  l

++, the economies we consider here are irreducible (see
Proposition 3.1 in Einy, Moreno and Shitovitz, 1998), and therefore always have a
competitive equilibrium.

3 The private bargaining set

In this section we introduce the notion of (Mas-Colell) private bargaining set, and
show that it coincides with the set of (Radner) competitive allocations. We begin
by extending to our model the definition of private core due to Yannelis (1991).

Let E be an economy, and let x be a private allocation. A private objection to
x is a pair (S,y) such that

(3.1) µ(S) > 0,

(3.2) y(t, ·) is Ft-measurable for almost all t ∈ S,
(3.3)

∫
S
y(t, ω)dµ ≤

∫
S
e(t, ω) for all ω ∈ Ω,

(3.4) ht(y(t, ·)) ≥ ht(x(t, ·)) for almost all t ∈ S, and

(3.5) µ({t ∈ S | ht(y(t, ·)) > ht(x(t, ·))}) > 0.

An assignment x is a private core allocation of E if it has no private objection. The
private core of E is the set of all private core allocations of E .

In defining the core, usually the inequalities (3.4) are strict, and (3.5) is omitted.
Since in our framework the utility functions of the traders are continuous and
strictly increasing in every state of nature, these alternative definitions of the core
are equivalent.

Let E be an economy, let x be a private allocation and let (S,y) be a private
objection to x. A private counterobjection to (S,y) is a pair (Q, z) such that

(3.6) µ(Q) > 0,

(3.7) z(t, ·) is Ft-measurable for almost all t ∈ Q,
(3.8)

∫
Q

z(t, ω)dµ ≤
∫

Q
e(t, ω) for all ω ∈ Ω,

(3.9) ht(z(t, ·)) > ht(y(t, ·)) for almost all t ∈ Q ∩ S, and

(3.10) ht(z(t, ·)) > ht(x(t, ·)) for almost all t ∈ Q\S.
A private objection to x, (S,y), is justified if it has no private counterobjection.
The (Mas-Colell) private bargaining set is the set of private allocations which have
no justified private objection. Note that the private core of an economy E is a subset
of the private bargaining set of E .

Theorem A. The private bargaining set of an economy E coincides with the set of
Radner competitive allocations of E .

Einy, Moreno and Shitovitz (1998) have established that the set of Radner
competitive equilibrium allocations of an economy E as defined here coincides with
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the private core of E . Since the private core is a subset of the private bargaining set,
in order to prove Theorem A it suffices to show that every private bargaining set
allocation of E is a competitive allocation of E . Our proof of this result is along the
lines of the proof of Theorem 1 in Mas-Colell (1989), although the details of some
of the arguments require more involved constructions because we must deal with
the measurability restrictions imposed by the traders differential information, and
also with the possibility that competitive prices may not be strictly positive. (In spite
of the fact that traders utility functions are strictly increasing, in an economy with
differential information we cannot guarantee that competitive prices are strictly
positive.) In establishing this result, the notion of competitive objection will be
useful.

A private objection (S,y) to x is a competitive objection if there is a price
system p such that for almost all t ∈ T
(3.11) if t ∈ S and z ∈Mt satisfies ht(z) ≥ ht(y(t, ·)), then

∑
ω∈Ω p(ω) ·z(ω) ≥∑

ω∈Ω p(ω) · e(t, ω), and

(3.12) if t ∈ T\S and z ∈Mt satisfies ht(z) ≥ ht(x(t, ·)), then∑
ω∈Ω p(ω) · z(ω) ≥∑ω∈Ω p(ω) · e(t, ω).

Theorem A is a consequence of the following two lemmata.

Lemma 3.1. Every competitive objection (S,y) to a private allocation x is justified.

Proof. Let (S,y) be competitive objection to an allocation x, and let p be the price
system associated with (S,y).Assume contrary to our claim that there is a private
counterobjection (Q, z) to (S,y). Then ht(z(t, ·)) > ht(y(t, ·)) for almost all
t ∈ Q∩S, and ht(z(t, ·)) > ht(x(t, ·)) for almost all t ∈ Q\S. Since for all t ∈ T
and all ω ∈ Ω, ut(ω, ·) is strictly increasing and e(t, ω) ! 0, and since (S,y) is a
competitive objection, for almost all t ∈ Q we have∑

ω∈Ω

p(ω) · z(t, ω) >
∑
ω∈Ω

p(ω) · e(t, ω).

This contradicts that for all ω ∈ Ω,
∫

Q
z(t, ω)dµ ≤

∫
Q

e(t, ω)dµ. ��
Lemma 3.2. Ifx is not a competitive allocation, then there is a competitive objection
to x.

Proof. Throughout the proof we assume without loss of generality that µ(T ) = 1.
Assume that x is not a competitive allocation. We construct a competitive objection
to x. Define

P =
n⋂

i=1

⎧⎨⎩p ∈ ( l
+)Ω |

∑
ω∈Ω

l∑
j=1

pj(ω) = 1 and
∑
ω∈A

p(ω) ! 0, for all A ∈ Πi

⎫⎬⎭ .
Then P is a non-empty convex subset of ( l

+)Ω . Now for p ∈ P and t ∈ T, the
budget set B(p, t) is a compact subset of Mt. Therefore the function ht attains a
maximum on B(p, t). For all p ∈ P and all t ∈ T let

D(p, t) = {x ∈Mt | x maximizes ht on B(p, t)} ,
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and

F (p, t) =

⎧⎨⎩
D(p, t) if ht(D(p, t)) > ht(x(t, ·))
D(p, t) ∪ {e(t, ·)} if ht(D(p, t)) = ht(x(t, ·))
{e(t, ·)} if ht(D(p, t)) < ht(x(t, ·)).

Let

α = 1 +
∑
ω∈Ω

l∑
j=1

∫
T

ej(t, ω)dµ,

and let

K =

⎧⎨⎩x ∈ ( l
+)Ω |

∑
ω∈Ω

l∑
j=1

xj(ω) ≤ α

⎫⎬⎭ ,
and

K̂ =

⎧⎨⎩x ∈ K |
∑
ω∈Ω

l∑
j=1

xj(ω) = α

⎫⎬⎭ .
Note that K is a non-empty compact convex subset of ( l

+)Ω . Write P̄ for the
closure of P, and define a correspondence φ : P̄ × T � 2K by

φ(p, t) =

⎧⎨⎩
F (p, t) ∩K if p ∈ P and D(p, t) ∩K 	= ∅
K̂ ∩ {λd | d ∈ F (p, t), λ ≥ 0} if p ∈ P and D(p, t) ∩K = ∅
B(p, t) ∩ K̂ if p ∈ P̄\P.

For every p ∈ P̄ define

ψ(p) =
∫

T

φ(p, t)dµ−
∫

T

e(t, ·)dµ.

Then for every p ∈ P̄ , ψ(p) is a non-empty convex subset of the compact convex
set K. The proof that ψ is also upper semicontinuous on P̄ is standard. From the
definition of ψ it is clear that for all p ∈ P̄ we have p · ψ(p) ≤ 0. Therefore
by (1) in Section 5.6 of Debreu (1959), there exists p∗ ∈ P̄ and z∗ ∈ ψ(p∗)
such that z∗ ≤ 0. We show that p∗ /∈ P̄\P. Suppose p∗ ∈ P̄\P ; then z∗ ∈
(
∫

T
(B(p∗, t) ∩ K̂)dµ−

∫
T

e(t, ·)dµ). Therefore

∑
ω∈Ω

l∑
j=1

z∗
j (ω) = α−

∑
ω∈Ω

l∑
j=1

∫
T

ej(t, ω)dµ = 1,

which contradicts z∗ ≤ 0. Thus p∗ /∈ P̄\P.As z∗ ≤ 0, we have

z∗ ∈
∫

T

(F (p∗, t) ∩K)dµ−
∫

T

e(t, ·)dµ.
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Hence there exists an integrable function f on T such that f(t) ∈ F (p∗, t) for all
t ∈ T and z∗ =

∫
T
f(t)dµ−

∫
T

e(t, ·)dµ.Write

S = {t ∈ T | f(t) ∈ D(p∗, t)},

and

C(p∗) = {t ∈ T | ht(D(p∗, t)) > ht(x(t, ·))}.

Since x is not a competitive allocation, we have µ(C(p∗)) > 0. As C(p∗) ⊂ S,
µ(S) > 0.

Now for all (t, ω) ∈ T ×Ω let

y(t, ω) = (f(t))(ω).

We show that (S,y) is a competitive objection to x. As noted above, µ(S) > 0.
Since z∗ ≤ 0 and f(t) = e(t, ·) for t ∈ T\S, we have∫

S

y(t, ω)dµ ≤
∫

S

e(t, ω)dµ,

for all ω ∈ Ω. By the definition of y we have ht(y(t, ·)) ≥ ht(x(t, ·)) for all
t ∈ S, and ht(y(t, ·)) > ht(x(t, ·)) for all t ∈ C(p∗). If t ∈ S and z ∈ Mt

satisfies ht(z) ≥ ht(y(t, ·)), then ht(D(p∗, t)) ≤ ht(z). Therefore∑
ω∈Ω

p∗(ω) · z(ω) ≥
∑
ω∈Ω

p∗(ω) · e(t, ω).

Let t ∈ T\S. Then ht(D(p∗, t)) ≤ ht(x(t, ·)). Therefore if z ∈ Mt satisfies
ht(z) ≥ ht(x(t, ·)), then ht(z) ≥ ht(D(p∗, t)), and thus∑

ω∈Ω

p∗(ω) · z(ω) ≥
∑
ω∈Ω

p∗(ω) · e(t, ω).

This completes the proof that (S,y) is a competitive objection to x. ��

4 The weak fine bargaining set

In this section we introduce the notion of weak fine bargaining set and study its
relation with the set of competitive allocations.

Let E be an economy, and let S ∈ Σ. Define

I(S) = {i | 1 ≤ i ≤ n and µ(S ∩ Ti) > 0} .

where n and Ti are defined in Section 2. A weak fine allocation is an assignment x
such that

(4.1) For all t ∈ T, x(t, ·) is
∨n

i=1 Fi-measurable, and

(4.2)
∫

T
x(t, ω)dµ ≤

∫
S
e(t, ω) for all ω ∈ Ω.

Let x be a weak fine allocation. A weak fine objection to x is a pair (S,y) such that
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(4.3) µ(S) > 0,

(4.4) y(t, ·) is
∨

i∈I(S) Fi-measurable for all t ∈ S,

(4.5)
∫

S
y(t, ω)dµ ≤

∫
S
e(t, ω) for all ω ∈ Ω,

(4.6) ht(y(t, ·)) ≥ ht(x(t, ·)) for almost all t ∈ S, and

(4.7) µ({t ∈ S | ht(y(t, ·)) > ht(x(t, ·))}) > 0.

A weak fine core allocation of E is a weak fine allocation x which has no weak fine
objection. The weak fine core of E is the set of all weak fine core allocations of E .

The weak fine core was introduced in Yannelis (1991), Allen (1991), and Kout-
sougeras and Yannelis (1993). In order to define the weak fine bargaining set we
need to introduce the definition of weak fine counterobjection.

Let E be an economy, let x be a weak fine allocation, and let (S,y) be a weak
fine objection to x. A weak fine counterobjection to (S,y) is a pair (Q, z) such that

(4.8) µ(Q) > 0,

(4.9) z(t, ·) is
∨

i∈I(Q) Fi-measurable for almost all t ∈ Q,

(4.10)
∫

Q
z(t, ω)dµ ≤

∫
Q

e(t, ω) for all ω ∈ Ω,

(4.11) ht(z(t, ·)) > ht(y(t, ·)) for almost all t ∈ Q ∩ S, and

(4.12) ht(z(t, ·)) > ht(x(t, ·)) for almost all t ∈ Q\S.
A weak fine objection (S,y) to a weak fine allocation x is justified if it has not
weak fine counterobjection. The (Mas-Colell) weak fine bargaining set is the set of
weak fine allocations which have no justified weak fine objection.

Let E be an economy. Denote by E∗ the economy obtained from E by giving
to each trader in E the joint information of all the traders in E , i.e., for all t ∈ T,
F∗

t =
∨n

i=1 Fi, and leaving the rest of his characteristics unchanged. Note that in
E∗ all traders have the same information (i.e., E∗ is an economy with symmetric
information). For each t ∈ T, we denote by M∗

t the set of all F∗
t -measurable

functions from Ω to  l
+. Let p : Ω →  l

+ be a price system. In the economy E∗

the budget set of t ∈ T with respect to p is

B∗(p, t) =

{
x | x ∈M∗

t ,
∑
ω∈G

p(ω) · x(ω) ≤
∑
ω∈G

p(ω) · e(t, ω)

}
.

A competitive equilibrium of E∗ (in the sense of Radner) is now defined as in
Section 2.

Proposition 4.1. Every competitive allocation of E∗ is in the weak fine bargaining
set of E .

Proof. It is easy to see that an economy E as defined in Section 2 satisfies the
assumptions of Theorem C in Einy, Moreno and Shitovitz (1998), which establishes
that the set of competitive allocations of E∗ coincides with the weak fine core of
E . Since the weak fine core is a subset of the weak fine bargaining set, Proposition
4.1 readily follows from this result. ��
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As the following example shows, the analog of Theorem C in Einy, Moreno and
Shitovitz (1998) for the weak fine bargaining set does not hold: there are allocations
in the weak fine bargaining set that are not competitive allocations of E∗. For the
analysis of the example we need some notation and a lemma which is interesting
on its own.

If E is an economy and S is a coalition with µ(S) > 0, we denote by ES the
restriction of E to S; that is, ES is an economy for which the space of traders is
(S,ΣS , µS), where ΣS = {Q | Q ∈ Σ, Q ⊂ S}, and µS is the restriction of µ to
ΣS .

Lemma 4.2. Let E be an economy. Assume that (S,y) is a justified weak fine
objection to a weak fine allocation x in E . Then the restriction of y to S ×Ω is a
competitive allocation of E∗

S .

Proof. Assume by way of contradiction that the restriction ŷ of y to S × Ω is not
competitive in E∗

S . Then by Theorem C of Einy, Moreno and Shitovitz (1998), ŷ is
not in the weak fine core of ES . Therefore ŷ has a weak fine objection (Q, ẑ) in ES .
Let z be an extension of ẑ to an assignment in E . As Q ⊂ S, (Q, z) is a weak fine
counterobjection to (S,y) in E . But this contradicts our assumption that (S,y) is
a weak fine justified objection to x in E . ��
Example 4.3. Consider an economy E in which the commodity space is  ++, and
the set of traders is ([0, 3],B, µ), where B is the σ-field of Borel subsets of [0, 3]
and µ is the Lebesgue measure. The space of states of nature is Ω = {ω1, ω2}.All
traders have the same utility function, given for (ω, x) ∈ Ω × ++ by

u(ω, x) = lnx.

The initial assignment is e(t, ω) = 2, for all (t, ω) ∈ T ×Ω. Let T1 = [0, 1], T2 =
(1, 2], and T3 = (2, 3]. The information partition of a trader t ∈ T1 ∪ T2 is
Π1 = Π2 = {Ω} , and that of the traders t in T3 is Π3 = {{ω1}, {ω2}} . The
priors of the traders in T1, T2, and T3 are, respectively, q1 = ( 1

4 ,
3
4 ), q2 = ( 3

4 ,
1
4 ),

and q3 = ( 1
2 ,

1
2 ).We construct a weak fine bargaining set allocation of E which is

not competitive in E∗.
Define an assignment x : T ×Ω →  ++ by

x(t, ω1) =

⎧⎨⎩
1 t ∈ T1
2.55 t ∈ T2
2.45 t ∈ T3,

and

x(t, ω2) =

⎧⎨⎩
2.55 t ∈ T1
1 t ∈ T2
2.45 t ∈ T3.

Then x is a weak fine allocation in E . We show that x is in the weak fine bargaining
set of E , but it is not competitive in E∗.Assume, by way of contradiction, that (S,y)
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is a justified weak fine objection to x in E . Then by Lemma 4.2 the restriction ŷ of
y to S ×Ω is a competitive allocation in E∗

S . Now if µ(S ∩ T3) = 0, then we must
have that ŷ(t, ω) = e(t, ω) for all (t, ω) ∈ S × Ω. As ht(e(t, ·)) < ht(x(t, ·))
for all t ∈ T1 ∪ T2, this leads to a contradiction. Assume that µ(S ∩ T3) > 0.
Let p be a price system such that (p, ŷ) is a competitive equilibrium of E∗

S . Then
p(ω1) > 0 and p(ω2) > 0.Without loss of generality assume that p(ω2) = 1, and
denote r = p(ω1). Then the first order conditions for utility maximization imply
that for almost all t ∈ S,

ŷ(t, ω1) =

⎧⎪⎪⎨⎪⎪⎩
1
2 (1 + 1

r ) t ∈ T1

3
2 (1 + 1

r ) t ∈ T2

1 + 1
r t ∈ T3,

and

ŷ(t, ω2) =

⎧⎪⎪⎨⎪⎪⎩
3
2 (1 + r) t ∈ T1

1
2 (1 + r) t ∈ T2

1 + r t ∈ T3.

Since µ(S) > 0 and (p, ŷ) is a competitive equilibrium of E∗
S , we have

(
1 +

1
r

)
(1 + r) ≤ 16

3
< (2.45)2 .

Therefore for almost all t ∈ S ∩ T3 we have

ht(y(t, ·)) =
1
2

ln
[(

1 +
1
r

)
(1 + r)

]
<

1
2

ln (2.45)2 = ht(x(t, ·)).

As µ(S ∩ T3) > 0, this contradicts the assumption that (S,y) is a weak fine
objection to x.

The above argument shows that if, in particular, z is a competitive allocation of
E∗, then for almost all t ∈ T3

ht(z(t, ·)) < ht(x(t, ·)).

Therefore x is not a competitive allocation of E∗. Note that the last inequality
implies that the informed traders (i.e., the traders in T3) are better off in x than in
any competitive allocation of E∗.
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Summary. The coalition structure (CS) value, introduced by Owen [9] and Hart
and Kurz [5], generalizes the Shapley value to social situations where coalitions
form for the purpose of bargaining. This paper introduces the CS value to economies
with differential information. We show that the private CS values exists and is
Bayesian incentive compatible. Moreover, we construct examples that go against
the intuitive viewpoint that “unity is strength.” In particular, we consider a three
person economy in which two agents bargain as a unit against the third agent.
We show that bargaining as a unit is advantageous if and only if information is
complete. This result sheds new light on bargaining under differential information.

1 Introduction

Recent work on differential information economies has indicated that cooperative
solution concepts, such as the core, the Shapley value, and the bargaining set pro-
vide successful alternatives to the rational expectations equilibrium (see Allen and
Yannelis [1] and the references therein). In particular, as first shown in Krasa and
Yannelis [7], the Shapley value is sensitive to information asymmetries and rewards
agents with superior information, features that are not shared by the traditional ra-
tional expectations equilibrium.

In this paper, we pursue this line of research further, going beyond Krasa and
Yannelis [7,8], by introducing differential information into the coalition structure
(CS) value concept of Owen [9] and Hart and Kurz [5]. One of the main properties
of the CS value is that if agents are allowed to form coalitions to bargain as a unit,
they may do so to strengthen their situation, that is, to increase their payoffs. The
intent of the coalition structure value is to take into account situations where groups
of players organize themselves for the purpose of bargaining with the rest of the
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players. Examples include political parties, unions, and cartels. In particular, Hart
and Kurz [5] construct a three agent economy, in which the first two agents obtain
higher payoffs whenever they bargain as a unit against the third agent, compared
to the standard Shapley value that allows arbitrary coalition formation.

Given the appealing features of the CS value, it is of interest to know how this
concept behaves in differential information economies. To this end we introduce
differential information into the CS value concept. In particular, we consider two
new equilibrium concepts: The private CS value and the Bayesian incentive com-
patible (BIC) CS value. In general, the two concepts differ, but we show that (i)
private CS values are always incentive compatible and that (ii) the set of attain-
able utilities of the transferable utility (TU) game derived from an economy with
differential information is always a subset of the set of BIC attainable utilities. It
turns out that the private CS value always exists, but the BIC value need not exist
because the set of all BIC allocations need not be a convex set.

What we found most surprising, however, is that the intuitive statement that
“unity is strength” ceases to be true for the CS value once differential information
is introduced. In particular, we construct a three person economy in which two
agents bargain as a unit against the third agent. We show that bargaining as a unit
is advantageous if and only if information is complete.

The paper proceeds as follows. In Section 2 we introduce the economy with
differential information. In Section 3 we show two alternative ways how a TU game
can be derived from an economy with differential information, and a comparison is
provided. In Section 4 we introduce the main concepts of this paper, the coalition
structure values of a differential information economy. Section 5 shows that coali-
tional bargaining may not be advantageous if informational asymmetries matter.
All proofs are in the Appendix.

2 The economy with differential information

We consider an exchange economy that extends over two time periods, t = 0, 1,
where consumption takes place in t = 1. At t = 0 there is uncertainty over the
state of nature described by a probability space (Ω,F , µ). Agents are indexed by
i ∈ I = {1, . . . , n}.

In each state ω there are � goods. The commodity space is therefore R�
+. Each

agent i’s endowment is given by ei : Ω → R�
+.

At t = 0 agents will agree on net-trades that may be contingent on the state
of nature at t = 1. However, agents are differentially informed with respect to the
true state of nature. Specifically, we assume that at t = 1 agents do not necessarily
know which state ω ∈ Ω has actually occurred. They know their own endowment
realization, and every agent i might have some additional information about the
state described by a σ-algebra Fi with Fi ⊂ F . We assume that Fi is generated
by a countable partition of Ω. With a slight abuse of notation we will write Fi

both for agent i’s σ-algebra and for agent i’s partition. By assumption, agents can
always observe their own endowment realization, i.e., ei isFi-measurable for each
agent i ∈ I .
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In summary, an exchange economy with differential information is given by

E =
{
(Xi, ui,Fi, ei, µ) : i = 1, . . . , n

}
where:

1. Xi(ω) = R�
+, for all ω ∈ Ω, is agent i’s consumption set;

2. ui : Ω × R�
+ → R is agent i’s utility function;

3. Fi is a measurable countable partition of Ω, denoting the private information
of agent i;

4. ei : Ω → R�
+ is agent i’s initial endowment, where each ei is Fi-measurable

and integrable;
5. µ is the probability measure on Ω denoting the common prior of all agents.

Agent i’s ex-ante expected utility of consuming xi : Ω → R�
+ is∫

Ω

ui(ω, xi(ω))dµ(ω).

Let ω� be the true state of the economy in t = 1. Then at the interim, agent i
observes the eventEi(ω�) in the partitionFi which contains ω�. Agent i’s updated
prior is then given by µ(·|Ei(ω�)).1

An allocation will be denoted by (xi)i∈I . An allocation is feasible if∑
i∈I xi(ω) =

∑
i∈I ei(ω), µ-a.e.

Throughout the paper, we assume for each ω ∈ Ω that the utility function
ui(ω, ·) of each agent i is continuous and concave.

3 The TU game

As in the definition of the standard value allocation concept, we must first derive a
transferable utility (TU) game in which each agent’s utility is weighted by a factor
λi, (i = 1, . . . , n), which allows interpersonal utility comparisons. In the value
allocation itself no side payments are necessary. A game with side-payments is then
defined as follows.

Definition 1 A game with side-payments (I, V ) consists of a finite set of agents
I = {1, . . . , n} and a superadditive, real valued function V defined on 2I such that
V (∅) = 0. Each S ⊂ I is called a coalition and V (S) is the “worth” of coalition
S.

We now define for each economy with differential information, E , and for
each set of weights, {λi : i = 1, . . . , n}, the associated game with side-payments.
Clearly, each coalition of agentsS can obtain only those allocations that are feasible
for the coalition, i.e.,

∑
i∈S xi(ω) =

∑
i∈S ei(ω), µ-a.e. However, trade among

agents is also restricted because of private information. We consider two alternative
ways to specify the set of allocations that a coalition S can obtain. The first way is
to consider trades, which are private information measurable. That is, agents can

1 Thus, µ(A|Ei(ω�)) = µ(A ∩ Ei(ω�))/µ(Ei(ω�)) for any A ∈ F , where µ(Ei(ω�)) > 0.
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only make net trades based on their own information. The second way allows for
trades, which are Bayesian incentive compatible. The relationship between these
two alternative scenarios is shown in Theorem 1 below. More formally,

1. In the first specification, we assume that each coalition of agents, S, can achieve
any feasible allocation (xi)i∈S that fulfills private measurability, i.e, xi is Fi-
measurable for all agents i in S.

2. Alternatively, we assume that each coalition can obtain any feasible alloca-
tion (xi)i∈S that is Bayesian incentive compatible (BIC) for coalition S and∨

i∈S Fi-measurable.

Before deriving the TU game for the differential information economy, we define
Bayesian incentive compatibility (see Glycopantis et al. [4] for a related definition).

Definition 2 An allocationx = (xi)i∈S is Bayesian incentive compatible (BIC) for
coalition S if and only if there does not exist an agent j ∈ S and states ω�, ω′ ∈ Ω
such that ∫

ZS(ω�)
uj(ω, ej(ω) + xj(ω′)− ej(ω′)) dµ

(
ω
∣∣ Ej(ω�)

)
>

∫
ZS(ω�)

uj(ω, xj(ω)) dµ
(
ω
∣∣ Ej(ω�)

) (1)

where ZS(ω�) =
⋂

i∈S Ei(ω�), ω′ ∈ ⋂i∈S\{j}Ei(ω�) and ej(ω�) + xj(ω′) −
ej(ω′) ∈ R�

+.

Inequality (1) states that agents cannot improve by misreporting their information.
Definition 2 also requires that agent j’s false report cannot always be detected by
other agents in the coalition. In particular, in order for the false report report ω′

not to be detected when ω� is the true state, ω′ ∈ ⋂i∈S\{j}Ei(ω�) must hold.

Moreover, note that if (1) holds then µ
(
ZS(ω�)

∣∣ Ej(ω�)
)
> 0. Thus, if agent j

can improve by a misrepresenting his information, then his false report should not
be detectable with certainty (i.e., the set of states ω 	= ω′ that are consistent with
ω′ has positive measure).2

The reader might wonder why we do not allow misreports that can be detected
by other agents with certainty. In particular, we interpret the example in Section 5
as a model in which agents sign contracts ex-ante to insure each other against
low endowment realizations. If agent i receives a high realization he must make
a payment to agents who received a lower realization. Now assume that agent j
makes a report which is inconsistent with those of the other agents. If such a report
leads to no trade, then agent j can keep his endowment, effectively reneging on his
ex-ante agreement to insure the other agents. Therefore, in order to make insurance
contracts enforceable, we must assume that agents cannot make reports that are
inconsistent.

2 In order to see what consistency of reports means in a simple example, assume that Ω = {a, b, c},
that there are two agents I = {1, 2} and F1 =

{{a, b}, {c}}
, F2 =

{{a, c}, {b}}
. Assume for

example that agent 1 reports c and agent 2 reports b. Then these reports are not consistent because
{c} ∩ {b} = ∅. In contrast, the report {a, b} by agent 1 and {b} by agent 2 is consistent.
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We are now ready to define the two alternative versions of the TU game.
First, for every coalition S ⊂ I let

V p
λ (S) = max

(xi)i∈S

∑
i∈S

λi

∫
ui(xi(ω))dµ(ω),

s.t. (i)
∑
i∈S

xi(ω) =
∑
i∈S

ei(ω), µ-a.e.

(ii) xi is Fi-measurable, ∀i ∈ S.

(2)

Second, we define

V BIC
λ (S) = max

(xi)i∈S

∑
i∈S

λi

∫
ui(xi(ω))dµ(ω),

s.t. (i)
∑
i∈S

xi(ω) =
∑
i∈S

ei(ω), µ-a.e.

(ii) xi is
∨
i∈S

Fi-measurable, ∀i ∈ S.

(iii) (xi)i∈S is BIC for coalition S.

(3)

Note that (ii) in (3) is needed to ensure that agents can obtain allocation (xi)i∈S ,
given the available information.

We characterize the relationship between the two TU games in Theorem 1
below. The proof is in the Appendix.

Theorem 1 Assume that λi > 0 for all i ∈ I . Then

1. V p
λ (S) ≤ V BIC

λ (S) for all S ⊂ I .
2. Consider a feasible allocation (xi)i∈S for coalition S that is measurable with

respect to private information, i.e., xi is Fi-measurable for all i ∈ S. Then
(xi)i∈S is BIC for coalition S.

Clearly, the private and the BIC value allocation differ whenV p
λ (I) < V BIC

λ (I).
An example where this is the case can be found in Krasa [6], p. 164.

4 The coalition structure (CS) value allocation

The standard Shapley value of the game (I, V ) (Shapley [10]), is a rule that assigns
to each agent i a payoff Shi, given by the formula:

Shi =
∑

S⊂I,S⊃{i}

(|S| − 1)!(|I| − |S|)!
|I|!

[
V (S)− V (S \ {i})

]
. (4)

Following the treatment in Hart and Kurz [5], we first generalize the Shapley value
formula to account for coalition formation (see also Owen [9]).

Let B = {B1, . . . , Bm} be a partition of the set of agents I . We refer to B as
a coalition structure. As in the standard Shapley value, we wish to measure each
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agent’s expected contribution to a coalition that he/she is a member of. However,
this expected contribution should be compatible with the coalition structure B.

Consider all possible ways to order the set of coalitions in B and the agents
within each coalition. We say that a complete linear order on I is consistent with
B if, for all k = 1, . . . ,m and all i, j in Bk, all elements of I between i and j also
belong to Bk. There arem!b1! . . . bm! such consistent orderings. Assume that each
ordering is equally likely. The CS value of the game (I, V ) is a rule which assigns
to each agent i the expected marginal contribution to every coalition that agent i
is a member of, respecting the coalition structure B. That is, agent i’s expected
marginal contribution is given by

φi(V,B) = E[V (P i ∪ {i})− V (P i)], (5)

where the expectation is over all random orders on I that are consistent with B, and
P i denotes the set of random predecessors of player i.

