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Preface

Preface	to	the	eBook	Edition

Operating	Systems:	Principles	and	Practice	is	a	textbook	for	a	first	course	in
undergraduate	operating	systems.	In	use	at	over	50	colleges	and	universities	worldwide,
this	textbook	provides:

A	path	for	students	to	understand	high	level	concepts	all	the	way	down	to	working
code.
Extensive	worked	examples	integrated	throughout	the	text	provide	students	concrete
guidance	for	completing	homework	assignments.
A	focus	on	up-to-date	industry	technologies	and	practice

The	eBook	edition	is	split	into	four	volumes	that	together	contain	exactly	the	same
material	as	the	(2nd)	print	edition	of	Operating	Systems:	Principles	and	Practice,
reformatted	for	various	screen	sizes.	Each	volume	is	self-contained	and	can	be	used	as	a
standalone	text,	e.g.,	at	schools	that	teach	operating	systems	topics	across	multiple
courses.

Volume	1:	Kernels	and	Processes.	This	volume	contains	Chapters	1-3	of	the	print
edition.	We	describe	the	essential	steps	needed	to	isolate	programs	to	prevent	buggy
applications	and	computer	viruses	from	crashing	or	taking	control	of	your	system.
Volume	2:	Concurrency.	This	volume	contains	Chapters	4-7	of	the	print	edition.	We
provide	a	concrete	methodology	for	writing	correct	concurrent	programs	that	is	in
widespread	use	in	industry,	and	we	explain	the	mechanisms	for	context	switching	and
synchronization	from	fundamental	concepts	down	to	assembly	code.
Volume	3:	Memory	Management.	This	volume	contains	Chapters	8-10	of	the	print
edition.	We	explain	both	the	theory	and	mechanisms	behind	64-bit	address	space
translation,	demand	paging,	and	virtual	machines.
Volume	4:	Persistent	Storage.	This	volume	contains	Chapters	11-14	of	the	print
edition.	We	explain	the	technologies	underlying	modern	extent-based,	journaling,	and
versioning	file	systems.

A	more	detailed	description	of	each	chapter	is	given	in	the	preface	to	the	print	edition.

Preface	to	the	Print	Edition

Why	We	Wrote	This	Book

Many	of	our	students	tell	us	that	operating	systems	was	the	best	course	they	took	as	an
undergraduate	and	also	the	most	important	for	their	careers.	We	are	not	alone	—	many	of
our	colleagues	report	receiving	similar	feedback	from	their	students.

Part	of	the	excitement	is	that	the	core	ideas	in	a	modern	operating	system	—	protection,
concurrency,	virtualization,	resource	allocation,	and	reliable	storage	—	have	become



widely	applied	throughout	computer	science,	not	just	operating	system	kernels.	Whether
you	get	a	job	at	Facebook,	Google,	Microsoft,	or	any	other	leading-edge	technology
company,	it	is	impossible	to	build	resilient,	secure,	and	flexible	computer	systems	without
the	ability	to	apply	operating	systems	concepts	in	a	variety	of	settings.	In	a	modern	world,
nearly	everything	a	user	does	is	distributed,	nearly	every	computer	is	multi-core,	security
threats	abound,	and	many	applications	such	as	web	browsers	have	become	mini-operating
systems	in	their	own	right.

It	should	be	no	surprise	that	for	many	computer	science	students,	an	undergraduate
operating	systems	class	has	become	a	de	facto	requirement:	a	ticket	to	an	internship	and
eventually	to	a	full-time	position.

Unfortunately,	many	operating	systems	textbooks	are	still	stuck	in	the	past,	failing	to	keep
pace	with	rapid	technological	change.	Several	widely-used	books	were	initially	written	in
the	mid-1980’s,	and	they	often	act	as	if	technology	stopped	at	that	point.	Even	when	new
topics	are	added,	they	are	treated	as	an	afterthought,	without	pruning	material	that	has
become	less	important.	The	result	are	textbooks	that	are	very	long,	very	expensive,	and	yet
fail	to	provide	students	more	than	a	superficial	understanding	of	the	material.

Our	view	is	that	operating	systems	have	changed	dramatically	over	the	past	twenty	years,
and	that	justifies	a	fresh	look	at	both	how	the	material	is	taught	and	what	is	taught.	The
pace	of	innovation	in	operating	systems	has,	if	anything,	increased	over	the	past	few	years,
with	the	introduction	of	the	iOS	and	Android	operating	systems	for	smartphones,	the	shift
to	multicore	computers,	and	the	advent	of	cloud	computing.

To	prepare	students	for	this	new	world,	we	believe	students	need	three	things	to	succeed	at
understanding	operating	systems	at	a	deep	level:

Concepts	and	code.	We	believe	it	is	important	to	teach	students	both	principles	and
practice,	concepts	and	implementation,	rather	than	either	alone.	This	textbook	takes
concepts	all	the	way	down	to	the	level	of	working	code,	e.g.,	how	a	context	switch
works	in	assembly	code.	In	our	experience,	this	is	the	only	way	students	will	really
understand	and	master	the	material.	All	of	the	code	in	this	book	is	available	from	the
author’s	web	site,	ospp.washington.edu.

Extensive	worked	examples.	In	our	view,	students	need	to	be	able	to	apply	concepts
in	practice.	To	that	end,	we	have	integrated	a	large	number	of	example	exercises,
along	with	solutions,	throughout	the	text.	We	uses	these	exercises	extensively	in	our
own	lectures,	and	we	have	found	them	essential	to	challenging	students	to	go	beyond
a	superficial	understanding.

Industry	practice.	To	show	students	how	to	apply	operating	systems	concepts	in	a
variety	of	settings,	we	use	detailed,	concrete	examples	from	Facebook,	Google,
Microsoft,	Apple,	and	other	leading-edge	technology	companies	throughout	the
textbook.	Because	operating	systems	concepts	are	important	in	a	wide	range	of
computer	systems,	we	take	these	examples	not	only	from	traditional	operating
systems	like	Linux,	Windows,	and	OS	X	but	also	from	other	systems	that	need	to
solve	problems	of	protection,	concurrency,	virtualization,	resource	allocation,	and
reliable	storage	like	databases,	web	browsers,	web	servers,	mobile	applications,	and
search	engines.



Taking	a	fresh	perspective	on	what	students	need	to	know	to	apply	operating	systems
concepts	in	practice	has	led	us	to	innovate	in	every	major	topic	covered	in	an
undergraduate-level	course:

Kernels	and	Processes.	The	safe	execution	of	untrusted	code	has	become	central	to
many	types	of	computer	systems,	from	web	browsers	to	virtual	machines	to	operating
systems.	Yet	existing	textbooks	treat	protection	as	a	side	effect	of	UNIX	processes,	as
if	they	are	synonyms.	Instead,	we	start	from	first	principles:	what	are	the	minimum
requirements	for	process	isolation,	how	can	systems	implement	process	isolation
efficiently,	and	what	do	students	need	to	know	to	implement	functions	correctly	when
the	caller	is	potentially	malicious?

Concurrency.	With	the	advent	of	multi-core	architectures,	most	students	today	will
spend	much	of	their	careers	writing	concurrent	code.	Existing	textbooks	provide	a
blizzard	of	concurrency	alternatives,	most	of	which	were	abandoned	decades	ago	as
impractical.	Instead,	we	focus	on	providing	students	a	single	methodology	based	on
Mesa	monitors	that	will	enable	students	to	write	correct	concurrent	programs	—	a
methodology	that	is	by	far	the	dominant	approach	used	in	industry.

Memory	Management.	Even	as	demand-paging	has	become	less	important,
virtualization	has	become	even	more	important	to	modern	computer	systems.	We
provide	a	deep	treatment	of	address	translation	hardware,	sparse	address	spaces,
TLBs,	and	on-chip	caches.	We	then	use	those	concepts	as	a	springboard	for
describing	virtual	machines	and	related	concepts	such	as	checkpointing	and	copy-on-
write.

Persistent	Storage.	Reliable	storage	in	the	presence	of	failures	is	central	to	the
design	of	most	computer	systems.	Existing	textbooks	survey	the	history	of	file
systems,	spending	most	of	their	time	ad	hoc	approaches	to	failure	recovery	and	de-
fragmentation.	Yet	no	modern	file	systems	still	use	those	ad	hoc	approaches.	Instead,
our	focus	is	on	how	file	systems	use	extents,	journaling,	copy-on-write,	and	RAID	to
achieve	both	high	performance	and	high	reliability.

Intended	Audience

Operating	Systems:	Principles	and	Practice	is	a	textbook	for	a	first	course	in
undergraduate	operating	systems.	We	believe	operating	systems	should	be	taken	as	early
as	possible	in	an	undergraduate’s	course	of	study;	many	students	use	the	course	as	a
springboard	to	an	internship	and	a	career.	To	that	end,	we	have	designed	the	textbook	to
assume	minimal	pre-requisites:	specifically,	students	should	have	taken	a	data	structures
course	and	one	on	computer	organization.	The	code	examples	are	written	in	a	combination
of	x86	assembly,	C,	and	C++.	In	particular,	we	have	designed	the	book	to	interface	well
with	the	Bryant	and	O’Halloran	textbook.	We	review	and	cover	in	much	more	depth	the
material	from	the	second	half	of	that	book.

We	should	note	what	this	textbook	is	not:	it	is	not	intended	to	teach	the	API	or	internals	of
any	specific	operating	system,	such	as	Linux,	Android,	Windows	8,	OS	X,	or	iOS.	We	use
many	concrete	examples	from	these	systems,	but	our	focus	is	on	the	shared	problems	these



systems	face	and	the	technologies	these	systems	use	to	solve	those	problems.

A	Guide	to	Instructors

One	of	our	goals	is	enable	instructors	to	choose	an	appropriate	level	of	depth	for	each
course	topic.	Each	chapter	begins	at	a	conceptual	level,	with	implementation	details	and
the	more	advanced	material	towards	the	end.	The	more	advanced	material	can	be	omitted
without	compromising	the	ability	of	students	to	follow	later	material.	No	single-quarter	or
single-semester	course	is	likely	to	be	able	to	cover	every	topic	we	have	included,	but	we
think	it	is	a	good	thing	for	students	to	come	away	from	an	operating	systems	course	with
an	appreciation	that	there	is	always	more	to	learn.

For	each	topic,	we	attempt	to	convey	it	at	three	levels:

How	to	reason	about	systems.	We	describe	core	systems	concepts,	such	as
protection,	concurrency,	resource	scheduling,	virtualization,	and	storage,	and	we
provide	practice	applying	these	concepts	in	various	situations.	In	our	view,	this
provides	the	biggest	long-term	payoff	to	students,	as	they	are	likely	to	need	to	apply
these	concepts	in	their	work	throughout	their	career,	almost	regardless	of	what
project	they	end	up	working	on.

Power	tools.	We	introduce	students	to	a	number	of	abstractions	that	they	can	apply	in
their	work	in	industry	immediately	after	graduation,	and	that	we	expect	will	continue
to	be	useful	for	decades	such	as	sandboxing,	protected	procedure	calls,	threads,	locks,
condition	variables,	caching,	checkpointing,	and	transactions.

Details	of	specific	operating	systems.	We	include	numerous	examples	of	how
different	operating	systems	work	in	practice.	However,	this	material	changes	rapidly,
and	there	is	an	order	of	magnitude	more	material	than	can	be	covered	in	a	single
semester-length	course.	The	purpose	of	these	examples	is	to	illustrate	how	to	use	the
operating	systems	principles	and	power	tools	to	solve	concrete	problems.	We	do	not
attempt	to	provide	a	comprehensive	description	of	Linux,	OS	X,	or	any	other
particular	operating	system.

The	book	is	divided	into	five	parts:	an	introduction	(Chapter	1),	kernels	and	processes
(Chapters	2-3),	concurrency,	synchronization,	and	scheduling	(Chapters	4-7),	memory
management	(Chapters	8-10),	and	persistent	storage	(Chapters	11-14).

Introduction.	The	goal	of	Chapter	1	is	to	introduce	the	recurring	themes	found	in	the
later	chapters.	We	define	some	common	terms,	and	we	provide	a	bit	of	the	history	of
the	development	of	operating	systems.

The	Kernel	Abstraction.	Chapter	2	covers	kernel-based	process	protection	—	the
concept	and	implementation	of	executing	a	user	program	with	restricted	privileges.
Given	the	increasing	importance	of	computer	security	issues,	we	believe	protected
execution	and	safe	transfer	across	privilege	levels	are	worth	treating	in	depth.	We
have	broken	the	description	into	sections,	to	allow	instructors	to	choose	either	a	quick
introduction	to	the	concepts	(up	through	Section	2.3),	or	a	full	treatment	of	the	kernel
implementation	details	down	to	the	level	of	interrupt	handlers.	Some	instructors	start



with	concurrency,	and	cover	kernels	and	kernel	protection	afterwards.	While	our
textbook	can	be	used	that	way,	we	have	found	that	students	benefit	from	a	basic
understanding	of	the	role	of	operating	systems	in	executing	user	programs,	before
introducing	concurrency.

The	Programming	Interface.	Chapter	3	is	intended	as	an	impedance	match	for
students	of	differing	backgrounds.	Depending	on	student	background,	it	can	be
skipped	or	covered	in	depth.	The	chapter	covers	the	operating	system	from	a
programmer’s	perspective:	process	creation	and	management,	device-independent
input/output,	interprocess	communication,	and	network	sockets.	Our	goal	is	that
students	should	understand	at	a	detailed	level	what	happens	when	a	user	clicks	a	link
in	a	web	browser,	as	the	request	is	transferred	through	operating	system	kernels	and
user	space	processes	at	the	client,	server,	and	back	again.	This	chapter	also	covers	the
organization	of	the	operating	system	itself:	how	device	drivers	and	the	hardware
abstraction	layer	work	in	a	modern	operating	system;	the	difference	between	a
monolithic	and	a	microkernel	operating	system;	and	how	policy	and	mechanism	are
separated	in	modern	operating	systems.

Concurrency	and	Threads.	Chapter	4	motivates	and	explains	the	concept	of
threads.	Because	of	the	increasing	importance	of	concurrent	programming,	and	its
integration	with	modern	programming	languages	like	Java,	many	students	have	been
introduced	to	multi-threaded	programming	in	an	earlier	class.	This	is	a	bit	dangerous,
as	students	at	this	stage	are	prone	to	writing	programs	with	race	conditions,	problems
that	may	or	may	not	be	discovered	with	testing.	Thus,	the	goal	of	this	chapter	is	to
provide	a	solid	conceptual	framework	for	understanding	the	semantics	of
concurrency,	as	well	as	how	concurrent	threads	are	implemented	in	both	the
operating	system	kernel	and	in	user-level	libraries.	Instructors	needing	to	go	more
quickly	can	omit	these	implementation	details.

Synchronization.	Chapter	5	discusses	the	synchronization	of	multi-threaded
programs,	a	central	part	of	all	operating	systems	and	increasingly	important	in	many
other	contexts.	Our	approach	is	to	describe	one	effective	method	for	structuring
concurrent	programs	(based	on	Mesa	monitors),	rather	than	to	attempt	to	cover
several	different	approaches.	In	our	view,	it	is	more	important	for	students	to	master
one	methodology.	Monitors	are	a	particularly	robust	and	simple	one,	capable	of
implementing	most	concurrent	programs	efficiently.	The	implementation	of
synchronization	primitives	should	be	included	if	there	is	time,	so	students	see	that
there	is	no	magic.

Multi-Object	Synchronization.	Chapter	6	discusses	advanced	topics	in	concurrency
—	specifically,	the	twin	challenges	of	multiprocessor	lock	contention	and	deadlock.
This	material	is	increasingly	important	for	students	working	on	multicore	systems,
but	some	courses	may	not	have	time	to	cover	it	in	detail.

Scheduling.	This	chapter	covers	the	concepts	of	resource	allocation	in	the	specific
context	of	processor	scheduling.	With	the	advent	of	data	center	computing	and
multicore	architectures,	the	principles	and	practice	of	resource	allocation	have
renewed	importance.	After	a	quick	tour	through	the	tradeoffs	between	response	time
and	throughput	for	uniprocessor	scheduling,	the	chapter	covers	a	set	of	more



advanced	topics	in	affinity	and	multiprocessor	scheduling,	power-aware	and	deadline
scheduling,	as	well	as	basic	queueing	theory	and	overload	management.	We	conclude
these	topics	by	walking	students	through	a	case	study	of	server-side	load
management.

Address	Translation.	Chapter	8	explains	mechanisms	for	hardware	and	software
address	translation.	The	first	part	of	the	chapter	covers	how	hardware	and	operating
systems	cooperate	to	provide	flexible,	sparse	address	spaces	through	multi-level
segmentation	and	paging.	We	then	describe	how	to	make	memory	management
efficient	with	translation	lookaside	buffers	(TLBs)	and	virtually	addressed	caches.
We	consider	how	to	keep	TLBs	consistent	when	the	operating	system	makes	changes
to	its	page	tables.	We	conclude	with	a	discussion	of	modern	software-based
protection	mechanisms	such	as	those	found	in	the	Microsoft	Common	Language
Runtime	and	Google’s	Native	Client.

Caching	and	Virtual	Memory.	Caches	are	central	to	many	different	types	of
computer	systems.	Most	students	will	have	seen	the	concept	of	a	cache	in	an	earlier
class	on	machine	structures.	Thus,	our	goal	is	to	cover	the	theory	and	implementation
of	caches:	when	they	work	and	when	they	do	not,	as	well	as	how	they	are
implemented	in	hardware	and	software.	We	then	show	how	these	ideas	are	applied	in
the	context	of	memory-mapped	files	and	demand-paged	virtual	memory.

Advanced	Memory	Management.	Address	translation	is	a	powerful	tool	in	system
design,	and	we	show	how	it	can	be	used	for	zero	copy	I/O,	virtual	machines,	process
checkpointing,	and	recoverable	virtual	memory.	As	this	is	more	advanced	material,	it
can	be	skipped	by	those	classes	pressed	for	time.

File	Systems:	Introduction	and	Overview.	Chapter	11	frames	the	file	system
portion	of	the	book,	starting	top	down	with	the	challenges	of	providing	a	useful	file
abstraction	to	users.	We	then	discuss	the	UNIX	file	system	interface,	the	major
internal	elements	inside	a	file	system,	and	how	disk	device	drivers	are	structured.

Storage	Devices.	Chapter	12	surveys	block	storage	hardware,	specifically	magnetic
disks	and	flash	memory.	The	last	two	decades	have	seen	rapid	change	in	storage
technology	affecting	both	application	programmers	and	operating	systems	designers;
this	chapter	provides	a	snapshot	for	students,	as	a	building	block	for	the	next	two
chapters.	If	students	have	previously	seen	this	material,	this	chapter	can	be	skipped.

Files	and	Directories.	Chapter	13	discusses	file	system	layout	on	disk.	Rather	than
survey	all	possible	file	layouts	—	something	that	changes	rapidly	over	time	—	we
use	file	systems	as	a	concrete	example	of	mapping	complex	data	structures	onto
block	storage	devices.

Reliable	Storage.	Chapter	14	explains	the	concept	and	implementation	of	reliable
storage,	using	file	systems	as	a	concrete	example.	Starting	with	the	ad	hoc	techniques
used	in	early	file	systems,	the	chapter	explains	checkpointing	and	write	ahead
logging	as	alternate	implementation	strategies	for	building	reliable	storage,	and	it
discusses	how	redundancy	such	as	checksums	and	replication	are	used	to	improve
reliability	and	availability.



We	welcome	and	encourage	suggestions	for	how	to	improve	the	presentation	of	the
material;	please	send	any	comments	to	the	publisher’s	website,
suggestions@recursivebooks.com.
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8.	Address	Translation

There	is	nothing	wrong	with	your	television	set.	Do	not	attempt	to	adjust	the	picture.	We
are	controlling	transmission.	If	we	wish	to	make	it	louder,	we	will	bring	up	the	volume.	If
we	wish	to	make	it	softer,	we	will	tune	it	to	a	whisper.	We	will	control	the	horizontal.	We
will	control	the	vertical.	We	can	roll	the	image,	make	it	flutter.	We	can	change	the	focus	to
a	soft	blur	or	sharpen	it	to	crystal	clarity.	For	the	next	hour,	sit	quietly	and	we	will	control
all	that	you	see	and	hear.	We	repeat:	there	is	nothing	wrong	with	your	television	set.
—Opening	narration,	The	Outer	Limits

The	promise	of	virtual	reality	is	compelling.	Who	wouldn’t	want	the	ability	to	travel
anywhere	without	leaving	the	holodeck?	Of	course,	the	promise	is	far	from	becoming	a
reality.	In	theory,	by	adjusting	the	inputs	to	all	of	your	senses	in	response	to	your	actions,	a
virtual	reality	system	could	perfectly	set	the	scene.	However,	your	senses	are	not	so	easily
controlled.	We	might	soon	be	able	to	provide	an	immersive	environment	for	vision,	but
balance,	hearing,	taste,	and	smell	will	take	a	lot	longer.	Touch,	prioperception	(the	sense	of
being	near	something	else),	and	g-forces	are	even	farther	off.	Get	a	single	one	of	these
wrong	and	the	illusion	disappears.

Can	we	create	a	virtual	reality	environment	for	computer	programs?	We	have	already	seen
an	example	of	this	with	the	UNIX	I/O	interface,	where	the	program	does	not	need	to
know,	and	sometimes	cannot	tell,	if	its	inputs	and	outputs	are	files,	devices,	or	other
processes.

In	the	next	three	chapters,	we	take	this	idea	a	giant	step	further.	An	amazing	number	of
advanced	system	features	are	enabled	by	putting	the	operating	system	in	control	of
address	translation,	the	conversion	from	the	memory	address	the	program	thinks	it	is
referencing	to	the	physical	location	of	that	memory	cell.	From	the	programmer’s
perspective,	address	translation	occurs	transparently	—	the	program	behaves	correctly
despite	the	fact	that	its	memory	is	stored	somewhere	completely	different	from	where	it
thinks	it	is	stored.

You	were	probably	taught	in	some	early	programming	class	that	a	memory	address	is	just
an	address.	A	pointer	in	a	linked	list	contains	the	actual	memory	address	of	what	it	is
pointing	to.	A	jump	instruction	contains	the	actual	memory	address	of	the	next	instruction
to	be	executed.	This	is	a	useful	fiction!	The	programmer	is	often	better	off	not	thinking
about	how	each	memory	reference	is	converted	into	the	data	or	instruction	being
referenced.	In	practice,	there	is	quite	a	lot	of	activity	happening	beneath	the	covers.

Address	translation	is	a	simple	concept,	but	it	turns	out	to	be	incredibly	powerful.	What
can	an	operating	system	do	with	address	translation?	This	is	only	a	partial	list:

Process	isolation.	As	we	discussed	in	Chapter	2,	protecting	the	operating	system
kernel	and	other	applications	against	buggy	or	malicious	code	requires	the	ability	to
limit	memory	references	by	applications.	Likewise,	address	translation	can	be	used
by	applications	to	construct	safe	execution	sandboxes	for	third	party	extensions.



Interprocess	communication.	Often	processes	need	to	coordinate	with	each	other,
and	an	efficient	way	to	do	that	is	to	have	the	processes	share	a	common	memory
region.

Shared	code	segments.	Instances	of	the	same	program	can	share	the	program’s
instructions,	reducing	their	memory	footprint	and	making	the	processor	cache	more
efficient.	Likewise,	different	programs	can	share	common	libraries.

Program	initialization.	Using	address	translation,	we	can	start	a	program	running
before	all	of	its	code	is	loaded	into	memory	from	disk.

Efficient	dynamic	memory	allocation.	As	a	process	grows	its	heap,	or	as	a	thread
grows	its	stack,	we	can	use	address	translation	to	trap	to	the	kernel	to	allocate
memory	for	those	purposes	only	as	needed.

Cache	management.	As	we	will	explain	in	the	next	chapter,	the	operating	system
can	arrange	how	programs	are	positioned	in	physical	memory	to	improve	cache
efficiency,	through	a	system	called	page	coloring.

Program	debugging.	The	operating	system	can	use	memory	translation	to	prevent	a
buggy	program	from	overwriting	its	own	code	region;	by	catching	pointer	errors
earlier,	it	makes	them	much	easier	to	debug.	Debuggers	also	use	address	translation
to	install	data	breakpoints,	to	stop	a	program	when	it	references	a	particular	memory
location.

Efficient	I/O.	Server	operating	systems	are	often	limited	by	the	rate	at	which	they
can	transfer	data	to	and	from	the	disk	and	the	network.	Address	translation	enables
data	to	be	safely	transferred	directly	between	user-mode	applications	and	I/O	devices.

Memory	mapped	files.	A	convenient	and	efficient	abstraction	for	many	applications
is	to	map	files	into	the	address	space,	so	that	the	contents	of	the	file	can	be	directly
referenced	with	program	instructions.

Virtual	memory.	The	operating	system	can	provide	applications	the	abstraction	of
more	memory	than	is	physically	present	on	a	given	computer.

Checkpointing	and	restart.	The	state	of	a	long-running	program	can	be	periodically
checkpointed	so	that	if	the	program	or	system	crashes,	it	can	be	restarted	from	the
saved	state.	The	key	challenge	is	to	be	able	to	perform	an	internally	consistent
checkpoint	of	the	program’s	data	while	the	program	continues	to	run.

Persistent	data	structures.	The	operating	system	can	provide	the	abstraction	of	a
persistent	region	of	memory,	where	changes	to	the	data	structures	in	that	region
survive	program	and	system	crashes.

Process	migration.	An	executing	program	can	be	transparently	moved	from	one
server	to	another,	for	example,	for	load	balancing.

Information	flow	control.	An	extra	layer	of	security	is	to	verify	that	a	program	is
not	sending	your	private	data	to	a	third	party;	e.g.,	a	smartphone	application	may
need	access	to	your	phone	list,	but	it	shouldn’t	be	allowed	to	transmit	that	data.
Address	translation	can	be	the	basis	for	managing	the	flow	of	information	into	and
out	of	a	system.



Distributed	shared	memory.	We	can	transparently	turn	a	network	of	servers	into	a
large-scale	shared-memory	parallel	computer	using	address	translation.

In	this	chapter,	we	focus	on	the	mechanisms	needed	to	implement	address	translation,	as
that	is	the	foundation	of	all	of	these	services.	We	discuss	how	the	operating	system	and
applications	use	the	mechanisms	to	provide	these	services	in	the	following	two	chapters.

For	runtime	efficiency,	most	systems	have	specialized	hardware	to	do	address	translation;
this	hardware	is	managed	by	the	operating	system	kernel.	In	some	systems,	however,	the
translation	is	provided	by	a	trusted	compiler,	linker	or	byte-code	interpreter.	In	other
systems,	the	application	does	the	pointer	translation	as	a	way	of	managing	the	state	of	its
own	data	structures.	In	still	other	systems,	a	hybrid	model	is	used	where	addresses	are
translated	both	in	software	and	hardware.	The	choice	is	often	an	engineering	tradeoff
between	performance,	flexibility,	and	cost.	However,	the	functionality	provided	is	often
the	same	regardless	of	the	mechanism	used	to	implement	the	translation.	In	this	chapter,
we	will	cover	a	range	of	hardware	and	software	mechanisms.

Chapter	roadmap:

Address	Translation	Concept.	We	start	by	providing	a	conceptual	framework	for
understanding	both	hardware	and	software	address	translation.	(Section	8.1)

Flexible	Address	Translation.	We	focus	first	on	hardware	address	translation;	we
ask	how	can	we	design	the	hardware	to	provide	maximum	flexibility	to	the	operating
system	kernel?	(Section	8.2)

Efficient	Address	Translation.	The	solutions	we	present	will	seem	flexible	but
terribly	slow.	We	next	discuss	mechanisms	that	make	address	translation	much	more
efficient,	without	sacrificing	flexibility.	(Section	8.3)

Software	Protection.	Increasingly,	software	compilers	and	runtime	interpreters	are
using	address	translation	techniques	to	implement	operating	system	functionality.
What	changes	when	the	translation	is	in	software	rather	than	in	hardware?
(Section	8.4)

8.1	Address	Translation	Concept



Figure	8.1:	Address	translation	in	the	abstract.	The	translator	converts	(virtual)	memory	addresses	generated	by	the
program	into	physical	memory	addresses.

Considered	as	a	black	box,	address	translation	is	a	simple	function,	illustrated	in
Figure	8.1.	The	translator	takes	each	instruction	and	data	memory	reference	generated	by	a
process,	checks	whether	the	address	is	legal,	and	converts	it	to	a	physical	memory	address
that	can	be	used	to	fetch	or	store	instructions	or	data.	The	data	itself	—	whatever	is	stored
in	memory	—	is	returned	as	is;	it	is	not	transformed	in	any	way.	The	translation	is	usually
implemented	in	hardware,	and	the	operating	system	kernel	configures	the	hardware	to
accomplish	its	aims.

The	task	of	this	chapter	is	to	fill	in	the	details	about	how	that	black	box	works.	If	we	asked
you	right	now	how	you	might	implement	it,	your	first	several	guesses	would	probably	be
on	the	mark.	If	you	said	we	could	use	an	array,	a	tree,	or	a	hash	table,	you	would	be	right
—	all	of	those	approaches	have	been	taken	by	real	systems.

Given	that	a	number	of	different	implementations	are	possible,	how	should	we	evaluate
the	alternatives?	Here	are	some	goals	we	might	want	out	of	a	translation	box;	the	design
we	end	up	with	will	depend	on	how	we	balance	among	these	various	goals.

Memory	protection.	We	need	the	ability	to	limit	the	access	of	a	process	to	certain
regions	of	memory,	e.g.,	to	prevent	it	from	accessing	memory	not	owned	by	the
process.	Often,	however,	we	may	want	to	limit	access	of	a	program	to	its	own
memory,	e.g.,	to	prevent	a	pointer	error	from	overwriting	the	code	region	or	to	cause
a	trap	to	the	debugger	when	the	program	references	a	specific	data	location.

Memory	sharing.	We	want	to	allow	multiple	processes	to	share	selected	regions	of
memory.	These	shared	regions	can	be	large	(e.g.,	if	we	are	sharing	a	program’s	code
segment	among	multiple	processes	executing	the	same	program)	or	relatively	small



(e.g.,	if	we	are	sharing	a	common	library,	a	file,	or	a	shared	data	structure).

Flexible	memory	placement.	We	want	to	allow	the	operating	system	the	flexibility
to	place	a	process	(and	each	part	of	a	process)	anywhere	in	physical	memory;	this
will	allow	us	to	pack	physical	memory	more	efficiently.	As	we	will	see	in	the	next
chapter,	flexibility	in	assigning	process	data	to	physical	memory	locations	will	also
enable	us	to	make	more	effective	use	of	on-chip	caches.

Sparse	addresses.	Many	programs	have	multiple	dynamic	memory	regions	that	can
change	in	size	over	the	course	of	the	execution	of	the	program:	the	heap	for	data
objects,	a	stack	for	each	thread,	and	memory	mapped	files.	Modern	processors	have
64-bit	address	spaces,	allowing	each	dynamic	object	ample	room	to	grow	as	needed,
but	making	the	translation	function	more	complex.

Runtime	lookup	efficiency.	Hardware	address	translation	occurs	on	every
instruction	fetch	and	every	data	load	and	store.	It	would	be	impractical	if	a	lookup
took,	on	average,	much	longer	to	execute	than	the	instruction	itself.	At	first,	many	of
the	schemes	we	discuss	will	seem	wildly	impractical!	We	will	discuss	ways	to	make
even	the	most	convoluted	translation	systems	efficient.

Compact	translation	tables.	We	also	want	the	space	overhead	of	translation	to	be
minimal;	any	data	structures	we	need	should	be	small	compared	to	the	amount	of
physical	memory	being	managed.

Portability.	Different	hardware	architectures	make	different	choices	as	to	how	they
implement	translation;	if	an	operating	system	kernel	is	to	be	easily	portable	across
multiple	processor	architectures,	it	needs	to	be	able	to	map	from	its	(hardware-
independent)	data	structures	to	the	specific	capabilities	of	each	architecture.

We	will	end	up	with	a	fairly	complex	address	translation	mechanism,	and	so	our
discussion	will	start	with	the	simplest	possible	mechanisms	and	add	functionality	only	as
needed.	It	will	be	helpful	during	the	discussion	for	you	to	keep	in	mind	the	two	views	of
memory:	the	process	sees	its	own	memory,	using	its	own	addresses.	We	will	call	these
virtual	addresses,	because	they	do	not	necessarily	correspond	to	any	physical	reality.	By
contrast,	to	the	memory	system,	there	are	only	physical	addresses	—	real	locations	in
memory.	From	the	memory	system	perspective,	it	is	given	physical	addresses	and	it	does
lookups	and	stores	values.	The	translation	mechanism	converts	between	the	two	views:
from	a	virtual	address	to	a	physical	memory	address.

Address	translation	in	linkers	and	loaders

Even	without	the	kernel-user	boundary,	multiprogramming	requires	some	form	of	address
translation.	On	a	multiprogramming	system,	when	a	program	is	compiled,	the	compiler
does	not	know	which	regions	of	physical	memory	will	be	in	use	by	other	applications;	it
cannot	control	where	in	physical	memory	the	program	will	land.	The	machine
instructions	for	a	program	contains	both	relative	and	absolute	addresses;	relative
addresses,	such	as	to	branch	forward	or	backward	a	certain	number	of	instructions,
continue	to	work	regardless	of	where	in	memory	the	program	is	located.	However,	some
instructions	contain	absolute	addresses,	such	as	to	load	a	global	variable	or	to	jump	to	the



start	of	a	procedure.	These	will	stop	working	unless	the	program	is	loaded	into	memory
exactly	where	the	compiler	expects	it	to	go.
Before	hardware	translation	became	commonplace,	early	operating	systems	dealt	with
this	issue	by	using	a	relocating	loader	for	copying	programs	into	memory.	Once	the
operating	system	picked	an	empty	region	of	physical	memory	for	the	program,	the	loader
would	modify	any	instructions	in	the	program	that	used	an	absolute	address.	To	simplify
the	implementation,	there	was	a	table	at	the	beginning	of	the	executable	image	that	listed
all	of	the	absolute	addresses	used	in	the	program.	In	modern	systems,	this	is	called	a
symbol	table.

Today,	we	still	have	something	similar.	Complex	programs	often	have	multiple	files,	each
of	which	can	be	compiled	independently	and	then	linked	together	to	form	the	executable
image.	When	the	compiler	generates	the	machine	instructions	for	a	single	file,	it	cannot
know	where	in	the	executable	this	particular	file	will	go.	Instead,	the	compiler	generates	a
symbol	table	at	the	beginning	of	each	compiled	file,	indicating	which	values	will	need	to
be	modified	when	the	individual	files	are	assembled	together.

Most	commercial	operating	systems	today	support	the	option	of	dynamic	linking,	taking
the	notion	of	a	relocating	loader	one	step	further.	With	a	dynamically	linked	library
(DLL),	a	library	is	linked	into	a	running	program	on	demand,	when	the	program	first	calls
into	the	library.	We	will	explain	in	a	bit	how	the	code	for	a	DLL	can	be	shared	between
multiple	different	processes,	but	the	linking	procedure	is	straightforward.	A	table	of	valid
entry	points	into	the	DLL	is	kept	by	the	compiler;	the	calling	program	indirects	through
this	table	to	reach	the	library	routine.

8.2	Towards	Flexible	Address	Translation

Our	discussion	of	hardware	address	translation	is	divided	into	two	steps.	First,	we	put	the
issue	of	lookup	efficiency	aside,	and	instead	consider	how	best	to	achieve	the	other	goals
listed	above:	flexible	memory	assignment,	space	efficiency,	fine-grained	protection	and
sharing,	and	so	forth.	Once	we	have	the	features	we	want,	we	will	then	add	mechanisms	to
gain	back	lookup	efficiency.



Figure	8.2:	Address	translation	with	base	and	bounds	registers.	The	virtual	address	is	added	to	the	base	to	generate	the
physical	address;	the	bound	register	is	checked	against	the	virtual	address	to	prevent	a	process	from	reading	or	writing
outside	of	its	allocated	memory	region.

In	Chapter	2,	we	illustrated	the	notion	of	hardware	memory	protection	using	the	simplest
hardware	imaginable:	base	and	bounds.	The	translation	box	consists	of	two	extra	registers
per	process.	The	base	register	specifies	the	start	of	the	process’s	region	of	physical
memory;	the	bound	register	specifies	the	extent	of	that	region.	If	the	base	register	is	added
to	every	address	generated	by	the	program,	then	we	no	longer	need	a	relocating	loader	—
the	virtual	addresses	of	the	program	start	from	0	and	go	to	bound,	and	the	physical
addresses	start	from	base	and	go	to	base	+	bound.	Figure	8.2	shows	an	example	of	base
and	bounds	translation.	Since	physical	memory	can	contain	several	processes,	the	kernel
resets	the	contents	of	the	base	and	bounds	registers	on	each	process	context	switch	to	the
appropriate	values	for	that	process.

Base	and	bounds	translation	is	both	simple	and	fast,	but	it	lacks	many	of	the	features
needed	to	support	modern	programs.	Base	and	bounds	translation	supports	only	coarse-
grained	protection	at	the	level	of	the	entire	process;	it	is	not	possible	to	prevent	a	program
from	overwriting	its	own	code,	for	example.	It	is	also	difficult	to	share	regions	of	memory
between	two	processes.	Since	the	memory	for	a	process	needs	to	be	contiguous,
supporting	dynamic	memory	regions,	such	as	for	heaps,	thread	stacks,	or	memory	mapped
files,	becomes	difficult	to	impossible.

8.2.1	Segmented	Memory



Figure	8.3:	Address	translation	with	a	segment	table.	The	virtual	address	has	two	components:	a	segment	number	and	a
segment	offset.	The	segment	number	indexes	into	the	segment	table	to	locate	the	start	of	the	segment	in	physical
memory.	The	bound	register	is	checked	against	the	segment	offset	to	prevent	a	process	from	reading	or	writing	outside
of	its	allocated	memory	region.	Processes	can	have	restricted	rights	to	certain	segments,	e.g.,	to	prevent	writes	to	the
code	segment.

Many	of	the	limitations	of	base	and	bounds	translation	can	be	remedied	with	a	small
change:	instead	of	keeping	only	a	single	pair	of	base	and	bounds	registers	per	process,	the
hardware	can	support	an	array	of	pairs	of	base	and	bounds	registers,	for	each	process.	This
is	called	segmentation.	Each	entry	in	the	array	controls	a	portion,	or	segment,	of	the	virtual
address	space.	The	physical	memory	for	each	segment	is	stored	contiguously,	but	different
segments	can	be	stored	at	different	locations.	Figure	8.3	shows	segment	translation	in
action.	The	high	order	bits	of	the	virtual	address	are	used	to	index	into	the	array;	the	rest
of	the	address	is	then	treated	as	above	—	added	to	the	base	and	checked	against	the	bound
stored	at	that	index.	In	addition,	the	operating	system	can	assign	different	segments
different	permissions,	e.g.,	to	allow	execute-only	access	to	code	and	read-write	access	to
data.	Although	four	segments	are	shown	in	the	figure,	in	general	the	number	of	segments
is	determined	by	the	number	of	bits	for	the	segment	number	that	are	set	aside	in	the	virtual
address.

It	should	seem	odd	to	you	that	segmented	memory	has	gaps;	program	memory	is	no	longer
a	single	contiguous	region,	but	instead	it	is	a	set	of	regions.	Each	different	segment	starts
at	a	new	segment	boundary.	For	example,	code	and	data	are	not	immediately	adjacent	to
each	other	in	either	the	virtual	or	physical	address	space.

What	happens	if	a	program	branches	into	or	tries	to	load	data	from	one	of	these	gaps?	The
hardware	will	generate	an	exception,	trapping	into	the	operating	system	kernel.	On	UNIX
systems,	this	is	still	called	a	segmentation	fault,	that	is,	a	reference	outside	of	a	legal
segment	of	memory.	How	does	a	program	keep	from	wandering	into	one	of	these	gaps?



Correct	programs	will	not	generate	references	outside	of	valid	memory.	Put	another	way,
trying	to	execute	code	or	reading	data	that	does	not	exist	is	probably	an	indication	that	the
program	has	a	bug	in	it.

Figure	8.4:	Two	processes	sharing	a	code	segment,	but	with	separate	data	and	stack	segments.	In	this	case,	each
process	uses	the	same	virtual	addresses,	but	these	virtual	addresses	map	to	either	the	same	region	of	physical	memory
(if	code)	or	different	regions	of	physical	memory	(if	data).