For example, if no agent forms a coalition with another agent, then the coali-
tion structure B =

{
{1}, . . . , {n}

}
. In this case the CS Shapley value (5) value

coincides with the standard Shapley value (4).
As another example, assume that I = {1, 2, 3}, and B =

{
{1, 2}, {3}

}
. Then

there are the following consistent orderings

1 ≺ 2 ≺ 3 2 ≺ 1 ≺ 3 3 ≺ 1 ≺ 2 3 ≺ 2 ≺ 1

Therefore,

φ3(V,B) =
1
4

(
V
(
{1, 2, 3}

)
− V

(
{1, 2}

))
+

1
4

(
V
(
{2, 1, 3}

)
− V

(
{2, 1}

))
+

1
4

(
V
(
{3}
)
− V (∅)

)
+

1
4

(
V
(
{3}
)
− V (∅)

)
=

1
2

(
V
(
{1, 2, 3}

)
− V

(
{1, 2}

))
+

1
2
V
(
{3}
)
.

(6)

Agent 3’s CS Shapley value is therefore the same as the standard value of a game
where we treat agents 1 and 2 as a single player. The insight that coalitions of
agents in the CS value can be treated as single agents in the standard Shapley value
is true in general (see Corollary 2.4 in Hart and Kurz [5]). The CS Shapley value
therefore measures agents’ expected contributions after coalitions have formed for
the purpose of bargaining. It is also important to note that the CS Shapley value
is Pareto efficient, i.e.,

∑
i∈I πi(V,B) = V (I). Quoting Hart and Kurz [5], “the

efficiency of the CS value is an essential feature. It differs from the Aumann and
Dreze [2]) approach, where each coalitionBk ∈ B gets only its worth (i.e V (Bk)).
The idea is that coalitions form not in order to get their worth, but to be in a better
position when bargaining with the others on how to divide the maximal amount
available.”

We now describe the notion of a CS value allocation for an economy with
private information. These concepts generalize those of Shapley value allocation
introduced in Krasa and Yannelis [7] (see also Einy and Shitovitz [3]).
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In (2) and (3) of Section 3 we have introduced two alternative ways to assign
a TU game to an economy with differential information. In (2) agents’ trades are
required to be measurable with respect to private information. In (3) we replace
private measurability with incentive compatibility. As in Krasa andYannelis [7] we
therefore get two alternative definitions of a Shapley value allocation. Note that if
B is replaced by the fine partition, then the following two concepts coincide with
those of [7].

Definition 3 An allocation (xi)i∈I is a private CS value allocation of the economy
with differential information, E , if the following holds:

(i) xi is Fi-measurable for all i ∈ I .
(ii)

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω), µ−a.e.,

(iii) There exist λi ≥ 0, for every i = 1, . . . , n, which are not all equal to zero,
with λi

∫
ui(xi(ω))dµ(ω) = φi(V

p
λ ,B), where φi(V

p
λ ,B) is the CS Shapley

value of agent i derived from the game (I, V p
λ ), defined in (2).

Definition 4 An allocation (xi)i∈I is a Bayesian incentive compatible (BIC) CS
value allocation of the economy with differential information, E , if the following
holds:

(i) xi is
∨

i∈I Fi-measurable for all i ∈ I , and (xi)i∈I is BIC for coalition I .
(ii)

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω), µ−a.e.,

(iii) There exist λi ≥ 0, for every i = 1, . . . , n, which are not all equal to zero, with
λi

∫
ui(xi(ω))dµ(ω) = φi(V BIC

λ ,B), where φi(V BIC
λ ,B) is the CS Shapley

value of agent i derived from the game (I, V BIC
λ ), defined in (3).

Note that the existence proof of Shapley [10] can be easily modified to cover the
coalition structure value. Given this result one can adapt the existence proof in Krasa
and Yannelis [8] to show that a private coalition structure value exists. Theorem 1
then immediately implies that the private CS value allocation is Bayesian incentive
compatible. We now state this result formally.

Theorem 2 The private CS value allocation of a differential information economy
exists and is BIC for the grand coalition I .

In contrast to the private CS value allocation, the BIC CS value allocation need
not always exist because the set of feasible incentive compatible allocations need
not be convex. In the economy of Section 5 the two concepts coincide. Hence, our
conclusions about the advantages or disadvantages of coalitional bargaining hold
for both concepts.

5 Is unity a strength?

We now consider an economy with three agents i = 1, 2, 3. In this economy agents
1 and 2 seek insurance against their uncertain endowment realization. Agents 1 and
2 can insure each other, but they can also seek insurance from agent 3 who is risk
neutral.
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First consider the case of complete information, i.e., once the state is realized
it becomes public information. As one would expect, agents 1 and 2 are better off
if they collectively bargain against agent 3. That is, if information is complete the
CS Shapley value for agents 1 and 2 is strictly higher than the standard Shapley
value. However, once asymmetric information is introduced the result is completely
reversed. Now agents 1 and 2 are strictly better off if they do not form a coalition.
In this sense, “unity is strength” does not hold when information is asymmetric.

Assume there are four states ω ∈ Ω = {a, b, c, d} that are equally likely. There
is one consumption good in each state. The agents’ utility functions are given by

u1(x, ω) =

{
x if ω = a, b, d

2
√
x if ω = c;

u2(x, ω) =

{
x if ω = a, c, d

2
√
x if ω = b;

u3(x, ω) = x, ∀ω.
The agents’ endowments are

e1(ω) =

{
2 if ω = a, b

0 if ω = c, d;
e2(ω) =

{
2 if ω = a, c

0 if ω = b, d;

e3(ω) =

{
1
4 if ω = a, b, c

10 if ω = d.

Agents 1 and 2 are risk averse in states c and b, respectively. The agents therefore
seek insurance against the low endowment realization in these states. Note that the
role of state d is to ensure that the weights λi in the TU game are all equal.

In order to derive the value allocation, we must find the utility weights λi,
i = 1, 2, 3. However, because agents’ utilities are quasilinear all weights λi must
be equal, i.e., λ1 = λ2 = λ3 = 1. This is shown formally in Lemma 1 in the
Appendix. Therefore, the economy corresponds to a game with transferable utility
and we can write V (S) instead of Vλ(S) to denote the payoff of coalition S.

Complete Information Assume that all agents learn the true state ω after it is
realized. For any coalition S, let V (S) be the maximum attainable utility, i.e.,

V (S) = max
{xi(ω)|i∈S,ω∈Ω}

∑
i∈S

∑
ω∈Ω

1
4
ui

(
ω, xi(ω)

)
s.t.
∑
i∈S

xi(ω) =
∑
i∈S

ei(ω), ∀ω ∈ Ω.

For example, assume that agent 1 belongs to S. Then it follows immediately that it
is optimal to choose x1(c) = 1. The same is true for agent 2 and state b.

The TU game is therefore given by

V ({1}) = V ({2}) = 1, V ({3}) =
43
16

V ({1, 2}) =
5
2
, V ({1, 3}) = V ({2, 3}) =

31
8

V ({1, 2, 3}) =
83
16
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The resulting Shapley values are

Sh1 = Sh2 =
39
32
, Sh3 =

11
4
.

A Shapley value allocation is given by

x1 = x2 =
(

1, 1, 1,
7
8

)
; x3 =

(
9
4
,
1
4
,
1
4
,
33
3

)
. (7)

Now assume agents 1 and 2 form a coalition. Then by Corollary 2.4 in Hart and
Kurz [5] agent 3’s Shapley value can be computed from the Shapley value of the
game where {1, 2} is treated as a single player. Moreover, because of symmetry
the Shapley values of agents 1 and 2 must be exactly one half of the Shapley value
of the “single player” {1, 2}. Then

φ1(B) = φ2(B) =
5
4
, φ3(B) =

43
16

A CS Shapley value allocation is given by

x1 = x2 = (1, 1, 1, 1) ; x3 =
(

9
4
,
1
4
,
1
4
, 8
)
. (8)

Therefore φ3(B) < Sh3 and φi(B) > Shi, for i = 1, 2, i.e., agents 1 and 2
are strictly better off when they bargain together. Hence, “unity is strength” in this
case.

Differential Information Assume that agent 1 cannot distinguish states a and b, and
that agent 2 cannot distinguish states a and c. Agent 3 has complete information.3

Again, the economy corresponds to a TU game. The payoffs in the TU game are
the same as above except that

V p({1, 2}) = V BIC ({1, 2}) = 2

We first show that all coalitions S 	= {1, 2} have the same payoff under differential
information as under complete information. This is obvious for all single agent
coalitions. Next, note that (7) indicates an allocation (xi)i∈I , for which each xi is
Fi-measurable, and which yields the payoff V (I). Theorem 1 implies that (xi)i∈I

is BIC for coalition I . Therefore, V p(I) = V BIC (I) = V (I). Next, consider
coalition S = {1, 3}. The payoff V ({1, 3}) can be obtained by choosing x1 =
(1, 1, 1

4 , 0) andx3 = (5
4 ,

5
4 , 0, 10). This allocation for coalitionS is measurable with

respect to each agent’s private information and therefore also BIC. The argument
for S = {2, 3} is similar.

Finally, consider coalitionS = {1, 2}. The only feasible allocation (xi)i∈S that
is measurable with respect to private information consists of the agents’ endow-
ments. In particular feasibility implies x1 − e1 = x2 − e2. Private measurability
implies that x1 − e1 is F1-measurable and that x2 − e2 is F2-measurable. There-
fore each xi − ei must be F1 ∧F2-measurable. Since F1 ∧F2 =

{
{a, b, c}, {d}

}
3 Formally, F1 =

{{a, b}, {c}, {d}}
, F2 =

{{a, c}, {b}, {d}}
, and F3 ={{a}, {b}, {c}, {d}}

.
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the only feasible trades are trivial. It is also not possible to improve upon autarky
via BIC net trades. In order to improve upon autarky, either x1(c) or x2(b) must
be strictly positive. Let ω� = a and assume that agent 1 reports ω′ = c. Then
ZS(ω�) = {a}. Therefore, incentive compatibility implies x1(a) ≥ 2 + x1(c).
Similarly, x2(a) ≥ 2 + x2(b) must hold. Therefore, x1(c) + x2(b) ≤ 0 which
implies x1(c) = x2(b) = 0.

The Shapley values are therefore given by

Sh1 = Sh2 =
109
96
, Sh3 =

35
12

A private or BIC Shapley value allocation is given by

x1 = x2 =
(

1, 1, 1,
13
24

)
; x3 =

(
9
4
,
1
4
,
1
4
,
107
12

)
.

Now assume that agents 1 and 2 form a coalition. Then,

φ1(B) = φ2(B) =
9
8
, φ3(B) =

47
16
.

A BIC or a private CS Shapley value allocation is given by

x1 = x2 =
(

1, 1, 1,
1
2

)
; x3 =

(
9
4
,
1
4
,
1
4
, 9
)
.

Thereforeφ3(B) > Sh3 andφi(B) < Shi, for i = 1, 2.As a consequence, when
information is incomplete agents 1 and 2 are strictly worse off it they bargain as a
coalition. Therefore, in this case unity among coalition members is not a strength.

5.1 Interpretation

Although there is no explicit time structure in our model, equation (6), and more
generally Corollary 2.4 in Hart and Kurz [5], show that we can interpret the CS
value as follows.

First, agents 1 and 2 decide to form a coalition. They sign an agreement that de-
termines how any surplus will be split among them. After the agreement is signed,
coalition {1, 2} bargains with agent 3. Because agents 1 and 2 can provide in-
surance to each other without the help of an outside agent, agent 3’s service is not
essential. Coalition {1, 2} is therefore in the strongest possible bargaining position,
and agent 3 will receive only a small percentage of the surplus. In contrast, when
agent 1 or 2 bargains separately with agent 3, then agent 3 can provide a significant
service by insuring that agent. As a consequence, agent 3 is able to extract a higher
percentage of the surplus when agents 1 and 2 bargain separately.

As another example, consider a coalition of firms that bargains with an outside
firm for a service. If the coalition is sufficiently diverse, it is likely that the outsider’s
service could be replaced by that of a coalition member, and is therefore not that
essential for the coalition. As a consequence, the outside firm will find itself in a
weak bargaining position. Unity among coalition members is therefore a strength.
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What goes wrong with this intuition when information is asymmetric? In
our example, agent 3 has information that is essential for agents 1 and 2. The
value of agent 3’s information increases with the number of agents that need
agent 3’s information. Formally, V ({1, 2, 3})−V ({3}) > V ({1, 3})−V ({3}) =
V ({2, 3})−V ({3}). In other words, the information becomes more important the
larger the coalition of agents that depends on it. Therefore, ceteris paribus, agent 3
will extract a high percentage of the surplus if he only bargains with large coalitions.

Consider again the example of the coalition of firms, but now assume that the
outside firm has information that is crucial to the coalition. Then the outside firm
will be able to sell its information for a higher price (i.e., a higher percentage of the
surplus) the larger the coalition. Intuitively, the outside firm can hold the coalition
“hostage” to its information. “Unity is a strength” may therefore cease to be true
when informational asymmetries matter.

6 Appendix

Proof of Theorem 1. Because statement 2 implies statement 1, it is sufficient to
prove 2.

Assume by contradiction that (xi)i∈S is feasible for coalition S, but not BIC
for coalition S.

Then there exists an agent j ∈ S, an ω�, ω′ such that∫
ZS(ω�)

uj

(
ω, ej(ω)−

(
xj(ω′)− ej(ω′)

))
dµ
(
ω
∣∣ Ej(ω�)

)
>

∫
ZS(ω�)

uj

(
ω, xj(ω)

)
dµ
(
ω
∣∣ Ej(ω�)

) (9)

where ω′ ∈ ⋂i∈S\{j}Ei(ω�) and ZS(ω�) =
⋂

i∈S Ei(ω�). For the fixed ω� ∈ Ω,

define yi : Ω → R�
+ for each agent i by

yi(ω) =

{
ei(ω) + xi(ω′)− ei(ω′) for ω ∈ ZS(ω�);
xi(ω) for ω /∈ ZS(ω�).

(10)

It can be easily checked that
∑

i∈S yi(ω) =
∑

i∈S ei(ω), µ-a.e.
Consider an agent i ∈ S \ {j}. Let ω ∈ ZS(ω�). Then ω′ ∈⋂

k∈S\{j}Ek(ω�) ⊂ Ei(ω�) and ZS(ω�) ⊂ Ei(ω�) imply that agent i cannot dis-
tinguish ω from ω′. Therefore, Fi-measurability of xi implies that xi(ω) = xi(ω′)
for all ω ∈ ZS(ω�). Thus, yi = xi for all i ∈ S \ {j}. This and feasibility imply

yj =
∑
i∈S

ei −
∑

i∈I\{j}
yi =

∑
i∈S

ei −
∑

i∈I\{j}
xi = xj . (11)

Equation (11) immediately implies∫
ZS(ω�)

uj

(
ω, yj(ω)

))
dµ
(
ω
∣∣ Ej(ω�)

)
=
∫

ZS(ω�)
uj

(
ω, xj(ω)

)
dµ
(
ω
∣∣ Ej(ω�)

)
(12)
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However, in view of (10), the left-hand side of (12) is equal to (9). Therefore (12)
contradicts (9). Consequently, (xi)i∈S is BIC for coalition S. ��

Lemma 1 Consider the exchange economies of Section 5. Then all utility weights
are identical in all coalition structure and in all standard Shapley value allocations
both with complete and incomplete information.

Proof. Assume by way of contradiction that the utility weights differ. In the case
of complete information, the agents’ consumption in the Shapley value allocation
must solve

max
{xi(ω)|i∈I,ω∈Ω}

∑
i∈I

∑
ω∈Ω

1
4
λiui

(
ω, xi(ω)

)
(13)

s.t. (i)
∑
i∈I

xi(ω) =
∑
i∈I

ei(ω), ∀ω ∈ Ω;

With differential information we must add one of the following constraints.

(iia) xi is BIC ∀i ∈ I,
(iib) xi is Fi-measurable ∀i ∈ I,

It follows immediately, that (iia) is always slack, and can therefore be omitted. In
particular, because agent 3 has complete information, any misreport by agent 1 or
agent 2 is immediately detected, i.e., the sets

⋂
j∈I\{i}Ej(ω�) are singletons for

i = 1, 2, which implies ω� = ω′. Moreover, because F1 ∨ F2 = F3, agent 3 can
also not misreport his information, i.e., E1(ω�) ∩ E2(ω�) only contains ω�.

We now prove by way of contradiction that all weights λi are identical. It should
be noted that is does not matter in the argument whether or not (iib) is imposed.

First, assume that λ1 < λ3. Then agent 1’s consumption in states a, b, and d
must be zero. Therefore, agent 1’s expected utility is µ({c})2

√
x3(c). Because of

feasibility x3(c) ≤ 9
4 . Individual rationality is therefore violated for agent 1. Thus,

λ1 ≥ λ3. A similar argument shows that λ2 ≥ λ3.
Now assume that λ3 < λ1 or λ3 < λ2. Then x3(d) = 0. However, because of

feasibility, x3(a) ≤ 4 and x3(b), x3(c) ≤ 2. Therefore individual rationality would
be violated for agent 3. This implies λ1 = λ2 = λ3. ��
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rium of a mechanism and vice versa. We say that a social choice set is coalitionally
implementable if there is a mechanism which coalitionally implements it. Our main
theorem proves that a social choice set is coalitionally implementable if and only if
it is interim individually rational, interim efficient, coalitional Bayesian incentive
compatible, and satisfies a coalitional Bayesian monotonicity condition as well as
a closure condition. As an application of our main result, we show that the private
core and the private Shapley value of an economy with differential information are
coalitionally implementable.
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1 Introduction

An economy with differential information consists of a finite set of agents, each of
whom is characterized by a random utility function, a random initial endowment, a
private information set, and a prior (a precise definition can be found in Section 2.1).

The traditional notion which has been adopted in the literature to analyze trade
in a differential information economy is the (Walrasian) rational expectations equi-
librium. One of the criticisms of the above notion is that it does not provide a
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mechanism which describes how the equilibrium prices reflect information asym-
metries in the economy. To this end we adopt the private core (Yannelis, 1991) and
the private value (Krasa and Yannelis, 1994) in order to analyze the trading proce-
dure in a differential information economy. The private core and the private value
are not fully cooperative in a differential information economy framework, because
within a coalition agents make redistributions of their initial endowments based on
their own private information (without necessarily sharing it). Hence, despite the
fact that coalitions of agents get together and make redistributions (the coopera-
tive aspect of the concepts), there is a noncooperative element in that agents in the
coalition bargain using their differential information. This noncooperative feature
of the private core and the private value results in allocations which are always
coalitionally incentive compatible.1 Moreover, these concepts provide sensible and
reasonable outcomes in situations where the traditional rational expectations equi-
librium fails to do so [for examples of this effect, see Koutsougeras and Yannelis
(1993, pp. 206-207) and Krasa and Yannelis (1994, pp. 890-892) as well as the
Example 3.1 in Section 3 of this paper].2

The outcomes generated by the private core or value are of interest because they
resemble contracts, and contracts are a common means by which agents execute
trade. In particular, in a contract it is common for agents to make an agreement
ex ante (or interim), which is executed ex-post (for example insurance contracts).
The allocation rules we consider, the private core and the private value, have the
following properties that we believe are desirable. First, information asymmetries
matter and agents benefit from superior information. Second, optimal contracts
(i. e., private core or private value allocations) always exist, which is not the case
for the rational expectations equilibrium. This matches the observation that con-
tracts are more common than competitive markets in situations where differential
information makes trade difficult.3 In view of these attractive features that the pri-
vate core and the private value possess, it is important to know whether or not they
are implementable, i.e., can a game be constructed whose equilibrium outcomes
coincide with the private core or the private value? This knowledge will enable
us not only to understand better the outcomes that these allocation rules generate
but also to distinguish and compare them from the traditional (Walrasian) rational
expectations equilibrium.

Our implementation results indicate that indeed information asymmetries mat-
ter and the stringent informational conditions needed for the Bayesian Nash imple-
mentation of the Walrasian expectations equilibrium (see for example Blume and
Easley, 1990; Palfrey and Srivastava, 1987; Postlewaite and Schmeidler, 1986) are
not needed. In particular, Palfrey and Srivastava (1987) have shown that the core
(their core notion is different than the one adopted in this paper) of an economy
with differential information may not be implementable as a Bayesian Nash equi-

1 See Section 2.4 for a precise definition.
2 See also Ichiishi and Radner (1999) and Ichiishi and Sertel (1998) for related core notions.
3 These points are made formally in Example 3.1 of Section 3 where we refer the reader for further

discussion.
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librium.4 However, despite the negative result of Palfrey and Srivastava (1987), we
demonstrate that indeed our private core notion is implementable as a coalitional
(strong) Bayesian Nash equilibrium, i.e., we can construct a game (mechanism)
whose coalitional Bayesian Nash equilibrium outcomes coincide with the private
core. By focusing on the coalitional implementation of a social choice set, we
reconsider the problem of implementation in differential information economies
studied in a series of papers by Blume and Easley (1987), Jackson (1991), Palfrey
and Srivastava (1986, 1987, 1989), and Postlewaite and Schmeidler (1986, 1987).
To be precise, we say that a mechanism coalitionally implements a social choice set
if any outcome of the social choice set can be achieved as a coalitional Bayesian
Nash equilibrium of a mechanism, and vice versa. We say that a social choice set is
coalitionally implementable if there is a mechanism which coalitionally implements
it.

The main purpose of this paper is to show that a social choice set is coali-
tionally implementable if and only if it is interim individually rational, interim effi-
cient, coalitional Bayesian incentive compatible, and satisfies a coalitional Bayesian
monotonicity condition as well as a closure condition. As an application of this re-
sult, we show that the private core and the private Shapley value of an economy
with differential information are coalitionally implementable. In doing so, we build
on the incomplete information monotonicity condition of Jackson (1991), Palfrey
and Srivastava (1987, 1989), and Postlewaite and Schmeidler (1986), and introduce
new concepts. We define a coalitional form of monotonicity which is appropriate
for our model.

Finally, it should be mentioned that we not only examine the problem of coali-
tional Bayesian implementation for the first time and provide characterization re-
sults, but we also make several other advances. First, we are able to address the
incentive compatibility issue in a coalitional way. This is of great importance be-
cause individually incentive compatible contracts may not be necessarily coalitional
incentive compatible Hence, if one considers multilateral contracts, the individually
incentive compatibility may not be sufficient to guarantee that the contract may be
viable. Secondly, we implement the Shapley value without restricting trade to be
bilateral (e. g., Gul, 1989) or to the transferable utility case (e. g., Winter, 1994).
Hence, we also contribute to the literature of finding ways to rationalize the Shap-
ley value. Thirdly, we offer a new construction of a mechanism which takes into
account coalitional deviations, is not wasteful, and is feasible.

The paper is organized as follows: In Section 2, we describe the model and
characterize the coalitional implementation. In Sections 3 and 4, we show that
the private core and the private value are coalitionally implementable. Concrete
examples are presented in Section 5. Finally, some concluding remarks are collected
in Section 6.

4 That is, one cannot construct a game whose set of Bayesian Nash equilibria coincides with their
core notion.
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2 Coalitional implementation

We begin with some notation and definitions. |A| denotes the number of elements
in the set A. If A is a set, we denote by χA the characteristic function having the
property that χA(ω) is one if ω ∈ A and it is zero otherwise. \ denotes the set
theoretic subtraction.

2.1 Differential information economies

Below we define the notion of an economy with differential information. Let
(Ω,F , µ) be a probability measure space denoting the states of the world, R�

be an Euclidean space denoting the commodity space and I = {1, 2, . . . , N} be
a finite set of agents. For simplicity, we assume that Ω = {ω1, ω2, . . . , ωn} is a
finite set of states.5 An economy with differential information is described by E =
{(Xi, ui,Fi, µ, ei) : i ∈ I}, where

(1) Xi = R�
+ is the consumption set of agent i ∈ I ,

(2) ui : Ω ×R�
+ → R is the state-dependent utility function of agent i ∈ I ,

(3) Fi is a finite measurable partition of Ω denoting the private information of
agent i ∈ I ,

(4) µ is a probability measure on Ω denoting the common prior of each agent,
(5) ei : Ω → R�

++ is an Fi-measurable function6 denoting the state-dependent
initial endowment of agent i ∈ I .

We assume that the structure of the differential information economy is common
knowledge among all agents. We call a set of states an event. An event Ei, which
is an element of the partition Fi, is the largest set of states that agent i cannot
distinguish. Let Ei(ω) denote the event of Fi which contains ω ∈ Ω. This means
that when the true state ω occurs, agent i knows only that the event Ei(ω) occurs.
Assume that µ(ω) > 0 for every ω ∈ Ω.

LetLF be the set ofF-measurable functions which mapsΩ to R�
+,LXi

the set
ofFi-measurable functions which mapsΩ to R�

+, and Li the set ofFi-measurable
functions which maps Ω to R�. The conditional expected utility function of agent
i is a function Vi : Ω × LF → R defined by7

Vi(ω, xi) =
1

µ(Ei(ω))

∑
ω′∈Ei(ω)

ui(ω′, xi(ω′))µ(ω′).

An element x = (xi)i∈I ∈ LX :=
∏

i∈I LXi is called an allocation. The set
of feasible allocations is given by A = {x ∈ LX :

∑
i∈I xi =

∑
i∈I ei}. For each

i, an element zi ∈ Li with zi = xi− ei is a net trade of agent i. The set of feasible
net trades is given by Z = {z ∈ L :

∑
i∈I zi = 0} where L =

∏
i∈I Li. Let

Ẑ = {ẑ ∈ ∏i∈I Yi :
∑

i∈I ẑi = 0}, where Yi = R� for every i ∈ I . Notice that
the initial endowment vector denoted by e = (ei)i∈I is an element of LX .

5 One would allow for infinitely many states and infinitely many commodities. We refer the reader
to Hahn and Yannelis (1995) for the details.

6 A function f : Ω → R is Fi-measurable if f(ω) = f(ω′) for every ω, ω′ ∈ Ei ∈ Fi.
7 One could allow agents to have different priors.
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2.2 Coalitional implementation

A social choice setΓ is a subset of A.A mechanism for an economy with differential
information E is a pair (M,f) where M =

∏
i∈I Mi is the set of messages and

f : M → Ẑ is an outcome function. IfM = F with F =
∏

i∈I Fi, the mechanism
(F, f) is a direct revelation mechanism.A strategy for agent i is a functionσi : Fi →
Mi. We use the following notation: σ = (σi)i∈I , σ(E(ω)) = (σi(Ei(ω)))i∈I ,
f(σ)(ω) = f(σ(E(ω))), E = (Ei)i∈I . For S ⊂ I , σS = (σi)i∈S , σ−S =
(σi)i �∈S ,σS(ES(ω)) = (σi(Ei(ω)))i∈S ,σ−S(E−S(ω)) = (σi(Ei(ω)))i �∈S ,ES =
(Ei)i∈S .

Definition 2.2.1. A strategy vector σ is a Bayesian Nash equilibrium (BNE) for
the mechanism (M,f) if for every i ∈ I , for every ω ∈ Ω, and for every strategy
σ′

i : Fi →Mi,

Vi(ω, ei + fi(σ)) ≥ Vi(ω, ei + fi(σ′
i, σ−i)).

When agents are allowed to form coalitions, one may define a stronger equilibrium
concept.

Definition 2.2.2. A strategy vector σ is a coalitional Bayesian Nash equilibrium
(CBNE) for the mechanism (M,f) if it is not true that there exists a state ω ∈ Ω,
a coalition S ⊂ I , and a strategy σ′

S :
∏

i∈S Fi →
∏

i∈S Mi such that

Vi(ω, ei + fi(σ′
S , σ−S)) > Vi(ω, ei + fi(σ)), ∀i ∈ S.

In this paper, we consider full implementation which requires that the set of equi-
librium outcomes of the mechanism exactly coincide with the given social choice
set. This does not allow the existence of any undesirable equilibrium outcome in
the mechanism.

Definition 2.2.3. A mechanism (M,f) coalitionally implements (c-implements) a
social choice set Γ if

(1) For any x ∈ Γ , there exists a coalitional Bayesian Nash equilibrium σ for
(M,f) such that e+ f(σ) = x,

(2) If σ is a coalitional Bayesian Nash equilibrium for (M,f), then e+f(σ) ∈ Γ .

A social choice set Γ is coalitionally implementable (c-implementable) if there is a
mechanism (M,f) which c-implementsΓ . Given a mechanism (M,f), we assume
that for every i ∈ I and every strategy vector σ, there is a strategy σ′

i for agent i
such that fi(σ′

i, σ−i) = 0. That is, we restrict attention to such mechanisms.
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2.3 Interim efficiency and interim individual rationality

A social choice set Γ is interim efficient (IE) if for every x ∈ Γ , there is no x′ ∈ A
such that for some ω ∈ Ω, Vi(ω, x′

i) > Vi(ω, xi) for every i ∈ I8 Since for each
ω ∈ Ω, ui(ω, ·) is monotone and continuous, so is Vi(ω, ·). Therefore, one can
easily show that the above definition of interim efficiency coincides with that of a
stronger interim efficiency, i.e., a social choice set Γ is interim efficient if for every
x ∈ Γ , there is no x′ ∈ A such that for some ω ∈ Ω, Vi(ω, x′

i) ≥ Vi(ω, xi) for
every i ∈ I with strict inequality for some i ∈ I .

Proposition 2.3.1. If a social choice set Γ is c-implementable by a mechanism
(M,f) and f : M → Ẑ is onto, then it is IE.

Proof. Suppose, by way of contradiction, that (M,f) c-implements Γ but Γ is not
IE. Then, there exists an allocation x = e+ z ∈ Γ such that for some state ω ∈ Ω
and for some allocation x′ = e+ z′ ∈ A,

Vi(ω, ei + z′
i) > Vi(ω, ei + zi),∀i ∈ I.