Although	simple	to	implement	and	manage,	segmented	memory	is	both	remarkably
powerful	and	widely	used.	For	example,	the	x86	architecture	is	segmented	(with	some
enhancements	that	we	will	describe	later).	With	segments,	the	operating	system	can	allow
processes	to	share	some	regions	of	memory	while	keeping	other	regions	protected.	For
example,	two	processes	can	share	a	code	segment	by	setting	up	an	entry	in	their	segment
tables	to	point	to	the	same	region	of	physical	memory	—	to	use	the	same	base	and	bounds.
The	processes	can	share	the	same	code	while	working	off	different	data,	by	setting	up	the
segment	table	to	point	to	different	regions	of	physical	memory	for	the	data	segment.	We
illustrate	this	in	Figure	8.4.

Likewise,	shared	library	routines,	such	as	a	graphics	library,	can	be	placed	into	a	segment
and	shared	between	processes.	As	before,	the	library	data	would	be	in	a	separate,	non-



shared	segment.	This	is	frequently	done	in	modern	operating	systems	with	dynamically
linked	libraries.	A	practical	issue	is	that	different	processes	may	load	different	numbers	of
libraries,	and	so	may	assign	the	same	library	a	different	segment	number.	Depending	on
the	processor	architecture,	sharing	can	still	work,	if	the	library	code	uses	segment-local
addresses,	addresses	that	are	relative	to	the	current	segment.

UNIX	fork	and	copy-on-write

In	Chapter	3,	we	described	the	UNIX	fork	system	call.	UNIX	creates	a	new	process	by
making	a	complete	copy	of	the	parent	process;	the	parent	process	and	the	child	process
are	identical	except	for	the	return	value	from	fork.	The	child	process	can	then	set	up	its
I/O	and	eventually	use	the	UNIX	exec	system	call	to	run	a	new	program.	We	promised	at
the	time	we	would	explain	how	this	can	be	done	efficiently.

With	segments,	this	is	now	possible.	To	fork	a	process,	we	can	simply	make	a	copy	of	the
parent’s	segment	table;	we	do	not	need	to	copy	any	of	its	physical	memory.	Of	course,	we
want	the	child	to	be	a	copy	of	the	parent,	and	not	just	point	to	the	same	memory	as	the
parent.	If	the	child	changes	some	data,	it	should	change	only	its	copy,	and	not	its	parent’s
data.	On	the	other	hand,	most	of	the	time,	the	child	process	in	UNIX	fork	simply	calls
UNIX	exec;	the	shared	data	is	there	as	a	programming	convenience.

We	can	make	this	work	efficiently	by	using	an	idea	called	copy-on-write.	During	the	fork,
all	of	the	segments	shared	between	the	parent	and	child	process	are	marked	“read-only”
in	both	segment	tables.	If	either	side	modifies	data	in	a	segment,	an	exception	is	raised
and	a	full	memory	copy	of	that	segment	is	made	at	that	time.	In	the	common	case,	the
child	process	modifies	only	its	stack	before	calling	UNIX	exec,	and	if	so,	only	the	stack
needs	to	be	physically	copied.

We	can	also	use	segments	for	interprocess	communication,	if	processes	are	given	read	and
write	permission	to	the	same	segment.	Multics,	an	operating	system	from	the	1960’s	that
contained	many	of	the	ideas	we	now	find	in	Microsoft’s	Windows	7,	Apple’s	Mac	OS	X,
and	Linux,	made	extensive	use	of	segmented	memory	for	interprocess	sharing.	In	Multics,
a	segment	was	allocated	for	every	data	structure,	allowing	fine-grained	protection	and
sharing	between	processes.	Of	course,	this	made	the	segment	table	pretty	large!	More
modern	systems	tend	to	use	segments	only	for	coarser-grained	memory	regions,	such	as
the	code	and	data	for	an	entire	shared	library,	rather	than	for	each	of	the	data	structures
within	the	library.

As	a	final	example	of	the	power	of	segments,	they	enable	the	efficient	management	of
dynamically	allocated	memory.	When	an	operating	system	reuses	memory	or	disk	space
that	had	previously	been	used,	it	must	first	zero	out	the	contents	of	the	memory	or	disk.
Otherwise,	private	data	from	one	application	could	inadvertently	leak	into	another,
potentially	malicious,	application.	For	example,	you	could	enter	a	password	into	one	web
site,	say	for	a	bank,	and	then	exit	the	browser.	However,	if	the	underlying	physical
memory	used	by	the	browser	is	then	re-assigned	to	a	new	process,	then	the	password
could	be	leaked	to	a	malicious	web	site.

Of	course,	we	only	want	to	pay	the	overhead	of	zeroing	memory	if	it	will	be	used.	This	is



particularly	an	issue	for	dynamically	allocated	memory	on	the	heap	and	stack.	It	is	not
clear	when	the	program	starts	how	much	memory	it	will	use;	the	heap	could	be	anywhere
from	a	few	kilobytes	to	several	gigabytes,	depending	on	the	program.	The	operating
system	can	address	this	using	zero-on-reference.	With	zero-on-reference,	the	operating
system	allocates	a	memory	region	for	the	heap,	but	only	zeroes	the	first	few	kilobytes.
Instead,	it	sets	the	bound	register	in	the	segment	table	to	limit	the	program	to	just	the
zeroed	part	of	memory.	If	the	program	expands	its	heap,	it	will	take	an	exception,	and	the
operating	system	kernel	can	zero	out	additional	memory	before	resuming	execution.

Given	all	these	advantages,	why	not	stop	here?	The	principal	downside	of	segmentation	is
the	overhead	of	managing	a	large	number	of	variable	size	and	dynamically	growing
memory	segments.	Over	time,	as	processes	are	created	and	finish,	physical	memory	will
be	divided	into	regions	that	are	in	use	and	regions	that	are	not,	that	is,	available	to	be
allocated	to	a	new	process.	These	free	regions	will	be	of	varying	sizes.	When	we	create	a
new	segment,	we	will	need	to	find	a	free	spot	for	it.	Should	we	put	it	in	the	smallest	open
region	where	it	will	fit?	The	largest	open	region?

However	we	choose	to	place	new	segments,	as	more	memory	becomes	allocated,	the
operating	system	may	reach	a	point	where	there	is	enough	free	space	for	a	new	segment,
but	the	free	space	is	not	contiguous.	This	is	called	external	fragmentation.	The	operating
system	is	free	to	compact	memory	to	make	room	without	affecting	applications,	because
virtual	addresses	are	unchanged	when	we	relocate	a	segment	in	physical	memory.	Even	so,
compaction	can	be	costly	in	terms	of	processor	overhead:	a	typical	server	configuration
would	take	roughly	a	second	to	compact	its	memory.

All	this	becomes	even	more	complex	when	memory	segments	can	grow.	How	much
memory	should	we	set	aside	for	a	program’s	heap?	If	we	put	the	heap	segment	in	a	part	of
physical	memory	with	lots	of	room,	then	we	will	have	wasted	memory	if	that	program
turns	out	to	need	only	a	small	heap.	If	we	do	the	opposite	—	put	the	heap	segment	in	a
small	chunk	of	physical	memory	—	then	we	will	need	to	copy	it	somewhere	else	if	it
changes	size.



Figure	8.5:	Logical	view	of	page	table	address	translation.	Physical	memory	is	split	into	page	frames,	with	a	page-size
aligned	block	of	virtual	addresses	assigned	to	each	frame.	Unused	addresses	are	not	assigned	page	frames	in	physical
memory.



Figure	8.6:	Address	translation	with	a	page	table.	The	virtual	address	has	two	components:	a	virtual	page	number	and
an	offset	within	the	page.	The	virtual	page	number	indexes	into	the	page	table	to	yield	a	page	frame	in	physical
memory.	The	physical	address	is	the	physical	page	frame	from	the	page	table,	concatenated	with	the	page	offset	from
the	virtual	address.	The	operating	system	can	restrict	process	access	to	certain	pages,	e.g.,	to	prevent	writes	to	pages
containing	instructions.

8.2.2	Paged	Memory

An	alternative	to	segmented	memory	is	paged	memory.	With	paging,	memory	is	allocated
in	fixed-sized	chunks	called	page	frames.	Address	translation	is	similar	to	how	it	works
with	segmentation.	Instead	of	a	segment	table	whose	entries	contain	pointers	to	variable-
sized	segments,	there	is	a	page	table	for	each	process	whose	entries	contain	pointers	to
page	frames.	Because	page	frames	are	fixed-sized	and	a	power	of	two,	the	page	table
entries	only	need	to	provide	the	upper	bits	of	the	page	frame	address,	so	they	are	more
compact.	There	is	no	need	for	a	“bound”	on	the	offset;	the	entire	page	in	physical	memory
is	allocated	as	a	unit.	Figure	8.6	illustrates	address	translation	with	paged	memory.

What	will	seem	odd,	and	perhaps	cool,	about	paging	is	that	while	a	program	thinks	of	its
memory	as	linear,	in	fact	its	memory	can	be,	and	usually	is,	scattered	throughout	physical



memory	in	a	kind	of	abstract	mosaic.	The	processor	will	execute	one	instruction	after
another	using	virtual	addresses;	its	virtual	addresses	are	still	linear.	However,	the
instruction	located	at	the	end	of	a	page	will	be	located	in	a	completely	different	region	of
physical	memory	from	the	next	instruction	at	the	start	of	the	next	page.	Data	structures
will	appear	to	be	contiguous	using	virtual	addresses,	but	a	large	matrix	may	be	scattered
across	many	physical	page	frames.

An	apt	analogy	is	what	happens	when	you	shuffle	several	decks	of	cards	together.	A	single
process	in	its	virtual	address	space	sees	the	cards	of	a	single	deck	in	order.	A	different
process	sees	a	completely	different	deck,	but	it	will	also	be	in	order.	In	physical	memory,
however,	the	decks	of	all	the	processes	currently	running	will	be	shuffled	together,
apparently	at	random.	The	page	tables	are	the	magician’s	assistant:	able	to	instantly	find
the	queen	of	hearts	from	among	the	shuffled	decks.

Paging	addresses	the	principal	limitation	of	segmentation:	free-space	allocation	is	very
straightforward.	The	operating	system	can	represent	physical	memory	as	a	bit	map,	with
each	bit	representing	a	physical	page	frame	that	is	either	free	or	in	use.	Finding	a	free
frame	is	just	a	matter	of	finding	an	empty	bit.

Sharing	memory	between	processes	is	also	convenient:	we	need	to	set	the	page	table	entry
for	each	process	sharing	a	page	to	point	to	the	same	physical	page	frame.	For	a	large
shared	region	that	spans	multiple	page	frames,	such	as	a	shared	library,	this	may	require
setting	up	a	number	of	page	table	entries.	Since	we	need	to	know	when	to	release	memory
when	a	process	finishes,	shared	memory	requires	some	extra	bookkeeping	to	keep	track	of
whether	the	shared	page	is	still	in	use.	The	data	structure	for	this	is	called	a	core	map;	it
records	information	about	each	physical	page	frame	such	as	which	page	table	entries	point
to	it.

Many	of	the	optimizations	we	discussed	under	segmentation	can	also	be	done	with	paging.
For	copy-on-write,	we	need	to	copy	the	page	table	entries	and	set	them	to	read-only;	on	a
store	to	one	of	these	pages,	we	can	make	a	real	copy	of	the	underlying	page	frame	before
resuming	the	process.	Likewise,	for	zero-on-reference,	we	can	set	the	page	table	entry	at
the	top	of	the	stack	to	be	invalid,	causing	a	trap	into	the	kernel.	This	allows	us	to	extend
the	stack	only	as	needed.

Page	tables	allow	other	features	to	be	added.	For	example,	we	can	start	a	program	running
before	all	of	its	code	and	data	are	loaded	into	memory.	Initially,	the	operating	system
marks	all	of	the	page	table	entries	for	a	new	process	as	invalid;	as	pages	are	brought	in
from	disk,	it	marks	those	pages	as	read-only	(for	code	pages)	or	read-write	(for	data
pages).	Once	the	first	few	pages	are	in	memory,	however,	the	operating	system	can	start
execution	of	the	program	in	user-mode,	while	the	kernel	continues	to	transfer	the	rest	of
the	program’s	code	in	the	background.	As	the	program	starts	up,	if	it	happens	to	jump	to	a
location	that	has	not	been	loaded	yet,	the	hardware	will	cause	an	exception,	and	the	kernel
can	stall	the	program	until	that	page	is	available.	Further,	the	compiler	can	reorganize	the
program	executable	for	more	efficient	startup,	by	coalescing	the	initialization	pages	into	a
few	pages	at	the	start	of	the	program,	thus	overlapping	initialization	and	loading	the
program	from	disk.

As	another	example,	a	data	breakpoint	is	request	to	stop	the	execution	of	a	program	when



it	references	or	modifies	a	particular	memory	location.	It	is	helpful	during	debugging	to
know	when	a	data	structure	has	been	changed,	particularly	when	tracking	down	pointer
errors.	Data	breakpoints	are	sometimes	implemented	with	special	hardware	support,	but
they	can	also	be	implemented	with	page	tables.	For	this,	the	page	table	entry	containing
the	location	is	marked	read-only.	This	causes	the	process	to	trap	to	the	operating	system
on	every	change	to	the	page;	the	operating	system	can	then	check	if	the	instruction	causing
the	exception	affected	the	specific	location	or	not.

A	downside	of	paging	is	that	while	the	management	of	physical	memory	becomes	simpler,
the	management	of	the	virtual	address	space	becomes	more	challenging.	Compilers
typically	expect	the	execution	stack	to	be	contiguous	(in	virtual	addresses)	and	of	arbitrary
size;	each	new	procedure	call	assumes	the	memory	for	the	stack	is	available.	Likewise,	the
runtime	library	for	dynamic	memory	allocation	typically	expects	a	contiguous	heap.	In	a
single-threaded	process,	we	can	place	the	stack	and	heap	at	opposite	ends	of	the	virtual
address	space,	and	have	them	grow	towards	each	other,	as	shown	in	Figure	8.5.	However,
with	multiple	threads	per	process,	we	need	multiple	thread	stacks,	each	with	room	to	grow.

This	becomes	even	more	of	an	issue	with	64-bit	virtual	address	spaces.	The	size	of	the
page	table	is	proportional	to	the	size	of	the	virtual	address	space,	not	to	the	size	of
physical	memory.	The	more	sparse	the	virtual	address	space,	the	more	overhead	is	needed
for	the	page	table.	Most	of	the	entries	will	be	invalid,	representing	parts	of	the	virtual
address	space	that	are	not	in	use,	but	physical	memory	is	still	needed	for	all	of	those	page
table	entries.

We	can	reduce	the	space	taken	up	by	the	page	table	by	choosing	a	larger	page	frame.	How
big	should	a	page	frame	be?	A	larger	page	frame	can	waste	space	if	a	process	does	not	use
all	of	the	memory	inside	the	frame.	This	is	called	internal	fragmentation.	Fixed-size
chunks	are	easier	to	allocate,	but	waste	space	if	the	entire	chunk	is	not	used.
Unfortunately,	this	means	that	with	paging,	either	pages	are	very	large	(wasting	space	due
to	internal	fragmentation),	or	the	page	table	is	very	large	(wasting	space),	or	both.	For
example,	with	16	KB	pages	and	a	64	bit	virtual	address	space,	we	might	need	250	page
table	entries!

8.2.3	Multi-Level	Translation

If	you	were	to	design	an	efficient	system	for	doing	a	lookup	on	a	sparse	keyspace,	you
probably	would	not	pick	a	simple	array.	A	tree	or	a	hash	table	are	more	appropriate,	and
indeed,	modern	systems	use	both.	We	focus	in	this	subsection	on	trees;	we	discuss	hash
tables	afterwards.

Many	systems	use	tree-based	address	translation,	although	the	details	vary	from	system	to
system,	and	the	terminology	can	be	a	bit	confusing.	Despite	the	differences,	the	systems
we	are	about	to	describe	have	similar	properties.	They	support	coarse	and	fine-grained
memory	protection	and	memory	sharing,	flexible	memory	placement,	efficient	memory
allocation,	and	efficient	lookup	for	sparse	address	spaces,	even	for	64-bit	machines.

Almost	all	multi-level	address	translation	systems	use	paging	as	the	lowest	level	of	the
tree.	The	main	differences	between	systems	are	in	how	they	reach	the	page	table	at	the	leaf



of	the	tree	—	whether	using	segments	plus	paging,	or	multiple	levels	of	paging,	or
segments	plus	multiple	levels	of	paging.	There	are	several	reasons	for	this:

Efficient	memory	allocation.	By	allocating	physical	memory	in	fixed-size	page
frames,	management	of	free	space	can	use	a	simple	bitmap.

Efficient	disk	transfers.	Hardware	disks	are	partitioned	into	fixed-sized	regions
called	sectors;	disk	sectors	must	be	read	or	written	in	their	entirety.	By	making	the
page	size	a	multiple	of	the	disk	sector,	we	simplify	transfers	to	and	from	memory,	for
loading	programs	into	memory,	reading	and	writing	files,	and	in	using	the	disk	to
simulate	a	larger	memory	than	is	physically	present	on	the	machine.

Efficient	lookup.	We	will	describe	in	the	next	section	how	we	can	use	a	cache	called
a	translation	lookaside	buffer	to	make	lookups	fast	in	the	common	case;	the
translation	buffer	caches	lookups	on	a	page	by	page	basis.	Paging	also	allows	the
lookup	tables	to	be	more	compact,	especially	important	at	the	lowest	level	of	the	tree.

Efficient	reverse	lookup.	Using	fixed-sized	page	frames	also	makes	it	easy	to
implement	the	core	map,	to	go	from	a	physical	page	frame	to	the	set	of	virtual
addresses	that	share	the	same	frame.	This	will	be	crucial	for	implementing	the
illusion	of	an	infinite	virtual	memory	in	the	next	chapter.

Page-granularity	protection	and	sharing.	Typically,	every	table	entry	at	every	level
of	the	tree	will	have	its	own	access	permissions,	enabling	both	coarse-grained	and
fine-grained	sharing,	down	to	the	level	of	the	individual	page	frame.



Figure	8.7:	Address	translation	with	paged	segmentation.	The	virtual	address	has	three	components:	a	segment	number,
a	virtual	page	number	within	the	segment,	and	an	offset	within	the	page.	The	segment	number	indexes	into	a	segment
table	that	yields	the	page	table	for	that	segment.	The	page	number	from	the	virtual	address	indexes	into	the	page	table
(from	the	segment	table)	to	yield	a	page	frame	in	physical	memory.	The	physical	address	is	the	physical	page	frame
from	the	page	table,	concatenated	with	the	page	offset	from	the	virtual	address.	The	operating	system	can	restrict	access
to	an	entire	segment,	e.g.,	to	prevent	writes	to	the	code	segment,	or	to	an	individual	page,	e.g.,	to	implement	copy-on-
write.

Paged	Segmentation

Let	us	start	a	system	with	only	two	levels	of	a	tree.	With	paged	segmentation,	memory	is
segmented,	but	instead	of	each	segment	table	entry	pointing	directly	to	a	contiguous
region	of	physical	memory,	each	segment	table	entry	points	to	a	page	table,	which	in	turn
points	to	the	memory	backing	that	segment.	The	segment	table	entry	“bound”	describes
the	page	table	length,	that	is,	the	length	of	the	segment	in	pages.	Because	paging	is	used	at
the	lowest	level,	all	segment	lengths	are	some	multiple	of	the	page	size.	Figure	8.7
illustrates	translation	with	paged	segmentation.

Although	segment	tables	are	sometimes	stored	in	special	hardware	registers,	the	page
tables	for	each	segment	are	quite	a	bit	larger	in	aggregate,	and	so	they	are	normally	stored



in	physical	memory.	To	keep	the	memory	allocator	simple,	the	maximum	segment	size	is
usually	chosen	to	allow	the	page	table	for	each	segment	to	be	a	small	multiple	of	the	page
size.

For	example,	with	32-bit	virtual	addresses	and	4	KB	pages,	we	might	set	aside	the	upper
ten	bits	for	the	segment	number,	the	next	ten	bits	for	the	page	number,	and	twelve	bits	for
the	page	offset.	In	this	case,	if	each	page	table	entry	is	four	bytes,	the	page	table	for	each
segment	would	exactly	fit	into	one	physical	page	frame.

Multi-Level	Paging

Figure	8.8:	Address	translation	with	three	levels	of	page	tables.	The	virtual	address	has	four	components:	an	index	into
each	level	of	the	page	table	and	an	offset	within	the	physical	page	frame.

A	nearly	equivalent	approach	to	paged	segmentation	is	to	use	multiple	levels	of	page
tables.	On	the	Sun	Microsystems	SPARC	processor	for	example,	there	are	three	levels	of
page	table.	As	shown	in	Figure	8.8,	the	top-level	page	table	contains	entries,	each	of
which	points	to	a	second-level	page	table	whose	entries	are	pointers	to	page	tables.	On	the
SPARC,	as	with	most	other	systems	that	use	multiple	levels	of	page	tables,	each	level	of



page	table	is	designed	to	fit	in	a	physical	page	frame.	Only	the	top-level	page	table	must
be	filled	in;	the	lower	levels	of	the	tree	are	allocated	only	if	those	portions	of	the	virtual
address	space	are	in	use	by	a	particular	process.	Access	permissions	can	be	specified	at
each	level,	and	so	sharing	between	processes	is	possible	at	each	level.

Multi-Level	Paged	Segmentation

We	can	combine	these	two	approaches	by	using	a	segmented	memory	where	each	segment
is	managed	by	a	multi-level	page	table.	This	is	the	approach	taken	by	the	x86,	for	both	its
32-bit	and	64-bit	addressing	modes.

We	describe	the	32-bit	case	first.	The	x86	terminology	differs	slightly	from	what	we	have
used	here.	The	x86	has	a	per-process	Global	Descriptor	Table	(GDT),	equivalent	to	a
segment	table.	The	GDT	is	stored	in	memory;	each	entry	(descriptor)	points	to	the	(multi-
level)	page	table	for	that	segment	along	with	the	segment	length	and	segment	access
permissions.	To	start	a	process,	the	operating	system	sets	up	the	GDT	and	initializes	a
register,	the	Global	Descriptor	Table	Register	(GDTR),	that	contains	the	address	and
length	of	the	GDT.

Because	of	its	history,	the	x86	uses	separate	processor	registers	to	specify	the	segment
number	(that	is,	the	index	into	the	GDT)	and	the	virtual	address	for	use	by	each
instruction.	For	example,	on	the	“32-bit”	x86,	there	is	both	a	segment	number	and	32	bits
of	virtual	address	within	each	segment.	On	the	64-bit	x86,	the	virtual	address	within	each
segment	is	extended	to	64	bits.	Most	applications	only	use	a	few	segments,	however,	so
the	per-process	segment	table	is	usually	short.	The	operating	system	kernel	has	its	own
segment	table;	this	is	set	up	to	enable	the	kernel	to	access,	with	virtual	addresses,	all	of	the
per-process	and	shared	segments	on	the	system.

For	encoding	efficiency,	the	segment	register	is	often	implicit	as	part	of	the	instruction.
For	example,	the	x86	stack	instructions	such	as	push	and	pop	assume	the	stack	segment
(the	index	stored	in	the	stack	segment	register),	branch	instructions	assume	the	code
segment	(the	index	stored	in	the	code	segment	register),	and	so	forth.	As	an	optimization,
whenever	the	x86	initializes	a	code,	stack,	or	data	segment	register	it	also	reads	the	GDT
entry	(that	is,	the	top-level	page	table	pointer	and	access	permissions)	into	the	processor,
so	the	processor	can	go	directly	to	the	page	table	on	each	reference.

Many	instructions	also	have	an	option	to	specify	the	segment	index	explicitly.	For
example,	the	ljmp,	or	long	jump,	instruction	changes	the	program	counter	to	a	new
segment	number	and	offset	within	that	segment.

For	the	32-bit	x86,	the	virtual	address	space	within	a	segment	has	a	two-level	page	table.
The	first	10	bits	of	the	virtual	address	index	the	top	level	page	table,	called	the	page
directory,	the	next	10	bits	index	the	second	level	page	table,	and	the	final	12	bits	are	the
offset	within	a	page.	Each	page	table	entry	takes	four	bytes	and	the	page	size	is	4	KB,	so
the	top-level	page	table	and	each	second-level	page	table	fits	in	a	single	physical	page.
The	number	of	second-level	page	tables	needed	depends	on	the	length	of	the	segment;
they	are	not	needed	to	map	empty	regions	of	virtual	address	space.	Both	the	top-level	and
second-level	page	table	entries	have	permissions,	so	fine-grained	protection	and	sharing	is
possible	within	a	segment.



Today,	the	amount	of	memory	per	computer	is	often	well	beyond	what	can	32	bits	can
address;	for	example,	a	high-end	server	could	have	two	terabytes	of	physical	memory.	For
the	64-bit	x86,	virtual	addresses	within	a	segment	can	be	up	to	64	bits.	However,	to
simplify	address	translation,	current	processors	only	allow	48	bits	of	the	virtual	address	to
be	used;	this	is	sufficient	to	map	128	terabytes,	using	four	levels	of	page	tables.	The	lower
levels	of	the	page	table	tree	are	only	filled	in	if	that	portion	of	the	virtual	address	space	is
in	use.

As	an	optimization,	the	64-bit	x86	has	the	option	to	eliminate	one	or	two	levels	of	the
page	table.	Each	physical	page	frame	on	the	x86	is	4	KB.	Each	page	of	fourth	level	page
table	maps	2	MB	of	data,	and	each	page	of	the	third	level	page	table	maps	1	GB	of	data.	If
the	operating	system	places	data	such	that	the	entire	2	MB	covered	by	the	fourth	level
page	table	is	allocated	contiguously	in	physical	memory,	then	the	page	table	entry	one
layer	up	can	be	marked	to	point	directly	to	this	region	instead	of	to	a	page	table.	Likewise,
a	page	of	third	level	page	table	can	be	omitted	if	the	operating	system	allocates	the	process
a	1	GB	chunk	of	physical	memory.	In	addition	to	saving	space	needed	for	page	table
mappings,	this	improves	translation	buffer	efficiency,	a	point	we	will	discuss	in	more
detail	in	the	next	section.

8.2.4	Portability

The	diversity	of	different	translation	mechanisms	poses	a	challenge	to	the	operating
system	designer.	To	be	widely	used,	we	want	our	operating	system	to	be	easily	portable	to
a	wide	variety	of	different	processor	architectures.	Even	within	a	given	processor	family,
such	as	an	x86,	there	are	a	number	of	different	variants	that	an	operating	system	may	need
to	support.	Main	memory	density	is	increasing	both	the	physical	and	virtual	address	space
by	almost	a	bit	per	year.	In	other	words,	for	a	multi-level	page	table	to	be	able	to	map	all
of	memory,	an	extra	level	of	the	page	table	is	needed	every	decade	just	to	keep	up	with	the
increasing	size	of	main	memory.

A	further	challenge	is	that	the	operating	system	often	needs	to	keep	two	sets	of	books	with
respect	to	address	translation.	One	set	of	books	is	the	hardware	view	—	the	processor
consults	a	set	of	segment	and	multi-level	page	tables	to	be	able	to	correctly	and	securely
execute	instructions	and	load	and	store	data.	A	different	set	of	books	is	the	operating
system	view	of	the	virtual	address	space.	To	support	features	such	as	copy-on-write,	zero-
on-reference,	and	fill-on-reference,	as	well	as	other	applications	we	will	describe	in	later
chapters,	the	operating	system	must	keep	track	of	additional	information	about	each
virtual	page	beyond	what	is	stored	in	the	hardware	page	table.

This	software	memory	management	data	structures	mirror,	but	are	not	identical	to,	the
hardware	structures,	consisting	of	three	parts:

List	of	memory	objects.	Memory	objects	are	logical	segments.	Whether	or	not	the
underlying	hardware	is	segmented,	the	kernel	memory	manager	needs	to	keep	track
of	which	memory	regions	represent	which	underlying	data,	such	as	program	code,
library	code,	shared	data	between	two	or	more	processes,	a	copy-on-write	region,	or	a
memory-mapped	file.	For	example,	when	a	process	starts	up,	the	kernel	can	check	the
object	list	to	see	if	the	code	is	already	in	memory;	likewise,	when	a	process	opens	a



library,	it	can	check	if	it	has	already	been	linked	by	some	other	process.	Similarly,	the
kernel	can	keep	reference	counts	to	determine	which	memory	regions	to	reclaim	on
process	exit.

Virtual	to	physical	translation.	On	an	exception,	and	during	system	call	parameter
copying,	the	kernel	needs	to	be	able	to	translate	from	a	process’s	virtual	addresses	to
its	physical	locations.	While	the	kernel	could	use	the	hardware	page	tables	for	this,
the	kernel	also	needs	to	keep	track	of	whether	an	invalid	page	is	truly	invalid,	or
simply	not	loaded	yet	(in	the	case	of	fill-on-reference)	or	if	a	read-only	page	is	truly
read-only	or	just	simulating	a	data	breakpoint	or	a	copy-on-write	page.

Physical	to	virtual	translation.	We	referred	to	this	above	as	the	core	map.	The
operating	system	needs	to	keep	track	of	the	processes	that	map	to	a	specific	physical
memory	location,	to	ensure	that	when	the	kernel	updates	a	page’s	status,	it	can	also
updated	every	page	table	entry	that	refers	to	that	physical	page.

The	most	interesting	of	these	are	the	data	structures	used	for	the	virtual	to	physical
translation.	For	the	software	page	table,	we	have	all	of	the	same	options	as	before	with
respect	to	segmentation	and	multiple	levels	of	paging,	as	well	as	some	others.	The
software	page	table	need	not	use	the	same	structure	as	the	underlying	hardware	page	table;
indeed,	if	the	operating	system	is	to	be	easily	portable,	the	software	data	structures	may	be
quite	different	from	the	underlying	hardware.

Linux	models	the	operating	system’s	internal	address	translation	data	structures	after	the
x86	architecture	of	segments	plus	multi-level	page	tables.	This	has	made	porting	Linux	to
new	x86	architectures	relatively	easy,	but	porting	Linux	to	other	architectures	somewhat
more	difficult.

A	different	approach,	taken	first	in	a	research	system	called	Mach	and	later	in	Apple	OS
X,	is	to	use	a	hash	table,	rather	than	a	tree,	for	the	software	translation	data.	For	historical
reasons,	the	use	of	a	hash	table	for	paged	address	translation	is	called	an	inverted	page
table.	Particularly	as	we	move	to	deeper	multi-level	page	tables,	using	a	hash	table	for
translation	can	speed	up	translation.

With	an	inverted	page	table,	the	virtual	page	number	is	hashed	into	a	table	of	size
proportional	to	the	number	of	physical	page	frames.	Each	entry	in	the	hash	table	contains
tuples	of	the	form	(in	the	figure,	the	physical	page	is	implicit):



Figure	8.9:	Address	translation	with	a	software	hash	table.	The	hardware	page	tables	are	omitted	from	the	picture.	The
virtual	page	number	is	hashed;	this	yields	a	position	in	the	hash	table	that	indicates	the	physical	page	frame.	The	virtual
page	number	must	be	checked	against	the	contents	of	the	hash	entry	to	handle	collisions	and	to	check	page	access
permissions.

As	shown	in	Figure	8.9,	if	there	is	a	match	on	both	the	virtual	page	number	and	the
process	ID,	then	the	translation	is	valid.	Some	systems	do	a	two	stage	lookup:	they	first
map	the	virtual	address	to	a	memory	object	ID,	and	then	do	the	hash	table	lookup	on	the
relative	virtual	address	within	the	memory	object.	If	memory	is	mostly	shared,	this	can
save	space	in	the	hash	table	without	unduly	slowing	the	translation.

An	inverted	page	table	does	need	some	way	to	handle	hash	collisions,	when	two	virtual
addresses	map	to	the	same	hash	table	entry.	Standard	techniques	—	such	as	chaining	or
rehashing	—	can	be	used	to	handle	collisions.

A	particularly	useful	consequence	of	having	a	portability	layer	for	memory	management	is
that	the	contents	of	the	hardware	multi-level	translation	table	can	be	treated	as	a	hint.	A
hint	is	a	result	of	some	computation	whose	results	may	no	longer	be	valid,	but	where	using
an	invalid	hint	will	trigger	an	exception.

With	a	portability	layer,	the	software	page	table	is	the	ground	truth,	while	the	hardware



page	table	is	a	hint.	The	hardware	page	table	can	be	safely	used,	provided	that	the
translations	and	permissions	are	a	subset	of	the	translations	in	the	software	page	table.

Is	an	inverted	page	table	enough?

The	concept	of	an	inverted	page	table	raises	an	intriguing	question:	do	we	need	to	have	a
multi-level	page	table	in	hardware?	Suppose,	in	hardware,	we	hash	the	virtual	address.
But	instead	of	using	the	hash	value	to	look	up	in	a	table	where	to	find	the	physical	page
frame,	suppose	we	just	use	the	hash	value	as	the	physical	page.	For	this	to	work,	we	need
the	hash	table	size	to	have	exactly	as	many	entries	as	physical	memory	page	frames,	so
that	there	is	a	one-to-one	correspondence	between	the	hash	table	entry	and	the	page
frame.

We	still	need	a	table	to	store	permissions	and	to	indicate	which	virtual	page	is	stored	in
each	entry;	if	the	process	does	not	have	permission	to	access	the	page,	or	if	two	virtual
pages	hash	to	the	same	physical	page,	we	need	to	be	able	to	detect	this	and	trap	to	the
operating	system	kernel	to	handle	the	problem.	This	is	why	a	hash	table	for	managing
memory	is	often	called	called	an	inverted	page	table:	the	entries	in	the	table	are	virtual
page	numbers,	not	physical	page	numbers.	The	physical	page	number	is	just	the	position
of	that	virtual	page	in	the	table.

The	drawback	to	this	approach?	Handling	hash	collisions	becomes	much	harder.	If	two
pages	hash	to	the	same	table	entry,	only	one	can	be	stored	in	the	physical	page	frame.	The
other	has	to	be	elsewhere	—	either	in	a	secondary	hash	table	entry	or	possibly	stored	on
disk.	Copying	in	the	new	page	can	take	time,	and	if	the	program	is	unlucky	enough	to
need	to	simultaneously	access	two	virtual	pages	that	both	hash	to	the	same	physical	page,
the	system	will	slow	down	even	further.	As	a	result,	on	modern	systems,	inverted	page
tables	are	typically	used	in	software	to	improve	portability,	rather	than	in	hardware,	to
eliminate	the	need	for	multi-level	page	tables.

8.3	Towards	Efficient	Address	Translation

At	this	point,	you	should	be	getting	a	bit	antsy.	After	all,	most	of	the	hardware
mechanisms	we	have	described	involve	at	least	two	and	possibly	as	many	as	four	memory
extra	references,	on	each	instruction,	before	we	even	reach	the	intended	physical	memory
location!	It	should	seem	completely	impractical	for	a	processor	to	do	several	memory
lookups	on	every	instruction	fetch,	and	even	more	that	for	every	instruction	that	loads	or
stores	data.

In	this	section,	we	will	discuss	how	to	improve	address	translation	performance	without
changing	its	logical	behavior.	In	other	words,	despite	the	optimization,	every	virtual
address	is	translated	to	exactly	the	same	physical	memory	location,	and	every	permission
exception	causes	a	trap,	exactly	as	would	have	occurred	without	the	performance
optimization.

For	this,	we	will	use	a	cache,	a	copy	of	some	data	that	can	be	accessed	more	quickly	than
the	original.	This	section	concerns	how	we	might	use	caches	to	improve	translation



performance.	Caches	are	widely	used	in	computer	architecture,	operating	systems,
distributed	systems,	and	many	other	systems;	in	the	next	chapter,	we	discuss	more
generally	when	caches	work	and	when	they	do	not.	For	now,	however,	our	focus	is	just	on
the	use	of	caches	for	reducing	the	overhead	of	address	translation.	There	is	a	reason	for
this:	the	very	first	hardware	caches	were	used	to	improve	translation	performance.

8.3.1	Translation	Lookaside	Buffers

If	you	think	about	how	a	processor	executes	instructions	with	address	translation,	there	are
some	obvious	ways	to	improve	performance.	After	all,	the	processor	normally	executes
instructions	in	a	sequence:

The	hardware	will	first	translate	the	program	counter	for	the	add	instruction,	walking	the
multi-level	translation	table	to	find	the	physical	memory	where	the	add	instruction	is
stored.	When	the	program	counter	is	incremented,	the	processor	must	walk	the	multiple
levels	again	to	find	the	physical	memory	where	the	mult	instruction	is	stored.	If	the	two
instructions	are	on	the	same	page	in	the	virtual	address	space,	then	they	will	be	on	the
same	page	in	physical	memory.	The	processor	will	just	repeat	the	same	work	—	the	table
walk	will	be	exactly	the	same,	and	again	for	the	next	instruction,	and	the	next	after	that.

A	translation	lookaside	buffer	(TLB)	is	a	small	hardware	table	containing	the	results	of
recent	address	translations.	Each	entry	in	the	TLB	maps	a	virtual	page	to	a	physical	page:



Figure	8.10:	Operation	of	a	translation	lookaside	buffer.	In	the	diagram,	each	virtual	page	number	is	checked	against	all
of	the	entries	in	the	TLB	at	the	same	time;	if	there	is	a	match,	the	matching	table	entry	contains	the	physical	page	frame
and	permissions.	If	not,	the	hardware	multi-level	page	table	lookup	is	invoked;	note	the	hardware	page	tables	are
omitted	from	the	picture.



Figure	8.11:	Combined	operation	of	a	translation	lookaside	buffer	and	hardware	page	tables.

Instead	of	finding	the	relevant	entry	by	a	multi-level	lookup	or	by	hashing,	the	TLB
hardware	(typically)	checks	all	of	the	entries	simultaneously	against	the	virtual	page.	If
there	is	a	match,	the	processor	uses	that	entry	to	form	the	physical	address,	skipping	the
rest	of	the	steps	of	address	translation.	This	is	called	a	TLB	hit.	On	a	TLB	hit,	the
hardware	still	needs	to	check	permissions,	in	case,	for	example,	the	program	attempts	to
write	to	a	code-only	page	or	the	operating	system	needs	to	trap	on	a	store	instruction	to	a
copy-on-write	page.

A	TLB	miss	occurs	if	none	of	the	entries	in	the	TLB	match.	In	this	case,	the	hardware	does
the	full	address	translation	in	the	way	we	described	above.	When	the	address	translation
completes,	the	physical	page	is	used	to	form	the	physical	address,	and	the	translation	is
installed	in	an	entry	in	the	TLB,	replacing	one	of	the	existing	entries.	Typically,	the
replaced	entry	will	be	one	that	has	not	been	used	recently.

The	TLB	lookup	is	illustrated	in	Figure	8.10,	and	Figure	8.11	shows	how	a	TLB	fits	into
the	overall	address	translation	system.

Although	the	hardware	cost	of	a	TLB	might	seem	large,	it	is	modest	compared	to	the
potential	gain	in	processor	performance.	To	be	useful,	the	TLB	lookup	needs	to	be	much
more	rapid	than	doing	a	full	address	translation;	thus,	the	TLB	table	entries	are
implemented	in	very	fast,	on-chip	static	memory,	situated	near	the	processor.	In	fact,	to
keep	lookups	rapid,	many	systems	now	include	multiple	levels	of	TLB.	In	general,	the
smaller	the	memory,	the	faster	the	lookup.	So,	the	first	level	TLB	is	small	and	close	to	the



processor	(and	often	split	for	engineering	reasons	into	one	for	instruction	lookups	and	a
separate	one	for	data	lookups).	If	the	first	level	TLB	does	not	contain	the	translation,	a
larger	second	level	TLB	is	consulted,	and	the	full	translation	is	only	invoked	if	the
translation	misses	both	levels.	For	simplicity,	our	discussion	will	assume	a	single-level
TLB.

A	TLB	also	requires	an	address	comparator	for	each	entry	to	check	in	parallel	if	there	is	a
match.	To	reduce	this	cost,	some	TLBs	are	set	associative.	Compared	to	fully	associative
TLBs,	set	associative	ones	need	fewer	comparators,	but	they	may	have	a	higher	miss	rate.
We	will	discuss	set	associativity,	and	its	implications	for	operating	system	design,	in	the
next	chapter.