Since Γ is c-implementable, we have a CBNE σ such that f(σ) = z. Because f
is onto, there is a strategy profile σ′ such that f(σ′(ω)) = z′(ω) ∈ Ẑ for every
ω ∈ Ω. Hence, for every i ∈ I ,

Vi(ω, ei + fi(σ′)) > Vi(ω, ei + fi(σ)),

a contradiction to the fact that σ is a CBNE. ��

A social choice set Γ is interim individually rational (IIR) if for every x ∈ Γ and
for every ω ∈ Ω, Vi(ω, xi) ≥ Vi(ω, ei) holds for every i ∈ I . One can easily
show that interim individual rationality is a necessary condition for coalitional
implementation. The following result is the counterpart of that by Hurwicz et al.
(1984, Proposition, p. 14).

Proposition 2.3.2. If a social choice set Γ is c-implementable, then it is IIR.

Proof. Suppose (M,f) c-implementsΓ butΓ is not IR. Then there isx = e+z ∈ Γ
such that there exists ω ∈ Ω and i ∈ I such that Vi(ω, xi) < Vi(ω, ei). Since Γ
is c-implementable, we have a CBNE σ such that f(σ) = z. Since we assume
that for every i and every σ, there exists σ′

i such that f(σ′
i, σ−i) = 0, we have

Vi(ω, ei + f(σ′
i, σ−i)) > Vi(ω, ei + f(σ)), a contradiction. ��

2.4 Coalitional Bayesian incentive compatibility

When agents have differential information, arbitrary allocations are not generally
viable. In particular, arbitrary allocations might not be incentive compatible in the

8 Note that our interim efficiency notion is different than usual one (e. g., Holmström-Myerson, 1983)
in that we use a weaker quantifier “for some ω ∈ Ω." Due to the private information measurability, our
notion is not so strong as it seems and cannot be directly compared with the usual one. For comparisons
of different efficiency notions in differential information economies, see Hahn and Yannelis (1997).
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sense that groups of agents may misreport their information without other agents
noticing it, and hence achieve different payoffs. We will show that a social choice
set must satisfy an incentive compatibility criterion in order to be coalitionally
implementable.

An allocation x = e + z ∈ A is coalitionally Bayesian incentive compatible
if it is not true that there exists a coalition S and states ω∗, ω′ (ω∗ 	= ω′) with
ω′ ∈ ⋂i �∈S Ei(ω∗) such that

1
µ(Ei(ω∗))

∑
ω∈Ei(ω∗)

ui(ω, ei(ω) + zi(ω′))µ(ω)

>
1

µ(Ei(ω∗))

∑
ω∈Ei(ω∗)

ui(ω, ei(ω) + zi(ω))µ(ω)

for every i ∈ S. In essence, this concept assures that no coalition S can make
redistributions among themselves in states that the complementary coalition cannot
distinguish, and become better off. In other words, if state ω∗ occurs and the agents
in the coalition I \ S cannot distinguish between the state ω∗ and ω′, it must be
the case that the agents of coalition S cannot become better off by announcing ω′

instead of the actually occurred ω∗. The measurability implies that ω′ /∈ Ei(ω∗)
for every agent i in the coalition S.

As in Palfrey and Srivastava (1989), a deception for agent i is a function αi :
Fi → Fi. Let α∗

i : Fi → Fi be the truth-telling strategy for agent i. A deception
vector α = (αi)i∈I is compatible with F if α(ω) :=

⋂
i∈I αi(Ei(ω)) 	= ∅ for

every ω ∈ Ω. In a direct revelation mechanism, a deception is a strategy such that
for every ω ∈ Ω, agent i reports αi(Ei(ω)) instead of Ei(ω). Notice that when
σi : Fi → Mi is a strategy and αi is a deception of agent i, their composition
σi ◦ αi : Fi →Mi is also a strategy of agent i.

We use the following notation:ES(ω) =
⋂

i∈S Ei(ω),E−S(ω) =
⋂

i�∈S Ei(ω),
αS(ω) = ES

α (ω) =
⋂

i∈S αi(Ei(ω)), α−S(ω) = E−S
α (ω) =

⋂
i �∈S αi(Ei(ω)),

(σ ◦ α)S = (σi ◦ αi)i∈S .9 Let z ∈ Z be a feasible net trade. If α(ω) 	= ∅, let
z ◦ α(ω) = z(α(ω)) = z(ω′) for all ω′ ∈ α(ω), otherwise let (z ◦ α)(ω) = 0.
Note that (z ◦ α)i = zi ◦ α and (z ◦ α∗)(ω) = z(ω). Recall from Lemma 1
of Palfrey and Srivastava (1989, p. 120) that for every i ∈ I , if ω′ ∈ Ei(ω), then
α(ω′) ⊂ Ei(α(ω)) for every i ∈ I , whereEi(α(ω)) is the event that containsα(ω).
In view of this Lemma, we immediately conclude that if z ∈ Z, then z ◦ α ∈ Z
for every deception α.

Using the notion of deception, we can define coalitional Bayesian incentive
compatibility as follows.

9 For example, consider the following information structure:

F1 = {{ω1, ω2}, {ω3}}, F2 = {{ω1, ω3}, {ω2}}, F3 = {{ω1}, {ω2}, {ω3}}

Let us define a deception α as follows: for every ω, αi(Ei(ω)) = Ei(ω1), ∀i = 1, 2 and
α3(E3(ω)) = E3(ω). Then for the coalition S = {1, 3}, α∗

S(ω3) = ES(ω3) = {ω3},
α∗

−S(ω3) = E−S(ω3) = {ω1, ω3}, αS(ω3) = ES
α(ω3) = {ω1}.
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Definition 2.4.1. A social choice set Γ is said to be coalitionally Bayesian incentive
compatible (CBIC) if for every x = e+ z ∈ Γ , it is not true that there exists a state
ω ∈ Ω, a coalition S ⊂ I , and a deception αS :

∏
i∈S Fi →

∏
i∈S Fi such that

for every i ∈ S,

Vi(ω, ei + [z ◦ (αS , α
∗
−S)]i) > Vi(ω, xi),

where e+ z ◦ (αS , α
∗
−S) ∈ A.

This notion of incentive compatibility states that it is not possible for any coali-
tion S to become better off by announcing a false event. Observe that if S is a
singleton, then the CBIC condition is reduced to standard Bayesian incentive com-
patibility. It is straightforward to show (seeTheorem 2.4.1 below) that the coalitional
Bayesian incentive compatibility is a necessary condition for coalitional implemen-
tation, i.e., if a social choice set is implementable as a coalitional Bayesian Nash
equilibrium, then it is coalitionally Bayesian incentive compatible. Note that this
is the counterpart of the standard Bayesian Nash implementation results (see, for
example, Jackson, 1991; Palfrey and Srivastava, 1989; Postlewaite and Schmeidler,
1986), i.e., if a social choice set is implementable as a Bayesian Nash equilibrium,
then it is Bayesian incentive compatible.

Theorem 2.4.1. If a social choice set Γ is c-implementable, then it is CBIC.

Proof. Let (M,f) c-implement Γ and x = e + z ∈ Γ . Then there is a CBNE σ∗

with f(σ∗) = z. Now suppose that x is not CBIC, then there exists a state ω ∈ Ω,
a coalition S ⊂ I , and a deception αS :

∏
i∈S Fi →

∏
i∈S Fi such that for every

i ∈ S,
Vi(ω, ei + [z ◦ (αS , α

∗
−S)]i) > Vi(ω, xi),

with e+ [z ◦ (αS , α
∗
−S)] ∈ A, which is equivalent to

Vi(ω, ei + fi((σ∗ ◦ α)S , σ
∗
−S)) > Vi(ω, ei + fi(σ∗)),

a contradiction to the fact that σ∗ is a CBNE for the mechanism (M,f). Hence, Γ
is CBIC. ��

2.5 Coalitional Bayesian monotonicity

In the literature of Nash implementation with complete information, Maskin (1977)
first recognized that a monotonicity condition is necessary. The Maskin-type mono-
tonicity condition states the following: Denote the ex post preference of agent i at
the state ω by*i (ω). If the outcome x is in a social choice set Γ (ω) and x /∈ Γ (ω′)
where ω′ 	= ω, then there exist an agent i and an outcome x′ such that x*i (ω)x′

but x′�i (ω′)x (see also Saijo, 1988; Williams, 1986). In an incomplete informa-
tion setting, Palfrey and Srivastava (1987, 1989) and Postlewaite and Schmeidler
(1986) introduced a Bayesian monotonicity condition, which is an extension of that
of Maskin (1977). Below we introduce a coalitional form of Bayesian monotonicity.

Definition 2.5.1. A social choice set Γ satisfies Bayesian monotonicity (BM) if
for every x = e + z ∈ Γ , whenever e + z ◦ α ∈ A \ Γ for α compatible with
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F , there exists a state ω ∈ Ω, an agent i ∈ I , and a net trade z′ ∈ Z such that
e+ z′ ◦ α ∈ A, e+ z′ ◦ (αi, α

∗
−i) ∈ A,

(1) Vi(ω, ei + (z′ ◦ α)i) > Vi(ω, ei + (z ◦ α)i), and
(2) Vi(ω′, ei + zi) ≥ Vi(ω′, ei + [z′ ◦ (αi, α

∗
−i)]i), ∀ω′ ∈ Ω.

In our context, Palfrey and Srivastava (1989) require instead of (2) above that:

(2′) Vi(ω′, ei + zi) ≥ Vi(ω′, ei + [z′ ◦ (αω
i , α

∗
−i)]i), ∀ω′ ∈ E−i

α (ω),

where αω
i (Ei) = αi(Ei(ω)) for every Ei ∈ Fi. Our definition of Bayesian mono-

tonicity is not directly comparable with those of Palfrey and Srivastava (1989) and
Jackson (1991) because of the private information measurability. But if we impose
the private information measurability on their notions, our definition is the same
with that of Jackson (1991) since his conditions must hold for all deceptions (includ-
ing incompatible ones) but incompatible deceptions here make the first condition
violated. However, our definition is stronger than that of Palfrey and Srivastava
(1989) since they require the second condition to hold only for the states which
the other agents collectively report and for the restricted deceptions. Below we
introduce a coalitional form of the above definition.

Definition 2.5.2. A social choice set Γ satisfies coalitional Bayesian monotonicity
(CBM) if for every x = e+ z ∈ Γ , whenever e+ z ◦ α ∈ A \ Γ for α compatible
with F , there exists a state ω ∈ Ω, a coalition S ⊂ I , and a net trade z′ ∈ Z such
that e+ z′ ◦ α ∈ A, e+ z′ ◦ (αS , α

∗
−S) ∈ A,

(1) ∀i ∈ S, Vi(ω, ei + (z′ ◦ α)i) > Vi(ω, ei + (z ◦ α)i), and
(2) ∃i ∈ S, Vi(ω′, ei + zi) ≥ Vi(ω′, ei + [z′ ◦ (αS , α

∗
−S)]i), ∀ω′ ∈ Ω.

Note that if S is a singleton, the coalitional Bayesian monotonicity is equivalent
to the Bayesian monotonicity. Since {i} is a coalition, the Bayesian monotonicity
implies the coalitional Bayesian monotonicity but not vice versa. This means that
if an allocation is eliminated by the Bayesian Nash equilibrium criterion, then it
must be excluded by the coalitional Bayesian Nash equilibrium criterion. The fol-
lowing theorem and its proof shed light on the implications of coalitional Bayesian
monotonicity to the coalitional implementation. It is the coalitional counterpart of
a result in Palfrey and Srivastava (1989, Theorem 2, p. 124).

Theorem 2.5.1. If a social choice set Γ is c-implementable, then it satisfies the
CBM condition.

Proof. Let (M,f) c-implementΓ andx = e+z ∈ Γ . Then there exists a CBNEσ of
(M,f) withf(σ) = z.Assume that for someα compatible withF , e+z◦α ∈ A\Γ .
Note that f(σ ◦ α) = z ◦ α. Since Γ is c-implementable and e + f(σ ◦ α) =
e+z ◦α ∈ A\Γ , the strategy vector σ ◦α is not a CBNE. Therefore, there exists a
state ω ∈ Ω, a coalition S ⊂ I , and a strategy vector σ′

S ∈
∏

i∈S Fi →
∏

I∈S Mi

such that for every i ∈ S, Vi(ω, ei +fi(σ′
S , (σ ◦α)−S)) > Vi(ω, ei +fi(σ ◦α)).10

10 Since it does not matter which message agent i ∈ S sends at ω′ /∈ Ei(ω), without loss of generality,
we can choose σ′

S such that σ′
i(Ei(ω′)) = σ′

i(Ei(ω)) at every ω′ ∈ Ω for all i ∈ S.
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Now for every i ∈ S, define σi by σi(Ei) = σ′
i(Ei(ω)) for every Ei ∈ Fi

and let z′ = f(σS , σ−S). Then since z′ ◦ α = f(σ′
S , (σ ◦ α)−S), it follows that

Vi(ω, ei + (z′ ◦ α)i) > Vi(ω, ei + (z ◦ α)i) for every i ∈ S. Note that z′ ◦
(αS , α

∗
−S) = f(σ′

S , σ−S). Since σ is a CBNE, the coalition S with the strategy σ′
S

cannot improve upon σ. That is, there exists some i ∈ S such that Vi(ω′, ei +zi) =
Vi(ω′, ei + fi(σ)) ≥ Vi(ω′, ei + fi(σ′

S , σ−S)) = Vi(ω′, ei + [z′ ◦ (αS , α
∗
−S)]i)

for every ω′ ∈ Ω. Hence Γ satisfies the CBM condition. ��

2.6 Closure

Denote by
∧

i∈I Fi the finest common coarsening of {Fi : i ∈ I}, i.e., the finest
partition of Ω which is coarser than Fi for every i ∈ I . An event E is said to be
common knowledge at ω if (

∧
i∈I Fi)(ω) ⊂ E where (

∧
i∈I Fi)(ω) is the event of∧

i∈I Fi containing ω. Notice that (
∧

i∈I Fi)(ω) itself is common knowledge at ω.
We also call

∧
i∈I Fi the common knowledge partition of Ω.

Following Postlewaite and Schmeidler (1986), we define z∗ to be the com-
mon knowledge concatenation of {zk ∈ L : k = 1, . . . ,m} if z∗(ω) =∑m

k=1 z
k(ω)χEk(ω) where {Ek : k = 1, . . . ,m} is the common knowledge

partition ofΩ. Let {zk ∈ L : k = 1, . . . ,m} be a collection of net trades such that
e+ zk ∈ Γ . If the common knowledge concatenation z∗ of {zk : k = 1, . . . ,m}
has the property that e+ z∗ ∈ Γ , then Γ is said to satisfy closure (C). It turns out
that a c-implementable social choice set Γ satisfies the closure condition as Lemma
below indicates.

Lemma 2.6.1. If a social choice set Γ is c-implementable, then it satisfies the
condition C.

Proof. Suppose that (M,f) c-implements Γ . Let {Ek : k = 1, . . . ,m} be the
common knowledge partition and e + zk ∈ Γ for k = 1, . . . ,m. Define z∗ =∑m

k=1 z
k ·χEk .We must show that e+z∗ ∈ Γ . Letσk be a CBNE such that f(σk) =

zk. Then the strategy vector σ defined by σ(E(ω)) =
∑m

k=1 σ
k(E(ω))χEk(ω) is

also a CBNE. For otherwise there exists a state ω ∈ Ω, a coalition S ⊂ I , and
σ′

S :
∏

i∈S Fi →
∏

i∈S Mi such that for every i ∈ S,

Vi(ω, ei + fi(σ′
S , σ−S)) > Vi(ω, ei + fi(σ)),

which is equivalent to

Vi(ω, ei + fi(σ′
S , σ

k
−S)) > Vi(ω, ei + fi(σk)),

where ω ∈ Ek for some k. Then σk is not a CBNE, a contradiction. Furthermore,
f(σ) = z∗. Since Γ is c-implementable, e+ z∗ ∈ Γ . ��

2.7 Sufficient conditions for coalitional implementation

In this section, we will show that interim individual rationality, interim efficiency,
coalitional Bayesian incentive compatibility, coalitional Bayesian monotonicity,
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and closure are sufficient conditions for coalitional implementation. As in the pre-
vious literature, the proof is constructive. It is an extension of the constructions in
Postlewaite and Schmeidler (1986) and Palfrey and Srivastava (1989), which allows
us to consider deviations by coalitions. It should be noted that, as in Hurwicz et
al. (1984), our mechanism is not wasteful and also maintains the feasibility of the
outcomes out of equilibrium.

Before stating the main theorem, it is worth mentioning the case where there
is only one good in the economy. If there is only one good, the measurability of
allocations implies that the set of interim efficient allocations is equivalent to the
set of feasible allocations. In this case, the initial endowment is the unique interim
efficient and interim individually rational allocation (see footnote 15) and it is
clearly c-implementable. It is enough to consider the mechanism (M,f) where
f(σ) = 0 for every strategy profile σ. Hence, in the theorem below it is assumed
that there is more than one good.

Theorem 2.7.1. Assume that N ≥ 3. If a social choice set Γ is IIR, IE, CBIC, and
satisfies CBM and C, then it is c-implementable.

Proof. Consider the message space of agent i, Mi = {mi = (Ei, z
i, ni) ∈

Fi×Z ×N0 : e+ zi ∈ Γ} for every i, where N0 = {0, 1, 2, 3, . . . }. Thus every
agent i reports his/her private information event Ei, net trade profile zi = (zi

j)j∈I

of the economy, and a nonnegative integer ni. In principle, we can divide the mes-
sage space M into two main groups. One is a region where the reported private
information events have nonempty intersection. In this region, the mechanism de-
signer cannot tell whether someone is lying about his/her private information event.
This region consists ofM0,M1,M4, andM5 (see below for the definitions of the
regions and outcome function). In the region M6 where the reported information
events have empty intersection, some agent reports a non-zero integer. In M6, the
mechanism designer knows that some one is lying about his/her private information
event. The outcome function in this region assigns no trade. The remaining regions
are M2 and M3. When all agents report the integer zero and every agent except
agent 1 reports the same net trade configuration, the message belongs to the region
M2. The mechanism makes agent 1 give away his/her reported endowments to the
other agents who will equally share them with each other. In the regionM3, where
all agents report the integer 0 but the message does not belong to eitherM0 orM2,
agent 1 takes the reported endowments of all the other agents.

For the former regions (i.e., M0,M1,M4,M5), more explanation is needed.
First of all, in the region M0, every agent agrees on the net trade profile of the
economy and the integer zero, but reports his/her own private information event.
In this case, the outcome function assigns the agreed net trade at the consented
states. In the region M1(S), agents in the coalition S unanimously report the
net trade profile of the economy and a nonzero integer, but they report their own
private information events. However, the agents in the complementary coalition use
strategies in the same fashion as inM0. The outcome function assigns the net trade
suggested by the coalitionS at the agreed states inM11(S) where some agent in the
coalition S does not prefer his/her proposed net trade to the net trade proposed by
the complementary coalition at their agreed states. The outcome function assigns
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no trade in M12(S). In this case, every agent in the coalition S prefers the net
trade of the coalition at some agreed state of the complementary coalition. In the
region M4(S), agents in the coalition S use strategies without unanimity. In the
complementary coalition, agents send messages in the same fashion as in M0. In
this region, the outcome is determined by the “integer game", i.e., the agent who
has the lowest index among the agents reporting the highest integer receives the
reported endowments of all the other agents. Finally, the regionM5 collects all the
messages which are not in M0, M1, M2, M3, M4 and M6. In particular, there
is no agent who reports the integer zero. As in M4, the outcome is determined by
the integer game, but there is no tie-breaker of choosing the agent with the lowest
index so that the winners (the agents reporting the highest number) evenly share
the sum of the endowments of the losers.

We now formalize the above discussion. Let S be a nonempty proper coalition
of I and let us write mi = (m1

i ,m
2
i ,m

3
i ) for each i ∈ I . For every i ∈ I , define

zi[ES ](ω) = zi(ω′) where ω′ ∈ ES ∩ E−S(ω). Define the sets:

M0 = {m ∈M : mi = (Ei, z, 0),∀i ∈ I;
⋂
i∈I

Ei 	= ∅},

M1(S) = {m ∈M \M0 : mi = (Ei, z
′, n), n 	= 0,∀i ∈ S;mi = (Ei, z, 0),

∀i 	∈ S;
⋂
i∈I

Ei 	= ∅},

M11(S) = {m ∈M1(S) : ∃i ∈ S, Vi(ω, ei + zi) ≥ Vi(ω, ei + z′
i[ES ]),

∀ω ∈ E−S},
M12(S) = M1(S) \M11(S),

M1 =
⋃
S

M1(S),

M2 = {m ∈M : m1 = (E1, z
′, 0);mi = (Ei, z, 0),∀i 	= 1},

M3 = {m ∈M \ (M0 ∪M2) : m3
i = 0,∀i ∈ I},

M4(S) = {m ∈M \
3⋃

k=0

Mk : mi = (Ei, z, 0),∀i /∈ S;
⋂
i∈I

Ei 	= ∅},

M4 =
⋃
S

M4(S),

M5 = {m ∈M \
4⋃

k=0

Mk :
⋂
i∈I

m1
i 	= ∅},

M6 = {m ∈M \M3 :
⋂
i∈I

m1
i = ∅}.
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Define the outcome function f : M → Ẑ as follows: For every i ∈ I ,

fi(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi(ω), ω ∈ ⋂i∈I m
1
i ifm ∈M0,

z′
i(ω), ω ∈ ⋂i∈I m

1
i ifm ∈M11(S) for some S,

0 ifm ∈M12(S) for some S,
e1(ω)/(N − 1), ω ∈ m1

1 ifm ∈M2, i 	= 1,
−e1(ω), ω ∈ m1

1 ifm ∈M2, i = 1,∑
j �=i ej(ωj), ωj ∈ m1

j ifm ∈M3, i = 1,
−ei(ωi), ωi ∈ m1

i ifm ∈M3, i 	= 1,∑
j �=i ej(ω), ω ∈ ⋂i∈I m

1
i ifm ∈M4, i = min{k : k ∈ K},

−ei(ω), ω ∈ ⋂i∈I m
1
i ifm ∈M4, i 	= min{k : k ∈ K},

1
|K|
∑

j /∈K ej(ω), ω ∈ ⋂i∈I m
1
i ifm ∈M5, i ∈ K,

−ei(ω), ω ∈
⋂

i∈I m
1
i ifm ∈M5, i /∈ K,

0 ifm ∈M6,

whereK = {k ∈ I : m3
k = maxi∈I m

3
i }.

Since the mechanism is common knowledge, every agent knows that his/her
(implicitly) reported endowment can be confiscated. Therefore, it is must be the
case that when each agent reports his/her private information (and implicitly reports
his/her initial endowment), he/she cannot overreport his/her initial endowment. That
is, for every i ∈ I and every αi, ei(ω′) ≤ ei(ω) for every ω′ ∈ m1

i = αi(Ei(ω))
when ω occurs. Since ei(ω) + zj

i (ω
′) ≥ ei(ω′) + zj

i (ω
′) ≥ 0 for ω′ ∈ ⋂i∈I m

1
i

with m ∈ M0 ∪M1(S) for some S and for every i, j ∈ I when state ω occurs,
it follows that the allocations induced by the mechanism are always positive, i.e.,
ei(ω)+fi(m) ≥ 0 for every i, everyω and everym. Furthermore,

∑
i∈i fi(m) = 0

for everym ∈M . Hence the mechanism is feasible.
By Lemma 2.7.2 below, for every x = e + z ∈ Γ , we have a CBNE σ for

(M,f) such that f(σ) = z. By Lemma 3.7.4 below, we conclude that for every
CBNE strategy σ for (M,f), e+ f(σ) ∈ Γ . Hence Γ is c-implementable. ��

Lemma 2.7.2 below establishes that the mechanism of Theorem 2.7.1 satisfies the
first requirement for coalitional implementation (condition (1) of Definition 2.2.3).
Lemma 2.7.4 below shows that the mechanism of Theorem 2.7.1 satisfies the second
requirement for coalitional implementation (condition (2) of Definition 2.2.3).

Lemma 2.7.2. For every x = e + z ∈ Γ , let σ be such that σi(Ei(ω)) =
(Ei(ω), z, 0) for all i and for all ω. Then σ is a CBNE for the mechanism (M,f)
and f(σ) = z.

Proof. See Appendix. ��

For the proof of Lemma 2.7.4 we need a result (Lemma 2.7.3) which guarantees that
no CBNE message lies outside of the region M0. Indeed, if a message lies inside
the regionM0, there is no profitable coalitional deviation. Moreover, if a message
lies outside of the regionM0, there is always a profitable coalitional deviation.

Lemma 2.7.3. If σ is a CBNE for (M,f), then σ(E(ω)) ∈M0 for all ω ∈ Ω.

Proof. See Appendix. ��
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Although all agents do not truthfully report their private information events, the
equilibrium still belongs to the social choice set as long as they agree on the net
trade configuration and the integer zero.

Lemma 2.7.4. If σ is a CBNE for (M,f), then e+ f(σ) ∈ Γ .

Proof. See Appendix. ��

Remark 2.7.1. If there is only one agent in the economy, the initial endowment
is the unique feasible allocation, which is trivially c-implementable. Assume that
N = 2 and that the initial endowment is not interim efficient. If a social choice
set Γ is IR, IE, CBIC, and satisfies CBM and C, then it is c-implementable. The
proof of Theorem 2.7.1 can be modified as follows. The mechanism f assigns the
same net trade as before except onM2, where f assigns no trade. Thus, there is no
profitable deviation from M0 to M2 and there is a profitable deviation from M2

to M0, since the initial endowment is not Pareto optimal. Note that M3 = ∅. The
other arguments continue to hold.

Remark 2.7.2. It should be noted that for the complete information case Dutta
and Sen (1991) provided a strong Nash implementation theorem, which is differ-
ent than ours. In particular, they do not require individual rationality. In economic
environments, they identified only the sufficiency conditions for strong Nash imple-
mentation. One can substitute the strong Maskin monotonicity condition with the
individual rationality condition and the coalitional monotonicity condition (which
is weaker than the strong Maskin monotonicity) to get a full charaterization result
for strong Nash implementation.

3 Coalitional implementation of the private core

The core notion defined below (see also Yannelis, 1991) does not necessarily allow
agents in a coalition to share their private information. In fact, allowing agents
in a coalition to use either their common knowledge information or their pooled
information, one may face serious problems as Example 3.1 will indicate (see also
Koutsougeras and Yannelis, 1993, Section 5). More importantly, however, we will
show in Section 5 that a core notion which allows for pooling of information may
not be c-implementable.

Definition 3.1. An allocation x ∈ A is an (ex ante) private core allocation of the
economy with differential information E if it is not true that there exists a coalition
S ⊂ I and (yi)i∈S ∈

∏
i∈S LXi such that

(1)
∑

i∈S yi =
∑

i∈S ei, and
(2) for every i ∈ S,∑

ω∈Ω

ui(ω, yi(ω))µ(ω) >
∑
ω∈Ω

ui(ω, xi(ω))µ(ω).

The (ex ante) private core is the set of all ex ante private core allocations for E .
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Definition 3.2. An allocation x ∈ A is an (interim) private core allocation of the
economy with differential information E if it is not true that there exists a state
ω ∈ Ω, a coalition S ⊂ I , and (yi)i∈S ∈

∏
i∈S LXi

such that

(1)
∑

i∈S yi =
∑

i∈S ei, and
(2) for every i ∈ S, Vi(ω, yi) > Vi(ω, xi).

The (interim) private core is the set of all interim private core allocations for E and
it is denoted by C(E).

The only difference between the two above concepts is that agents in the ex ante
private core use their ex ante expected utility functions and in the interim private
core, their interim expected utility functions. The example below will illustrate
that despite the fact that they have the same properties, i. e., they are coalitional
incentive compatible and they take into account the informational superiority of an
individual, they may be different.

Example 3.1. Consider an economy with differential information with three agents,
one good, and three states (i.e., Ω = {ω1, ω2, ω3}) with equal probability (i.e.,
µ({ω}) = 1/3 for every ω ∈ Ω), where utility functions, initial endowment, and
private information sets are given as follows:

u1(ω, x) =
√
x, e1 = (10, 10, 0), F1 = {{ω1, ω2}, {ω3}},

u2(ω, x) =
√
x, e2 = (10, 0, 10), F2 = {{ω1, ω3}, {ω2}},

u3(ω, x) =
√
x, e3 = (0, 0, 0), F3 = {{ω1}, {ω2}, {ω3}}.

It can be shown that the allocation x∗ = (x1, x2, x3) is in the ex ante private core
where

x∗
1 = (8, 8, 2), x∗

2 = (8, 2, 8), x∗
3 = (4, 0, 0). (3.1)

In the above example, agents 1 and 2 cannot undertake any risk sharing among
themselves (the trades between agents 1 and 2 are state independent and these
trades do not make them better off) without agent 3. Since agent 3 has superior
information, she acts as an intermediary who executes the correct trades (makes a
Pareto improvement) and as a consequence gets rewarded for this service.

It should be noted that the allocation (3.1) in the ex ante private core is en-
tirely different than that of any traditional rational expectations equilibrium (REE).
Indeed, in any REE, agent 3 gets zero because his/her budget set is zero in each
state. However, in any ex ante private core allocation, agent 3 gets positive con-
sumption11 in state ω1. It follows that agent 3 plays the role of an intermediary
who makes a Pareto improvement for the economy as a whole and he/she gets
rewarded for this. It is important to note that if the private information of agent

11 This can be proved as follows: Suppose not and let x be an ex ante private core allocation such that
agent 3’s consumption at state ω1 is zero. Since x ∈ A, x3 = (0, 0, 0) and x1 − e1 = −(x2 − e2).
Since xi − ei is Fi-measurable for i = 1, 2, xi − ei is (F1 ∧ F2)-measurable for i = 1, 2. Note that
F1 ∧ F2 = {{ω1, ω2, ω3}}. Therefore, x1 − e1 = (c, c, c) and x2 − e2 = (−c, −c, −c) for some
c ∈ R. If c < 0, agent 1 blocks x since x1 < e1. If c > 0, agent 2 blocks x for the same reason. Thus
x = e. However, the grand coalition with the allocation given in the above Example blocks x = e, a
contradiction.
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3 is F ′
3 = {{ω1, ω2, ω3}}, then agent 3 gets (0, 0, 0) and in this case the initial

endowment is the unique ex ante private core allocation. Hence, contrary to the
REE,12 changes in the private information of an agent have effects on the resulting
ex ante private core.13

Suppose now that agents 1 and 2 pool their information to obtain the allocation:

x∗
1 = x∗

2 = (10, 5, 5), x∗
3 = (0, 0, 0).