What	is	the	cost	of	address	translation	with	a	TLB?	There	are	two	factors.	We	pay	the	cost
of	the	TLB	lookup	regardless	of	whether	the	address	is	in	the	TLB	or	not;	in	the	case	of	an
unsuccessful	TLB	lookup,	we	also	pay	the	cost	of	the	full	translation.	If	P(hit)	is	the
likelihood	that	the	TLB	has	the	entry	cached:

Cost	(address	translation) = Cost	(TLB	lookup)

+	Cost	(full	translation)	×	(1	-
P(hit))

In	other	words,	the	processor	designer	needs	to	include	a	sufficiently	large	TLB	that	most
addresses	generated	by	a	program	will	hit	in	the	TLB,	so	that	doing	the	full	translation	is
the	rare	event.	Even	so,	TLB	misses	are	a	significant	cost	for	many	applications.

Software-loaded	TLB

If	the	TLB	is	effective	at	amortizing	the	cost	of	doing	a	full	address	translation	across
many	memory	references,	we	can	ask	a	radical	question:	do	we	need	hardware	multi-level
page	table	lookup	on	a	TLB	miss?	This	is	the	concept	behind	a	software-loaded	TLB.	A
TLB	hit	works	as	before,	as	a	fast	path.	On	a	TLB	miss,	instead	of	doing	hardware
address	translation,	the	processor	traps	to	the	operating	system	kernel.	In	the	trap	handler,
the	kernel	is	responsible	for	doing	the	address	lookup,	loading	the	TLB	with	the	new
translation,	and	restarting	the	application.

This	approach	dramatically	simplifies	the	design	of	the	operating	system,	because	it	no
longer	needs	to	keep	two	sets	of	page	tables,	one	for	the	hardware	and	one	for	itself.	On	a
TLB	miss,	the	operating	system	can	consult	its	own	portable	data	structures	to	determine
what	data	should	be	loaded	into	the	TLB.

Although	convenient	for	the	operating	system,	a	software-loaded	TLB	is	somewhat
slower	for	executing	applications,	as	the	cost	of	trapping	to	the	kernel	is	significantly
more	than	the	cost	of	doing	hardware	address	translation.	As	we	will	see	in	the	next
chapter,	the	contents	of	page	table	entries	can	be	stored	in	on-chip	hardware	caches;	this



means	that	even	on	a	TLB	miss,	the	hardware	can	often	find	every	level	of	the	multi-level
page	table	already	stored	in	an	on-chip	cache,	but	not	in	the	TLB.	For	example,	a	TLB
miss	on	a	modern	generation	x86	can	be	completed	in	the	best	case	in	the	equivalent	of
17	instructions.	By	contrast,	a	trap	to	the	operating	system	kernel	will	take	several
hundred	to	a	few	thousand	instructions	to	process,	even	in	the	best	case.

Figure	8.12:	Operation	of	a	translation	lookaside	buffer	with	superpages.	In	the	diagram,	some	entries	in	the	TLB	can
be	superpages;	these	match	if	the	virtual	page	is	in	the	superpage.	The	superpage	in	the	diagram	covers	an	entire
memory	segment,	but	this	need	not	always	be	the	case.

8.3.2	Superpages

One	way	to	improve	the	TLB	hit	rate	is	using	a	concept	called	superpages.	A	superpage	is
a	set	of	contiguous	pages	in	physical	memory	that	map	a	contiguous	region	of	virtual
memory,	where	the	pages	are	aligned	so	that	they	share	the	same	high-order	(superpage)
address.	For	example,	an	8	KB	superpage	would	consist	of	two	adjacent	4	KB	pages	that
lie	on	an	8	KB	boundary	in	both	virtual	and	physical	memory.	Superpages	are	at	the



discretion	of	the	operating	system	—	small	programs	or	memory	segments	that	benefit
from	a	smaller	page	size	can	still	operate	with	the	standard,	smaller	page	size.

Superpages	complicate	operating	system	memory	allocation	by	requiring	the	system	to
allocate	chunks	of	memory	in	different	sizes.	However,	the	upside	is	that	a	superpage	can
drastically	reduce	the	number	of	TLB	entries	needed	to	map	large,	contiguous	regions	of
memory.	Each	entry	in	the	TLB	has	a	flag,	signifying	whether	the	entry	is	a	page	or	a
superpage.	For	superpages,	the	TLB	matches	the	superpage	number	—	that	is,	it	ignores
the	portion	of	the	virtual	address	that	is	the	page	number	within	the	superpage.	This	is
illustrated	in	Figure	8.12.

To	make	this	concrete,	the	x86	skips	one	or	two	levels	of	the	page	table	when	there	is	a	2
MB	or	1	GB	region	of	physical	memory	that	is	mapped	as	a	unit.	When	the	processor
references	one	of	these	regions,	only	a	single	entry	is	loaded	into	the	TLB.	When	looking
for	a	match	against	a	superpage,	the	TLB	only	considers	the	most	significant	bits	of	the
address,	ignoring	the	offset	within	the	superpage.	For	a	2	MB	superpage,	the	offset	is	the
lowest	21	bits	of	the	virtual	address.	For	a	1	GB	superpage	it	is	the	lowest	30	bits.

Figure	8.13:	Layout	of	a	high-resolution	frame	buffer	in	physical	memory.	Each	line	of	the	pixel	display	can	take	up	an
entire	page,	so	that	adjacent	pixels	in	the	vertical	dimension	lie	on	different	pages.

A	common	use	of	superpages	is	to	map	the	frame	buffer	for	the	computer	display.	When
redrawing	the	screen,	the	processor	may	touch	every	pixel;	with	a	high-resolution	display,
this	can	involve	stepping	through	many	megabytes	of	memory.	If	each	TLB	entry	maps	a
4	KB	page,	even	a	large	on-chip	TLB	with	256	entries	would	only	be	able	to	contain
mappings	for	1	MB	of	the	frame	buffer	at	the	same	time.	Thus,	the	TLB	would	need	to
repeatedly	do	page	table	lookups	to	pull	in	new	TLB	entries	as	it	steps	through	memory.
An	even	worse	case	occurs	when	drawing	a	vertical	line.	The	frame	buffer	is	a	two-



dimensional	array	in	row-major	order,	so	that	each	horizontal	line	of	pixels	is	on	a
separate	page.	Thus,	modifying	each	separate	pixel	in	a	vertical	line	would	require	loading
a	separate	TLB	entry!	With	superpages,	the	entire	frame	buffer	can	be	mapped	with	a
single	TLB	entry,	leaving	more	room	for	the	other	pages	needed	by	the	application.

Similar	issues	occur	with	large	matrices	in	scientific	code.

8.3.3	TLB	Consistency

Whenever	we	introduce	a	cache	into	a	system,	we	need	to	consider	how	to	ensure
consistency	of	the	cache	with	the	original	data	when	the	entries	are	modified.	A	TLB	is	no
exception.	For	secure	and	correct	program	execution,	the	operating	system	must	ensure
that	the	each	program	sees	its	memory	and	no	one	else’s.	Any	inconsistency	between	the
TLB,	the	hardware	multi-level	translation	table,	and	the	portable	operating	system	layer	is
a	potential	correctness	and	security	flaw.

There	are	three	issues	to	consider:

Figure	8.14:	Operation	of	a	translation	lookaside	buffer	with	process	ID’s.	The	TLB	contains	entries	for	multiple
processes;	only	the	entries	for	the	current	process	are	valid.	The	operating	system	kernel	must	change	the	current
process	ID	when	performing	a	context	switch	between	processes.

Process	context	switch.	What	happens	on	a	process	context	switch?	The	virtual
addresses	of	the	old	process	are	no	longer	valid,	and	should	no	longer	be	valid,	for
the	new	process.	Otherwise,	the	new	process	will	be	able	to	read	the	old	process’s



data	structures,	either	causing	the	new	process	to	crash,	or	potentially	allowing	it	to
scavenge	sensitive	information	such	as	passwords	stored	in	memory.

On	a	context	switch,	we	need	to	change	the	hardware	page	table	register	to	point	to
the	new	process’s	page	table.	However,	the	TLB	also	contains	copies	of	the	old
process’s	page	translations	and	permissions.	One	approach	is	to	flush	the	TLB	—
discard	its	contents	—	on	every	context	switch.	Since	emptying	the	cache	carries	a
performance	penalty,	modern	processors	have	a	tagged	TLB,	shown	in	Figure	8.14.
Entries	in	a	tagged	TLB	contain	the	process	ID	that	produced	each	translation:

With	a	tagged	TLB,	the	operating	system	stores	the	current	process	ID	in	a	hardware
register	on	each	context	switch.	When	performing	a	lookup,	the	hardware	ignores
TLB	entries	from	other	processes,	but	it	can	reuse	any	TLB	entries	that	remain	from
the	last	time	the	current	process	executed.

Permission	reduction.	What	happens	when	the	operating	system	modifies	an	entry
in	a	page	table?	For	the	processor’s	regular	data	cache	of	main	memory,	special-
purpose	hardware	keeps	cached	data	consistent	with	the	data	stored	in	memory.
However,	hardware	consistency	is	not	usually	provided	for	the	TLB;	keeping	the
TLB	consistent	with	the	page	table	is	the	responsibility	of	the	operating	system
kernel.

Software	involvement	is	needed	for	several	reasons.	First,	page	table	entries	can	be
shared	between	processes,	so	a	single	modification	can	affect	multiple	TLB	entries
(e.g.,	one	for	each	process	sharing	the	page).	Second,	the	TLB	contains	only	the
virtual	to	physical	page	mapping	—	it	does	not	record	the	address	where	the	mapping
came	from,	so	it	cannot	tell	if	a	write	to	memory	would	affect	a	TLB	entry.	Even	if	it
did	track	this	information,	most	stores	to	memory	do	not	affect	the	page	table,	so
repeatedly	checking	each	memory	store	to	see	if	it	affects	any	TLB	entry	would
involve	a	large	amount	of	overhead	that	would	rarely	be	needed.

Instead,	whenever	the	operating	system	changes	the	page	table,	it	ensures	that	the
TLB	does	not	contain	an	incorrect	mapping.

Nothing	needs	to	be	done	when	the	operating	system	adds	permissions	to	a	portion	of
the	virtual	address	space.	For	example,	the	operating	system	might	dynamically
extend	the	heap	or	the	stack	by	allocating	physical	memory	and	changing	invalid
page	table	entries	to	point	to	the	new	memory,	or	the	operating	system	might	change
a	page	from	read-only	to	read-write.	In	these	cases,	the	TLB	can	be	left	alone	because
any	references	that	require	the	new	permissions	will	either	cause	the	hardware	load
the	new	entries	or	cause	an	exception,	allowing	the	operating	system	to	load	the	new



entries.

However,	if	the	operating	system	needs	to	reduce	permissions	to	a	page,	then	the
kernel	needs	to	ensure	the	TLB	does	not	have	a	copy	of	the	old	translation	before
resuming	the	process.	If	the	page	was	shared,	the	kernel	needs	to	ensure	that	the	TLB
does	not	have	the	copy	for	any	of	the	process	ID’s	that	might	have	referenced	the
page.	For	example,	to	mark	a	region	of	memory	as	copy-on-write,	the	operating
system	must	reduce	permissions	to	the	region	to	read-only,	and	it	must	remove	any
entries	for	that	region	from	the	TLB,	since	the	old	TLB	entries	would	still	be	read-
write.

Early	computers	discarded	the	entire	contents	of	the	TLB	whenever	there	was	a
change	to	a	page	table,	but	more	modern	architectures,	including	the	x86	and	the
ARM,	support	the	removal	of	individual	TLB	entries.

Figure	8.15:	Illustration	of	the	need	for	TLB	shootdown	to	preserve	correct	translation	behavior.	In	order	for
processor	1	to	change	the	translation	for	page	0x53	in	process	0	to	read-only,	it	must	remove	the	entry	from	its
TLB,	and	it	must	ensure	that	no	other	processor	has	the	old	translation	in	its	TLB.	To	do	this,	it	sends	an
interprocessor	interrupt	to	each	processor,	requesting	it	to	remove	the	old	translation.	The	operating	system	does
not	know	if	a	particular	TLB	contains	an	entry	(e.g.,	processor	3’s	TLB	does	not	contain	page	0x53),	so	it	must
remove	it	from	all	TLBs.	The	shootdown	is	complete	only	when	all	processors	have	verified	that	the	old
translation	has	been	removed.

TLB	shootdown.	On	a	multiprocessor,	there	is	a	further	complication.	Any	processor
in	the	system	may	have	a	cached	copy	of	a	translation	in	its	TLB.	Thus,	to	be	safe
and	correct,	whenever	a	page	table	entry	is	modified,	the	corresponding	entry	in
every	processor’s	TLB	has	to	be	discarded	before	the	change	will	take	effect.
Typically,	only	the	current	processor	can	invalidate	its	own	TLB,	so	removing	the
entry	from	all	processors	on	the	system	requires	that	the	operating	system	interrupt
each	processor	and	request	that	it	remove	the	entry	from	its	TLB.

This	heavyweight	operation	has	its	own	name:	it	is	a	TLB	shootdown,	illustrated	in
Figure	8.15.	The	operating	system	first	modifies	the	page	table,	then	sends	a	TLB
shootdown	request	to	all	of	the	other	processors.	Once	another	processor	has	ensured
that	its	TLB	has	been	cleaned	of	any	old	entries,	that	processor	can	resume.	The
original	processor	can	continue	only	when	all	of	the	processors	have	acknowledged



removing	the	old	entry	from	their	TLB.	Since	the	overhead	of	a	TLB	shootdown
increases	linearly	with	the	number	of	processors	on	the	system,	many	operating
systems	batch	TLB	shootdown	requests,	to	reduce	the	frequency	of	interprocess
interrupts	at	some	increased	cost	in	latency	to	complete	the	shootdown.

8.3.4	Virtually	Addressed	Caches

Figure	8.16:	Combined	operation	of	a	virtually	addressed	cache,	translation	lookaside	buffer,	and	hardware	page	table.

Another	step	to	improving	the	performance	of	address	translation	is	to	include	a	virtually
addressed	cache	before	the	TLB	is	consulted,	as	shown	in	Figure	8.16.	A	virtually
addressed	cache	stores	a	copy	of	the	contents	of	physical	memory,	indexed	by	the	virtual
address.	When	there	is	a	match,	the	processor	can	use	the	data	immediately,	without
waiting	for	a	TLB	lookup	or	page	table	translation	to	generate	a	physical	address,	and
without	waiting	to	retrieve	the	data	from	main	memory.	Almost	all	modern	multicore
chips	include	a	small,	virtually	addressed	on-chip	cache	near	each	processor	core.	Often,
like	the	TLB,	the	virtually	addressed	cache	will	be	split	in	half,	one	for	instruction	lookups
and	one	for	data.

The	same	consistency	issues	that	apply	to	TLBs	also	apply	to	virtually	addressed	caches:

Process	context	switch.	Entries	in	the	virtually	addressed	cache	must	either	be	either
with	the	process	ID	or	they	must	be	invalidated	on	a	context	switch	to	prevent	the
new	process	from	accessing	the	old	process’s	data.

Permission	reduction	and	shootdown.	When	the	operating	system	changes	the
permission	for	a	page	in	the	page	table,	the	virtual	cache	will	not	reflect	that	change.
Invalidating	the	affected	cache	entries	would	require	either	flushing	the	entire	cache



or	finding	all	memory	locations	stored	in	the	cache	on	the	affected	page,	both
relatively	heavyweight	operations.

Instead,	most	systems	with	virtually	addressed	caches	use	them	in	tandem	with	the
TLB.	Each	virtual	address	is	looked	up	in	both	the	cache	and	the	TLB	at	the	same
time;	the	TLB	specifies	the	permissions	to	use,	while	the	cache	provides	the	data	if
the	access	is	permitted.	This	way,	only	the	TLB’s	permissions	need	to	be	kept	up	to
date.	The	TLB	and	virtual	cache	are	co-designed	to	take	the	same	amount	of	time	to
perform	a	lookup,	so	the	processor	does	not	stall	waiting	for	the	TLB.

A	further	issue	is	aliasing.	Many	operating	systems	allow	processes	sharing	memory	to
use	different	virtual	addresses	to	refer	to	the	same	memory	location.	This	is	called	a
memory	address	alias.	Each	process	will	have	its	own	TLB	entry	for	that	memory,	and	the
virtual	cache	may	store	a	copy	of	the	memory	for	each	process.	The	problem	occurs	when
one	process	modifies	its	copy;	how	does	the	system	know	to	update	the	other	copy?

The	most	common	solution	to	this	issue	is	to	store	the	physical	address	along	with	the
virtual	address	in	the	virtual	cache.	In	parallel	with	the	virtual	cache	lookup,	the	TLB	is
consulted	to	generate	the	physical	address	and	page	permissions.	On	a	store	instruction
modifying	data	in	the	virtual	cache,	the	system	can	do	a	reverse	lookup	to	find	all	the
entries	that	match	the	same	physical	address,	to	allow	it	to	update	those	entries.

8.3.5	Physically	Addressed	Caches

Figure	8.17:	Combined	operation	of	a	virtually	addressed	cache,	translation	lookaside	buffer,	hardware	page	table,	and
physically	addressed	cache.

Many	processor	architectures	include	a	physically	addressed	cache	that	is	consulted	as	a
second-level	cache	after	the	virtually	addressed	cache	and	TLB,	but	before	main	memory.



This	is	illustrated	in	Figure	8.17.	Once	the	physical	address	of	the	memory	location	is
formed	from	the	TLB	lookup,	the	second-level	cache	is	consulted.	If	there	is	a	match,	the
value	stored	at	that	location	can	be	returned	directly	to	the	processor	without	the	need	to
go	to	main	memory.

With	today’s	chip	densities,	an	on-chip	physically	addressed	cache	can	be	quite	large.	In
fact,	many	systems	include	both	a	second-level	and	a	third-level	physically	addressed
cache.	Typically,	the	second-level	cache	is	per-core	and	is	optimized	for	latency;	a	typical
size	is	256	KB.	The	third-level	cache	is	shared	among	all	of	the	cores	on	the	same	chip
and	will	be	optimized	for	size;	it	can	be	as	large	as	2	MB	on	a	modern	chip.	In	other
words,	the	entire	UNIX	operating	system	from	the	70’s,	and	all	of	its	applications,	would
fit	on	a	single	modern	chip,	with	no	need	to	ever	go	to	main	memory.

Together,	these	physically	addressed	caches	serve	a	dual	purpose:

Faster	memory	references.	An	on-chip	physically	addressed	cache	will	have	a
lookup	latency	that	is	ten	times	(2nd	level)	or	three	times	(3rd	level)	faster	than	main
memory.

Faster	TLB	misses.	In	the	event	of	a	TLB	miss,	the	hardware	will	generate	a
sequence	of	lookups	through	its	multiple	levels	of	page	tables.	Because	the	page
tables	are	stored	in	physical	memory,	they	can	be	cached.	Thus,	even	a	TLB	miss	and
page	table	lookup	may	be	handled	entirely	on	chip.

8.4	Software	Protection

An	increasing	number	of	systems	complement	hardware-based	address	translation	with
software-based	protection	mechanisms.	Obviously,	software-only	protection	is	possible.	A
machine	code	interpreter,	implemented	in	software,	can	simulate	the	exact	behavior	of
hardware	protection.	The	interpreter	could	fetch	each	instruction,	interpret	it,	look	each
address	up	in	a	page	table	to	determine	if	the	instruction	is	permitted,	and	if	so,	execute
the	instruction.	Of	course,	that	would	be	very	slow!

In	this	section,	we	ask:	are	there	practical	software	techniques	to	execute	code	within	a
restricted	domain,	without	relying	on	hardware	address	translation?	The	focus	of	our
discussion	will	be	on	using	software	for	providing	an	efficient	protection	boundary,	as	a
way	of	improving	computer	security.	However,	the	techniques	we	describe	can	also	be
used	to	provide	other	operating	system	services,	such	as	copy-on-write,	stack	extensibility,
recoverable	memory,	and	user-level	virtual	machines.	Once	you	have	the	infrastructure	to
reinterpret	references	to	code	and	data	locations,	whether	in	software	or	hardware,	a
number	of	services	become	possible.

Hardware	protection	is	nearly	universal	on	modern	computers,	so	it	is	reasonable	to	ask,
why	do	we	need	to	implement	protection	in	software?

Simplify	hardware.	One	goal	is	simple	curiosity.	Do	we	really	need	hardware
address	translation,	or	is	it	just	an	engineering	tradeoff?	If	software	can	provide
efficient	protection,	we	could	eliminate	a	large	amount	of	hardware	complexity	and
runtime	overhead	from	computers,	with	a	substantial	increase	in	flexibility.



Application-level	protection.	Even	if	we	need	hardware	address	translation	to
protect	the	operating	system	from	misbehaving	applications,	we	often	want	to	run
untrusted	code	within	an	application.	An	example	is	inside	a	web	browser;	web	pages
can	contain	code	to	configure	the	display	for	a	web	site,	but	the	browser	needs	to
protect	itself	against	malicious	or	buggy	code	provided	by	web	sites.

Protection	inside	the	kernel.	We	also	sometimes	need	to	run	untrusted,	or	at	least
less	trusted,	code	inside	kernel.	Examples	include	third-party	device	drivers	and	code
to	customize	the	behavior	of	the	operating	system	on	behalf	of	applications.	Because
the	kernel	runs	with	the	full	capability	of	the	entire	machine,	any	user	code	run	inside
the	kernel	must	be	protected	in	software	rather	than	in	hardware.

Portable	security.	The	proliferation	of	consumer	devices	poses	a	challenge	to
application	portability.	No	single	operating	system	runs	on	every	embedded	sensor,
smartphone,	tablet,	netbook,	laptop,	desktop,	and	server	machine.	Applications	that
want	to	run	across	a	wide	range	of	devices	need	a	common	runtime	environment	that
isolates	the	application	from	the	specifics	of	the	underlying	operating	system	and
hardware	device.	Providing	protection	as	part	of	the	runtime	system	means	that	users
can	download	and	run	applications	without	concern	that	the	application	will	corrupt
the	underlying	operating	system.

Figure	8.18:	Execution	of	untrusted	code	inside	a	region	of	trusted	code.	The	trusted	region	can	be	a	process,	such	as	a
browser,	executing	untrusted	JavaScript,	or	the	trusted	region	can	be	the	operating	system	kernel,	executing	untrusted
packet	filters	or	device	drivers.

The	need	for	software	protection	is	widespread	enough	that	it	has	its	own	term:	how	do	we
provide	a	software	sandbox	for	executing	untrusted	code	so	that	it	can	do	its	work	without
causing	harm	to	the	rest	of	the	system?



8.4.1	Single	Language	Operating	Systems

A	very	simple	approach	to	software	protection	is	to	restrict	all	applications	to	be	written	in
a	single,	carefully	designed	programming	language.	If	the	language	and	its	environment
permits	only	safe	programs	to	be	expressed,	and	the	compiler	and	runtime	system	are
trustworthy,	then	no	hardware	protection	is	needed.

Figure	8.19:	Execution	of	a	packet	filter	inside	the	kernel.	A	packet	filter	can	be	installed	by	a	network	debugger	to
trace	packets	for	a	particular	user	or	application.	Packet	headers	matching	the	filter	are	copied	to	the	debugger,	while
normal	packet	processing	continues	unaffected.

A	practical	example	of	this	approach	that	is	still	in	wide	use	is	UNIX	packet	filters,	shown
in	Figure	8.19.	UNIX	packet	filters	allow	users	to	download	code	into	the	operating
system	kernel	to	customize	kernel	network	processing.	For	example,	a	packet	filter	can	be
installed	in	the	kernel	to	make	a	copy	of	packet	headers	arriving	for	a	particular
connection	and	to	send	those	to	a	user-level	debugger.

A	UNIX	packet	filter	is	typically	only	a	small	amount	of	code,	but	because	it	needs	to	run
in	kernel-mode,	the	system	cannot	rely	on	hardware	protection	to	prevent	a	misbehaving
packet	filter	from	causing	havoc	to	unrelated	applications.	Instead,	the	system	restricts	the
packet	filter	language	to	permit	only	safe	packet	filters.	For	example,	filters	may	only
branch	on	the	contents	of	packets	and	no	loops	are	allowed.	Since	the	filters	are	typically
short,	the	overhead	of	using	an	interpreted	language	is	not	prohibitive.



Figure	8.20:	Execution	of	a	JavaScript	program	inside	a	modern	web	browser.	The	JavaScript	interpreter	is	responsible
for	containing	effects	of	the	JavaScript	program	to	its	specific	page.	JavaScript	programs	can	call	out	to	a	broad	set	of
routines	in	the	browser,	so	these	routines	must	also	be	protected	against	malicious	JavaScript	programs.

Another	example	of	the	same	approach	is	the	use	of	JavaScript	in	modern	web	browsers,
illustrated	in	Figure	8.20.	A	JavaScript	program	customizes	the	user	interface	and
presentation	of	a	web	site;	it	is	provided	by	the	web	site,	but	it	executes	on	the	client
machine	inside	the	browser.	As	a	result,	the	browser	execution	environment	for	JavaScript
must	prevent	malicious	JavaScript	programs	from	taking	control	over	the	browser	and
possibly	the	rest	of	the	client	machine.	Since	JavaScript	programs	tend	to	be	relatively
short,	they	are	often	interpreted;	JavaScript	can	also	call	into	a	predefined	set	of	library
routines.	If	a	JavaScript	program	attempts	to	call	a	procedure	that	does	not	exist	or
reference	arbitrary	memory	locations,	the	interpreter	will	cause	a	runtime	exception	and
stop	the	program	before	any	harm	can	be	done.

Several	early	personal	computers	were	single	language	systems	with	protection
implemented	in	software	rather	than	hardware.	Most	famously,	the	Xerox	Alto	research
prototype	used	software	and	not	hardware	protection;	the	Alto	inspired	the	Apple
Macintosh,	and	the	language	it	used,	Mesa,	was	a	forerunner	of	Java.	Other	systems
included	the	Lisp	Machine,	a	computer	that	executed	only	programs	written	in	Lisp,	and
computers	that	executed	only	Smalltalk	(a	precursor	to	Python).

Language	protection	and	garbage	collection



JavaScript,	Lisp,	and	Smalltalk	all	provide	memory-compacting	garbage	collection	for
dynamically	created	data	structures.	One	motivation	for	this	is	programmer	convenience
and	to	reduce	avoidable	programmer	error.	However,	there	is	a	close	relationship	between
software	protection	and	garbage	collection.	Garbage	collection	requires	the	runtime
system	to	keep	track	of	all	valid	pointers	visible	to	the	program,	so	that	data	structures
can	be	relocated	without	affecting	program	behavior.	Programs	expressible	in	the
language	cannot	point	to	or	jump	to	arbitrary	memory	locations,	as	then	the	behavior	of
the	program	would	be	altered	by	the	garbage	collector.	Every	address	generated	by	the
program	is	necessarily	within	the	region	of	the	application’s	code,	and	every	load	and
store	instruction	is	to	the	program’s	data,	and	no	one	else’s.	In	other	words,	this	is	exactly
what	is	needed	for	software	protection!

Unfortunately,	language-based	software	protection	has	some	practical	limitations,	so	that
on	modern	systems,	it	is	often	used	in	tandem	with,	rather	than	as	a	replacement	for,
hardware	protection.	Using	an	interpreted	language	seems	like	a	safe	option,	but	it
requires	trust	in	both	the	interpreter	and	its	runtime	libraries.	An	interpreter	is	a	complex
piece	of	software,	and	any	flaw	in	the	interpreter	could	provide	a	way	for	a	malicious
program	to	gain	control	over	the	process,	that	is,	to	escape	its	protection	boundary.	Such
attacks	are	common	for	browsers	running	JavaScript,	although	over	time	JavaScript
interpreters	have	become	more	robust	to	these	types	of	attacks.

Worse,	because	running	interpreted	code	is	often	slow,	many	interpreted	systems	put	most
of	their	functionality	into	system	libraries	that	can	be	compiled	into	machine	code	and	run
directly	on	the	processor.	For	example,	commercial	web	browsers	provide	JavaScript
programs	a	huge	number	of	user	interface	objects,	so	that	the	interpreted	code	is	just	a
small	amount	of	glue.	Unfortunately,	this	raises	the	attack	surface	—	any	library	routine
that	does	not	completely	protect	itself	against	malicious	use	can	be	a	vector	for	the
program	to	escape	its	protection.	For	example,	a	JavaScript	program	could	attempt	to
cause	a	library	routine	to	overwrite	the	end	of	a	buffer,	and	depending	on	what	was	stored
in	memory,	that	might	provide	a	way	for	the	JavaScript	program	to	gain	control	of	the
system.	These	types	of	attacks	against	JavaScript	runtime	libraries	are	widespread.

This	leads	most	systems	to	use	both	hardware	and	software	protection.	For	example,
Microsoft	Windows	runs	its	web	browser	in	a	special	process	with	restricted	permissions.
This	way,	if	a	system	administrator	visits	a	web	site	containing	a	malicious	JavaScript
program,	even	if	the	program	takes	over	the	browser,	it	cannot	store	files	or	do	other
operations	that	would	normally	be	available	to	the	system	administrator.	We	know	a
computer	security	expert	who	runs	each	new	web	page	in	a	separate	virtual	machine;	even
if	the	web	page	contains	a	virus	that	takes	over	the	browser,	and	the	browser	is	able	to	take
over	the	operating	system,	the	original,	uninfected,	operating	system	can	be	automatically
restored	by	resetting	the	virtual	machine.

Cross-site	scripting

Another	JavaScript	attack	makes	use	of	the	storage	interface	provided	to	JavaScript
programs.	To	allow	JavaScript	programs	to	communicate	with	each	other,	they	can	store
data	in	cookies	in	the	browser.	For	some	web	sites,	these	cookies	can	contain	sensitive



information	such	as	the	user’s	login	authentication.	A	JavaScript	program	that	can	gain
access	to	a	user’s	cookies	can	potentially	pretend	to	be	the	user,	and	therefore	access	the
user’s	sensitive	data	stored	at	the	server.	If	a	web	site	is	compromised,	it	can	be	modified
to	serve	pages	containing	a	JavaScript	program	that	gathers	and	exploits	the	user’s
sensitive	data.	These	are	called	cross-site	scripting	attacks,	and	they	are	widespread.

Figure	8.21:	Design	of	the	Xerox	Alto	operating	system.	Application	programs	and	most	of	the	operating	system	were
implemented	in	a	type-safe	programming	language	called	Mesa;	Mesa	isolated	most	errors	to	the	module	that	caused
the	error.

A	related	approach	is	to	write	all	the	software	on	a	system	in	a	single,	safe	language,	and
then	to	compile	the	code	into	machine	instructions	that	execute	directly	on	the	processor.
Unlike	interpreted	languages,	the	libraries	themselves	can	be	written	in	the	safe	language.
The	Xerox	Alto	took	this	approach:	both	applications	and	the	entire	operating	system	were
written	in	the	same	language,	Mesa.	Like	Java,	Mesa	had	support	for	thread
synchronization	built	directly	into	the	language.	Even	with	this,	however,	there	are
practical	issues.	You	still	need	to	do	defensive	programming	at	the	trust	boundary	—
between	untrusted	application	code	(written	in	the	safe	language)	and	trusted	operating
system	code	(written	in	the	safe	language).	You	also	need	to	be	able	to	trust	the	compiler
to	generate	correct	code	that	enforces	protection;	any	weakness	in	the	compiler	could
allow	a	buggy	program	to	crash	the	system.	The	designers	of	the	Alto	built	a	successor
system,	called	the	Digital	Equipment	Firefly,	which	used	a	successor	language	to	Mesa,
called	Modula-2,	for	implementing	both	applications	and	the	operating	system.	However,



for	an	extra	level	of	protection,	the	Firefly	also	used	hardware	protection	to	isolate
applications	from	the	operating	system	kernel.

8.4.2	Language-Independent	Software	Fault	Isolation

A	limitation	of	trusting	a	language	and	its	interpreter	or	compiler	to	provide	safety	is	that
many	programmers	value	the	flexibility	to	choose	their	own	programming	language.	For
example,	some	might	use	Ruby	for	configuring	web	servers,	Matlab	or	Python	for	writing
scientific	code,	or	C++	for	large	software	engineering	efforts.

Since	it	would	be	impractical	for	the	operating	system	to	trust	every	compiler	for	every
possible	language,	can	we	efficiently	isolate	application	code,	in	software	without
hardware	support,	in	a	programming	language	independent	fashion?

One	reason	for	considering	this	is	that	there	are	many	cases	where	systems	need	an	extra
level	of	protection	within	a	process.	We	saw	an	example	of	this	with	web	browsers
needing	to	safely	execute	JavaScript	programs,	but	there	are	many	other	examples.	With
software	protection,	we	could	give	users	the	ability	to	customize	the	operating	system	by
downloading	code	into	the	kernel,	as	with	packet	filters,	but	on	a	more	widespread	basis.
Kernel	device	drivers	have	been	shown	to	be	the	primary	cause	of	operating	system
crashes;	providing	a	way	for	the	kernel	to	execute	device	drivers	in	a	restricted
environment	could	potentially	cut	down	on	the	severity	of	these	faults.	Likewise,	many
complex	software	packages	such	as	databases,	spreadsheets,	desktop	publishing	systems,
and	systems	for	computer-aided	design,	provide	their	users	a	way	to	download	code	into
the	system	to	customize	and	configure	the	system’s	behavior	to	meet	the	user’s	specific
needs.	If	this	downloaded	code	causes	the	system	to	crash,	the	user	will	not	be	able	to	tell
who	is	really	at	fault	and	is	likely	to	end	up	blaming	the	vendor.

Of	course,	one	way	to	do	this	is	to	rely	on	the	JavaScript	interpreter.	Tools	exist	to	compile
code	written	in	one	language,	like	C	or	C++,	into	JavaScript.	This	lets	applications	written
in	those	languages	to	run	on	any	browser	that	supports	JavaScript.	If	executing	JavaScript
were	safe	and	fast	enough,	then	we	could	declare	ourselves	done.

In	this	section,	we	discuss	an	alternate	approach:	can	we	take	any	chunk	of	machine
instructions	and	modify	it	to	ensure	that	the	code	does	not	touch	any	memory	outside	of	its
own	region	of	data?	That	way,	the	code	could	be	written	in	any	language,	compiled	by	any
compiler,	and	directly	execute	at	the	full	speed	of	the	processor.

Both	Google	and	Microsoft	have	products	that	accomplish	this:	a	sandbox	that	can	run
code	written	in	any	programming	language,	executed	safely	inside	a	process.	Google’s
product	is	called	Native	Client;	Microsoft’s	is	called	Application	Domains.	These
implementations	are	efficient:	Google	reports	that	the	runtime	overhead	of	executing	code
safely	inside	a	sandbox	is	less	than	10%.

For	simplicity	of	our	discussion,	we	will	assume	that	the	memory	region	for	the	sandbox
is	contiguous,	that	is,	the	sandbox	has	a	base	and	bound	that	needs	to	be	enforced	in
software.	Because	we	can	disallow	the	execution	of	obviously	malicious	code,	we	can
start	by	checking	that	the	code	in	the	sandbox	does	not	use	self-modifying	instructions	or
privileged	instructions.



We	proceed	in	two	steps.	First,	we	insert	machine	instructions	into	the	executable	to	do
what	hardware	protection	would	have	done,	that	is,	to	check	that	each	address	is	legally
within	the	region	specified	by	the	base	and	bounds,	and	to	raise	an	exception	if	not.
Second,	we	use	control	and	data	flow	analysis	to	remove	checks	that	are	not	strictly
necessary	for	the	sandbox	to	be	correct.	This	mirrors	what	we	did	for	hardware	translation
—	first,	we	designed	a	general-purpose	and	flexible	mechanism,	and	then	we	showed	how
to	optimize	it	using	TLBs	so	that	the	full	translation	mechanism	was	not	needed	on	every
instruction.

The	added	instructions	for	every	load	and	store	instruction	are	simple:	just	add	a	check
that	the	address	to	be	used	by	each	load	or	store	instruction	is	within	the	correct	region	of
data.	In	the	code,	r1	is	a	machine	register.

Note	that	the	store	instructions	must	be	limited	to	just	the	data	region	of	the	sandbox;
otherwise	a	store	could	modify	the	instruction	sequence,	e.g.,	to	cause	a	jump	out	of	the
protected	region.

We	also	need	to	check	indirect	branch	instructions.	We	need	to	make	sure	the	program
cannot	branch	outside	of	the	sandbox	except	for	predefined	entry	and	exit	points.	Relative
branches	and	named	procedure	calls	can	be	directly	verified.	Indirect	branches	and
procedure	returns	jump	to	a	location	stored	in	a	register	or	in	memory;	the	address	must	be
checked	before	use.

As	a	final	detail,	the	above	code	verifies	that	indirect	branch	instructions	stay	within	the
code	region.	This	turns	out	to	be	insufficient	for	protection,	for	two	reasons.	First,	x86
code	is	byte	addressable,	and	if	you	allow	a	jump	to	the	middle	of	an	instruction,	you
cannot	be	guaranteed	as	to	what	the	code	will	do.	In	particular,	an	erroneous	or	malicious
program	might	jump	to	the	middle	of	an	instruction,	whose	bytes	would	cause	the
processor	to	jump	outside	of	the	protected	region.	Although	this	may	seem	unlikely,
remember	that	the	attacker	has	the	advantage;	the	attacker	can	try	various	code	sequences
to	see	if	that	causes	an	escape	from	the	sandbox.	A	second	issue	is	that	an	indirect	branch
might	jump	past	the	protection	checks	for	a	load	or	store	instruction.	We	can	prevent	both
of	these	by	doing	all	indirect	jumps	through	a	table	that	only	contains	valid	entry	points



into	the	code;	of	course,	the	table	must	also	be	protected	from	being	modified	by	the	code
in	the	sandbox.

Now	that	we	have	logical	correctness,	we	can	run	control	and	data	flow	analysis	to
eliminate	many	of	the	extra	inserted	instructions,	if	it	can	be	proven	that	they	are	not
needed.	Examples	of	possible	optimizations	include:

Loop	invariants.	If	a	loop	strides	through	memory,	the	sandbox	may	be	able	to
prove	with	a	simple	test	at	the	beginning	of	the	loop	that	all	memory	accesses	in	the
loop	will	be	within	the	protected	region.

Return	values.	If	static	code	analysis	of	a	procedure	can	prove	that	the	procedure
does	not	modify	the	return	program	counter	stored	on	the	stack,	the	return	can	be
made	safely	without	further	checks.

Cross-procedure	checks.	If	the	code	analysis	can	prove	that	a	parameter	is	always
checked	before	it	is	passed	as	an	argument	to	a	subroutine,	it	need	not	be	checked
when	it	is	used	inside	the	procedure.

Virtual	machines	without	kernel	support

Modifying	machine	code	to	transparently	change	the	behavior	of	a	program,	while	still
enforcing	protection,	can	be	used	for	other	purposes.	One	application	is	transparently
executing	a	guest	operating	system	inside	a	user-level	process	without	kernel	support.

Normally,	when	we	run	a	guest	operating	system	in	a	virtual	machine,	the	hardware
catches	any	privileged	instructions	executed	by	the	guest	kernel	and	traps	into	the	host
kernel.	The	host	kernel	emulates	the	instructions	and	returns	control	back	to	the	guest
kernel	at	the	instruction	immediately	after	the	hardware	exception.	This	allows	the	host
kernel	to	emulate	privilege	levels,	interrupts,	exceptions,	and	kernel	management	of
hardware	page	tables.

What	happens	if	we	are	running	on	top	of	an	operating	system	that	does	not	support	a
virtual	machine?	We	can	still	emulate	a	virtual	machine	by	modifying	the	machine	code
of	the	guest	operating	system	kernel.	For	example,	we	can	convert	instructions	to	enable
and	disable	interrupts	to	a	no	op.	We	can	convert	an	instruction	to	start	executing	a	user
program	to	take	the	contents	of	the	application	memory,	re-write	those	contents	into	a
user-level	sandbox,	and	start	it	executing.	From	the	perspective	of	the	guest	kernel,	the
application	program	execution	looks	normal;	it	is	the	sandbox	that	keeps	the	application
program	from	corrupting	kernel’s	data	structures	and	passes	control	to	the	guest	kernel
when	the	application	makes	a	system	call.