However, such a contract may not be viable because the above allocation is not
incentive compatible. Simply notice that agent 1 becomes better off by reporting
stateω3 if stateω1 occurs and agent 2 cannot distinguishω1 fromω3. Using the same
reasoning, one can easily see that agent 2 has an incentive to reportω2 whenever state
ω1 occurs and agent 1 cannot detect his because he/she is not able to distinguish ω1
from ω2. Hence, pooling of information violates coalitional incentive compatibility
(see also Example 5.1 in Section 5).

Finally, notice that the initial endowment is the unique interim private core
allocation14 and it is not in the ex ante private core since the initial endowment is
blocked by the grand coalition with the allocation x∗ given by (3.1).

In the next example, we have an interim private core allocation which is not the
initial endowment. Hence, the example below indicates that an interim private core
allocation exists.

Example 3.2. Consider an economy with differential information with two agents,
two goods (i.e., x1, x2), and three equally probable states, where utility functions,
random initial endowments, and private information structures are given as follows:

u1(ω, x1, x2) =
√
x1x2, ∀ω e1 = ((3, 1), (3, 1), (5, 3)), F1 = {{ω1, ω2}, {ω3}},

u2(ω, x1, x2) =
√
x1x2, ∀ω, e2 = ((1, 3), (3, 5), (3, 5)), F2 = {{ω1}, {ω2, ω3}}.

The allocation

x∗ = (x∗
1, x

∗
2) = (((2, 2), (2, 2), (4, 4)), ((2, 2), (4, 4), (4, 4)))

is the unique interim private core allocation which is different from the initial
endowment.

12 Notice that by changing the private information of agent 3 from F3 = {{ω1}, {ω2}, {ω3}} to
F ′

3 = {{ω1, ω2, ω3}}, the REE does not affect the consumption of agent 3, i.e., he/she always gets
zero since his/her budget set is zero in every state.

13 Similar examples can be constructed for the interim private core, the ex ante private value, and the
interim private value (see also Krasa and Yannelis, 1994, Section 4).

14 In an economy with one good per state, i.e., the interim private core is the initial endowment. First,
notice that the initial endowment is in the interim private core. Otherwise, there exists a state ω, a
coalition S, and (yi)i∈S such that

∑
i∈S yi =

∑
i∈S ei and Vi(ω, yi) > Vi(ω, ei) for every i ∈ S.

Since there is only one good, by monotonicity and measurability, we have yi(ω) > ei(ω) for every
i ∈ S, a contradiction. If there is another interim private core allocation x �= e, the feasibility implies
that there is an agent i ∈ I such that ei(ω) > xi(ω) for some ω ∈ Ω. Since there is only one good,
Vi(ω, ei) > Vi(ω, xi) by measurability and monotonicity. This implies that this agent is a blocking
coalition against x at ω, a contradiction.
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In order to show that the interim private core is c-implementable, we will need
some Lemmata.

Lemma 3.1. The interim private core C(E) is IIR and IE.

Proof. It is immediate from the definition. ��
Lemma 3.2. The interim private core C(E) satisfies the CBM condition.

Proof. Let x = e + z ∈ C(E) and e + z ◦ α ∈ A \ C(E). We must show that
there exists a state ω∗ ∈ Ω, a coalition S ⊂ I , and a net trade z′ ∈ Z such that
e+ z′ ◦ α ∈ A, e+ z′ ◦ (αS , α

∗
−S) ∈ A,

(a) for every i ∈ S, Vi(ω∗, ei + (z′ ◦ α)i) > Vi(ω∗, ei + (z ◦ α)i), and
(b) for some i ∈ S, Vi(ω′, ei+zi) ≥ Vi(ω′, ei+[z′◦(αS , α

∗
−S)]i) for allω′ ∈ Ω.

Since e + z ◦ α /∈ C(E), there exists a state ω∗ ∈ Ω, a coalition S ⊂ I , and
z∗ ∈ Z such that

∑
i∈S z

∗
i = 0 and for every i ∈ S,

Vi(ω∗, ei + z∗
i ) > Vi(ω∗, ei + (z ◦ α)i). (3.2)

Now define z′ = (z′
i)i∈I ∈ Z by

z′
i(ω

′) =
{
z∗

i (ω∗) if ω′ ∈ (
∧

i∈I Fi)(α(ω∗)),
0 otherwise.

Then e+ z′ ◦α ∈ A and (z′ ◦α)i(ω∗) = z∗
i (ω∗) for every i ∈ S. Thus, it follows

from (3.2) that for every i ∈ S,

Vi(ω∗, ei + (z′ ◦ α)i) > Vi(ω∗, ei + (z ◦ α)i).

Thus, condition (a) holds.
Also note that for every ω′ ∈ Ω,

[z′ ◦ (αS , α
∗
−S)](ω′) =

{
z∗(ω∗), if ES

α (ω′) ⊂ (
∧

i∈I Fi)(α(ω∗)),
0, otherwise,

which implies that e + z′ ◦ (αS , α
∗
−S) ∈ A. Since e + z ∈ C(E), it must be the

case that for some i ∈ S,

Vi(ω′, ei + zi) ≥ Vi(ω′, ei + [z′ ◦ (αS , α
∗
−S)]i), ∀ω′ ∈ Ω.15 (3.3)

Hence condition (b) holds, and this completes the proof of the Lemma. ��
Lemma 3.3. The interim private core C(E) is CBIC.

Proof. Let x = e+ z ∈ C(E) and suppose that x is not CBIC. Then there exists a
state ω ∈ Ω, a coalition S, and a deception αS :

∏
i∈S Fi →

∏
i∈S Fi such that

(αS , α
∗
−S) is compatible with F and for every i ∈ S,

Vi(ω, ei + [z ◦ (αS , α
∗
−S)]i) > Vi(ω, xi),

15 For if (3.3) does not hold, then there is a state ω ∈ Ω such that Vi(ω, ei + [z′ ◦ (αS , α∗
−S)]i) >

Vi(ω, ei + zi) for every i ∈ I , a contradiction to the fact that e + z ∈ C(E).
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where e + z ◦ (αS , α
∗
−S) ∈ A. Since for every ω′ ∈ ES

α (ω)
⋂
E−S(ω) it holds

that zi(ω′) = zi(ω), i.e., [(z ◦ (αS , α
∗
−S)]i(ω) = zi(ω) for every i /∈ S, it must be

the case that for every i /∈ S,

Vi(ω, ei + [z ◦ (αS , α
∗
−S)]i) = Vi(ω, xi). (3.4)

Since Vi(ω, ·) is continuous for every i ∈ I , there exists an ε > 0 such that for
every i ∈ S,

Vi(ω, ei + [z ◦ (αS , α
∗
−S)]i − ε · 1) > Vi(ω, xi). (3.5)

Now define x′ = (x′
i)i∈I by

x′
i =

{
ei + [z ◦ (αS , α

∗
−S)]i − ε · 1 if i ∈ S,

ei + [z ◦ (αS , α
∗
−S)]i + |S|

|I\S| ε · 1 if i /∈ S.

Note thatx′
i isFi-measurable andx′ is a feasible allocation since e+z◦(αS , α

∗
−S) ∈

A. However, (3.5) implies that Vi(ω, x′
i) > Vi(ω, xi) for every i ∈ S. Because

Vi(ω, ·) is monotone for every i ∈ I , (3.4) implies that Vi(ω, x′
i) > Vi(ω, xi) for

every i /∈ S, a contradiction to the fact that x ∈ C(E). ��

Lemma 3.4. The interim private core C(E) satisfies the condition C.

Proof. Let {Ek : k = 1, . . . ,m} be the common knowledge partition and e +
zk ∈ C(E) for k = 1, . . . ,m. Define z∗ =

∑m
i=1 z

k · χEk . Suppose, by way of
contradiction, that e+ z∗ /∈ C(E). Then there exists a state ω, a coalition S ⊂ I ,
and xS ∈

∏
i∈S LXi

such that
∑

i∈S xi =
∑

i∈S ei and for every i ∈ S,

Vi(ω, xi) > Vi(ω, ei + z∗
i ),

which is equivalent to

Vi(ω, xi) > Vi(ω, ei + zk
i ),

where ω ∈ Ek for some k. Then e+ zk is not an interim private core allocation, a
contradiction. ��

Theorem 3.5. If N ≥ 3, the interim private core C(E) is c-implementable.

Proof. By Lemmata 3.1 - 3.4, the interim private core C(E) is IIR, IE, CBIC, and
satisfies CBM and C. Thus, by virtue of Theorem 2.7.1, we can conclude that the
interim private core is c-implementable. ��

Note that when there are two agents in the economy and the initial endowment is
not interim efficient, the interim private core C(E) is implementable.
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4 Coalitional implementation of the private value

As is the case with the private core notions defined above, the private value (see also
Krasa and Yannelis, 1994) does not necessarily allow agents to share their private
information. The problems that arise whenever coalitions of agents either pool their
information or use their common knowledge information are discussed in Krasa
and Yannelis (1994, 1996).

We introduce an interim version of a private value allocation. For each economy
with differential information E , for each state ω ∈ Ω, and for each set of weights
{λi(ω) : i ∈ I}, we can now associate a TU-game G = (I,W ) according to the
following rule: For each ω ∈ Ω and each S ⊂ I , let

W (ω, S) = max

{∑
i∈S

λi(ω)Vi(ω, xi) :
∑
i∈S

xi =
∑
i∈S

ei;xi ∈ LXi

}
. (4.1)

The interim Shapley value of the TU-game G = (I,W ) is a rule which assigns to
each agent i a payoff Ψi(ω,W ) at each state ω, which is given by:

Ψi(ω,W ) =
∑

S⊂I,S�i

(|S| − 1)!(N − |S|)!
N !

[W (ω, S)−W (ω, S \ {i})].

Note that the interim Shapley value is individually rational and Pareto optimal, i.e.,
Ψ(ω,W ) ≥W (ω, {i}) for everyω ∈ Ω and for every i ∈ I , and

∑
i∈I Ψ(ω,W ) =

W (ω, I) for every ω.

Definition 4.1. An allocation x ∈ A is an (interim) private value allocation of the
economy with differential information E if for every ω ∈ Ω, there exist λ(ω) =
(λi(ω))i∈I ∈ RN

+ \ {0} such that for each i ∈ I ,

λi(ω)Vi(ω, xi) = Ψi(ω,W ),

where Ψi(ω,W ) is the interim Shapley value derived from the TU-game G =
(I,W ) defined by (4.1). The interim private value is the set of all interim private
value allocations for E and it is denoted by V (E).

Theorem 4.1. IfN ≥ 3andλ! 0, then the interim valueV (E) is c-implementable.

Proof. Since the interim private value V (E) is IIR, IE, CBIC, and satisfies CBM
and C (see Hahn and Yannelis, 1995, for the details), Theorem 2.7.1 implies that
the interim private value is c-implementable. ��

Similarly with the interim private core, if there are two agents in the economy and
the initial endowment is not interim efficient, the interim value V (E) with λ! 0
is c-implementable.
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5 Examples of non-c-implementation

According to Palfreya and Srivastava (1987), the rational expectations equilibrium
(REE) social choice set is Bayesian Nash implementable but neither the interim
efficient social choice set nor the interim core is Bayesian Nash implementable
because neither one satisfies the Bayesian monotonicity condition. Note that Palfrey
and Srivastava define an interim efficiency notion without information sharing at
all and the initial endowment of each agent ei is not Fi-measurable. Hence their
core notion is quite different than ours and one can easily show that it is not c-
implementable. Also, one can construct examples to show that the interim private
core is not Bayesian Nash implementable. We show below that the interim fine core
(which allows for information pooling within a coalition) is not c-implementable.

Definition 5.1. A feasible allocation xwith xi being
∨

i∈I Fi-measurable for every
i ∈ I is an interim fine core allocation of the economy with differential information
E if it is not true that there exist a state ω ∈ Ω, a coalition S ⊂ I , and (yi)i∈S

such that yi is
∨

i∈S Fi-measurable for every i ∈ S,
∑

i∈S yi =
∑

i∈S ei, and
Vi(ω, yi) > Vi(ω, xi) for every i ∈ S.

The above core concept is different from the (interim) private core in that agents in a
coalition now are allowed to pool their information instead of making redistributions
based on their individual private information only (as the private core requires). This
notion is analogous to fine core notion of Wilson (1978) (see also Srivastava, 1984a,
b; Yannelis, 1991). The interim fine core and the interim fine value need not be c-
implementable because they violate the CBIC condition as the following example
indicates.

Example 5.1. Consider an economy with differential information with three agents,
two goods (i.e., x1, x2), and three equally probable states, where utility functions,
random initial endowments, and private information sets are given as follows:

u1(ω, x1, x2) =
√
x1x2, e1 = ((7, 1), (7, 1), (4, 1)), F1 = {{ω1, ω2}, {ω3}},

u2(ω, x1, x2) =
√
x1x2, e2 = ((7, 1), (7, 1), (4, 1)), F2 = {{ω1, ω2}, {ω3}},

u3(ω, x1, x2) =
√
x1x2, e3 = ((1, 10), (1, 7), (1, 7)), F3 = {{ω1}, {ω2, ω3}}.

The allocation x∗ = (x∗
1, x

∗
2, x

∗
3) with

x∗
1 = ((33/8, 33/10), (13/3, 13/5), (5/2, 5/2))
x∗

2 = ((33/8, 33/10), (13/3, 13/5), (5/2, 5/2))
x∗

3 = ((54/8, 54/10), (19/3, 19/5), (4, 4))

is an interim fine core allocation. But it is not CBIC. To see this, suppose that ω2 is
realized and let z∗ = x∗ − e. Consider the coalition S = {1, 2} and the deception
αi(Ei(ω)) = {ω3} for every ω ∈ Ω and for i ∈ S. Since

Vi(ω2, ei + [z∗ ◦ (αS , α
∗
−S)]i) > Vi(ω2, x

∗
i )
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for i ∈ S, it follows that x∗ is not CBIC. Therefore, the interim fine core is not
c-implementable.16

We will show that the fine core allocation in Example 5.1 is also a fully re-
vealing REE allocation17 which in turn violates the CBIC condition and therefore
it is not c-implementable: Consider the same economy and the same allocation
x∗ as in Example 5.1. The price-allocation pair (p∗, x∗) = (p∗, x∗

1, x
∗
2, x

∗
3) with

p∗ = ((4/5, 1), (3/5, 1), (1, 1)) constitutes a fully revealing rational expectations
equilibrium. However, since the allocation x∗ is not CBIC as it is shown in Exam-
ple 5.1, we can conclude that the set of REE allocations is not c-implementable. It
should be noted that one cannot c-implement the ex ante private core because such
allocation rules are not necessarily interim individually rational.

Finally, one may wonder as to whether or not an extension of the coalition-proof
Nash equilibrium concept to differential information economies can be adopted
here instead of the coalitional Bayesian Nash equilibrium concept. The answer is
no because such a concept will yield outcomes which are not necessarily interim
efficient.

6 Conclusions

We introduced the idea of coalitional Bayesian implementation with the main objec-
tive to examine solution concepts that the standard Bayesian Nash implementation
literature does not cover. In particular, we presented necessary and sufficient condi-
tions for the coalitional implementation of a social choice set, and as a consequence
of this, we showed that the private core and private value are indeed coalitionally
implementable.

It is important to note that our c-implementation results do not rule out informa-
tion asymmetries, i.e., an agent who has superior information that is useful to the
rest of the economy will be rewarded. This is in sharp contrast with the Bayesian
Nash implementation results of the rational expectations equilibrium, where the
stringent informational assumptions rule out information asymmetries.

It should be emphasized that the idea of coalitional Bayesian implementation
is quite natural for resource allocation concepts because the outcomes that the
game generates are always interim efficient, contrary to the standard Bayesian Nash
implementation. Moreover, the assumptions needed for the c-implementation of our
solution concepts are quite attractive from a normative viewpoint.

Finally our results support the conjectures and findings of Wilson (1978), Sri-
vastava (1984a, b), Yannelis (1991), Krasa and Yannelis (1994, 1996), and Kout-
sougeras andYannelis (1993). Specifically, these authors note that some information
sharing (e. g., pooling of information) may not be incentive compatible and may

16 A similar example can be constructed for the interim private value allocation (see Hahn andYannelis
(1995) for the details).

17 When prices and allocations are (
∨

i∈I Fi)-measurable, one can define the notion of a (
∨

i∈I Fi)-
revealing REE and it can be easily checked (the proof is similar to that of Debreu-Scarf) that the set of
(
∨

i∈I Fi)-revealing REE allocations is contained in the fine core. A related result has been proved by
Srivastava (1984b).
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also rule out the information superiority of an individual. Our examples in Section
6 indicate that indeed such core and value notions which allow for pooling infor-
mation need not be c-implementable (as is the case for the REE). In that sense, our
main c-implementation theorem is especially useful, because it not only delineates
a set of reasonable and mild conditions which are necessary and sufficient for c-
implementation, but it also enables us to conclude that the private core and private
value do provide a successful alternative to the (Walrasian) rational expectation
equilibrium.

Appendix

Proof of Lemma 2.7.2. First notice that σ(E(ω)) ∈M0 for every ω ∈ Ω. Observe
that f(σ) = z by the definition of f . Consider an arbitrary state ω ∈ Ω. Let S be a
coalition deviating from the strategy vector σ and denote the deviating strategy of S
by σ′

S with σ′
i(Ei(ω)) 	= σi(Ei(ω)) and σ′

i(Ei(ω′)) = σi(Ei(ω′)),∀ω′ /∈ Ei(ω)
for every i ∈ S. Let σ′ = (σ′

S , σ−S).
First, consider a proper coalition S. Then σ′(E(ω)) ∈ [

⋃4
k=0M

k] ∪ M6.
Notice that it is impossible that σ′(E(ω)) ∈ M5 because no agent reports the
integer zero in M5. If σ′(E(ω)) ∈ M0, CBIC of z implies that the coalition S
cannot misreport to become better off. If σ′(E(ω)) ∈M11(S), the definition of f
and the property of Vi on this region implies that there exists at least one agent in the
coalition S who cannot become better off by deviating. If σ′(E(ω)) ∈M12(S), or
σ′(E(ω)) ∈M6, the new outcome is no trade and IIR of e+z implies that no agent
in the coalition S can become better off. If σ′(E(ω)) ∈ M2, where only agent 1
deviates, it is clear that agent 1 becomes worse off. Suppose that σ′(E(ω)) ∈M3,
then by the definition of f , at least one agent is worse off since every agent (except
agent 1) transfers his/her reported endowment to agent 1. If σ′(E(ω)) ∈ M4(S)
with |S| ≥ 2, then IIR of z and the monotonicity of preferences would imply that
an agent in the coalition S who is not the winner of the “integer game" would be
worse off.

Let S be a grand coalition, i.e., S = I , σ′(E(ω)) ∈ ⋃6
k=0M

k. The interim
efficiency of e + z implies that every agent in the grand coalition cannot become
better off.

Since no coalitional deviation from σ is profitable, we conclude that σ is a
CBNE and f(σ) = z. ��
In the argument below, we set σi(Ei(ω)) = (σ1

i (Ei(ω)), σ2
i (Ei(ω)), σ3

i (Ei(ω))).

Proof of Lemma 2.7.3. Suppose, by way of contradiction, that σ(E(ω)) 	∈M0 for
some ω. Let us define σ̃S to be a deviation from σS by the coalition S as follows:
For every i ∈ S,

σ̃i(Ei(ω)) = (σ1
i (Ei(ω)), σ2

i (Ei(ω)), n∗),
σ̃i(Ei(ω′)) = σi(Ei(ω′)),∀ω′ /∈ Ei(ω),

where n∗ = 1 + max{σ3
i (Ei(ω)) : i ∈ I}. Let σ̃ = (σ̃S , σ−S). Then there are the

following cases to consider:
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(1) Suppose that σ(E(ω)) ∈ M11(S) for some S. Let σi(Ei(ω)) = (Ei, z
′, n)

for every i ∈ S. Observe that 0 ≤ ei + z′
i ≤

∑
i∈I ei for every i ∈ I .

Consider any ω′ ∈ ⋂i∈I σ
1
i (Ei(ω)). Then z′

i(ω
′) <

∑
j �=i ej(ω

′) for every
i ∈ I . For, otherwise there is an agent k in I such that z′

k(ω′) =
∑

i �=k ei(ω
′).

By feasibility,
∑

i�=k z
′
i(ω

′) = −∑i�=k ei(ω). Since z′
i(ω

′) + ei(ω′) ≥ 0
for every i 	= k, it follows that z′

i(ω
′) = −ei(ω′) + 0 for every i 	= k, a

contradiction to the IIR of z′. Hence, some agent i in I \ S will deviate to
M4∪M5 using the strategy σ̃i to win the integer game and become better off.

(2) Suppose that σ(E(ω)) ∈ M12(S) for some S. Note that
∑

j �=i ej(ω
′) ! 0

for every i ∈ I and every ω′ ∈ ⋂j∈I σ
1
j (Ej(ω)). Some agent i in I \ S

will deviate to M4 ∪M5 by using strategy σ̃i. For he/she who gets −ei(ω′)
at σ would become the winner of the integer game, obtain

∑
j �=i ej(ω

′), and
become better off, since the new message σ̃(E(ω)) would belong toM4∪M5.

(3) Suppose that σ(E(ω)) ∈M2. If
⋂

i∈I Ei 	= ∅, then an agent i ∈ I \ {1} will
deviate using the strategy σ̃i. Since the new message σ̃(E(ω)) belongs toM4,
he/she wins the integer game and becomes better off. If

⋂
i∈I Ei = ∅, agent 1

will deviate toM6 using the strategy σ̃1 and get no trade.
(4) Suppose that σ(E(ω)) = (Ei, z

i, 0)i∈I ∈ M3. We first consider the case
where

⋂
i∈I Ei 	= ∅. An agent i ∈ I \ {1} will deviate using the strategy σ̃i

to become better off. Since the new message σ̃(E(ω)) lies in M4 and he/she
wins the integer game, he/she becomes better off. If

⋂
i∈I Ei = ∅, an agent

i ∈ I \ {1} will deviate using the strategy σ̃i to become better off. Since the
new message σ̃(E(ω)) lies inM6 and he/she obtains no trade, he/she becomes
better off.

(5) If σ(E(ω)) ∈ M4 ∪M5, an agent i who is one of the losers in the integer
game will use the strategy σ̃i and become better off. Since the new message
σ̃(E(ω)) lies in M4 ∪M5, agent i becomes the winner of the integer game
and gets

∑
j �=i ej(ω

′) ! −ei(ω′) for every ω′ ∈ ⋂j∈I σ
1
j (Ej(ω)).

(6) Suppose that σ(E(ω)) = (Ei, z
i, ni)i∈I ∈ M6. Fix any agent k such that

σk(Ek(ω)) = (Ek, z
k, nk) with nk 	= 0. Then the coalition S = I \ {k} will

deviate by using the strategy σ̄S such that σ̄i(Ei(ω)) = (Ēi, z̄
i, nk + 1)

and σ̄i(Ei(ω′)) = σi(Ei(ω′)),∀ω′ /∈ Ei(ω) for every i ∈ S, where
Ek ∩ [

⋂
i�=k Ēi] 	= ∅ and z̄i 	= z̄j for some i, j ∈ I \ {k}. Since the new

message σ̄(E(ω)) with σ̄ = (σ̄S , σ−S) lies inM5, the agent k, who is not the
winner of the integer game, gives to the coalition S his/her reported endow-
ment ek(ω′) ! 0 with ω′ ∈ Ek ∩ [

⋂
i�=k Ēi], which all agents in the coalition

S evenly share. Therefore, every agent in the coalition S becomes better off.

From (1) through (6), it follows that σ is not a CBNE for (M,f), a contradiction.
��

Proof of Lemma 2.7.4. By Lemma 2.7.3, σ(E(ω)) ∈ M0 for all ω. Since Γ
satisfies C, we get σ2

i (Ei(ω)) = z∗ with e + z∗ ∈ Γ for every i ∈ I and for
every ω ∈ Ω. Define αi(Ei(ω)) = σ1

i (Ei(ω)) for every i ∈ I . Then it follows
from the definition of the mechanism that f(σ) = z∗ ◦ α. We have to show that
e+f(σ) = e+z∗◦α ∈ Γ . Suppose, by way of contradiction, that e+z∗◦α ∈ A\Γ .
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By CBM, there exists a state ω∗ ∈ Ω, a coalition S ⊂ I , and z′ ∈ Z such that
e+ z′ ◦ α ∈ A, e+ z′ ◦ (αS , α

∗
−S) ∈ A,

(1) ∀i ∈ S, Vi(ω∗, ei + (z′ ◦ α)i) > Vi(ω∗, ei + (z∗ ◦ α)i), and
(2) ∃i ∈ S, Vi(ω′, ei + z∗

i ) ≥ Vi(ω′, ei + [z′ ◦ (αS , α
∗
−S)]i), ∀ ω′ ∈ Ω.

If they use the strategyσ′
S withσ′

i(Ei(ω∗)) = (αi(Ei(ω∗)), z′, 1) andσ′
i(Ei(ω)) =

σi(Ei(ω)),∀ω /∈ Ei(ω∗) for every i ∈ S, by (2) they move from M0 to M11(S).
Furthermore, since f(σ′

S , σ−S) = z′◦α, (1) implies that every agent i ∈ S becomes
better off atω∗, i.e., Vi(ω∗, ei+fi(σ′

S , σ−S)) > Vi(ω∗, ei+fi(σ)), a contradiction
to the fact that σ is a CBNE for (M,f). ��
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1 Introduction

An economy with differential information consists of a finite set of agents each
of which is characterized by a random utility function, a random consumption
set, random initial endowments, a private information set and a prior probability
distribution. The private core of a differential information economy (see Yannelis
(1991)) is the set of all state-wise feasible and private information measurable allo-
cations which cannot be dominated, in terms of expected utility, by any coalition’s
state-wise feasible and private information measurable net trades.

The private core is not susceptible to the criticism of the traditional rational
expectations equilibrium (REE). In particular, the REE does not provide an expla-
nation as to how prices reflect the information asymmetries in the economy. On the
contrary the private core not only takes into account the information asymmetries
but also rewards agents with “superior” information as shown in Example 3.1 in
Section 3. Furthermore it is coalitionally Bayesian incentive compatible (see Kout-
sougeras and Yannelis, 1993). Hence the private core can be used to explain how
incentive compatible contracts are written.

The main purpose of this paper is to provide a noncooperative, extensive form
interpretation of the private core. Generally speaking we investigate whether or
not cooperative core concepts, i.e. the private core and the weak fine core, defined
below, can be supported as a perfect Bayesian equilibrium.

This investigation falls in the area of the Nash programme, which is a research
agenda originated by Nash (1953) and emphasized by Binmore (1980a,b). The idea
is to provide support and justification of cooperative solutions to economic prob-
lems through noncooperative formulations. More generally the issue is the relation
between dynamic and static considerations. Our approach provides a dynamic in-
terpretation of the static private core notion. Consequently it helps to explain the
dynamics of how incentive compatible contracts are realized.

In our analysis, in order to provide support for the private core, we introduce
game trees. They show the prior probability with which nature chooses and make
explicit the sequential moves, i.e., which player makes announcements or moves
first. They also take into account the private information sets of each player as well
as the measurability of decisions.

Given the above structure of the game tree, we specify rules, i.e., the terms of a
contract, which imply specific redistributions of the random initial endowments in
different events. The rules are a statement as to the consequences of actions by the
players under all possible states of nature. Having specified the rules, we obtain the
payoffs in terms of quantities and then we are looking for an appropriate refinement
of Nash equilibrium for games with imperfect or differential information.

We require an equilibrium concept which adopts a probabilistic approach with
respect to the nodes of an information set and reduces to subgame perfect equi-
librium in case the information sets are singletons. Such a concept is the Kreps
and Wilson (1982) sequential equilibrium and its variants which are either weaker
versions or refinements. We adopt here the perfect Bayesian equilibrium, described
in Tirole (1988), where also a comparison is made with other, similar type ideas.
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A perfect Bayesian equilibrium consists of a set of players’ optimal behavioral
strategies and, consistent with these, a set of beliefs which attach a probability
distribution to the nodes of each information set. Consistency requires that the
decision from an information set is optimal given the particular player’s beliefs
about the nodes of this set and the strategies from all other sets, and that beliefs
are formed from updating using the available information. If the optimal play of
the game enters an information set then updating of beliefs must be Bayesian.
Otherwise appropriate beliefs are assigned arbitrarily to the nodes of the set.

The term “implementation” is used below in the sense of realization of an
allocation and not in the sense of implementation theory or mechanism design
which requires the introduction of a planner. Recent work in this area is by Trockel
(2000) which contributes to the Nash programme and casts the implementation
discussion in its context.

The main results in this paper are the following. Despite the fact that “pooled”
information core allocations, (i.e., the weak fine core), exist under mild assumptions,
we construct a game tree, with reasonable rules for calculating payoffs, which
shows that a redistribution of this nature cannot be supported as a perfect Bayesian
equilibrium. Indeed, such contracts (allocations) need not be Bayesian incentive
compatible which suggests a difficulty in implementing them.

On the other hand, we construct a three player example which indicates that
the private core, which is Bayesian incentive compatible, can be supported as a
perfect Bayesian equilibrium. The above results not only provide a first step into
the noncooperative extensive form interpretation of the core of economies with
differential information, but also enable us to understand how coalitionally Bayesian
incentive compatible contracts are realized.

Finally we provide a generalization of the private core existence result of Yan-
nelis (1991) by relaxing the continuity assumption of the random utility functions.
This enables us to include private information sets which not only can be measur-
able partitions of the exogenously given probability measure space, but can also be
sub-σ-algebras.

To the best of our knowledge the present paper is the first attempt to provide a
noncooperative foundation for core concepts in economies with differential infor-
mation.

We note that the complete information works of Lagunoff (1994), Perry and
Reny (1994), Serrano (1995) and Serrano and Vohra (1997), which discuss a non-
cooperative approach to the core, do not apply to the differentiable economy frame-
work that we are considering here.

The paper is organized as follows. Section 2 contains the definition of the
differential information economy. Section 3 contains the core concepts employed
in this paper as well as a new core existence result. Section 4 discusses ideas of
incentive compatibility on the basis of which core allocations can be classified.
Section 5 discusses the non-implementation of the weak fine core and Section 6 the
implementation of the private core in extensive form games. Section 7 offers brief
concluding remarks. Appendix I proves, under certain conditions, the existence of
a private core allocation and Appendix II derives the private core allocations in an
explicit example which is used in the text.
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2 Differential information economy

Although we shall be concerned with a special model we repeat briefly, for com-
pleteness, the notation used and the definition of the private core in a general case.
We define below the notion of a finite-agent economy with differential information.
Let (Ω,F , µ) be a complete probability measure space and Y be a separable Ba-
nach lattice1 with an order continuous norm denoting the commodity space. The
positive cone of Y is denoted by Y+.

A differential information economy E is a set {((Ω,F , µ), Xi,Fi, ui, ei) : i =
1, . . . , n} where

1. Xi : Ω → 2Y+ is the set-valued function giving the random consumption set
of Agent (Player) i, who is denoted also by Pi,

2. Fi is a partition (or sub-σ-algebra) of F , denoting the private information2 of
Pi,

3. ui : Ω×Y+ → R is the random utility function of Pi,
4. ei : Ω → Y+ is the random initial endowment of Pi, where ei(·) is Fi-

measurable and Bochner integrable3, and ei(ω) ∈ Xi(ω) µ-a.e., and
5. µ denotes the common prior of all agents.

The ex ante expected utility of Pi is given by

vi(xi) =
∫

Ω

ui(ω, xi(ω))dµ(ω). (1)

Denote byEi(ω) the event in the partitionFi of Agent i which contains the realized
state of nature, ω ∈ Ω. The interim expected utility function of Agent i is given by

vi(ω, xi) =
1

µ(Ei(ω))

∫
ω′ ∈Ei(ω)

ui(ω
′
, xi(ω

′
))dµ(ω

′
), (2)

where µ(Ei(ω)) is assumed to be positive.
Despite the fact that the differential information economy is static, we can

provide a two-period interpretation as follows. In the first period agents make
contracts in the ex ante stage. In the interim stage, i.e., after they have received a
signal4 as to what is the event containing the realized state of nature, one considers
the incentive compatibility of the contract.

3 The private core and the weak fine core

First we define the notion of the private core (Yannelis (1991)). We begin with
some notation. Denote byL1(µ, Y ) the space of all equivalence classes of Bochner
integrable functions.

1 See Appendix I.
2 Following Aumann (1987) we assume that the players’ information partitions are common knowl-

edge.
3 See Appendix I.
4 A signal to a player is a function from states of nature to the possible observations specific to the

player, which induces on Ω a sub-σ-algebra of F .
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LXi is the set of all Bochner integrable and Fi-measurable selections from the
random consumption set of Agent i, i.e.,

LXi
={xi ∈ L1(µ, Y ) : xi : Ω → Y is Fi-measurable and xi(ω)∈Xi(ω)µ-a.e.}

and let LX =
n∏

i=1
LXi .

Also let

L̄Xi
= {xi ∈ L1(µ, Y ) : xi(ω) ∈ Xi(ω) µ-a.e.}

and let L̄X =
n∏

i=1
L̄Xi .

An element x = (x1, . . . , xn) ∈ L̄X will be called an allocation. For any
subset of players S, an element (yi)i∈S ∈

∏
i∈S

L̄Xi
will also be called an allocation,

although strictly speaking it is an allocation to S.

Definition 3.1. An allocation x ∈ LX is said to be a private core allocation if

(i)
∑n

i=1 xi =
∑n

i=1 ei and
(ii) there do not exist coalition S and allocation (yi)i∈S ∈ ∏

i∈S

LXi such that∑
i∈S

yi =
∑
i∈S

ei and vi(yi) > vi(xi) for all i ∈ S.

Hence, a private core allocation is feasible, reflects the private information of
each agent, i.e., each xi(·) is Fi-measurable, and has the property that no coalition
of agents can redistribute their initial endowments, based on their own private
information, and make each of its members better off. It is important to notice that
since initial endowments are private information measurable, net tradesxi(·)−ei(·)
are also Fi-measurable.

Observe that despite the fact that a coalition of agents get together they do not
necessarily share their own information. On the contrary, the redistributions of the
initial endowments are based only on their own private information. This is quite
important because the resulting private core allocation has desirable properties, i.e.,
it is coalitionally incentive compatible, as we shall see below, and takes into account
the information superiority of an individual.5

Although several private core existence results can be found in the literature, as
for example in Yannelis (1991), Allen (1991), Koutsougeras and Yannelis (1993),
Balder and Yannelis (1994), Page (1997) and Lefebvre (2001), among others, the
proof of the theorem below appears to be the shortest, simplest and quite general.
It improves on the original one of Yannelis (1991).

5 See Koutsougeras and Yannelis (1993) and Example 3.1 below. Notice that in Definition 3.1 the ex
ante expected utility function is used. The (interim) private core is also defined similarly by replacing
(ii) in Definition 3.1 by
(ii) there do not exist coalition S and allocation (yi)i∈S ∈ ∏

i∈S
LXi

such that
∑
i∈S

yi =
∑
i∈S

ei and

vi(ω, yi) > vi(ω, xi) for all i ∈ S and µ-a.e.
Both private cores (ex ante and interim) exist and also have similar qualitative properties (see Hahn and
Yannelis, 2000).
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Theorem 3.1: Let E = {((Ω,F , µ), Xi,Fi, ui, ei) : i = 1, . . . , n} be a differential
information economy satisfying for each i the following assumption:
ui is concave, upper semicontinuous (u.s.c.) and integrably bounded.
Then a private core allocation exists in E .

Proof. See Appendix I.
The theorem in Yannelis (1991) is generalized in the following way. The utility

functions need not be weakly continuous, but only u.s.c. in the norm topology.
However in the presence of concavity they become weakly u.s.c. (Balder -Yannelis
(1993)). The latter enables us to generalize the private information sets Fi of each
agent from partitions to a sub-σ-algebra. Furthermore, we do not need to assume
that the dual of Y has the Radon - Nikodym property. In the examples below the
σ-algebras will be generated from partitions.

The example below illustrates the private core.

Example 3.1 Consider the following three agents economy, I = {1, 2, 3} with one
commodity, i.e. Xi = R+ for each i, and three states of nature Ω = {a, b, c}.

The agents are characterized by their initial endowments, their private informa-
tion and their utility functions. We assume that the structure is

e1 = (5, 5, 0), F1 = {{a, b}, {c}};
e2 = (5, 0, 5), F2 = {{a, c}, {b}};
e3 = (0, 0, 0), F3 = {{a}, {b}, {c}}.

Notice that the initial endowment of each agent is Fi-measurable. It is also

assumed that ui(ω, xi(ω)) = x
1
2
i , which is a typical strictly concave and monotone

function in xi, and that each state of nature occurs with the same probability, i.e.
µ({ω}) = 1

3 , forω ∈ Ω. For convenience, in the discussion below expected utilities
are multiplied by 3.

It can be shown6 that a private core allocation of this economy is x1 = (4, 4, 1),
x2 = (4, 1, 4) and x3 = (2, 0, 0). Clearly this allocation is feasible and Fi-
measurable. It is important to observe that in spite of the fact that Agent 3 has
zero initial endowments, her superior information allows him to make a Pareto
improvement for the economy as a whole and clearly he was rewarded for doing
so. In other words, Agent 3 traded her superior information for actual consumption
in state a. In return Agent 3 provided insurance to Agent 1 in state c and to Agent 2
in state b. Notice that if the private information set of Agent 3 is the trivial partition,
i.e., F ′

3 = {a, b, c}, then no trade takes place and clearly in this case she gets zero
utility. Thus the private core is sensitive to information asymmetries.

Contrary to the private core any rational expectation Walrasian equilibium no-
tion will always give zero to Agent 3 since her budget set is zero in each state. This
is so irrespective of whether her private information is the full information partition
F3 = {{a}, {b}, {c}} or the trivial partition F ′

3 = {a, b, c}. Hence the rational
expectations equilibrium does not take into account the informational superiority
of an agent.

Next we define another core concept, the weak fine core (see Yannelis, 1991,
p. 188; Koutsougeras and Yannelis, 1993). This concept is a refinement of the fine

6 See Appendix II.
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core of Wilson (1978). Recall that the fine core notion of Wilson as well as the fine
core in Yannelis, and Koutsougeras and Yannelis may be empty in well behaved
economies. It is exactly for this reason that we are working with a different concept.

Definition 3.2. An allocation x = (x1, . . . , xn) ∈ L̄X is said to be a weak fine
core allocation if

(i) each xi(·) is
n∨

i=1
Fi-measurable 7

(ii)
∑n

i=1 xi(ω) =
∑n

i=1 ei(ω) µ-a.e. and
(iii) there do not exist coalition S and allocation (yi)i∈S ∈

∏
i∈S

L̄Xi such that

yi(·)− ei(·) is
∨

i∈S

Fi-measurable for all i ∈ S,
∑
i∈S

yi(ω) =
∑
i∈S

ei(ω) µ-a.e.,

and vi(yi) > vi(xi) for all i ∈ S.

Notice that now in the weak fine core, coalitions of agents are allowed to pool
their own information. Identical assumptions with those in Theorem 3.1 and a
similar argument shows that a weak fine core allocation exists in E . The example
below illustrates this concept.

Example 3.2 Consider Example 3.1 without Agent 3. Then if Agents 1 and 2 pool
their own information a possible allocation is x1 = x2 = (5, 2.5, 2.5). Notice that

this allocation is
2∨

i=1
Fi-measurable and cannot be dominated by any coalition of

agents using their pooled information. Hence it is a weak fine core allocation.

4 Incentive compatibility

A careful examination of Example 3.1 indicates that the private core allocation is
incentive compatible in the sense that no coalition of agents has an incentive to
misreport the realized state of nature and become better off. The argument which
supports this conclusion is as follows. Agent 3 can presumably lie to Agents 1 and
2 if the realized state of nature is a since Agent 1 cannot distinguish state a from
state b and Agent 2 state a from state c. However, Agent 3 has no incentive to do so
since only in state a does she get positive consumption. Hence, Agent 3 who would
potentially cheat in state a has no incentive to do so.

We could consider the example in more detail. We ask the question whether
the coalition S = {1, 3} can cheat P2. This is not possible because P3 would
become worse off. For suppose that the state of nature is a but S reports c. Then
u1(e1(a)+x1(c)−e1(c)) = u1(5+1−0) > u1(x1(b)) = u1(x1(a)) = u1(4) but
u3(e3(a) +x3(c)− e3(c)) = u3(0) < u3(x3(a)) = u3(2). Similarly the coalition
S = {2, 3} cannot form, and the coalitions S = {1, 2}, S = {1} and S = {2}
cannot misreport to P3.

Generalizing we have a coalitionS and the complementary set which we denote
by I \ S. The members of S will be denoted by i and the members of I \ S by

7
n∨

i=1
Fi denotes the smallest σ-algebra containing each Fi.
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j. Suppose that the realized state of nature is ω∗. A member i ∈ S sees Ei(ω∗).
Obviously not all Ei(ω∗) need be the same since different i’s have different infor-
mation sets. However they all know from their information that the actual state of
nature could be ω∗.

Consider now a state of nature ω
′

with the following property. For all j ∈ I \S
we have ω

′ ∈ Ej(ω∗) and for at least one i ∈ S we have ω
′
/∈ Ei(ω∗) (otherwise

ω
′

would be indistinguishable from ω∗ for all players so in effect could be
considered as the same element of Ω). Now the coalition S decides that each
member i will announce that she has seen her own set Ei(ω

′
) which, of course,

definitely contains a lie. On the other hand we have that ω
′ ∈ ⋂

j /∈S

Ej(ω∗) (we
also denote j ∈ I \ S by j /∈ S).

Now the idea is that if all members of I \ S believe the statements of the
members of S then each i ∈ S expects to gain. For coalitional Bayesian incentive
compatibility (CBIC) of an allocation we require that this is not possible.

A formal definition of the notion of CBIC8 is:

Definition 4.1. An allocation x = (x1, . . . , xn) ∈ L̄X with
∑n

i=1 xi =
∑n

i=1 ei
is said to be CBIC if it is not true that there exist coalition S and states ω∗, ω

′
, with

ω∗ different than ω
′
, and ω

′ ∈ ⋂
j /∈S

Ej(ω∗) such that

1
µ(Zi(ω∗))

∫
ω∈Zi(ω∗)

ui(ω, ei(ω) + xi(ω
′
)− ei(ω

′
))dµ(ω)

>
1

µ(Zi(ω∗))

∫
ω∈Zi(ω∗)

ui(ω, xi(ω))dµ(ω) (3)

for all i ∈ S, whereZi(ω∗) = Ei(ω∗)∩(
⋂

j /∈S

Ej(ω∗)) andµ(Zi(ω∗)) is assumed to
be positive.

The integrals above can be evaluated since, due to the common knowledge
assumption of Section 2, each player knows all the information sets of the other
players and therefore can calculate the relevant intersection Zi(ω∗).

This definition implies that no coalition of agents has an incentive to misreport
the realized state of nature to the complementary set, despite the fact that the latter
cannot distinguish the actual state from the misreported one. They do not expect
that, by misreporting, each member of the coalition could become better off. If, for
example, the realized state of nature is ω∗ and for all j 	∈ S, ω′ ∈ Ej(ω∗), while
for at least i ∈ S it is true that ω

′
/∈ Ei(ω∗), it must be the case that the agents in

S have no incentive to report state ω
′
. I.e., they do not expect that it is possible to

become better off if they are believed, by adding to their initial endowment the net
trade in state ω

′
. If S = {i} the above definition reduces to individual Bayesian

incentive compatibility (IBIC).
It has been shown in Koutsougeras -Yannelis (1993) that if the utility functions

are monotone and continuous then private core allocations are always CBIC. On

8 See also Krasa and Yannelis (1994), Hahn and Yannelis (2001) for other CBIC concepts.
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the other hand the weak fine core allocations are not always CBIC, as the above
Example 3.2 with proposed redistribution x1 = x2 = (5, 2.5, 2.5) shows.

Indeed, if Agent 1 observes {a, b}, she has an incentive to report c, as Agent 2
cannot distinguish between a and c. Agent 1 stands to gain if she is believed, which
is a possibility as a might be the true state and Agent 2 believes the statement that
it is c. In this case Agent 1 keeps the 5 units of the initial endowments in state a,
and also gets an additional 2.5 units from Agent 2. In terms of the Definition 4.1,
the fact that u1(e1(a) + x1(c)− e1(c)) = u1(5 + 2.5− 0) > u1(5) = u1(x1(a))
implies that the proposed allocation is not CBIC. Similarly Agent 2 has an incentive
to report b when he observes {a, c}.

Now in employing game trees in the analysis, as it is done below, we will adopt
the definition of IBIC. The equilibrium concept employed will be that of perfect
Bayesian equilibrium the application of which is explained below.

A core allocation will be IBIC if there is a profile of optimal behavioral strategies
and equilibrium paths along which no player misreports the state of nature he has
observed. This allows for the possibility, as we shall see later, that such strategies
could imply that players have an incentive to lie from information sets which are
not visited by an optimal play. The definition of a play of the game is a directed
path from the initial to a terminal node.

The issue is whether core allocations can be obtained as perfect Bayesian equi-
libria. That is whether the cooperative core solutions can also be supported through
an appropriate noncooperative solution concept. The analysis in Sections 5 and 6
below shows that the private core which is CBIC can be supported by a perfect
Bayesian equilibrium while for the weak fine core, which may not be CBIC, we
find that a reasonable extensive form game does not support it.

5 Non-implementation of the weak fine core in an extensive game

In this section we investigate, by considering sequential decisions, whether in Ex-
ample 3.2, a particular contract between P1 and P2, with a distribution which is
Pareto superior to the initial allocation, will be signed or not.

In particular we consider the weak fine core allocation (5, 2.5, 2.5) in Example
3.2. As we saw in the previous section this is not CBIC which suggests a difficulty
in implementing it by means of a contract. We construct a game tree and employ
reasonable rules for describing the outcomes of combinations of states of nature
and actions of the players. We find that although the Pareto superior allocation (5,
2.5, 2.5) is possible, the optimal strategies of the players imply no trade because of
lack of IBIC. Hence there is no advantage in signing such a contract.

One of the issues that has been considered is whether, in order to imple-
ment the allocation (5, 2.5, 2.5), the information of P1 and P2 can be pooled into
F1
∨F2 = {{a}, {b}, {c}} through the two agents informing each other. The pro-

posed allocation (5, 2.5, 2.5) is measurable with respect to F1
∨F2 and it is a

Pareto improvement over the initial endowments.
When the agents form their coalition, they do so in order to sign a contract.

The contract depends on their realization that together they could know the state of
nature. If each player announces truthfully what he sees, the state of nature would



602 D. Glycopantis et al.

then be common knowledge. Having written the contract, another issue then arises.
That is whether the players have an incentive to lie about what they have seen in
the interim state. It is this second stage that the game tree is analysing. The game is
played before the state is revealed and as the extensive form indicates, in the interim
stage each player has an incentive to lie. Therefore the pooling of information does
not take place because of lack of incentive compatibility.

We discuss the possible realization of the allocation (5, 2.5, 2.5) through the
analysis of a specific sequence of decisions and information sets shown in the game
tree in Figure 1. The players are given choices to tell the truth or to lie, i.e., we
model the idea that agents truly inform each other about what states of nature they
observe, or deliberately aim to mislead their opponent. The issue is what type of
behaviour is optimal and therefore whether a proposed contract will be signed or
not.

Figures 1 and 2 show that the allocation (5, 2.5, 2.5) will be rejected by the
players. It is not IBIC and the proposed contract will not be signed. Notice that
vectors at the terminal nodes of a game tree will refer to payoffs of the players, in
terms of allocations. The first element will be the payoff to P1, etc.

The explanation of Figure 1 is as follows. Nature chooses states a, b or c with
equal probabilities. This choice is flashed on a screen which both players can see.
P1 cannot distinguish between a and b, and P2 between a and c . This accounts for
the information sets I1, I2 and I

′
2 with more than one node. A player to which such

an information set belongs cannot distinguish between these nodes and therefore
his decisions are common to all of them. A behavioral strategy of a player is an
assignment of a probability distribution per information set that belongs to him
over the choices available from that set. This is irrespective of whether a particular
play of the game will imply that all these choices will have an effect on the payoffs.
Indistinguishable nodes imply the Fi-measurability of decisions.

P1 moves first and has two choices. That is he can either play A1 = {a, b} or
c1 = {c}, i.e., he can say “I have seen {a, b} being unable to distinguish between
the two”, or “I have seen c”. Obviously one of these declarations will be true and the
other a lie. Following a choice by P1 then P2 is to respond saying that the signal he
has seen on the screen isA2 = {a, c} or that it is b2 = {b}. One of these statements
is of course a lie.

Strictly speaking the notation for choices should vary with the information set
but, for simplicity, we do not modify it, as there is no danger of confusion here.
Finally notice that the structure of the game tree is such that when P2 is to act
he knows exactly what P1 has chosen before him. This is an assumption about
the relation between decisions. In general, in forming game trees the sequence of
events and the information of the agents must be specified explicitly.

Next, given the sequence of decisions of the players, shown on the tree, we
specify the rules for calculating the payoffs, i.e. we specify the terms of the contract.
This is a statement of what to do under all possible states of nature and declarations
by the players.

The rules are:
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(i) If the declarations by the two players are incompatible, that is (c1, b2) then at
least one of the players is lying and, moreover, the opponent of a lying player
detects that lie. This is the case when state c occurs and agent 1 reports state c
and agent 2 state b. In state a both agents can lie and the lie cannot be detected
by either agent (however, the agents are in the events {a, b} and {a, c}, respec-
tively and they get five units of the initial endowments). Therefore, whenever
the declarations are incompatible, no trade takes place and the players retain
their initial endowments.

(ii) If the declarations are (A1, A2) then even if one of the players is lying, this
cannot be detected by his opponent who believes that state a has occured and
both players have received endowment 5. Hence no trade takes place.

(iii) If the declarations are (A1, b2) then a lie can be beneficial and undetected, and
P1 is trapped and must hand over half of his endowment to P2. Obviously if
his endowment is zero then he has nothing to give.

(iv) If the declarations are (c1, A2) then again a lie can be beneficial and undetected.
P2 is now trapped and must hand over half of his endowment to P1. Obviously
if his endowment is zero then he has nothing to give.

The calculations of payoffs do not require the revelation of the actual state of
nature. Optimal decisions from an information set will be denoted by a heavy line.
If either decision is optimal then both will be shown with a heavy line. We could
assume that a player does not lie if he cannot get a higher payoff by doing so.

Assuming that each player chooses optimally from the information sets which
belong to him, the game in Figure 1 folds back to the one in Figure 2. This is
achieved by considering the optimal decisions of P2 and applying backward induc-
tion. Inspection of Figure 1 reveals that from the information set I2 he can play b2
with probability 1. (A heavy lineA2 indicates that this choice also would not affect
the analysis). This accounts for the payoff (2.5, 7.5) and the first payoff (0, 5) from
left to right in Figure 2. Similarly we undo all other information sets of P2 and we
arrive at Figure 2. Inspection of this figure reveals also the optimal strategies of P1.

Summarizing, the optimal behavioral strategy for P1 is to play c1 from I1, i.e
to lie, and from the singleton to play any mixture of options, and we have chosen
(A1,

1
2 ; c1, 1

2 ). This is the meaning of 1
2 on the branches from the singleton. Optimal

behavioral strategy of P2 is to play b2 with probability 1 from both I2 and I
′
2, i.e.

to lie, and from the singletons he can either tell the truth or lie, or spin a wheel to
decide what to do.

Finally we point out that in Figures 1 and 2 the fractions next to the nodes in the
information sets correspond to beliefs of the agents obtained, wherever possible,
through Bayesian updating. I.e., they are consistent with the choice of a state by
nature and the optimal strategies of the players. Hence strategies and beliefs satisfy
the conditions of a perfect Bayesian equilibrium. This is a concept employed in
analyzing games with information sets with more than one node. As explained
above, it requires that given the beliefs, the strategies are optimal, and given the
strategies, the beliefs are, wherever possible, obtainable through Bayesian updating.

These probabilities are calculated as follows. We give labels to the nodes of the
information sets: From left to right, in I1, we denote them by j1 and j2, in I2 by n1
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Figure 2

and n2 and in I
′
2 by n3 and n4. The probabilities attached to the nodes in I1 follow

from the fact that the probability with which nature chooses state a is the same as
the one with which it chooses state b. Given the choices by nature, the strategies
of the players described above and using the Bayesian formula for updating beliefs
we also calculate the conditional probabilities

Pr(n1/A1) =
Pr(A1/n1)× Pr(n1)

Pr(A1/n1)× Pr(n1) + Pr(A1/n2)× Pr(n2)

=
1× 0

1× 0 + 1× 1
3 × 1

2

= 0 (4)

and
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Pr(n3/c1) =
Pr(c1/n3)× Pr(n3)

Pr(c1/n3)× Pr(n3) + Pr(c1/n4)× Pr(n4)

=
1× 1

3

1× 1
3 + 1× 1

2 × 1
3

=
2
3
. (5)

Obviously from the above we obtain Pr(n2/A1) = 1 and Pr(n4/c1) = 1
3 .

Therefore the perfect Bayesian equilibrium obtained above confirms the initial
endowments and the decisions to lie imply that the contract (5, 2.5, 2.5) cannot be
realized and the players will not sign.

In Figure 3 we indicate, through heavy lines, plays of the game which are
the outcome of the choices by nature and the optimal behavioral strategies by
the players. The interrupted heavy lines at the beginning of the tree signify that
nature does not take an optimal decision, as it has no payoff function, but simply
chooses among three alternatives, with equal probabilities. From each such choice
the play of the game continues through the optimal decisions by the agents to a
specific terminal node. The directed path (a, c1, b2) with payoffs (5, 5) occurs with
probability 1

3 . The paths (b, c1, A2) and (b, c1, b2) lead to payoffs (5, 0) and occur
with probability 1

3 (1 − q) and 1
3q, respectively. The values (1 − q) and q denote

the probabilities with which P2 decides to choose between A2 and b2 from the
singleton node at the end of (b, c1). Of course no matter what q is selected this does
not affect the payoffs. The paths (c, A1, b2) (c, c1, b2) lead to payoffs (0, 5) and
occur, each, with probability 1

3× 1
2 , as, by assumption, from the singleton node at

the end of (c), P1 chooses between A1 and c1 with probability 1
2 . This of course

is not significant because any other probabilities attached to A1 and c1 would not
affect the payoffs.

Summarizing, we note that the implied equilibrium paths are as follows. If
nature chooses a or b, P1 responds by playing c1, i.e. he lies. Then P2 lies from
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I
′
2 and from the singleton node at the end of (b, c1) he can tell the truth or lie. The

players end up with their initial endowments. If nature chooses c, P1 can tell the
truth, or even lie, but P2 will play b2, i.e. he will lie. Again the players end up with
their initial endowments. It follows that for all choices by nature, at least one of the
players tells a lie on the optimal play. The players by lying avoid the possibility of
having to make a payment to their opponent.

We have constructed an extensive form game and employed reasonable rules
for calculating payoffs and shown that the proposed allocation (5, 2.5, 2.5) will not
be realized. The same conclusion would have been reached if P2 were assumed to
move first.

6 The implementation of private core allocations

Next we investigate the role of P3 in the implementation, or realization, of private
core allocations in Example 3.1 of Section 3. We have seen that such core allo-
cations are CBIC, which is a desirable property of the cooperative solution. We
shall now show how they can be supported as perfect Bayesian equilibrium of a
noncooperative game. This falls into the agenda of the Nash programme.

We use as an example the private core allocation⎛⎝4 4 1
4 1 4
2 0 0

⎞⎠ .
The ith line refers to Player i and the columns from left to right to states a, b

and c.
When P3 enters the scene he is characterized by e3 = (0, 0, 0) with F3 =

{{a}, {b}, {c}}. P3 announces his observation and this implies that, if he is believed,
P1 and P2 will now be able to figure out all states of nature. We shall show how
the payoffs of the matrix above will be realized from the optimal decisions of the
players in a sequential game.

P1 and P2 see on a screen the announced state but P1 cannot distinguish between
states a and b and P2 between a and c. P3 sees the correct state and moves first.
However he can either announce exactly what he saw or he can lie. Obviously he
can lie in two ways. Following the announcement of P3 it is the turn of P1 to act.
When he comes to decide he has his information from the screen and also he knows
the strategy that P3 played. Then it is the turn of P2 to act. When he comes to decide
he has his information from the screen and he also knows what P3 and P1 played
before him. Both P1 and P2, when it is their turn to act, can either tell the truth
about what they saw on the screen or they can lie.

We must distinguish between the announcements of the players designed to
maximize their expected returns, and the true state of nature. The former, with the
players’temptations to lie, cannot be used to determine the true state which is needed
for the purpose of making payoffs, which include any imposition of penalties for
lying. P3 has a special status but he should also take into account that in the end the
lie will be detected and this can affect his payoff. The terms of the contract, which
we propose to examine below, take this into account.
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The rules of calculating payoffs, i.e. the terms of the contract, are as follows:
If P3 tells the truth we implement the redistribution in the matrix above which is
proposed for this particular choice of nature.
If P3 lies then we look into the strategies of P1 and P2 and decide as follows:

(i) If the declaration of P1 and P2 are incompatible we go to the initial endowments
and each player keeps his.

(ii) If the declarations are compatible we expect the players to honour their com-
mitments for the state in the overlap, using the endowments of the true state,
provided these are positive. If a player’s endowment is zero then no transfer
from that agent takes place as he has nothing to give.

We are looking for a perfect Bayesian equilibrium, i.e. a set of optimal behav-
ioral strategies consistent with a set of beliefs. The beliefs are indicated by the
probabilities attached to the nodes of the information sets in Figure 4 with arbitrary
r, s, q, p and t between 0 and 1. Given these beliefs optimal decisions of P2 are
indicated with heavy lines and the tree in Figure 4 folds up to the one in Figure 5.
In this, optimal decisions of P1 are indicated with heavy lines. Figure 5 then folds
up into Figure 6 which shows with heavy lines optimal decisions of P3.

In summary, an optimal behavioral strategy for P3 is to tell the truth, i.e. to
play, with probability 1, a from a, b from b and c from c. An optimal behavioral
strategy for P1 is to play A1 from both I11 and I21 , i.e. to tell the truth, and to play
c1 from I31 , i.e. to lie. From the singletons he plays c1, i.e. he tells the truth. Finally
optimal behavioral strategy for P2 is to play b2 from the singletons, i.e. to tell the
truth, to play A2 from I12 and I62 , i.e. to tell the truth, and to play b2 from I22 , I32 ,
I42 and I52 , i.e. to lie. Each player is rational and reaches the conclusion that P3 has
no incentive to lie, before any revelation of the actual state of nature.