Because	of	the	widespread	use	of	virtual	machines,	some	hardware	architectures	have
begun	to	add	support	for	directly	executing	guest	operating	systems	in	user-mode	without
kernel	support.	We	will	return	to	this	issue	in	a	later	chapter,	as	it	is	closely	related	to	the
topic	of	stackable	virtual	machines:	how	do	we	manipulate	page	tables	to	handle	the	case
where	the	guest	operating	system	is	itself	a	virtual	machine	monitor	running	a	virtual
machine.



8.4.3	Sandboxes	Via	Intermediate	Code

To	improve	portability,	both	Microsoft	and	Google	can	construct	their	sandboxes	from
intermediate	code	generated	by	the	compiler.	This	makes	it	easier	for	the	system	to	do	the
code	modification	and	data	flow	analysis	to	enforce	the	sandbox.	Instead	of	generating
x86	or	ARM	code	directly,	the	various	compilers	generate	their	code	in	the	intermediate
language,	and	the	sandbox	runtime	converts	that	into	sandboxed	code	on	the	specific
processor	architecture.

The	intermediate	representation	can	be	thought	of	as	a	virtual	machine,	with	a	simpler
instruction	set.	From	the	compiler	perspective,	it	is	as	easy	to	generate	code	for	the	virtual
machine	as	it	would	be	to	go	directly	to	x86	or	ARM	instructions.	From	the	sandbox
perspective	though,	using	a	virtual	machine	as	the	intermediate	representation	is	much
simpler.	The	intermediate	code	can	include	annotations	as	to	which	pointers	can	be	proven
to	be	safe	and	which	must	be	checked	before	use.	For	example,	pointers	in	a	C	program
would	require	runtime	checks	while	the	memory	references	in	a	Java	program	may	be	able
to	be	statically	proven	as	safe	from	the	structure	of	the	code.

Microsoft	has	compilers	for	virtually	every	commercially	important	programming
language.	To	avoid	trusting	all	of	these	compilers	with	the	safety	of	the	system,	the
runtime	is	responsible	for	validating	any	of	the	type	information	needed	for	efficient	code
generation	for	the	sandbox.	Typically,	verifying	the	correctness	of	static	analysis	is	much
simpler	than	generating	it	in	the	first	place.

The	Java	virtual	machine	(JVM)	is	also	a	kind	of	sandbox;	Java	code	is	translated	into
intermediate	byte	code	instructions	that	can	be	verified	at	runtime	as	being	safely
contained	in	the	sandbox.	Several	languages	have	been	compiled	into	Java	byte	code,	such
as	Python,	Ruby,	and	JavaScript.	Thus,	a	JVM	can	also	be	considered	a	language-
independent	sandbox.	However,	because	of	the	structure	of	the	intermediate	representation
in	Java,	it	is	more	difficult	to	generate	correct	Java	byte	code	for	languages	such	as	C	or
Fortran.

8.5	Summary	and	Future	Directions

Address	translation	is	a	powerful	abstraction	enabling	a	wide	variety	of	operating	system
services.	It	was	originally	designed	to	provide	isolation	between	processes	and	to	protect
the	operating	system	kernel	from	misbehaving	applications,	but	it	is	more	widely
applicable.	It	is	now	used	to	simplify	memory	management,	to	speed	interprocess
communication,	to	provide	for	efficient	shared	libraries,	to	map	files	directly	into	memory,
and	a	host	of	other	uses.

A	huge	challenge	to	effective	hardware	address	translation	is	the	cumulative	effect	of
decades	of	Moore’s	Law:	both	servers	and	desktop	computers	today	contain	vast	amounts
of	memory.	Processes	are	now	able	to	map	their	code,	data,	heap,	shared	libraries,	and
files	directly	into	memory.	Each	of	these	segments	can	be	dynamic;	they	can	be	shared
across	processes	or	private	to	a	single	process.	To	handle	these	demands,	hardware
systems	have	converged	on	a	two-tier	structure:	a	multi-level	segment	and	page	table	to



provide	very	flexible	but	space-efficient	lookup,	along	with	a	TLB	to	provide	time-
efficient	lookup	for	repeated	translations	of	the	same	page.

Much	of	what	we	can	do	in	hardware	we	can	also	do	in	software;	a	combination	of
hardware	and	software	protection	has	proven	attractive	in	a	number	of	contexts.	Modern
web	browsers	execute	code	embedded	in	web	pages	in	a	software	sandbox	that	prevents
the	code	from	infecting	the	browser;	the	operating	system	uses	hardware	protection	to
provide	an	extra	level	of	defense	in	case	the	browser	itself	is	compromised.

The	future	trends	are	clear:

Very	large	memory	systems.	The	cost	of	a	gigabyte	of	memory	is	likely	to	continue
to	plummet,	making	ever	larger	memory	systems	practical.	Over	the	past	few
decades,	the	amount	of	memory	per	system	has	almost	doubled	each	year.	We	are
likely	to	look	back	at	today’s	computers	and	wonder	how	we	could	have	gotten	by
with	as	little	as	a	gigabyte	of	DRAM!	These	massive	memories	will	require	ever
deeper	multi-level	page	tables.	Fortunately,	the	same	trends	that	make	it	possible	to
build	gigantic	memories	also	make	it	possible	to	design	very	large	TLBs	to	hide	the
increasing	depth	of	the	lookup	trees.

Multiprocessors.	On	the	other	hand,	multiprocessors	will	mean	that	maintaining
TLB	consistency	will	become	increasingly	expensive.	A	key	assumption	for	using
page	table	protection	hardware	for	implementing	copy-on-write	and	fill-on-demand	is
that	the	cost	of	modifying	page	table	entries	is	modest.	One	possibility	is	that
hardware	will	be	added	to	systems	to	make	TLB	shootdown	a	much	cheaper
operation,	e.g.,	by	making	TLBs	cache	coherent.	Another	possibility	is	to	follow	the
trend	towards	software	sandboxes.	If	TLB	shootdown	remains	expensive,	we	may
start	to	see	copy-on-write	and	other	features	implemented	in	software	rather	than
hardware.

User-level	sandboxes.	Applications	like	browsers	that	run	untrusted	code	are
becoming	increasingly	prevalent.	Operating	systems	have	only	recently	begun	to
recognize	the	need	to	support	these	types	of	applications.	Software	protection	has
become	common,	both	at	the	language	level	with	JavaScript,	and	in	the	runtime
system	with	Native	Client	and	Application	Domains.	As	these	technologies	become
more	widely	used,	it	seems	likely	we	may	direct	hardware	support	for	application-
level	protection	—	to	allow	each	application	to	set	up	its	own	protected	execution
environment,	but	enforced	in	hardware.	If	so,	we	may	come	to	think	of	many
applications	as	having	their	own	embedded	operating	system,	and	the	underlying
operating	system	kernel	as	mediating	between	these	operating	systems.

Exercises

1.	 True	or	false.	A	virtual	memory	system	that	uses	paging	is	vulnerable	to	external
fragmentation.	Why	or	why	not?

2.	 For	systems	that	use	paged	segmentation,	what	translation	state	does	the	kernel	need
to	change	on	a	process	context	switch?



3.	 For	the	three-level	SPARC	page	table,	what	translation	state	does	the	kernel	need	to
change	on	a	process	context	switch?

4.	 Describe	the	advantages	of	an	architecture	that	incorporates	segmentation	and	paging
over	ones	that	are	either	pure	paging	or	pure	segmentation.	Present	your	answer	as
separate	lists	of	advantages	over	each	of	the	pure	schemes.

5.	 For	a	computer	architecture	with	multi-level	paging,	a	page	size	of	4	KB,	and	64-bit
physical	and	virtual	addresses:

a.	 List	the	required	and	optional	fields	of	its	page	table	entry,	along	with	the
number	of	bits	per	field.

b.	 Assuming	a	compact	encoding,	what	is	the	smallest	possible	size	for	a	page
table	entry	in	bytes,	rounded	up	to	an	even	number.

c.	 Assuming	a	requirement	that	each	page	table	fits	into	a	single	page,	and	given
your	answer	above,	how	many	levels	of	page	tables	would	be	required	to
completely	map	the	64-bit	virtual	address	space?

6.	 Consider	the	following	piece	of	code	which	multiplies	two	matrices:

Assume	that	the	binary	for	executing	this	function	fits	in	one	page	and	that	the	stack
also	fits	in	one	page.	Assume	that	storing	a	floating	point	number	takes	4	bytes	of
memory.	If	the	page	size	is	4	KB,	the	TLB	has	8	entries,	and	the	TLB	always	keeps
the	most	recently	used	pages,	compute	the	number	of	TLB	misses	assuming	the	TLB
is	initially	empty.

7.	 Of	the	following	items,	which	are	stored	in	the	thread	control	block,	which	are	stored
in	the	process	control	block,	and	which	in	neither?

a.	 Page	table	pointer
b.	 Page	table
c.	 Stack	pointer
d.	 Segment	table
e.	 Ready	list
f.	 CPU	registers
g.	 Program	counter

8.	 Draw	the	segment	and	page	table	for	the	32-bit	Intel	architecture.
9.	 Draw	the	segment	and	page	table	for	the	64-bit	Intel	architecture.



10.	 For	a	computer	architecture	with	multi-level	paging,	a	page	size	of	4	KB,	and	64-bit
physical	and	virtual	addresses:

a.	 What	is	the	smallest	possible	size	for	a	page	table	entry,	rounded	up	to	a	power
of	two?

b.	 Using	your	result	above,	and	assuming	a	requirement	that	each	page	table	fits
into	a	single	page,	how	many	levels	of	page	tables	would	be	required	to
completely	map	the	64-bit	virtual	address	space?

11.	 Suppose	you	are	designing	a	system	with	paged	segmentation,	and	you	anticipate	the
memory	segment	size	will	be	uniformly	distributed	between	0	and	4	GB.	The
overhead	of	the	design	is	the	sum	of	the	internal	fragmentation	and	the	space	taken
up	by	the	page	tables.	If	each	page	table	entry	uses	four	bytes	per	page,	what	page
size	minimizes	overhead?

12.	 In	an	architecture	with	paged	segmentation,	the	32-bit	virtual	address	is	divided	into
fields	as	follows:

| 		4	bit	segment	number 		| 		12	bit	page	number 		| 		16	bit	offset 		|

The	segment	and	page	tables	are	as	follows	(all	values	in	hexadecimal):

Segment	Table Page	Table	A Page	Table	B

0 Page	Table	A 0 CAFE 0 F000

1 Page	Table	B 1 DEAD 1 D8BF

x (rest	invalid) 2 BEEF 2 3333

3 BA11 x (rest	invalid)

x (rest	invalid)

Find	the	physical	address	corresponding	to	each	of	the	following	virtual	addresses
(answer	“invalid	virtual	address”	if	the	virtual	address	is	invalid):

a.	 00000000
b.	 20022002



c.	 10015555

13.	 Suppose	a	machine	with	32-bit	virtual	addresses	and	40-bit	physical	addresses	is
designed	with	a	two-level	page	table,	subdividing	the	virtual	address	into	three	pieces
as	follows:

| 		10	bit	page	table	number 		| 		10	bit	page	number 		| 		12	bit	offset 		|

The	first	10	bits	are	the	index	into	the	top-level	page	table,	the	second	10	bits	are	the
index	into	the	second-level	page	table,	and	the	last	12	bits	are	the	offset	into	the	page.
There	are	4	protection	bits	per	page,	so	each	page	table	entry	takes	4	bytes.

a.	 What	is	the	page	size	in	this	system?
b.	 How	much	memory	is	consumed	by	the	first	and	second	level	page	tables	and

wasted	by	internal	fragmentation	for	a	process	that	has	64K	of	memory	starting
at	address	0?

c.	 How	much	memory	is	consumed	by	the	first	and	second	level	page	tables	and
wasted	by	internal	fragmentation	for	a	process	that	has	a	code	segment	of	48K
starting	at	address	0x1000000,	a	data	segment	of	600K	starting	at	address
0x80000000	and	a	stack	segment	of	64K	starting	at	address	0xf0000000	and
growing	upward	(towards	higher	addresses)?

14.	 Write	pseudo-code	to	convert	a	32-bit	virtual	address	to	a	32-bit	physical	address	for
a	two-level	address	translation	scheme	using	segmentation	at	the	first	level	of
translation	and	paging	at	the	second	level.	Explicitly	define	whatever	constants	and
data	structures	you	need	(e.g.,	the	format	of	the	page	table	entry,	the	page	size,	and	so
forth).





9.	Caching	and	Virtual	Memory

Cash	is	king.	—Per	Gyllenhammar

Some	may	argue	that	we	no	longer	need	a	chapter	on	caching	and	virtual	memory	in	an
operating	systems	textbook.	After	all,	most	students	will	have	seen	caches	in	an	earlier
machine	structures	class,	and	most	desktops	and	laptops	are	configured	so	that	they	only
very	rarely,	if	ever,	run	out	of	memory.	Maybe	caching	is	no	longer	an	operating	systems
topic?

We	could	not	disagree	more.	Caches	are	central	to	the	design	of	a	huge	number	of
hardware	and	software	systems,	including	operating	systems,	Internet	naming,	web
clients,	and	web	servers.	In	particular,	smartphone	operating	systems	are	often	memory
constrained	and	must	manage	memory	carefully.	Server	operating	systems	make	extensive
use	of	remote	memory	and	remote	disk	across	the	data	center,	using	the	local	server
memory	as	a	cache.	Even	desktop	operating	systems	use	caching	extensively	in	the
implementation	of	the	file	system.	Most	importantly,	understanding	when	caches	work	and
when	they	do	not	is	essential	to	every	computer	systems	designer.

Consider	a	typical	Facebook	page.	It	contains	information	about	you,	your	interests	and
privacy	settings,	your	posts,	and	your	photos,	plus	your	list	of	friends,	their	interests	and
privacy	settings,	their	posts,	and	their	photos.	In	turn,	your	friends’	pages	contain	an
overlapping	view	of	much	of	the	same	data,	and	in	turn,	their	friends’	pages	are
constructed	the	same	way.

Now	consider	how	Facebook	organizes	its	data	to	make	all	of	this	work.	How	does
Facebook	assemble	the	data	needed	to	display	a	page?	One	option	would	be	to	keep	all	of
the	data	for	a	particular	user’s	page	in	one	place.	However,	the	information	that	I	need	to
draw	my	page	overlaps	with	the	information	that	my	friends’	friends	need	to	draw	their
pages.	My	friends’	friends’	friends’	friends	include	pretty	much	the	entire	planet.	We	can
either	store	everyone’s	data	in	one	place	or	spread	the	data	around.	Either	way,
performance	will	suffer!	If	we	store	all	the	data	in	California,	Facebook	will	be	slow	for
everyone	from	Europe,	and	vice	versa.	Equally,	integrating	data	from	many	different
locations	is	also	likely	to	be	slow,	especially	for	Facebook’s	more	cosmopolitan	users.

To	resolve	this	dilemma,	Facebook	makes	heavy	use	of	caches;	it	would	not	be	practical
without	them.	A	cache	is	a	copy	of	a	computation	or	data	that	can	be	accessed	more
quickly	than	the	original.	While	any	object	on	my	page	might	change	from	moment	to
moment,	it	seldom	does.	In	the	common	case,	Facebook	relies	on	a	local,	cached	copy	of
the	data	for	my	page;	it	only	goes	back	to	the	original	source	if	the	data	is	not	stored
locally	or	becomes	out	of	date.

Caches	work	because	both	users	and	programs	are	predictable.	You	(probably!)	do	not
change	your	friend	list	every	nanosecond;	if	you	did,	Facebook	could	still	cache	your
friend	list,	but	it	would	be	out	of	date	before	it	could	be	used	again,	and	so	it	would	not
help.	If	everyone	changed	their	friends	every	nanosecond,	Facebook	would	be	out	of	luck!
In	most	cases,	however,	what	users	do	now	is	predictive	of	what	they	are	likely	to	do	soon,



and	what	programs	do	now	is	predictive	of	what	they	will	do	next.	This	provides	an
opportunity	for	a	cache	to	save	work	through	reuse.

Facebook	is	not	alone	in	making	extensive	use	of	caches.	Almost	all	large	computer
systems	rely	on	caches.	In	fact,	it	is	hard	to	think	of	any	widely	used,	complex	hardware
or	software	system	that	does	not	include	a	cache	of	some	sort.

We	saw	three	examples	of	hardware	caches	in	the	previous	chapter:

TLBs.	Modern	processors	use	a	translation	lookaside	buffer,	or	TLB,	to	cache	the
recent	results	of	multi-level	page	table	address	translation.	Provided	programs
reference	the	same	pages	repeatedly,	translating	an	address	is	as	fast	as	a	single	table
lookup	in	the	common	case.	The	full	multi-level	lookup	is	needed	only	in	the	case
where	the	TLB	does	not	contain	the	relevant	address	translation.

Virtually	addressed	caches.	Most	modern	processor	designs	take	this	idea	a	step
farther	by	including	a	virtually	addressed	cache	close	to	the	processor.	Each	entry	in
the	cache	stores	the	memory	value	associated	with	a	virtual	address,	allowing	that
value	to	be	returned	more	quickly	to	the	processor	when	needed.	For	example,	the
repeated	instruction	fetches	inside	a	loop	are	well	handled	by	a	virtually	addressed
cache.

Physically	addressed	caches.	Most	modern	processors	complement	the	virtually
addressed	cache	with	a	second-	(and	sometimes	third-)	level	physically	addressed
cache.	Each	entry	in	a	physically	addressed	cache	stores	the	memory	value	associated
with	a	physical	memory	location.	In	the	common	case,	this	allows	the	memory	value
to	be	returned	directly	to	the	processor	without	the	need	to	go	to	main	memory.

There	are	many	more	examples	of	caches:

Internet	naming.	Whenever	you	type	in	a	web	request	or	click	on	a	link,	the	client
computer	needs	to	translate	the	name	in	the	link	(e.g.,	amazon.com)	to	an	IP	network
address	of	where	to	send	each	packet.	The	client	gets	this	information	from	a	network
service,	called	the	Domain	Name	System	(DNS),	and	then	caches	the	translation	so
that	the	client	can	go	directly	to	the	web	server	in	the	common	case.

Web	content.	Web	clients	cache	copies	of	HTML,	images,	JavaScript	programs,	and
other	data	so	that	web	pages	can	be	refreshed	more	quickly,	using	less	bandwidth.
Web	servers	also	keep	copies	of	frequently	requested	pages	in	memory	so	that	they
can	be	transmitted	more	quickly.

Web	search.	Both	Google	and	Bing	keep	a	cached	copy	of	every	web	page	they
index.	This	allows	them	to	provide	the	copy	of	the	web	page	if	the	original	is
unavailable	for	some	reason.	The	cached	copy	may	be	out	of	date	—	the	search
engines	do	not	guarantee	that	the	copy	instantaneously	reflects	any	change	in	the
original	web	page.

Email	clients.	Many	email	clients	store	a	copy	of	mail	messages	on	the	client
computer	to	improve	the	client	performance	and	to	allow	disconnected	operation.	In
the	background,	the	client	communicates	with	the	server	to	keep	the	two	copies	in



sync.

Incremental	compilation.	If	you	have	ever	built	a	program	from	multiple	source
files,	you	have	used	caching.	The	build	manager	saves	and	reuses	the	individual
object	files	instead	of	recompiling	everything	from	scratch	each	time.

Just	in	time	translation.	Some	memory-constrained	devices	such	as	smartphones	do
not	contain	enough	memory	to	store	the	entire	executable	image	for	some	programs.
Instead,	systems	such	as	the	Google	Android	operating	system	and	the	ARM	runtime
store	programs	in	a	more	compact	intermediate	representation,	and	convert	parts	of
the	program	to	machine	code	as	needed.	Repeated	use	of	the	same	code	is	fast
because	of	caching;	if	the	system	runs	out	of	memory,	less	frequently	used	code	may
be	converted	each	time	it	is	needed.

Virtual	memory.	Operating	systems	can	run	programs	that	do	not	fit	in	physical
memory	by	using	main	memory	as	a	cache	for	disk.	Application	pages	that	fit	in
memory	have	their	page	table	entries	set	to	valid;	these	pages	can	be	accessed
directly	by	the	processor.	Those	pages	that	do	not	fit	have	their	permissions	set	to
invalid,	triggering	a	trap	to	the	operating	system	kernel.	The	kernel	will	then	fetch	the
required	page	from	disk	and	resume	the	application	at	the	instruction	that	caused	the
trap.