It is possible to check that the beliefs indicated next to the nodes are consistent
with these strategies. Hence optimal behavioral strategies and beliefs form a perfect
Bayesian equilibrium. We note that the implied equilibrium paths are as follows. If
nature chooses a, P3 follows with a, P1 responds with A1 and P2 declares A2, and
the payoffs are (4, 4, 2). If nature chooses b, P3 follows with b, P1 responds with
A1 and P2 declares b2, and the payoffs are now (4, 1, 0). Finally if nature chooses
c, P3 plays c, P1 follows with c1 and P2 responds with A2, and the payoffs are (1,
4, 0).

Along the optimal paths nobody has an incentive to misrepresent the realized
state of nature and hence the private core allocation is incentive compatible. On the
other hand the explicit considerations through a game tree show clearly that even
optimal behavioral strategies, which of course are fully rational, can imply that
players might have an incentive to lie from certain information sets, which though
are not visited by the optimal play of the game. For example, P1, although he knows
that nature has chosen a or b, has an incentive to declare c1 from I31 , trying to take
advantage of a possible lie by P3. Similarly P2, although he knows that nature has
chosen a or c, has an incentive to declare b2 from I22 , I32 , I42 and I52 , trying to take
advantage of possible lies by the other players. For example, the right hand side
node of I32 is reached by both P3 and P1 lying. Incentive compatibility has now
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Figure 4

been defined to allow that the optimal behavioral strategies can contain lies, while
there must be an optimal play which does not.

In Figure 7 we indicate through heavy lines the equilibrium paths obtained
above. Again, the interrupted heavy lines at the beginning of the tree signify
that nature does not take an optimal decision, as it has no payoff function, but
simply chooses among three alternatives, with equal probabilities. The directed
paths (a, a,A1, A2) with payoffs (4, 4, 2), (b, b, A1, b2) with payoffs (4, 1, 0) and
(c, c, c1, A2) with payoffs (1, 4, 0) occur, each, with probability 1

3 . It is clear that
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Figure 6 This figure sums up the implications of the optimal strategies used by the players. The payoffs
at the end of the heavy lines correspond to these strategies and they are realizable by the equilibrium
paths along which no player has an incentive to lie. The private core allocation is incentive compatible
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Figure 7

nobody lies on the optimal paths and that the proposed reallocation is incentive
compatible and hence it will be realized.

Off the equilibrium strategies even P3 has considered the possibility of lying.
For example when nature chooses b he would consider playing a, hoping that P1
will respond with A1 and P2 with A2. However such a move is dismissed because
he knows that the other players are rational.

Analogous conclusions as above would have been reached if, following the
announcement of P3, it was assumed that P2 moves first.
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7 Concluding remarks

We consider the area of incomplete and differential information and how it is
modeled important for the development of economic theory. Efforts are being made
in breaking new ground using formulations which are promising but rather difficult.
It is hoped that the use of game trees in the analysis helps in the development of
ideas in that it makes them more discussable.

Our discussion in Section 5 suggests that core notions which may not be CBIC,
i.e., the weak fine core, cannot easily be supported as a perfect Bayesian equilibrium.
On the other hand, as we saw in Section 6, the private core which is CBIC can
be supported as a perfect Bayesian equilibrium. The discussion above provides
a noncooperative interpretation or foundation of the private core while making,
through the game tree, the individual decisions transparent. In this way a better and
possibly deeper understanding of how CBIC contracts are formed is obtained.

The positive result for the private core is not a general theorem but rather a
3-agent differential information economy example. However we believe that graph
theory techniques may be adopted to construct a general result. We have not at-
tempted this since it would complicate the technical analysis while it is not certain
that it would advance our economic insights or knowledge very much. At the mo-
ment we leave this as an open question.

Appendix I: Proof of Theorem 3.1

Before we engage in the proof of Theorem 3.1, we will need some definitions. Let
(Ω,F , µ)be a finite measure space, andX be a Banach space. Following Diestel and
Uhl (1977), the function f : Ω → X is called simple if there exist x1, x2, . . . , xn

inX and A1, A2, . . . , An in F such that f =
∑n

i=1 xiXAi
where XAi

denotes the
indicator function. A function f : Ω → X is said to be µ-measurable if there exists
a sequence of simple functions fn : Ω → X such that lim

n→∞ ‖ fn(ω)− f(ω) ‖ = 0
for almost all ω ∈ Ω. A µ-measurable function f : Ω → X is Bochner integrable
if there exists a sequence of simple functions {fn : n = 1, 2, ...} such that

lim
n→∞

∫
Ω

‖ fn(ω)− f(ω) ‖ dµ(ω) = 0. (I.1)

In this case, for each A ∈ F , we define the integral to be

∫
A

f(ω)dµ(ω) = lim
n→∞

∫
A

fn(ω)dµ(ω). (I.2)

The integral is of course independent of the approximating sequence of simple
functions.9

9 Let Φ = {fn : n = 1, . . . , n} be a sequence of simple functions from Ω to X for which
lim

∫
fn(ω)dµ(ω) exists with respect to the norm topology and take this limit to define a quantity
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It can be shown (see Diestel and Uhl, 1977), Theorem 2, pp. 45) that if f :
Ω → X is a µ-measurable function, then f is Bochner integrable if and only if∫

Ω
‖ f(ω) ‖ dµ < ∞. It is important to note that the Dominated Convergence

Theorem holds for Bochner integrable functions. In particular, if {fn : Ω → X :
n = 1, 2, ...} is a sequence of Bochner integrable functions such that lim

n→∞ fn(ω) =

f(ω) µ-a.e., and ‖ fn(ω) ‖≤ g(ω) µ-a.e., where g : Ω → R is an integrable
function, then f is Bochner integrable and lim

∫
Ω
‖ fn(ω) − f(ω) ‖ dµ(ω) = 0,

(see Diestel and Uhl, 1977), Theorem 3, pp. 45).
Denote by Lp(µ,X) with 1 ≤ p < ∞ the space of equivalence classes of

X-valued Bochner integrable functions x : Ω → X normed by

‖ x ‖p= (
∫

Ω

‖ x(ω) ‖p dµ(ω))
1
p <∞. (I.6)

It is a standard result that normed by the functional ‖ . ‖p above, Lp(µ,X)
becomes a Banach space (see Diestel and Uhl, 1977, p. 50). It is also well-known
that Lq(µ,X∗) is the dual of Lp(µ,X), where 1 ≤ p < ∞ and 1/p + 1/q = 1,
and the value w · x of x ∈ Lp(µ,X) at w ∈ Lq(µ,X∗) is defined by

I(Φ). We can certainly use linearity, particularly in the form

I(Φ − G) = I(Φ) − I(G), (I.3)

for any two such sequences.
We have defined that a µ-measurable function is Bochner integrable if there exists a sequence Φ for
which

lim
n→∞

∫
Ω

‖fn(ω) − f(ω)‖dµ(ω) = 0. (I.4)

Now we argue that if two sequences Φ, G both satisfy this, for some given f , then I(Φ) = I(G). This
will establish that the value obtained only depends upon f and so can be used to define its integral. We
proceed as follows.

‖I(Φ) − I(G)‖ = ‖I(Φ − G)‖ from (I.3)

= ‖ lim
n→∞

∫
Ω

[
fn(ω) − gn(ω)

]
dµ(ω)‖ from (I.4)

= lim
n→∞ ‖

∫
Ω

[
fn(ω) − gn(ω)

]
dµ(ω)‖

≤ lim
n→∞

∫
Ω

‖fn(ω) − gn(ω)‖dµ(ω) see Note * below (I.5)

= lim
n→∞

∫
Ω

‖[
fn(ω) − f(ω)

] − [
gn(ω) − f(ω)

]‖dµ(ω)

≤ lim
n→∞

∫
Ω

‖fn(ω) − f(ω)‖dµ(ω) +
∫

Ω
‖gn(ω) − f(ω)‖dµ(ω)

= 0.

Then ‖I(Φ) − I(G)‖ = 0 implies I(Φ) = I(G).
Note * : This inequality can be used since it only involves the finite sum employed in the definition of
the integral of a simple function.
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w · x =
∫

Ω

[w(ω) · x(ω)]dµ(ω). (I.7)

Recall that σ(Lp(µ,X), Lq(µ,X∗)) is defined as the weakest topology on
Lp(µ,X) for which a net {xλ : λ ∈ Λ} converges tox if and only if {w·xλ} → w·x
for allw ∈ Lq(µ,X∗). We call this topology as weak topology and the convergence
as weak convergence. A function f : X → R is weakly upper semicontinuous if
lim sup f(xλ) ≤ f(x), weakly lower semicontinuous if lim inf f(xλ) ≥ f(x), and
weakly continuous if it is both weakly upper semicontinuous and weakly lower
semicontinuous, whenever {xλ} → x weakly.

We now define a Banach lattice (see Aliprantis and Burkinshaw, 1985). A Ba-
nach spaceX is a Banach lattice if there is an ordering≥ onX with the following
properties:

(i) x ≥ y implies x+ z ≥ y + z for every z ∈ X ,
(ii) x ≥ y implies λx ≥ λy for λ ∈ R+,
(iii) for all x, y ∈ X , there exist a supremum x ∨ y and an infimum x ∧ y ,
(iv) | x |≥| y | implies ‖ x ‖≥‖ y ‖ for every x, y ∈ X .

IfX is a Banach lattice10 then for any x, y ∈ X , define the order interval [x, y] =
{z ∈ X : x ≤ z ≤ y}. Note that [x, y] is convex and norm closed, hence weakly
closed (Mazur’s Theorem). Cartwright (1974) has shown that if X is a Banach
lattice with an order continuous norm11 (or equivalently has weakly compact order
intervals), then Lp(µ,X) with 1 ≤ p <∞ has weakly compact order intervals as
well. With the above preliminaries out of the way we can proceed with the proof.

Proof of Theorem 3.1. For each i = 1, 2, . . . , n let LXi be the set of all Bochner
integrable andFi-measurable selections from the consumption set correspondence
Xi : Ω → 2Y+ of Player i, i.e.

LXi = {xi ∈ L1(µ, Y ) : xi(·) is Fi-measurable and xi(ω) ∈ Xi(ω) µ-a.e.}.
(I.8)

This means that for each agent we select from her consumption correspondence
an element per ω and form a function. We require this function to be in L1(µ, Y ),
and measurable with respect to the agent’s information partition.

Since by assumption each ei : Ω → Y is Fi-measurable and Bochner
integrable, it follows that ei ∈ LXi for all i. Therefore each LXi is non-empty and

so is LX =
n∏

i=1
LXi .

For each i, define the correspondence Pi : LXi
→ 2LXi by

10 An example of a Banach lattice is Rn with the usual vector partial ordering, the sum of moduli as
norm, and absolute value of an element, the vector of absolute values of its coordinates.

11 {xλ} ↓ 0 means that {xλ : λ ∈ Λ} is a decreasing net with inf xλ = 0. A Banach lattice X is
said to have an order continuous norm if {xλ} ↓ 0 in X implies ‖ xλ ‖↓ 0. If X is a Banach lattice,
X has an order continuous norm if and only if any order interval is weakly compact.
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Pi(xi) = {yi ∈ LXi : vi(yi) > vi(xi)}. (I.9)

Since for each i, and each fixed ω ∈ Ω, ui(ω, ·) is concave, upper semicontin-
uous (u.s.c.) and integrably bounded, by Theorem 2.8 in Balder and Yannelis, vi(·)
is weakly-u.s.c. Hence, the set

P−1
i (yi) = {xi ∈ LXi : yi ∈ Pi(x)} = {xi ∈ LXi : vi(yi) > vi(xi)} (I.10)

is weakly open in LXi . Notice that since for any fixed ω ∈ Ω, ui(ω, ·) is concave
the set Pi(xi) for all xi ∈ LXi is convex and also xi 	∈ Pi(xi) for all xi ∈ LXi .
Hence the correspondence Pi : LXi

→ 2LXi is convex valued and irreflexive.
We now have an infinite dimensional commodity space economy

Ē = {(LXi
, Pi, ei) : i = 1, 2, . . . , n} (I.11)

where

(a) LXi denotes the consumption set of Pi,
(b) Pi : LXi → 2LXi is the preference correspondence of Pi, and
(c) ei ∈ LXi

, is the initial endowments of Pi.

In the new economy that has been constructed, a good is also characterized by
the state of nature, and vi(xi), on which the preference correspondence is based,
can be thought of as a utility, rather than an expected utility, function. It is as
if uncertainty and information partitions have vanished from the scene. However
they are present since LXi , the consumption set of Agent i, takes into account the
information partition Fi.

We show that a core allocation exists in Ē , i.e., there exists x∗ ∈ LX satisfying
the following two conditions:

(1)
n∑

i=1
x∗

i =
n∑

i=1
ei, and

(2) there do not exist coalition S and allocation (yi)i∈S ∈ ∏
i∈S

LXi such that∑
i∈S

yi =
∑
i∈S

ei, yi ∈ Pi(x∗
i ) for all i ∈ S.

It can easily be checked that the existence of a core allocation in Ē im-
plies the existence of a private core allocation in the original economy E =
{((Ω,F , µ), Xi,Fi, ui, ei) : i = 1, . . . , n}.

LetA be the set of all finite dimensional subspaces of L1(µ, Y ) containing the
initial endowments. For eachα ∈ A defineLα

Xi
= LXi

∩α andPα
i : Lα

Xi
→ 2Lα

Xi

by Pα
i (xi) = Pi(xi)∩α. We have constructed an economy Ēα = {(Lα

Xi
, Pα

i , ei) :
i = 1, 2, . . . , n} in a finite dimensional commodity space where

(1′) Lα
Xi

is the consumption set of Pi,

(2′) Pα
i : Lα

Xi
→ 2Lα

Xi is the preference correspondence of Pi,
(3′) ei ∈ Lα

Xi
is the initial endowment of Pi.
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The economy constructed is finite dimensional in that each consumption set
can be spanned by a finite number of vectors. For every such, finite dimensional, α-
economy one can prove the existence of a core allocation. This implies in the limit,
as the number of dimensions tends to infinity, the existence of a core allocation for
Ē , which has been approximated through the net of economies.

It can easily be checked that for each α ∈ A, Ēα satisfies all the assumptions
of Florenzano’s (1989) core existence theorem and therefore there exists xα ∈
n∏

i=1
Lα

Xi
= Lα

X such that

(4′)
n∑

i=1
xα

i =
n∑

i=1
ei

(5′) and it is not true that there exist S ⊂ {1, 2, . . . , n} and (yi)i∈S ∈ ∏
i∈S

Lα
Xi

such that
∑
i∈S

yi =
∑
i∈S

ei and yi ∈ Pα
i (xα

i ) for all i ∈ S.

From (4
′
) it follows that for each α ∈ A we have that every xα

i ∈ [0,
n∑

i=1
ei].

Since by assumption Y is a Banach lattice with an order continuous norm by the
Cartwright theorem so is L1(µ, Y ) and therefore we can conclude that the order

interval [0,
n∑

i=1
ei] in

n∑
i=1
LXi is weakly compact.

Direct the setA by inclusion so that {(xα
1 , x

α
2 , . . . , x

α
n) : α ∈ A} forms a net in

n∏
i=1
LXi

. Since each xα
i lies in [0,

n∑
i=1
ei] which is weakly compact we can extract

a subnet

{(xα(m)
1 , x

α(m)
2 , . . . , xα(m)

n ) : m ∈M},

(where M is directed by “ ≥”), from the net {(xα
1x

α
2 , . . . , x

α
n) : α ∈ A} which

converges weakly to some vector (x1, x2, . . . , xn) in [0,
n∑

i=1
ei].

We will show that (x1, x2, . . . , xn) is a core allocation for the economy Ē .

Notice that since for each m ∈ M ,
n∑

i=1
x

α(m)
i =

n∑
i=1
ei and xα(m)

i converges

weakly to xi ∈ LX we have that
n∑

i=1
xi =

n∑
i=1
ei, i.e., (x1, x2, . . . , xn) is a feasible

allocation.
In order to complete the proof we must show that:

(") It is not true that there exists S ⊂ {1, 2, . . . , n} and (yi)i∈S ∈
∏
i∈S

LXi such

that
∑
i∈S

yi =
∑
i∈S

ei and yi ∈ Pi(xi) for all i ∈ S.

Suppose that (") is not true, then there exist coalition S and (yi)i∈S ∈
∏
i∈S

LXi

such that
∑
i∈S

yi =
∑
i∈S

ei and yi ∈ Pi(xi) for all i ∈ S. Since xα(m)
i converges

weakly to xi and Pi has weakly open lower sections, there exists m0 ∈ M such
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that yi ∈ Pi(x
α(m)
i ) for all m ≥ m0, and for all i ∈ S. Choose m1 ≥ m0 so that

if m ≥ m1, yi ∈ Lα(m)
Xi

for all i ∈ S. Then yi ∈ Pα(m)
i (xα(m)

i ), for all m ≥ m1,

and for all i ∈ S, a contradiction to (5
′
), which means that (") holds.

Finally, the fact that Ē has been derived from the original economy E by inte-
grating over the states of nature implies that a core allocation in the former is also a
private core12 allocation in the latter, and this completes the proof of Theorem 3.1.

Appendix II: The private core allocations of Example 3.1

In this section we show that the redistribution⎛⎝4 4 1
4 1 4
2 0 0

⎞⎠ .
where again the ith line refers to Player i and the columns from left to right to

states a, b and c, is a private core allocation.
An Fi-measurable redistribution of the endowments of the three agents above

is given by ⎛⎝ 5− ε 5− ε δ1
5− δ ε1 5− δ
ε+ δ ε2 δ2

⎞⎠
with ε = ε1 + ε2 and δ = δ1 + δ2.

We show below that the private core allocations are obtained from

Problem
Maximize U3 = (ε+ δ)

1
2 + ε

1
2
2 + δ

1
2
2

Subject to

U1 = 2(5− ε) 1
2 + δ

1
2
1 ≥ α

1
2
1

U2 = 2(5− δ) 1
2 + ε

1
2
1 ≥ α

1
2
2 ,

ε1 + ε2 = ε ≤ 5 and δ1 + δ2 = δ ≤ 5,
εi, δi ≥ 0

for Pareto optimality, and α
1
2
1 , α

1
2
2 ≥ 2(5

1
2 ) = 20

1
2 for individual rationality. We

shall not give characterizations of optimality through Lagrange or Kuhn-Tucker
conditions because the utility functions, although continuous on their domains of
definition, are not differentiable at the origin.

The solution to the problem exists because of the compactness of the feasible
set, which follows from the fact that the values of all variables are bounded between
0 and 5 and the set defined by the utility constraints is closed, and the maximum
is unique due to the concavity of the functions. Pareto optimality of the solution
follows from the fact that there is no possible improvement to the values of all

12 This can easily be shown by contradiction. I.e. one picks a core allocation x in the economy Ē and
supposes that it is not a core allocation in E and reaches a contradiction.
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three utility functions, because if there were then we could increase the value of U3
without violating the constraints. Individual rationality follows from the fact that
the initial endowments of the players imply utility 2(5

1
2 ) = 20

1
2 . Finally it is not

possible for any pair of traders to redistribute their initial endowments and become
better off, while retaining measurability. Hence the solution to the Problem is in
the core.

Next we note that the solution to the problem above always satisfies the utility
constraints of P1 and P2 with equality. For suppose, say, the first constraint was
satisfied with an inequality. Then it would be possible to increase ε and ε2, without
disturbing measurability, and thus increase U3.

The question arises whether there exist core allocations which cannot be cap-
tured as solutions to a problem of the above type. Consider any allocation in the
core and formulate the above problem with U1, U2 taking the corresponding values.
From the fact that it is maximized, we should get for U3 at least the value of the
proposed allocation, and if we actually obtain a higher one then it must be for a
different allocation for at least one of the utilities, say U1. Now through concavity
we can improve the proposed values of U3 and U1 and then through a redistribution
from U1 to U2 and U3, by a small increase in ε and ε1, we can improve all utilities
in relation to the proposed allocation, which therefore was not Pareto optimal.

We shall now discuss properties of the private core allocations. We shall call
symmetric allocations those with ε = δ and εi = δi. First we consider the case when
α1 = α2 = α. This condition implies that the solution is symmetric. For otherwise
it would not be unique. A further restriction on the symmetric solutions is when
ε1 = ε. In order to investigate this we look at the function y = 2(5− ε) 1

2 + ε
1
2 . It

is routine to show that it is a strictly concave function attaining its maximum value
5 at ε = 1. We are interested in the values of ε for which y ≥ 20

1
2 .

Suppose now that the common value of α is equal to 25 which is the maximum

possible such value, since α
1
2 = 2(5− ε) 1

2 + ε
1
2
1 ≤ y = 2(5− ε) 1

2 + ε
1
2 ≤ (25)

1
2 .

Then we must have ε1 = ε = 1, for otherwise the constraint will not be satisfied.
The implied value for U3 is 2

1
2 and this confirms that the redistribution at the

beginning of this appendix is a private core allocation.
Next let the common admissible value of α be less than 25. We investigate

whether it is now possible that the solution implies ε1 = ε. In such a case the
structure of the function y above would mean that there are two such values of ε,
one smaller and one greater than 1. But then by strict concavity of the functions we
could obtain feasible ε which would satisfy the constraint and increase the value
of the objective function. It follows that although the solution is symmetric we do
not have ε1 = ε which would have implied the corner solution ε2 = 0.

Finally we look at the case where α1 	= α2. Obviously the solution cannot
be symmetric. The question arises whether we should have ε1 = ε and δ1 =
δ. On a (δ, ε) plane we consider the iso-level curves 2(5 − ε) 1

2 + δ
1
2 = 5 and

2(5−δ) 1
2 +ε

1
2 = 5. In this plane the first one is a concave and the second a convex

function. Their unique common point is (1, 1). Now consider a slightly lower in
value iso-level curve of the second type while the one of the first type stays the
same. The two curves cross at a point with ε, δ > 1 and ε < δ. However there is no
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obvious reason why in the solution of the maximization problem we should have
both ε1 = ε and δ1 = δ.
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Summary. In the context of differential information economies, with and without
free disposal, we consider the concepts of Radner equilibrium, rational expectations
equilibrium, private core, weak fine core and weak fine value. We look into the pos-
sible implementation of these concepts as perfect Bayesian or sequential equilibria
of noncooperative dynamic formulations. We construct relevant game trees which
indicate the sequence of decisions and the information sets, and explain the rules for
calculating ex ante expected payoffs. The possibility of implementing an allocation
is related to whether or not it is incentive compatible. Implementation through an
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1 Introduction

An economy with differential information consists of a finite set of agents each
of which is characterized by a random utility function, a random consumption set,
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2000. We are grateful to Dr A. Hadjiprocopis for his invaluable help with the implementation of Latex
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random initial endowments, a private information set defined on the states of nature,
and a prior probability distribution on these states. For such an economy there are
a number of cooperative and non-cooperative equilibrium concepts.

We have the noncooperative concepts of the generalized Walrasian equilibrium
ideas of Radner equilibrium and rational expectations equilibrium (REE) defined
in Radner (1968), Allen (1981) and Einy, Moreno, and Shitovitz (2000, 2001).1 We
also have the cooperative concepts of the private core (Yannelis, 1991), of the weak
fine core, defined in Yannelis (1991) and Koutsougeras and Yannelis (1993), and
that of the weak fine value (Krasa andYannelis, 1994). The last two concepts allow
the agents to pool their information.2

In a comparison of the equilibrium concepts we note that contrary to the private
core any rational expectations Walrasian equilibium notion will always give zero
quantities to an agent whose initial endowments are zero in each state. This is
so irrespective of whether his private information is the full partition or the trivial
partition of the states of nature. Hence the Radner as well as the REE do not register
the informational superiority of an agent.

In Glycopantis, Muir, and Yannelis (2001) we provided a noncooperative inter-
pretation of the private core for a three persons economy without free disposal. We
constructed game trees which indicate the sequence of decisions and the informa-
tion of the agents, and explained the rules for calculating ex ante, expected payoffs,
through the reallocation of initial endowments. We showed that the private core
can be given a dynamic interpretation as a perfect Bayesian equilibrium (PBE) of
a noncooperative extensive form game.

The term implementation is used in the sense of realization of an allocation
and not in the formal sense of implementation theory or mechanism design. Imple-
mentation or support of an allocation is sought through the PBE concept, described
in Tirole (1988), which is a variant of the Kreps-Wilson (1982) idea of sequential
equilibrium.

A PBE consists of a set of players’ optimal behavioral strategies, and consistent
with these, a set of beliefs which attach a probability distribution to the nodes of
each information set. Consistency requires that the decision from an information
set is optimal given the particular player’s beliefs about the nodes of this set and the
strategies from all other sets, and that beliefs are formed from updating, using the
available information. If the optimal play of the game enters an information set then
updating of beliefs must be Bayesian. Otherwise appropriate beliefs are assigned
arbitrarily to the nodes of the set. This equilibrium concept is further looked at in
Appendix I.

Our main observation in Glycopantis, Muir, and Yannelis (2001) was that
Bayesian incentive compatible concepts, like the private core, can be implemented
as a PBE of a noncooperative, extensive form game. Moreover we provided a
counter example which demonstrates that core concepts which are not necessarily
Bayesian incentive compatible, as for example the weak fine core, cannot be sup-
ported, under reasonable rules, in a dynamic framework. In the present paper we

1 Kurz (1994) has provided the alternative idea of rational belief equilibria.
2 See also Allen and Yannelis (2001) for additional references.
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examine further the issue of extensive form implementation and obtain additional
results.

Firstly, we consider cooperative and noncooperative solution concepts with and
without free disposal. To our surprise, as it was not intuitively obvious, we found that
solution concepts which are Bayesian incentive compatible without free disposal,
do not retain this property under free disposal. In particular, not only free disposal
destroys incentive compatibility but a problem also appears in verifying that an
agent has actually destroyed part of his initial endowment.

Secondly, we provide examples which demonstrate that with free disposal co-
operative and noocooperative solution concepts are not implementable as a PBE.
However implementation becomes possible by introducing a third party, such as a
court which has perfect knowledge in order to be able to penalize the lying agents.

Thirdly, for the purpose of implementation of the (non-free) disposal private
core, we follow an alternative approach. We consider the (non-free) disposal private
core example of the one-good, three-agent economy discussed in Glycopantis, Muir,
andYannelis (2001). The introduction of a third party results in the implementation
of the private core allocation as a PBE. We show here that it can also be implemented
as a sequential equilibrium (Kreps and Wilson, 1982).

Finally we provide a full characterization of our Bayesian incentive compati-
bility concept in the case of one good per state.

The analysis suggests that if an allocation is not incentive compatible, i.e. the
agents do not find that it is in accordance with their interests, then there is a difficulty
in implementing it in a dynamic framework. On the other hand incentive compatible
allocations are implementable through contracts with reasonable conditions. We
note that the implementation analysis is independent of the equilibrium notion. It
applies to contracts in general which can be analysed by a similar tree structure.

Parts of the investigation fall into the area of the Nash programme the purpose of
which has been, as explained in Glycopantis, Muir, andYannelis (2001), to provide
support and justification of cooperative solutions through noncooperative formula-
tions. On the other hand we extend here the investigation into more general areas by
discussing explicitly the possible implementation of noncooperative concepts such
as Radner equilibrium and REE. It appears that in general the issue is the relation
between dynamic and static considerations, not necessarily between cooperative
and noncooperative formulations.

The paper is organized as follows. Section 2 defines a differential information
exchange economy. Section 3 contains the equilibrium concepts discussed in this
paper. Section 4 describes ideas of incentive compatibility. Section 5 discusses the
non-implementation of free disposal private core allocations and Section 6 the im-
plementation of private core and Radner equilibria through the courts. Section 7
discusses the implementation of non-free disposal private core allocations through
an endogenous intermediary. Section 8 offers concluding remarks. Appendix I con-
tains further remarks on PBE.
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2 Differential information economy

We define the notion of a finite-agent economy with differential information, con-
fining ourselves to the case where the set of states of nature,Ω, is finite and there is
a finite number of goods, l, per state. F is a σ-algebra on Ω, I is a set of n players
and IRl

+ will denote the positive orthant of IRl.
A differential information exchange economy E is a set {((Ω,F), Xi,Fi, ui,

ei, qi) : i = 1, . . . , n} where

1. Xi : Ω → 2IRl
+ is the set-valued function giving the random consumption set

of Agent (Player) i, who is denoted also by Pi;
2. Fi is a partition of Ω, denoting the private information3 of Pi;
3. ui : Ω×IRl

+ → IR is the random utility function of Pi;
4. ei : Ω → IRl

+ is the random initial endowment of Pi, assumed to be constant
on elements of Fi, with ei(ω) ∈ Xi(ω) for all ω ∈ Ω;

5. qi is an F-measurable probability function on Ω giving the prior of Pi. It is
assumed that on all elements of Fi the aggregate qi is positive. If a common
prior is assumed it will be denoted by µ.

We will refer to a function with domain Ω, constant on elements of Fi, as
Fi-measurable, although, strictly speaking, measurability is with respect to the σ-
algebra generated by the partition. We can think of such a function as delivering
information to Pi which does not permit discrimination between the states of nature
belonging to any element of Fi.

In the first period agents make contracts in the ex ante stage. In the interim
stage, i.e., after they have received a signal4 as to what is the event containing the
realized state of nature, one considers the incentive compatibility of the contract.

For any xi : Ω → IRl
+, the ex ante expected utility of Pi is given by

vi(xi) =
∑
ω∈Ω

ui(ω, xi(ω))qi(ω). (1)

Denote by Ei(ω) the element in the partition Fi which contains the realized state
of nature, ω ∈ Ω. It is assumed that qi

(
Ei(ω)

)
> 0 for all ω ∈ Ω. The interim

expected utility function of Pi is given by

vi(ω, xi) =
∑

ω′ ∈Ω

ui(ω
′
, xi(ω

′
))qi
(
ω

′ |Ei(ω)
)
, (2)

where

qi
(
ω

′ |Ei(ω)
)

=

⎧⎨⎩0 for ω
′
/∈ Ei(ω)

qi(ω
′
)

qi

(
Ei(ω)

) for ω
′ ∈ Ei(ω).

3 Following Aumann (1987) we assume that the players’ information partitions are common knowl-
edge. Sometimes Fi will denote the σ-algebra generated by the partition, in which case Fi ⊆ F , as it
will be clear from the context.

4 A signal to Pi is an Fi-measurable function from Ω to the set of the possible distinct observations
specific to the player; that is, it induces the partition Fi, and so gives the finest discrimination of states
of nature directly available Pi.
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3 Private core, weak fine core, Radner equilibrium, REE and weak fine value

We define here the various equilibrium concepts in this paper, distinguishing be-
tween the free disposal and the non-free disposal case. A comparison is also made
between these concepts. All definitions are in the context of the exchange economy
E in Section 2.

We begin with some notation. Denote byL1(qi, IRl) the space of all equivalence
classes, with respect to qi, of F-measurable functions fi : Ω → IRl.
LXi is the set of all Fi-measurable selections from the random consumption

set of Agent i, i.e.,

LXi =
{
xi ∈ L1(qi, IRl) : xi : Ω → IRl is Fi-measurable

and xi(ω) ∈ Xi(ω) qi-a.e.
}

and let LX =
n∏

i=1
LXi .

Also let

L̄Xi
=
{
xi ∈ L1(qi, IRl) : xi(ω) ∈ Xi(ω) qi-a.e.

}
and let L̄X =

n∏
i=1
L̄Xi .

An element x = (x1, . . . , xn) ∈ L̄X will be called an allocation. For any
subset of players S, an element (yi)i∈S ∈

∏
i∈S

L̄Xi will also be called an allocation,

although strictly speaking it is an allocation to S.
We note that the above notation is employed also for purposes of comparisons

with the analysis in Glycopantis, Muir, and Yannelis (2001). In case there is only
one good, i.e. l = 1, we shall use the notation L1

Xi
, L̄1

Xi
etc. When a common prior

is also assumed L1(qi, IRl) will be replaced by L1(µ, IRl).
First we define the notion of the (ex ante) private core5 (Yannelis, 1991).

Definition 3.1. An allocation x ∈ LX is said to be a private core allocation if

(i)
∑n

i=1 xi =
∑n

i=1 ei and
(ii) there do not exist coalition S and allocation (yi)i∈S ∈ ∏

i∈S

LXi
such that∑

i∈S

yi =
∑
i∈S

ei and vi(yi) > vi(xi) for all i ∈ S.

Notice that the definition above does not allow for free disposal. If the feasibility
condition (i) is replaced by (i)′

∑n
i=1 xi ≤

∑n
i=1 ei then free disposal is allowed.

Example 3.1. Consider the following three agents economy, I = {1, 2, 3} with
one commodity, i.e. Xi = IR+ for each i, and three states of nature Ω = {a, b, c}.

We assume that the initial endowments and information partitions of the agents are
given by

5 The private core can also be defined as an interim concept. See Yannelis (1991) and Glycopantis,
Muir, and Yannelis (2001).
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e1 = (5, 5, 0), F1 = {{a, b}, {c}};
e2 = (5, 0, 5), F2 = {{a, c}, {b}};
e3 = (0, 0, 0), F3 = {{a}, {b}, {c}}.

It is also assumed that ui(ω, xi(ω)) = x
1
2
i , which is a typical strictly concave and

monotone function in xi, and that every player expects that each state of nature
occurs with the same probability, i.e. µ({ω}) = 1

3 , for ω ∈ Ω. For convenience, in
the discussion below expected utilities are multiplied by 3.

It was shown in Appendix II of Glycopantis, Muir, and Yannelis (2001) that,
without free disposal, a private core allocation of this economy is x1 = (4, 4, 1),
x2 = (4, 1, 4) and x3 = (2, 0, 0). It is important to observe that in spite of the
fact that Agent 3 has zero initial endowments, his superior information allows him
to make a Pareto improvement for the economy as a whole and he was rewarded
for doing so. In other words, Agent 3 traded his superior information for actual
consumption in state a. In return Agent 3 provided insurance to Agent 1 in state
c and to Agent 2 in state b. Notice that if the private information set of Agent 3
is the trivial partition, i.e., F ′

3 = {a, b, c}, then no-trade takes place and clearly
in this case he gets zero utility. Thus the private core is sensitive to information
asymmetries.

Next we define another core concept, the weak fine core (Yannelis, 1991; Kout-
sougeras andYannelis, 1993). This is a refinement of the fine core concept of Wilson
(1978). Recall that the fine core notion of Wilson as well as the fine core in Kout-
sougeras and Yannelis may be empty in well behaved economies. It is exactly for
this reason that we are working with a different concept.

Definition 3.2. An allocation x = (x1, . . . , xn) ∈ L̄X is said to be a weak fine
core allocation if

(i) each xi(·) is
n∨

i=1
Fi-measurable 6

(ii)
∑n

i=1 xi =
∑n

i=1 ei and
(iii) there do not exist coalition S and allocation (yi)i∈S ∈

∏
i∈S

L̄Xi
such that

yi(·)− ei(·) is
∨

i∈S

Fi-measurable for all i ∈ S,
∑
i∈S

yi =
∑
i∈S

ei and vi(yi) >

vi(xi) for all i ∈ S.

Existence of private core and weak fine core allocations is discussed in Glycopantis,
Muir, and Yannelis (2001). The weak fine core is also an ex ante concept. As
with the private core the feasibility condition can be relaxed to (ii)′

∑n
i=1 xi ≤∑n

i=1 ei. Notice however that now coalitions of agents are allowed to pool their
own information and all alocations will exhaust the resource. The example below
illustrates this concept.

Example 3.2. Consider the Example 3.1 without Agent 3. Then if Agents 1 and 2
pool their own information a possible allocation is x1 = x2 = (5, 2.5, 2.5). Notice

6
n∨

i=1
Fi denotes the smallest σ-algebra containing each Fi.
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that this allocation is
2∨

i=1
Fi-measurable and cannot be dominated by any coalition

of agents using their pooled information. Hence it is a weak fine core allocation.7

Next we shall define a Walrasian equilibrium notion in the sense of Radner. In
order to do so, we need the following. A price system is anF-measurable, non-zero
function p : Ω → IRl

+ and the budget set of Agent i is given by

Bi(p) =
{
xi : xi : Ω → IRl is Fi-measurable xi(ω) ∈ Xi(ω)

and
∑
ω∈Ω

p(ω)xi(ω) ≤
∑
ω∈Ω

p(ω)ei(ω)
}
.

Notice that the budget constraint is across states of nature.

Definition 3.3. A pair (p, x), where p is a price system and x = (x1, . . . , xn) ∈
LX is an allocation, is a Radner equilibrium if

(i) for all i the consumption function maximizes vi on Bi

(ii)
∑n

i=1 xi ≤
∑n

i=1 ei ( free disposal), and
(iii)

∑
ω∈Ω

p(ω)
∑n

i=1 xi(ω) =
∑

ω∈Ω

p(ω)
∑n

i=1 ei(ω).

Radner equilibrium is an ex ante concept. We assume free disposal, for otherwise it
is well known that a Radner equilibrium with non-negative prices might not exist.
This can be seen through straightforward calculations in Example 3.1.

Next we turn our attention to the notion of REE. We shall need the following.
Let σ(p) be the smallest sub-σ-algebra ofF for which p : Ω → IRl

+ is measurable
and let Gi = σ(p)∨Fi denote the smallest σ-algebra containing both σ(p) and Fi.
We shall also condition the expected utility of the agents on Gi which produces a
random variable.

Definition 3.4. A pair (p, x), where p is a price system and x = (x1, . . . , xn) ∈
L̄X is an allocation, is a rational expectations equilibrium (REE) if

(i) for all i the consumption function xi(ω) is Gi-measurable.
(ii) for all i and for all ω the consumption function maximizes

vi(xi|Gi)(ω) =
∑

ω′ ∈E
Gi
i (ω)

ui(ω
′
, xi(ω

′
))

qi(ω
′
)

qi
(
EGi

i (ω)
) , (3)

(whereEGi
i (ω) is the event inGi which containsω and qi(EGi

i (ω)) > 0) subject
to

p(ω)xi(ω) ≤ p(ω)ei(ω)

i.e. the budget set at state ω, and
(iii)

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω) for all ω.

7 See Koutsougeras and Yannelis (1993).
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This is an interim concept because we condition expectations on information re-
ceived from prices as well. In the definition, free disposal can easily be introduced.
The idea of conditioning on the σ-algebra, vi(xi|Gi)(ω), is rather well known.

REE can be classified as (i) fully revealing if the price function reveals to each
agent all states of nature, (ii) partially revealing if the price function reveals some
but not all states of nature and (iii) non-revealing if it does not disclose any particular
state of nature.

Finally we define the concept of weak fine value allocation (see Krasa and
Yannelis, 1994). As in the definition of the standard value allocation concept, we
must first define a transferable utility (TU) game in which each agent’s utility is
weighted by a factor λi (i = 1, . . . , n), which allows interpersonal comparisons.
In the value allocation itself no side payments are necessary.8 A game with side
payments is then defined as follows.

Definition 3.5. A game with side payments Γ = (I, V ) consist of a finite set of
agents I = {1, . . . , n} and a superadditive, real valued function V defined on 2I

such that V (∅) = 0. Each S ⊂ I is called a coalition and V (S) is the ‘worth’ of
the coalition S.

The Shapley value of the game Γ (Shapley, 1953) is a rule that assigns to each
Agent i a ‘payoff’, Shi, given by the formula9

Shi(V ) =
∑
S⊆I

S⊇{i}

(| S | −1)!(| I | − | S |)!
| I |! [V (S)− V (S\{i})]. (4)

The Shapley value has the property that
∑

i∈I Shi(V ) = V (I), i.e. it is Pareto
efficient.

We now define for each economy with differential information,E , and a common
prior, and for each set of weights, λi : i = 1, . . . , n, the associated game with side
payments (I, Vλ) (we also refer to this as a ‘transferable utility’ (TU) game) as
follows:

For every coalition S ⊂ I , let

Vλ(S) = max
x

∑
i∈S

λi

∑
ω∈Ω

ui(ω, xi(ω))µ(ω) (5)

subject to

(i)
∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ−a.e.,
(ii) xi − ei is

∨
i∈S

Fi−measurable.

We are now ready to define the weak fine value allocation.

8 See Emmons and Scafuri (1985, p. 60) for further discussion.
9 The Shapley value measure is the sum of the expected marginal contributions an agent can make

to all the coalitions of which he/she is a member (see Shapley, 1953).



On extensive form implementation of contracts in differential information economies 627

Definition 3.6. An allocation x = (x1, . . . , xn) ∈ L̄X is said to be a weak fine
value allocation of the differential information economy, E , if the following con-
ditions hold

(i) Each net trade xi − ei is
n∨

i=1
Fi-measurable,

(ii)
∑n

i=1 xi =
∑n

i=1 ei and
(iii) There existλi ≥ 0, for every i = 1, . . . , n, which are not all equal to zero, with∑

ω∈Ω

λiui(ω, xi(ω))µ(ω) = Shi(Vλ) for all i, where Shi(Vλ) is the Shapley

value of Agent i derived from the game (I, Vλ), defined in (5) above.

Condition (i) requires the pooled information measurability of net trades, i.e. net
trades are measurable with respect to the “join”. Condition (ii) is the market clearing
condition and (iii) says that the expected utility of each agent multiplied by his/her
weight, λi, must be equal to his/her Shapley value derived from the TU game
(I, Vλ).

An immediate consequence of Definition 3.6 is that

Shi(Vλ) ≥ λi

∑
ω∈Ω

ui(ω, ei(ω))µ(ω)

for every i, i.e. the value allocation is individually rational.This follows immediately
from the fact that the game (Vλ, I) is superadditive for all weights λ. Similarly,
efficiency of the Shapley value for games with side payments immediately implies
that the value allocation is weak-fine Pareto efficient.

On the basis of the definitions and the analysis of Example 3.1 of an exhange
economy with 3 agents and of Example 3.2 with 2 agents we make comparisons
between the various equilibrium notions. The calculations of all, cooperative and
noncooperative, equilibrium allocations are straightforward.

Contrary to the private core any rational expectation Walrasian equilibium no-
tion, such as Radner equilibrium or REE, will always give zero to an agent who
has no initial endowments. For example, in the 3-agent economy of Example 3.1,
Agent 3 receives no consumption since his budget set is zero in each state. This is
so irrespective of whether his private information is the full information partition
F3 = {{a}, {b}, {c}} or the trivial partition F ′

3 = {a, b, c}. Hence the Walrasian,
competitive equilibrium ideas do not take into account the informational superiority
of an agent.

The set of Radner equilibrium allocations, with and without free disposal, are
a subset of the corresponding private core allocations. Of course it is possible
that a Radner equilibrium allocation might not exist. In the two-agent economy
of Example 3.2, assuming non-free disposal the unique private core is the initial
endowments allocation while no Radner equilibrium exists. On the other hand,
assuming free disposal, for the same example, the REE coincides with the initial
endowments allocation which does not belong to the private core. It follows that
the REE allocations need not be in the private core.

We also have that a REE need not be a Radner equilibrium. In Example 3.2,
without free disposal no Radner equilibrium with non-negative prices exists but
REE does. It is unique and it implies no-trade.
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As for the comparison between private and weak fine core allocations the two
sets could intersect but there is no definite relation. Indeed the measurability re-
quirement of the private core allocations separates the two concepts. In Example
3.2 the allocation (5, 2.5, 2.5) to Agent 1 and (5, 2.5, 2.5) to Agent 2, as well as (6,
3, 3) and (4, 2, 2) belong to the weak fine core but not to the private core. There are
many weak fine core allocations which do not satisfy the measurability condition.

For n = 2 one can easily verify that the weak fine value belongs to the weak
fine core. However it is known (see, for example, Scafuri and Yannelis, 1984) that
for n ≥ 3 a value allocation may not be a core allocation, and therefore may not
be a Radner equilibrium.

Also, in Example 3.1 a private core allocation is not necessarily in the weak
fine core. Indeed the division (4, 4, 1), (4, 1, 4) and (2, 0, 0), to Agents 1, 2 and
3 respectively, is a private core but not a weak fine core allocation. The first two
agents can get together, pool their information and do better. They can realize the
weak fine core allocation, (5, 2.5, 2.5), (5, 2.5, 2.5) and (0, 0, 0) which does not
belong to the private core.

Finally notice that even with free disposal no allocation which does not distribute
the total resource could be in the weak fine core. The three agents can get together,
distribute the surplus and increase their utility.

In the next section we shall discuss whether core and Walrasian type allocations
have certain desirable properties from the point of view of incentive compatibility.
Following this, we shall turn our attention in later sections to the implementation
of such allocations.

4 Incentive compatibility

The basic idea is that an allocation is incentive compatible if no coalition can
misreport the realized state of nature to the complementary set of agents and become
better off.

Let us suppose we have a coalition S, with members denoted by i, and the
complementary set I \ S with members j. Let the realized state of nature be ω∗. A
member i ∈ S sees Ei(ω∗). Obviously not all Ei(ω∗) need be the same, however
all Agents i know that the actual state of nature could be ω∗.

Consider now a state of nature ω
′

with the following property. For all j ∈ I \S
we have ω

′ ∈ Ej(ω∗) and for at least one i ∈ S we have ω
′
/∈ Ei(ω∗) (otherwise

ω
′

would be indistinguishable from ω∗ for all players and, by redefining utilities
appropriately, could be considered as the same element of Ω). Now the coalition
S decides that each member i will announce that she has seen her own set Ei(ω

′
)

which, of course, definitely contains a lie. On the other hand we have that ω
′ ∈⋂

j /∈S

Ej(ω∗), (we also denote j ∈ I \ S by j /∈ S).

Now the idea is that if all members of I \ S believe the statements of the
members of S then each i ∈ S expects to gain. For coalitional Bayesian incentive
compatibility (CBIC) of an allocation we require that this is not possible. This is the
incentive compatibility condition used in Glycopantis, Muir, and Yannelis (2001)
where we gave a formal definition.
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We showed there that in the three-agent economy without free disposal the
private core allocation x1 = (4, 4, 1), x2 = (4, 1, 4) and x3 = (2, 0, 0) is incentive
compatible. This follows from the fact that Agent 3 who would potentially cheat in
state a has no incentive to do so. It has been shown in Koutsougeras and Yannelis
(1993) that if the utility functions are monotone and continuous then private core
allocations are always CBIC.

On the other hand the weak fine core allocations are not always incentive com-
patible, as the proposed redistribution x1 = x2 = (5, 2.5, 2.5) in the two-agent
economy shows. Indeed, if Agent 1 observes {a, b}, he has an incentive to report c
and Agent 2 has an incentive to report b when he observes {a, c}.

CBIC coincides in the case of a two-agent economy with Individually Bayesian
Incentive Compatibility (IBIC) which corresponds to the case in which S is a
singleton.

The concept of Transfer Coalitionally Bayesian Incentive Compatible
(TCBIC) allocations, used in this paper,10 allows for transfers between the mem-
bers of a coalition, and is therefore a strengthening of the concept of Coalitionally
Bayesian Incentive Compatibility (CBIC).

Definition 4.1. An allocation x = (x1, . . . , xn) ∈ L̄X , with or without free dis-
posal, is said to be Transfer Coalitionally Bayesian Incentive Compatible (TCBIC)
if it is not true that there exists a coalitionS, statesω∗ andω

′
, withω∗ different from

ω
′

and ω
′ ∈ ⋂

i/∈S

Ei(ω∗) and a random net-trade vector, z, among the members of

S,

(zi)i∈S ,
∑
S

zi = 0

such that for all i ∈ S there exists Ēi(ω∗) ⊆ Zi(ω∗) = Ei(ω∗) ∩ (
⋂

j /∈S

Ej(ω∗)),

for which ∑
ω∈Ēi(ω∗)

ui(ω, ei(ω) + xi(ω
′
)− ei(ω

′
) + zi)qi

(
ω|Ēi(ω∗)

)
(6)

>
∑

ω∈Ēi(ω∗)

ui(ω, xi(ω))qi
(
ω|Ēi(ω∗)

)
.

Notice that the zi’ s above are not necessarily measurable. The definition is cast in
terms of all possible zi’ s. It follows that ei(ω)+xi(ω

′
)− ei(ω

′
)+ zi(ω) ∈ Xi(ω)

is not necessarily measurable. The definition means that no coalition can form with
the possibility that by misreporting a state, every member will become better off if
the announcement is believed by the members of the complementary set.

Returning to Definition 4.1, one then can define CBIC to correspond to zi = 0
and then IBIC to the case when S is a singleton. Thus we have (not IBCI) ⇒ (not
CBIC) ⇒ (not TCBIC). It follows that TCBIC ⇒ CBIC ⇒ IBIC.

We now provide a characterization of TCBIC:

10 See Krasa and Yannelis (1994) and Hahn and Yannelis (1997) for related concepts.
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Proposition 4.1. Let E be a one-good differential information economy as de-
scribed above, and suppose each agent’s utility function, ui = ui(ω, xi(ω)) is
monotone in the elements of the vector of goods xi, that ui(., xi) is Fi-measurable
in the first argument, and that an element x = (x1, . . . , xn) ∈ L̄1

X is a feasible
allocation in the sense that

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω) ∀ω. Consider the following

conditions:

(i) x ∈ L1
X =

n∏
i=1
L1

Xi
and

(ii) x is TCBIC.

Then (i) is equivalent to (ii).

Proof. First we show that (i) implies (ii) by showing that (i) and the negation of
(ii) lead to a contradiction.

Let x ∈ LX and suppose that it is not TCBIC. Then, varying the notation for
states to emphasize that Definition 4.1 does not hold, there exists a coalition S,
states a and b, with a 	= b and b ∈

⋂
i/∈S

Ei(a) and a net-trade vector, z, among the

members of S,
(zi)i∈S ,

∑
S

zi = 0

such that for all i ∈ S there exists Ēi(a) ⊆ Zi(a) = Ei(a) ∩ (
⋂

j /∈S

Ej(a)), for

which ∑
c∈Ēi(α)

ui(c, ei(c) + xi(b)− ei(b) + zi)qi
(
c|Ēi(a)

)
(7)

>
∑

c∈Ēi(a)

ui(c, xi(c))qi
(
c|Ēi(a)

)
.

For c ∈ Ēi(a), ei(c) = ei(a) since ei is Fi-measurable, so

ei(c) + xi(b)− ei(b) + zi = ei(a) + xi(b)− ei(b) + zi

and hence also

ui

(
c, ei(c) + xi(b)− ei(b) + zi

)
= ui

(
a, ei(a) + xi(b)− ei(b) + zi

)
,

by the assumed Fi-measurability of ui.
Since, by (i), xi(c) = xi(a) for c ∈ Ēi(a), we similarly have ui

(
c, xi(c)

)
=

ui

(
a, xi(a)

)
. Thus in equation (7) the common utility terms can be lifted outside

the summations giving

ui

(
a, ei(a) + xi(b)− ei(b) + zi

)
> ui

(
a, xi(a)

)
and hence ei(a) + xi(b)− ei(b) + zi > xi(a), by monotonicity of ui.

Consequently, ∑
i∈S

(
xi(b)− ei(b)

)
>
∑
i∈S

(
xi(a)− ei(a)

)
. (8)
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On the other hand for i /∈ S we have xi(b) − ei(b) = xi(a) − ei(a) from which
we obtain ∑

i/∈S

(
xi(b)− ei(b)

)
=
∑
i/∈S

(
xi(a)− ei(a)

)
. (9)

Taking equations (8),(9) together we have∑
i∈I

(
xi(b)− ei(b)

)
>
∑
i∈I

(
xi(a)− ei(a)

)
, (10)

which is a contradiction since both sides are equal to zero, by feasibility.11

We now show that (ii) implies (i). For suppose not. Then there exists someAgent
j and states a, bwith b ∈ Ej(a) such that xj(a) 	= xj(b). Without loss of generality,
we may assume that xj(a) > xj(b). Since ej(.) is Fj-measurable ej(b) = ej(a)
and therefore

xj(a)− ej(a) > xj(b)− ej(b). (11)

Let S = I\{j}. From the feasibility of x and (11) it follows that∑
i∈S

(
xi(a)− ei(a)

)
= −

(
xj(a)− ej(a)

)
< −

(
xj(b)− ej(b)

)
(12)

=
∑
i∈S

(
xi(b)− ei(b)

)
.

From (12) we have that

δ =
∑
i∈S

(
ei(a) + xi(b)− ei(b)− xi(a)

)
> 0. (13)

For each i ∈ S, let

zi = xi(a)− ei(a)− xi(b) + ei(b) +
δ

n− 1

so that
∑

i∈S zi = 0 and

ei(a) + xi(b)− ei(b) + zi > xi(a).

By monotonicity of ui, we can conclude that

ui(a, ei(a) + xi(b)− ei(b) + zi) > ui(a, xi(a)), (14)

for all i ∈ S, a contradiction to the fact that x is TCBIC as the role of Ēi in the
definition can be played by {a}.

Finally note that a particular case of Fi-measurability of ui is when it is inde-
pendent of ω. This completes the proof of Proposition 4.1. ��

11 Koutsougeras and Yannelis (1993) and Krasa and Yannelis (1994) show that (i) implies (ii) for any
number of goods, but for ex post utility functions. This means that the contract is made ex ante and after
the state of nature is realized we see that we have incentive compatibility. Hahn and Yannelis (1997)
show that (i) implies (ii) for any number of goods and for interim utility functions. Notice that since the
non-free disposal Radner equilibrium is a subset of the non-free disposal ex ante private core, it follows
from Hahn and Yannelis that the non-free disposal Radner equilibrium is TCBIC.
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In the lemma that follows we refer to CBIC, as TCBIC does not make much
sense since zi is not available. CBIC is obtained when all zi’s are set equal to zero.

Lemma 4.1. Under the conditions of the Proposition, if there are only two agents
then (ii) x is CBIC, which is the same as IBIC, implies (i).

Proof. For suppose not. Then lack of Fi-measurability of the allocations implies
that there exist Agent j and states a, b, where b ∈ Ej(a), such that xj(b) < xj(a)
and therefore

xj(b)− ej(b) < xj(a)− ej(a). (15)

Feasibility implies

xi(b)− ei(b) + xj(b)− ej(b) = xi(a)− ei(a) + xj(a)− ej(a) (16)

from which we obtain

xi(b)− ei(b) > xi(a)− ei(a). (17)

By monotonicity and the one-good per state assumption it follows that,

ui(a, ei(a) + xi(b)− ei(b)) > ui(a, xi(a)). (18)

This implies that we have

ui(a, ei(c) + xi(b)− ei(b)) > ui(a, xi(c)) (19)

which contradicts the assumption that x is CBIC. This completes the proof of the
lemma. ��

The above results characterize TCBIC and CBIC in terms of private individual
measurability, i.e. Fi-measurability, of allocations. These results will enable us to
conclude whether or not, in case of non-free disposal, any of the solution concepts,
i.e. Radner equilibrium, REE, private core, weak fine core and weak fine value will
be TCBIC whenever feasible allocations are Fi-measurable.

It follows from the lemma that the redistribution shown in the matrix below,
which is a weak fine core allocation of Example 3.2, where the ith line refers to
Player i and the columns from left to right to states a, b and c,(

5 2.5 2.5
5 2.5 2.5

)
is not CBIC as it is not Fi-measurable. Thus, a weak fine core allocation may not
be CBIC.

On the other hand the proposition implies that, in Example 3.2, the no-trade
allocation (

5 5 0
5 0 5

)
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is incentive compatible. This is a non-free disposal REE, and a private core alloca-
tion.

We note that the Proposition 4.1 refers to non-free disposal. As a matter of fact
Proposition 4.1 is not true if we assume free disposal. Indeed if free disposal is
allowed Fi-measurability PBE does not imply incentive compatibility.

In the case with free disposal, private core and Radner equilibrium need not
be incentive compatible. In order to see this we notice that in Example 3.2 the
(free disposal) Radner equilibrium is x1 = (4, 4, 1) and x2 = (4, 1, 4). The above
allocation is clearly Fi-measurable and it can easily be checked that it belongs to
the (free disposal) private core. However it is not TBIC since if state a occurs Agent
1 has an incentive to report state c and gain.

Now in employing game trees in the analysis, as it is done below, we will adopt
the definition of IBIC. The equilibrium concept employed will be that of PBE. The
definition of a play of the game is a directed path from the initial to a terminal node.

In terms of the game trees, a core allocation will be IBIC if there is a profile of
optimal behavioral strategies and equilibrium paths along which no player misre-
ports the state of nature he has observed. This allows for the possibility, as we shall
see later, that such strategies could imply that players have an incentive to lie from
information sets which are not visited by an optimal play.

In view of the analysis in terms of game trees we comment again on the general
idea of CBIC. First we look at it once more, in a similar manner to the one in the
beginning of Section 4.

Suppose the true state of nature is ω̄. Any coalition can only see that the state
lies in

⋂
i∈S

Ei(ω̄) when they pool their observations. If they decide to lie they must

first guess at what is the true state and they will do so at someω∗ ∈ ⋂
i∈S

Ei(ω̄). Then

of course we have
⋂

i∈S

Ei(ω̄) =
⋂

i∈S

Ei(ω∗). Having decided on ω∗ as a possible

true state, they now pick some ω
′ ∈ ⋂

j /∈S

Ej(ω∗) and (assuming the system is not

CBIC) they hope, by announcing (each of them) that they have seen Ei(ω
′
) to

secure better payoffs.
This is all contingent on their being believed by I \S. This, in turn, depends on

their having been correct in their guessing thatω∗ = ω̄, in which case they might be
believed. If ω∗ 	= ω̄, i.e they guess wrongly, then since

⋂
j /∈S

Ej(ω∗) 	=
⋂

j /∈S

Ej(ω̄)

they may be detected in their lie, since possibly ω
′
/∈ ⋂

j /∈S

Ej(ω̄).

This is why the definition of CBIC can only be about possible existence of
situations where a lie might be beneficial. It is not concerned with what happens if
the lie is detected. On the other hand the extensive form forces us to consider that
alternative. It requires statements concerning earlier decisions by other players to
lie or tell the truth and what payoffs will occur whenever a lie is detected, through
observations or incompatibility of declarations. Only in this fuller description can
players really make a decision whether to risk a lie, since only then can they balance
the gains from not being caught against a definitely declared payoff if they are.
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The issue is whether cooperative and noncooperative static solutions can be ob-
tained as perfect Bayesian or sequential equilibria. That is whether such allocations
can also be supported through an appropriate noncooperative solution concept. The
analysis below shows that CBIC allocations can be supported by a PBE while lack
of incentive compatibility implies non-support, in the sense that the two agents, left
on their own, do not sign the contract. It is also shown how implementation of allo-
cations becomes possible through the introduction in the analysis of an exogenous
third party or an endogenous intermediary.

5 Non-implementation of free disposal private core and Radner equilibria,
and of weak fine core allocations

The main point here is that lack of IBIC implies that the two agents based on their
information cannot sign a proposed contract because both of them have an incentive
to cheat the other one and benefit. Indeed PBE leads to no-trade. This so irrespective
of whether in state a the contract specifies that they both get 5 or 4.

Note that to impose free disposal in state a causes certain problems, because
the question arises as to who will check that the agents have actually thrown away
1 unit. In general, free disposal is not always a very satisfactory assumption in
differential information economies with monotone preferences.

We shall investigate the possible implementation of the allocation(
4 4 1
4 1 4

)
in Example 3.2, contained in a contract between P1 and P2 when no third party is
present. For the case with free disposal, this is both a private core and a Radner
equilibrium allocation.

This allocation is not IBIC because, as we explained in the previous section, if
Agent 1 observes {a, b}, he has an incentive to report c and Agent 2 has an incentive
to report b when he observes {a, c}.

We construct a game tree and employ reasonable rules for describing the out-
comes of combinations of states of nature and actions of the players. In fact we
look at the contract (

5 4 1
5 1 4

)
in which the agents get as much per state as under the private core allocation above.
The latter can be obtained by invoking free disposal in state a.

The investigation is through the analysis of a specific sequence of decisions
and information sets shown in the game tree in Figure 1. Notice that vectors at
the terminal nodes of a game tree will refer to payoffs of the players in terms of
quantities. The first element will be the payoff to P1, etc.

The players are given strategies to tell the truth or to lie, i.e., we model the
idea that agents truly inform each other about what states of nature they observe,
or deliberately aim to mislead their opponent. The issue is what type of behavior is
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Figure 1

optimal and therefore whether a proposed contract will be signed or not. We find
that the optimal strategies of the players imply no-trade.

Figures 1 and 2 show that the allocation (5, 4, 1) and (5, 1, 4) will be rejected
by the players. They prefer to stay with their initial endowments and will not sign
the proposed contract as it offers to them no advantage.

In Figure 1, nature chooses states a, b or c with equal probabilities. This choice
is flashed on a screen which both players can see. P1 cannot distinguish between a
and b, and P2 between a and c . This accounts for the information sets I1, I2 and I

′
2

which have more than one node. A player to which such an information set belongs
cannot distinguish between these nodes and therefore his decisions are common to
all of them. A behavioral strategy of a player is to declare which choices he would
make, with what probability, from each of his information sets. Indistinguishable
nodes imply the Fi-measurability of decisions.

P1 moves first and he can either play A1 = {a, b} or c1 = {c}, i.e., he can say
“I have seen {a, b} or “I have seen c”. Of course only one of these declarations will
be true. Then P2 is to respond saying that the signal he has seen on the screen is
A2 = {a, c} or that it is b2 = {b}. Obviously only one of these statements is true.

Strictly speaking the notation for choices should vary with the information set
but there is no danger of confusion here. Finally notice that the structure of the
game tree is such that when P2 is to act he knows exactly what P1 has chosen.

Next we specify the rules for calculating the payoffs, i.e. the terms of the
contract:
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Figure 2

(i) If the declarations by the two players are incompatible, that is (c1, b2) then
no-trade takes place and the players retain their initial endowments. That is
the case when either state c, or state b occurs and Agent 1 reports state c and
Agent 2 state b. In state a both agents can lie and the lie cannot be detected by
either of them. They are in the events {a, b} and {a, c} respectively, they get
5 units of the initial endowments and again they are not willing to cooperate.
Therefore whenever the declarations are incompatible, no trade takes place
and the players retain their initial endowments.

(ii) If the declarations are (A1, A2) then even if one of the players is lying, this
cannot be detected by his opponent who believes that state a has occured and
both players have received endowment 5. Hence no-trade takes place.

(iii) If the declarations are (A1, b2) then a lie can be beneficial and undetected. P1
is trapped and must hand over one unit of his endowment to P2. Obviously if
his initial endowment is zero then he has nothing to give.

(iv) If the declarations are (c1, A2) then again a lie can be beneficial and undetected.
P2 is now trapped and must hand over one unit of his endowment to P1.
Obviously if his initial endowment is zero then he has nothing to give.

The calculations of payoffs do not require the revelation of the actual state of
nature. Optimal decisions will be denoted by a heavy line. We could assume that a
player does not lie if he cannot get a higher payoff by doing so.

Assuming that each player chooses optimally from his information sets, the
game in Figure 1 folds back to the one in Figure 2. Inspection of Figure 1 reveals
that from the information set I2 agent P2 can play b2 with probability 1. (A heavy
line A2 indicates that this choice also would not affect the analysis). This accounts
for the payoff (4, 6) and the first payoff (0, 5) from left to right in Figure 2. Similarly
by considering the optimal decisions from all other information sets of P2 we arrive
at Figure 2. Analyzing this figure we obtain the optimal strategies of P1.
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In conclusion, the optimal behavioral strategy for P1 is to play c1 with proba-
bility 1 from I1, i.e to lie, and from the singleton to play any probability mixture of
options, and we have chosen (A1,

1
2 ; c1, 1

2 ). The optimal strategy of P2 is to play
b2 from both I2 and I

′
2, i.e. to lie, and from the second singleton he can either tell

the truth or lie, or spin a wheel, divided in proportions corresponding toA1 and c1,
to decide what to choose.

In Figures 1 and 2, the fractions next to the nodes in the information sets
correspond to beliefs of the agents obtained, wherever possible, through Bayesian
updating. I.e., they are consistent with the choice of a state by nature and the optimal
behavioral strategies of the players. This means that strategies and beliefs satisfy
the conditions of a PBE.

These probabilities are calculated as follows. From left to right, we denote
the nodes in I1 by j1 and j2, in I2 by n1 and n2 and in I

′
2 by n3 and n4. Given

the choices by nature, the strategies of the players described above and using the
Bayesian formula for updating beliefs we can calculate, for example, the conditional
probabilities

Pr(n1/A1) =
Pr(A1/n1)× Pr(n1)

Pr(A1/n1)× Pr(n1) + Pr(A1/n2)× Pr(n2)
(20)

=
1× 0

1× 0 + 1× 1
3 × 1

2

= 0

and

Pr(n3/c1) =
Pr(c1/n3)× Pr(n3)

Pr(c1/n3)× Pr(n3) + Pr(c1/n4)× Pr(n4)
(21)

=
1× 1

3

1× 1
3 + 1× 1

2 × 1
3

=
2
3
.

In Figure 3 we indicate, through heavy lines, plays of the game which are the
outcome of the choices by nature and the optimal behavioral strategies by the
players. The interrupted heavy lines signify that nature does not take an optimal
decision but simply chooses among three alternatives, with equal probabilities. The
directed path (a, c1, b2) with payoffs (5, 5) occurs with probability 1

3 . The paths
(b, c1, A2) and (b, c1, b2) lead to payoffs (5, 0) and occur with probability 1

3 (1− q)
and 1

3q, respectively. The values (1− q) and q denote the probabilities with which
P2 chooses between A2 and b2 from the singleton node at the end of (b, c1). The
paths (c, A1, b2) (c, c1, b2) lead to payoffs (0, 5) and occur, each, with probability
1
3× 1

2 .
For all choices by nature, at least one of the players tells a lie on the optimal

play. The players by lying avoid the possibility of having to make a payment to
their opponent and stay with their initial endowments. The PBE obtained above
confirms the initial endowments. The decisions to lie imply that the players will
not sign the contract (5, 4, 1) and (5, 1, 4).

We have constructed an extensive form game and employed reasonable rules
for calculating payoffs and shown that the proposed allocation (5, 4, 1) and (5,
1, 4) will not be realized. A similar conclusion would have been reached if we
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Figure 3

investigated the allocation (4, 4, 1) and (4, 1, 4) which would have been brought
about by considering free disposal.

Finally suppose we were to modify (iii) and (iv) of the rules and adopt those in
Section 5 of Glycopantis, Muir, and Yannelis (2001):

(iii) If the declarations are (A1, b2) then a lie can be beneficial and undetected, and
P1 is trapped and must hand over half of his endowment to P2. Obviously if
his endowment is zero then he has nothing to give.

(iv) If the declarations are (c1, A2) then again a lie can be beneficial and undetected.
P2 is now trapped and must hand over half of his endowment to P1. Obviously
if his endowment is zero then he has nothing to give.

The new rules would imply, starting from left to right, the following changes in
the payoffs in Figure 1. The second vector would now be (2.5, 7.5), the third vector
(7.5, 2.5), the sixth vector (2.5, 2.5) and the eleventh vector (2.5, 2.5). The analysis
in Glycopantis, Muir, and Yannelis (2001) shows that the weak fine core allocation
in which both agents receive (5, 2.5, 2.5) cannot be implemented as a PBE. Again
this allocation is not IBIC.

Since we have two agents, the weak fine value belongs to the weak fine core. We
can also check through routine calculations that the non-implementable allocation
x1 = x2 = (5, 2.5, 2.5) belongs to the weak fine value, with the two agents
receiving equal weights.
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Finally we note that, in the context of Figure 1, the perfect Bayesian equilibrium
implements the initial endowments allocation(

5 5 0
5 0 5

)
·

In the case of non-free disposal, no-trade coincides with the REE and it is imple-
mentable. However as it is shown in Glycopantis, Muir, andYannelis (2002) a REE
is not in general implementable.

6 Implementation of private core and Radner equilibria through the courts;
implementation of weak fine core

We shall show here how the free disposal private core and also Radner equilibrium
allocation (

4 4 1
4 1 4

)
of Example 3.2 can be implemented as a PBE by invoking an exogenous third party,
which can be interpreted as a court which imposes penalties when the agents lie.

We shall assume that the agents do not hear the choice announced by the other
player or that they do not pay much attention to each other because the court will
verify the true state of nature.

It should be noted that now if the two players see the events (A1, A2) the
exogenous agent will not allow them to misreport the state of nature by imposing
a penalty for lying. Therefore the contract will be enforced exogenously.

The analysis is through the figures below. Figure 4 contains the information sets
of the two agents, P1 and P2, their sequential decisions and the payoffs in terms of
quantities. Each agent can choose either to tell the truth about the information set
he is in, or to lie.

Nature chooses states a, b and cwith equal probabilities. P1 acts first and cannot
distinguish between a and b. When P2 is to act he has two kinds of ignorance. Not
only he cannot distinguish between a and c but also he does not know what P1 has
chosen before him. This is an assumption about the relation between decisions. The
one unit that the courts take from a lying agent can be considered to cover the costs
of the court.

Next given the sequence of decisions of the two players, shown on the tree, we
specify the rules for calculating payoffs in terms of quantities, i.e we specify the
terms of the contract. They will, of course include the penalties that the court would
impose to the agents for lying.

The rules are:

(i) If a player lies about his observation, then he is penalized by 1 unit of the
good. If both players lie then they are both penalized. For example if the
declarations are (c1, b2) and state a occurs both are penalized. If they choose
(c1, A2) and state a occurs then the first player is penalized. If a player lies
and the other agent has a positive endowment then the court keeps the quantity
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Figure 4

substracted for itself. However, if the other agent has no endowment, then the
court transfers to him the one unit subtracted from the one who lied.

(ii) If the declarations of the two agents are consistent, that is (A1, A2) and state
a occurs, (A1, b2) and state b occurs, (c1, A2) and state c occurs, then they
divide equally the total endowments in the economy.

One explanation of the size of the payoffs is that if the agents decide to share, they
do so voluntarily. On the other hand the court feel that they can punish them for
lying but not to the extent of forcing them to share their endowments.

Assuming that each player chooses optimally, given his stated beliefs, from the
information sets which belong to him, P2 chooses to play b2 with probability 1
from both I2 and I ′

2 and the game in Figure 4 folds back to the one in Figure 5.
The choice of b2 is justified as follows. We ignore for the moment the specific
conditional probabilities attached to the nodes of I2. On the other hand, starting
from left to right, the sum of the probabilities of the first two nodes must be equal

to
1
2

, and this implies that strategy b2 overtakes, in utility terms, strategy A2, as

1
2
5

1
2 +

1
2
2.5

1
2 < 4

1
2 . It follows that P2 chooses to play the behavioral strategy b2

with probability 1. Now inspection of Figure 5 implies that P1 will choose c1 from
I1. The conditional probabilities on the nodes of I1 follow from the fact that nature



On extensive form implementation of contracts in differential information economies 641

Figure 5

chooses with equal probabilities and the optimal choice of c1 with probability 1

follows again from the fact that
1
2
5

1
2 +

1
2
2.5

1
2 < 4

1
2 .

Figure 6 indicates, through heavy lines, plays of the game which are the outcome
of choices by nature and the optimal strategies of the players. The fractions next
to the nodes of the information sets are obtained through Bayesian updating. I.e.
they are consistent with the choice of a state by nature and the optimal behavioral
strategies of the players. We have thus obtained a PBE and the above argument
implies that it is unique.

The free disposal private core allocation that we are concerned with is imple-
mented, always, by at least one of the agents lying. The reason is that they make
the same move from all the nodes of an information set and the rules of the game
imply that they are not eager to share their endowments. They prefer to suffer the
penalty of the court.

Finally notice the following. Suppose that the penalties are changed as follows.
The court is extremely severe when an agent lies while the other agent has no
endowment. It takes all the endowment from the one who is lying and transfers it
to the other player. Everything else stays the same. Then the game is summarized
in a modified Figure 4. Numbering the end points from left to right, the 2nd vector
will be replaced by (5, 0), the 3rd by (0, 5), the 4th by (0, 0), the 6th by (0, 5) and
the 8th one by (5, 0).

The analysis of the game implies now that P2 will playA2 from I2 and P1 will
playA1 from I1. Therefore invoking an exogenous agent implies that the PBE will
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Figure 6

now implement the weak fine core allocation(
5 2.5 2.5
5 2.5 2.5

)
·

7 Implementation of non-free disposal private core
through an endogenous intermediary

Here we draw upon the discussion in Glycopantis, Muir, and Yannelis (2001) but
we add the analysis that the optimal paths obtained are also part of a sequential
equilibrium. Hence we obtain a stronger conclusion, in the sense that we imple-
ment the private core allocation as a sequential equilibrium, which requires more
conditions than PBE.

In the case we consider now there is no court and the agents in order to decide
must listen to the choices of the other players before them. The third agent, P3,
is endogenous and we investigate his role in the implementation, or realization, of
private core allocations.

Private core without free disposal seems to be the most satisfactory concept. The
third agent who plays the role of the intermediary implements the contract and gets
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rewarded in state a. We shall consider the private core allocation, of Example 3.1,⎛⎝4 4 1
4 1 4
2 0 0

⎞⎠
·

We know that such core allocations are CBIC and we shall show now how they can
be supported as a perfect Bayesian equilibrium of a noncooperative game.

P1 cannot distinguish between states a and b and P2 between a and c. P3 sees
on the screen the correct state and moves first. He can either announce exactly what
he saw or he can lie. Obviously he can lie in two ways. When P1 comes to decide he
has his information from the screen and also he knows what P3 has played. When
P2 comes to decide he has his information from the screen and he also knows what
P3 and P1 played before him. Both P1 and P2 can either tell the truth about the
information they received from the screen or they can lie.

We must distinguish between the announcements of the players and the true
state of nature. The former, with the players’ temptations to lie, cannot be used to
determine the true state which is needed for the purpose of making payoffs. P3 has
a special status but he must also take into account that eventually the lie will be
detected and this can affect his payoff.

The rules of calculating payoffs, i.e. the terms of the contract, are as follows:

If P3 tells the truth we implement the redistribution in the matrix above which
is proposed for this particular choice of nature.
If P3 lies then we look into the strategies of P1 and P2 and decide as follows:
(i) If the declaration of P1 and P2 are incompatible we go to the initial en-

dowments and each player keeps his.
(ii) If the declarations are compatible we expect the players to honour their

commitments for the state in the overlap, using the endowments of the true
state, provided these are positive. If a player’s endowment is zero then no
transfer from that agent takes place as he has nothing to give.

The extensive form game is shown in Figure 7, in which the heavy lines can be
ignored in the first instance. We are looking for a PBE, i.e. a set of optimal be-
havioral strategies consistent with a set of beliefs. The beliefs are indicated by the
probabilities attached to the nodes of the information sets, with arbitrary r, s, q, p
and t between 0 and 1. The folding up of the game tree through optimal decisions
by P2, then by P1 and subsequently by P3 is explained in Glycopantis, Muir, and
Yannelis (2001).

In Figure 7 we indicate through heavy lines the equilibrium paths. The inter-
rupted heavy lines at the beginning of the tree signify that nature does not take an
optimal decision but simply chooses among three alternatives, with equal proba-
bilities. The directed paths (a, a,A1, A2) with payoffs (4, 4, 2), (b, b, A1, b2) with
payoffs (4, 1, 0) and (c, c, c1, A2) with payoffs (1, 4, 0) occur, each, with probability
1
3 . It is clear that nobody lies on the optimal paths and that the proposed reallocation
is incentive compatible and hence it will be realized.

Along the optimal paths nobody has an incentive to misrepresent the realized
state of nature and hence the private core allocation is incentive compatible. How-
ever even optimal strategies can imply that players might have an incentive to lie
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Figure 7

from information sets which are not visited by the optimal play of the game. For
example, P1, although he knows that nature has chosen a or b, has an incentive to
declare c1 from I31 , trying to take advantage of a possible lie by P3. Similarly P2,
although he knows that nature has chosen a or c, has an incentive to declare b2 from
I22 , I32 , I42 and I52 , trying to take advantage of possible lies by the other players.
Incentive compatibility has now been defined to allow that the optimal strategies
can contain lies, while there must be an optimal play which does not.
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We also note that the same payoffs, i.e. (4, 4, 2), (4, 1, 0) and (1, 4, 0), can be
confirmed as a PBE for all possible orders of the players.

Next we turn our attention to obtaining a sequential equilibrium. This adds
further conditions to those of a PBE. Now, it is also required that the optimal
behavioral strategies and the beliefs consistent with these are the limit of a sequence
consisting of completely stochastic behavioral strategies, that is all choices are
played with positive probability, and the implied beliefs. Throughout the sequence
it is only required that beliefs are consistent with the strategies. The latter are not
expected to be optimal.

We discuss how the PBE shown in Figure 7 can also be obtained as a sequential
equilibrium in the sense of Kreps and Wilson (1982). Therefore, we are looking for a
sequence of positive probabilities attached to all the choices from each information
set and beliefs consistent with these such that their limits are the results given in
Figure 7.

First we specify the positive probabilities, i.e. the completely stochastic strate-
gies, with which the players choose the available actions. The sequence is obtained
through {n = 2, 3, . . . }.

In the first instance we consider the singletons from left to right belonging to
P3. At the first one the positive probabilities attached to the various actions are
given by (a, 1− 2

n ; b, 1
n ; c, 1

n ), at the second one by (a, 1
n ; b, 1− 2

n ; c, 1
n ) and at

the third one by (a, 1
n ; b, 1

n ; c, 1− 2
n ).

Then we come to the probabilities with which P1 chooses his actions from the
various information sets belonging to him. From I11 and I21 the choices and the
probabilities attached to these are (A1, 1− 1

n ; c1, 1
n ), and from I31 , as well as from

all the singletons, they are (A1,
1
n ; c1, 1− 1

n ).
With respect to P2 choices and probabilities are given as follows. From I12 and I62

they are (A2, 1− 1
n ; b2, 1

n ) and from I22 , I32 , I42 and I52 they are (A2,
1
n ; b2, 1− 1

n ).
With respect to the singletons belonging to P2 we have for all of them (A2,

1
n ; b2,

1− 1
n ).

Beliefs are indicated by the probabilities attached to the nodes of the information
sets. Below by the left (right) probability we mean the consistent with the above
behavioral strategies belief that the player attaches to being at the left (right) corner
node of an information set. We also give the limit of these beliefs as n tends to∞.

In I11 the left probability is
1− 2

n

1− 1
n

and the right probability is
1
n

1− 1
n

. The limit

is (1, 0).

In I21 the left probability is
1
n

1− 1
n

and the right probability is
1− 2

n

1− 1
n

. The limit

is (0, 1).

In I31 the left probability is
1
2

and the right probability is
1
2

. The limit is
(1
2
,
1
2
)
.

In I12 the left probability is
(1− 1

n )(1− 2
n )

(1− 2
n )(1− 1

n ) + ( 1
n )2

and the right probability

is
( 1

n )2

(1− 1
n )(1− 2

n ) + ( 1
n )2

. The limit is (1, 0).
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In I22 the left probability is
(1− 2

n ) 1
n

(1− 2
n ) 1

n + (1− 1
n ) 1

n

and the right probability is

(1− 1
n ) 1

n

(1− 2
n ) 1

n + (1− 1
n )( 1

n )
. The limit is

(1
2
,
1
2
)
.

In I32 the left probability is
(1− 1

n ) 1
n

(1− 1
n ) 1

n + ( 1
n )2

and the right probability is

( 1
n )2

(1− 1
n ) 1

n + ( 1
n )2

. The limit is (1, 0).

In I42 the left probability is
( 1

n )2

(1− 1
n ) 1

n + ( 1
n )2

and the right probability is

(1− 1
n ) 1

n

(1− 1
n ) 1

n + ( 1
n )2

. The limit is (0, 1).

In I52 the left probability is
( 1

n )2

(1− 2
n ) 1

n + ( 1
n )2

and the right probability is

(1− 2
n ) 1

n

(1− 2
n ) 1

n + ( 1
n )2

. The limit is (0, 1).

In I62 the left probability is
(1− 1

n ) 1
n

(1− 1
n ) 1

n + (1− 1
n )(1− 2

n )
and the right proba-

bility is
(1− 1

n )(1− 2
n )

(1− 1
n ) 1

n + (1− 1
n )(1− 2

n )
. The limit is (0, 1).

The belief attached to each singleton is that it has been reached with probabil-
ity 1.

The limits of the sequence of strategies and beliefs confirm a particular Baye-
sian equilibrium as a sequential one. In an analogous manner, sequential equilibria
can also be obtained for the models analyzed in the previous sections.

8 Concluding remarks

As we have already emphasized in Glycopantis, Muir, andYannelis (2001), we con-
sider the area of incomplete and differential information and its modelling important
for the development of economic theory. We believe that the introduction of game
trees, which gives a dynamic dimension to the analysis, helps in the development
of ideas.

The discussion in that paper is in the context of one-good examples without free
disposal. The conclusion was that core notions which may not be CBIC, such as
the weak fine core, cannot easily be supported as a PBE. On the other hand, in the
presence of an agent with superior information, the private core which is CBIC can
be supported as a PBE. The discussion provided a noncooperative interpretation
or foundation of the private core while making, through the game tree, the indi-
vidual decisions transparent. In this way a better understanding of how incentive
compatible contracts are formed is obtained.

In the present paper we investigate, in a one-good, two-agent economy, with and
without free disposal, the implementation of private core, of Radner equilibrium, of
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weak fine core and weak fine values allocations. We obtain, through the construction
of a tree with reasonable rules, that free disposal private core allocations, to which
also the Radner equilibrium belongs, are not implementable. A brief comparison
of the idea of CBIC in the static presentation with the case when the analysis is in
terms of game trees is made.

It is surprising that free disposal destroys incentive compatibility and creates
problems for implementation. Implementation in this case can be achieved by in-
voking an exogenous third party which can be thought of as a court that penalizes
lying agents. It is of course possible that rational agents, once they realize that they
can be cheated, might decide not to trade rather than rely on a third party which has
to prove that he has perfect knowledge and can execute the correct trades. Notice
that the third, exogenous party, in this case the court, plays the role of the mech-
anism designer in the relevant implementation literature (see Hahn and Yannelis,
2001, and the references there).

Similarly, implementation of a private core allocation becomes possible
through the introduction of an endogenous third party with zero endowments but
with superior information. In this case the third party is part of the model, i.e. an
agent whose superior information allows him to play the role of an intermediary.
The analysis overlaps with the one in Glycopantis, Muir, and Yannelis (2001). On
the other hand we show here that implementation can also be achieved through
a sequential equilibrium. It should be noted that the endogenous third agent is
rewarded for his superior information by receiving consumption in a particular
state, in spite of the fact that he has zero initial endowments in each state. However,
both Radner equilibria and REE would not recognize a special role to such an agent.
These Walrasian type notions would award to him zero consumption in all states
of nature.

In summary, the analysis here considers the relation between, cooperative and
noncooperative, static equilibrium concepts and noncooperative, game theoretic
dynamic processes in the form of game trees. We have examined the possible sup-
port and implementation as perfect Bayesian equilibria of the cooperative concepts
of the private core and the weak fine core, and the noncooperative generalized,
Walrasian type equilibrium notions of Radner equilibrium and REE. In effect what
we are doing is to look directly into the Bayesian incentive compatibility of the
corresponding allocations, as if they were contracts, and then consider their imple-
mentability.

Appendix I: A note on PBE

In this note we look briefly at equilibrium notions when sequential decisions are
taken by the players, i.e. in the context of game trees. For strategies we shall employ
the idea of a behavioral strategy for a player being an assignment to each of his
information sets of a probability distribution over the options available from that
set. For a game of perfect recall, Kuhn (1953) shows that analysis of the game in
terms of behavioral strategies is equivalent to that in terms of, the more familiar,
mixed strategies. In any case, behavioral strategies are more natural to employ with
an extensive form game. Sometimes we shall refer to them simply as strategies.
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Consider an extensive form game and a given profile of behavioral strategies

s = {si : i ∈ I}

where I is the set of players.
When s is used each node of the tree is reached with probability obtained by

producting the option probabilities given by s along the path leading to that node.
In particular, there is a probability distribution over the set of terminal nodes so
the expected payoff Ei to each player Pi may be expressed in terms of option
probabilities from each information set.

Consider any single information set J owned by Pi, with corresponding option
probabilities (1−πJ , πJ), where for simplicity of notation we assume binary choice.
The dependence ofEi on πJ is determined only by the paths which pass through J .
Taking any one of these paths, on the assumption that the game is of perfect recall,
the term it contributes toEi will only involve πJ once in the corresponding product
of probabilities. Thus, on summing over all such paths, the dependence of Ei on
πJ is seen to be linear, with coefficients depending on the remaining components
of s.

This allows the formation of a reaction function expressing πJ in terms of the
remaining option probabilities, by optimizing πJ while holding the other proba-
bilities constant; hence the Nash equilibria are obtained, as usual, as simultaneous
solutions of all these functional relations. We are here adopting an agent form for
a player, where optimization with respect to each of his decisions is done indepen-
dently from all the others. A solution is guaranteed by the usual proof of existence
for Nash equilibria.

For example, consider the tree in Figure 4, denoting the option probabilities
from I1, I2 by (1 − α, α), (1 − β, β) respectively. The payoff functions are then
(apart from the factor 1

3 expressing the probability of Nature’s choice, and leaving
out terms not involving α which come from paths not passing through I1, I2

E1 = 5(1− α)(1− β) + 5(1− α)β
+4α(1− β) + 4αβ + 2.5(1− α) + 4α+ . . .

= 7.5 + 0.5α+ . . . ;
E2 = 5(1− α)(1− β) + 4(1− α)β

+5α(1− β) + 4αβ + 2.5(1− β) + 4β + . . .
= 7.5 + 0.5β + . . . .

Since the coefficient of α inE1 is positive, the optimal choice of α, i.e. the reaction
function of Agent 1 is 1. Similarly for β inE2 we obtain the value 1, and this is the
reaction function of Agent 2.

Note that in any such calculation, only the coefficient of each πJ is important
for the optimization – the rest of Ei is irrelevant. We may similarly treat the 21
option probabilities in Figure 7, obtaining 21 conditions which they must satisfy.
These are quite complex and there are, probably, many solutions but it may be
checked that the one given satisfies all conditions.
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When an equilibrium profile is used, it is possible that some nodes are visited
with zero probability. This means that the restriction of the strategy profile to sub-
sequent nodes has no effect on the expected payoffs, so may be chosen arbitrarily.
To eliminate this redundancy in the set of Nash equilibria, a refinement of the equi-
librium concept to that of perfect equilibrium, was introduced for games of perfect
information – that is, games in which each information set is a singleton. This re-
quires an equilibrium strategy also to be a Nash equilibrium for all sub-games of
the given game. In other words, the strategy profile should be a Nash equilibrium
for the game which might be started from any node of the given tree, not just the
nodes actually visited in the full game.

Any attempt to extend this notion to general games encounters the problem that
sub-trees might start from nodes which are not in singleton information sets. In
such a case, the player who must move first cannot know for certain at which node
he is located within that set. He can only proceed if he adopts beliefs about where he
might be, in the form of a probability distribution over the nodes of the information
set. Moreover, these beliefs must be common knowledge, for the other players to be
able to respond appropriately, so the desired extension of the equilibrium concept
must take into account both strategies and beliefs of the players. The game will be
played from any information set as if the belief probabilities had been realised by
an act of nature.

We need, therefore, to consider pairs (s, µ), consisting of a behavioral strategy
profile s and a belief profile

µ = {µJ : J ∈ J }.
Here, J denotes the set of information sets and µJ is a probability distribution
over the nodes of information set J , expressing the beliefs of the player who might
be required to play from that set. Given the belief profile, we then require that the
strategy profile give a perfect equilibrium, in the sense of being optimal for each
player starting from every information set. But we need also to consider the source
of the beliefs.

Given any behavioral strategy profile s denote the probability of reaching any
node a, using s, by ν(a). Consider first an information set, J , not all of whose nodes
are visited with zero probability when using s. We may calculate the conditional
probability of being at a node a ∈ J given that it is in J by

ν(a|J) =
ν({a} ∩ J)
ν(J)

=
ν(a)
ν(J)

since a ∈ J ⇒ {a} ∩ J = {a}. Thus the belief probabilities µJ(a) = ν(a|J) for
J are just the relative probabilities of reaching the nodes of J .

For example, returning to Figure 4 and employing the only Nash solution α =
β = 1 noted above, the probabilities of reaching the nodes of I2 are 0, 1

3 ,
1
3 which

relativises, given the condition that we reach I , to 0, 1
2 ,

1
2 as stated.

Thus for a PBE, the behavioral strategy-belief profile pair (s, µ) should satisfy
two conditions:

(i) For the given belief profile µ, the strategy profile s should be a perfect equi-
librium, as defined above;
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(ii) For the given strategy profile s, the belief profile µ should be calculated at
each information set for which ν(I) 	= 0 by the formula above.

Justifications of the concept of perfect equilibrium in games of perfect infor-
mation will argue that the players need to have good strategies to employ, even
were something to go wrong with the intended play so that the game accidentally
enters sub-trees which ought not to be accessed. One way to argue this is through
the notion of a trembling hand which makes errors, so possibly choosing the wrong
move. Employing this same idea in the context of perfect Bayesian equilibria, we
can allow small perturbations in the strategies, such that all information sets are
visited with non-zero probability. Then the relation determining beliefs from strate-
gies is well posed and we may consider only beliefs which arise as limiting cases
of such perturbations. This more restrictive definition of equilibrium is called a
sequential equilibrium.
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