File	systems.	File	systems	also	treat	memory	as	a	cache	for	disk.	They	store	copies	in
memory	of	frequently	used	directories	and	files,	reducing	the	need	for	disk	accesses.

Conditional	branch	prediction.	Another	use	of	caches	is	in	predicting	whether	a
conditional	branch	will	be	taken	or	not.	In	the	common	case	of	a	correct	prediction,
the	processor	can	start	decoding	the	next	instruction	before	the	result	of	the	branch	is
known	for	sure;	if	the	prediction	turns	out	to	be	wrong,	the	decoding	is	restarted	with
the	correct	next	instruction.

In	other	words,	caches	are	a	central	design	technique	to	making	computer	systems	faster.
However,	caches	are	not	without	their	downsides.	Caches	can	make	understanding	the
performance	of	a	system	much	harder.	Something	that	seems	like	it	should	be	fast	—	and
even	something	that	usually	is	fast	—	can	end	up	being	very	slow	if	most	of	the	data	is	not
in	the	cache.	Because	the	details	of	the	cache	are	often	hidden	behind	a	level	of
abstraction,	the	user	or	the	programmer	may	have	little	idea	as	to	what	is	causing	the	poor
performance.	In	other	words,	the	abstraction	of	fast	access	to	data	can	cause	problems	if
the	abstraction	does	not	live	up	to	its	promise.	One	of	our	aims	is	to	help	you	understand
when	caches	do	and	do	not	work	well.

In	this	chapter,	we	will	focus	on	the	caching	of	memory	values,	but	the	principles	we
discuss	apply	much	more	widely.	Memory	caching	is	common	in	both	hardware	(by	the
processor	to	improve	memory	latency)	and	in	software	(by	the	operating	system	to	hide
disk	and	network	latency).	Further,	the	structure	and	organization	of	processor	caches
requires	special	care	by	the	operating	system	in	setting	up	page	tables;	otherwise,	much	of
the	advantage	of	processor	caches	can	evaporate.

Regardless	of	the	context,	all	caches	face	three	design	challenges:



Locating	the	cached	copy.	Because	caches	are	designed	to	improve	performance,	a
key	question	is	often	how	to	quickly	determine	whether	the	cache	contains	the
needed	data	or	not.	Because	the	processor	consults	at	least	one	hardware	cache	on
every	instruction,	hardware	caches	in	particular	are	organized	for	efficient	lookup.

Replacement	policy.	Most	caches	have	physical	limits	on	how	many	items	they	can
store;	when	new	data	arrives	in	the	cache,	the	system	must	decide	which	data	is	most
valuable	to	keep	in	the	cache	and	which	can	be	replaced.	Because	of	the	high	relative
latency	of	fetching	data	from	disk,	operating	systems	and	applications	have	focused
more	attention	on	the	choice	of	replacement	policy.

Coherence.	How	do	we	detect,	and	repair,	when	a	cached	copy	becomes	out	of	date?
This	question,	cache	coherence,	is	central	to	the	design	of	multiprocessor	and
distributed	systems.	Despite	being	very	important,	cache	coherence	beyond	the	scope
of	this	version	of	the	textbook.	Instead,	we	focus	on	the	first	two	of	these	issues.

Chapter	roadmap:

Cache	Concept.	What	operations	does	a	cache	do	and	how	can	we	evaluate	its
performance?	(Section	9.1)

Memory	Hierarchy.	What	hardware	building	blocks	do	we	have	in	constructing	a
cache	in	an	application	or	operating	system?	(Section	9.2)

When	Caches	Work	and	When	They	Do	Not.	Can	we	predict	how	effective	a
cache	will	be	in	a	system	we	are	designing?	Can	we	know	in	advance	when	caching
will	not	work?	(Section	9.3)

Memory	Cache	Lookup.	What	options	do	we	have	for	locating	whether	an	item	is
cached?	How	can	we	organize	hardware	caches	to	allow	for	rapid	lookup,	and	what
are	the	implications	of	cache	organization	for	operating	systems	and	applications?
(Section	9.4)

Replacement	Policies.	What	options	do	we	have	for	choosing	which	item	to	replace
when	there	is	no	more	room?	(Section	9.5)

Case	Study:	Memory-Mapped	Files.	How	does	the	operating	system	provide	the
abstraction	of	file	access	without	first	reading	the	entire	file	into	memory?
(Section	9.6)

Case	Study:	Virtual	Memory.	How	does	the	operating	system	provide	the	illusion
of	a	near-infinite	memory	that	can	be	shared	between	applications?	What	happens	if
both	applications	and	the	operating	system	want	to	manage	memory	at	the	same
time?	(Section	9.7)

9.1	Cache	Concept



Figure	9.1:	Abstract	operation	of	a	memory	cache	on	a	read	request.	Memory	read	requests	are	sent	to	the	cache;	the
cache	either	returns	the	value	stored	at	that	memory	location,	or	it	forwards	the	request	onward	to	the	next	level	of
cache.

We	start	by	defining	some	terms.	The	simplest	kind	of	a	cache	is	a	memory	cache.	It	stores
(address,	value)	pairs.	As	shown	in	Figure	9.1,	when	we	need	to	read	value	of	a	certain
memory	location,	we	first	consult	the	cache,	and	it	either	replies	with	the	value	(if	the
cache	knows	it)	and	otherwise	it	forwards	the	request	onward.	If	the	cache	has	the	value,
that	is	called	a	cache	hit.	If	the	cache	does	not,	that	is	called	a	cache	miss.

For	a	memory	cache	to	be	useful,	two	properties	need	to	hold.	First,	the	cost	of	retrieving
data	out	of	the	cache	must	be	significantly	less	than	fetching	the	data	from	memory.	In
other	words,	the	cost	of	a	cache	hit	must	be	less	than	a	cache	miss,	or	we	would	just	skip
using	the	cache.

Second,	the	likelihood	of	a	cache	hit	must	be	high	enough	to	make	it	worth	the	effort.	One
source	of	predictability	is	temporal	locality:	programs	tend	to	reference	the	same
instructions	and	data	that	they	had	recently	accessed.	Examples	include	the	instructions
inside	a	loop,	or	a	data	structure	that	is	repeatedly	accessed.	By	caching	these	memory
values,	we	can	improve	performance.

Another	source	of	predictability	is	spatial	locality.	Programs	tend	to	reference	data	near
other	data	that	has	been	recently	referenced.	For	example,	the	next	instruction	to	execute
is	usually	near	to	the	previous	one,	and	different	fields	in	the	same	data	structure	tend	to
be	referenced	at	nearly	the	same	time.	To	exploit	this,	caches	are	often	designed	to	load	a
block	of	data	at	the	same	time,	instead	of	only	a	single	location.	Hardware	memory	caches
often	store	4-64	memory	words	as	a	unit;	file	caches	often	store	data	in	powers	of	two	of
the	hardware	page	size.

A	related	design	technique	that	also	takes	advantage	of	spatial	locality	is	to	prefetch	data
into	the	cache	before	it	is	needed.	For	example,	if	the	file	system	observes	the	application



reading	a	sequence	of	blocks	into	memory,	it	will	read	the	subsequent	blocks	ahead	of
time,	without	waiting	to	be	asked.

Putting	these	together,	the	latency	of	a	read	request	is	as	follows:

Latency(read	request) = Prob(cache	hit)	×	Latency(cache	hit)

+	Prob(cache	miss)	×	Latency(cache
miss)

Figure	9.2:	Abstract	operation	of	a	memory	cache	write.	Memory	requests	are	buffered	and	then	sent	to	the	cache	in
the	background.	Typically,	the	cache	stores	a	block	of	data,	so	each	write	ensures	that	the	rest	of	the	block	is	in	the
cache	before	updating	the	cache.	If	the	cache	is	write	through,	the	data	is	then	sent	onward	to	the	next	level	of	cache	or
memory.

The	behavior	of	a	cache	on	a	write	operation	is	shown	in	Figure	9.2.	The	operation	is	a	bit
more	complex,	but	the	latency	of	a	write	operation	is	easier	to	understand.	Most	systems
buffer	writes.	As	long	as	there	is	room	in	the	buffer,	the	computation	can	continue
immediately	while	the	data	is	transferred	into	the	cache	and	to	memory	in	the	background.
(There	are	certain	restrictions	on	the	use	of	write	buffers	in	a	multiprocessor	system,	so	for
this	chapter,	we	are	simplifying	matters	to	some	degree.)	Subsequent	read	requests	must
check	both	the	write	buffer	and	the	cache	—	returning	data	from	the	write	buffer	if	it	is	the
latest	copy.

In	the	background,	the	system	checks	if	the	address	is	in	the	cache.	If	not,	the	rest	of	the



cache	block	must	be	fetched	from	memory	and	then	updated	with	the	changed	value.
Finally,	if	the	cache	is	write-through,	all	updates	are	sent	immediately	onward	to	memory.
If	the	cache	is	write-back,	updates	can	be	stored	in	the	cache,	and	only	sent	to	memory
when	the	cache	runs	out	of	space	and	needs	to	evict	a	block	to	make	room	for	a	new
memory	block.

Since	write	buffers	allow	write	requests	to	appear	to	complete	immediately,	the	rest	of	our
discussion	focuses	on	using	caches	to	improve	memory	reads.

We	first	discuss	the	part	of	the	equation	that	deals	with	the	latency	of	a	cache	hit	and	a
cache	miss:	how	long	does	it	take	to	access	different	types	of	memory?	We	caution,
however,	that	the	issues	that	affect	the	likelihood	of	a	cache	hit	or	miss	are	just	as
important	to	the	overall	memory	latency.	In	particular,	we	will	show	that	application
characteristics	are	often	the	limiting	factor	to	good	cache	performance.

9.2	Memory	Hierarchy

When	we	are	deciding	whether	to	use	a	cache	in	the	operating	system	or	some	new
application,	it	is	helpful	to	start	with	an	understanding	of	the	cost	and	performance	of
various	levels	of	memory	and	disk	storage.

Cache Hit	Cost Size

1st	level	cache	/	1st	level	TLB 1	ns 64	KB

2nd	level	cache	/	2nd	level	TLB 4	ns 256	KB

3rd	level	cache 12	ns 2	MB

Memory	(DRAM) 100	ns 10	GB

Data	center	memory	(DRAM) 100	μs 100	TB

Local	non-volatile	memory 100	μs 100	GB

Local	disk 10	ms 1	TB

Data	center	disk 10	ms 100	PB



Remote	data	center	disk 200	ms 1	XB

Figure	9.3:	Memory	hierarchy,	from	on-chip	processor	caches	to	disk	storage	at	a	remote
data	center.	On-chip	cache	size	and	latency	is	typical	of	a	high-end	processor.	The	entries
for	data	center	DRAM	and	disk	latency	assume	the	access	is	from	one	server	to	another	in
the	same	data	center;	remote	data	center	disk	latency	if	for	access	to	a	geographically
distant	data	center.

From	a	hardware	perspective,	there	is	a	fundamental	tradeoff	between	the	speed,	size,	and
cost	of	storage.	The	smaller	memory	is,	the	faster	it	can	be;	the	slower	memory	is,	the
cheaper	it	can	be.

This	motivates	systems	to	have	not	just	one	cache,	but	a	whole	hierarchy	of	caches,	from
the	nanosecond	memory	possible	inside	a	chip	to	the	multiple	exabytes	of	worldwide	data
center	storage.	This	hierarchy	is	illustrated	by	the	table	in	Figure	9.3.	We	should	caution
that	this	list	is	just	a	snapshot;	additional	layers	keep	being	added	over	time.

First-level	cache.	Most	modern	processor	architectures	contain	a	small	first-level,
virtually	addressed,	cache	very	close	to	the	processor,	designed	to	keep	the	processor
fed	with	instructions	and	data	at	the	clock	rate	of	the	processor.

Second-level	cache.	Because	it	is	impossible	to	build	a	large	cache	as	fast	as	a	small
one,	the	processor	will	often	contain	a	second-level,	physically	addressed	cache	to
handle	cache	misses	from	the	first-level	cache.

Third-level	cache.	Likewise,	many	processors	include	an	even	larger,	slower	third-
level	cache	to	catch	second-level	cache	misses.	This	cache	is	often	shared	across	all
of	the	on-chip	processor	cores.

First-	and	second-level	TLB.	The	translation	lookaside	buffer	(TLB)	will	also	be
organized	with	multiple	levels:	a	small,	fast	first-level	TLB	designed	to	keep	up	with
the	processor,	backed	up	by	a	larger,	slightly	slower,	second-level	TLB	to	catch	first-
level	TLB	misses.

Main	memory	(DRAM).	From	a	hardware	perspective,	the	first-,	second-,	and	third-
level	caches	provide	faster	access	to	main	memory;	from	a	software	perspective,
however,	main	memory	itself	can	be	viewed	as	a	cache.

Data	center	memory	(DRAM).	With	a	high-speed	local	area	network	such	as	a	data
center,	the	latency	to	fetch	a	page	of	data	from	the	memory	of	a	nearby	computer	is
much	faster	than	fetching	it	from	disk.	In	aggregate,	the	memory	of	nearby	nodes	will
often	be	larger	than	that	of	the	local	disk.	Using	the	memory	of	nearby	nodes	to	avoid
the	latency	of	going	to	disk	is	called	cooperative	caching,	as	it	requires	the
cooperative	management	of	the	nodes	in	the	data	center.	Many	large	scale	data	center
services,	such	as	Google	and	Facebook,	make	extensive	use	of	cooperative	caching.



Local	disk	or	non-volatile	memory.	For	client	machines,	local	disk	or	non-volatile
flash	memory	can	serve	as	backing	store	when	the	system	runs	out	of	memory.	In
turn,	the	local	disk	serves	as	a	cache	for	remote	disk	storage.	For	example,	web
browsers	store	recently	fetched	web	pages	in	the	client	file	system	to	avoid	the	cost
of	transferring	the	data	again	the	next	time	it	is	used;	once	cached,	the	browser	only
needs	to	validate	with	the	server	whether	the	page	has	changed	before	rendering	the
web	page	for	the	user.

Data	center	disk.	The	aggregate	disks	inside	a	data	center	provide	enormous	storage
capacity	compared	to	a	computer’s	local	disk,	and	even	relative	to	the	aggregate
memory	of	the	data	center.

Remote	data	center	disk.	Geographically	remote	disks	in	a	data	center	are	much
slower	because	of	wide-area	network	latencies,	but	they	provide	access	to	even	larger
storage	capacity	in	aggregate.	Many	data	centers	also	store	a	copy	of	their	data	on	a
remote	robotic	tape	system,	but	since	these	systems	have	very	high	latency	(measured
in	the	tens	of	seconds),	they	are	typically	accessed	only	in	the	event	of	a	failure.

If	caching	always	worked	perfectly,	we	could	provide	the	illusion	of	instantaneous	access
to	all	the	world’s	data,	with	the	latency	(on	average)	of	a	first	level	cache	and	the	size	and
the	cost	(on	average)	of	disk	storage.

However,	there	are	reasons	to	be	skeptical.	Even	with	temporal	and	spatial	locality,	there
are	thirteen	orders	of	magnitude	difference	in	storage	capacity	from	the	first	level	cache	to
the	stored	data	of	a	typical	data	center;	this	is	the	equivalent	of	the	smallest	visible	dot	on
this	page	versus	those	dots	scattered	across	the	pages	of	a	million	textbooks	just	like	this
one.	How	can	a	cache	be	effective	if	it	can	store	only	a	tiny	amount	of	the	data	that	could
be	stored?

The	cost	of	a	cache	miss	can	also	be	high.	There	are	eight	orders	of	magnitude	difference
between	the	latency	of	the	first-level	cache	and	a	remote	data	center	disk;	that	is
equivalent	to	the	difference	between	the	shortest	latency	a	human	can	perceive	—	roughly
one	hundred	milliseconds	—	versus	one	year.	How	can	a	cache	be	effective	if	the	cost	of	a
cache	miss	is	enormous	compared	to	a	cache	hit?

9.3	When	Caches	Work	and	When	They	Do	Not

How	do	we	know	whether	a	cache	will	be	effective	for	a	given	workload?	Even	the	same
program	will	have	different	cache	behavior	depending	on	how	it	is	used.

Suppose	you	write	a	program	that	reads	and	writes	items	into	a	hash	table.	How	well	does
that	interact	with	caching?	It	depends	on	the	size	of	the	hash	table.	If	the	hash	table	fits	in
the	first-level	cache,	once	the	table	is	loaded	into	the	cache,	each	access	will	be	very	rapid.
If	on	the	other	hand,	the	hash	table	is	too	large	to	store	in	memory,	each	lookup	may
require	a	disk	access.

Thus,	neither	the	cache	size	nor	the	program	behavior	alone	governs	the	effectiveness	of
caching.	Rather,	the	interaction	between	the	two	determines	cache	effectiveness.



Figure	9.4:	Cache	hit	rate	as	a	function	of	cache	size	for	a	million	instruction	run	of	a	C	compiler.	The	hit	rate	vs.	cache
size	graph	has	a	similar	shape	for	many	programs.	The	knee	of	the	curve	is	called	the	working	set	of	the	program.

9.3.1	Working	Set	Model

A	useful	graph	to	consider	is	the	cache	hit	rate	versus	the	size	of	the	cache.	We	give	an
example	in	Figure	9.4;	of	course,	the	precise	shape	of	the	graph	will	vary	from	program	to
program.

Regardless	of	the	program,	a	sufficiently	large	cache	will	have	a	high	cache	hit	rate.	In	the
limit,	if	the	cache	can	fit	all	of	the	program’s	memory	and	data,	the	miss	rate	will	be	zero
once	the	data	is	loaded	into	the	cache.	At	the	other	extreme,	a	sufficiently	small	cache	will
have	a	very	low	cache	hit	rate.	Anything	other	than	a	trivial	program	will	have	multiple
procedures	and	multiple	data	structures;	if	the	cache	is	sufficiently	small,	each	new
instruction	and	data	reference	will	push	out	something	from	the	cache	that	will	be	used	in
the	near	future.	For	the	hash	table	example,	if	the	size	of	the	cache	is	much	smaller	than
the	size	of	the	hash	table,	each	time	we	do	a	lookup,	the	hash	bucket	we	need	will	no
longer	be	in	the	cache.

Most	programs	will	have	an	inflection	point,	or	knee	of	the	curve,	where	a	critical	mass	of
program	data	can	just	barely	fit	in	the	cache.	This	critical	mass	is	called	the	program’s
working	set.	As	long	as	the	working	set	can	fit	in	the	cache,	most	references	will	be	a
cache	hit,	and	application	performance	will	be	good.

Thrashing



A	closely	related	concept	to	the	working	set	is	thrashing.	A	program	thrashes	if	the	cache
is	too	small	to	hold	its	working	set,	so	that	most	references	are	cache	misses.	Each	time
there	is	a	cache	miss,	we	need	to	evict	a	cache	block	to	make	room	for	the	new	reference.
However,	the	new	cache	block	may	in	turn	be	evicted	before	it	is	reused.

The	word	“thrash”	dates	from	the	1960’s,	when	disk	drives	were	as	large	as	washing
machines.	If	a	program’s	working	set	did	not	fit	in	memory,	the	system	would	need	to
shuffle	memory	pages	back	and	forth	to	disk.	This	burst	of	activity	would	literally	make
the	disk	drive	shake	violently,	making	it	very	obvious	to	everyone	nearby	why	the	system
was	not	performing	well.

The	notion	of	a	working	set	can	also	apply	to	user	behavior.	Consider	what	happens	when
you	are	developing	code	for	a	homework	assignment.	If	the	files	you	need	fit	in	memory,
compilation	will	be	rapid;	if	not,	compilation	will	be	slow	as	each	file	is	brought	in	from
disk	as	it	is	used.

Different	programs,	and	different	users,	will	have	working	sets	of	different	sizes.	Even
within	the	same	program,	different	phases	of	the	program	may	have	different	size	working
sets.	For	example,	the	parser	for	a	compiler	needs	different	data	in	cache	than	the	code
generator.	In	a	text	editor,	the	working	set	shifts	when	we	switch	from	one	page	to	the
next.	Users	also	change	their	focus	from	time	to	time,	as	when	you	shift	from	a
programming	assignment	to	a	history	assignment.

Figure	9.5:	Example	cache	hit	rate	over	time.	At	a	phase	change	within	a	process,	or	due	to	a	context	switch	between
processes,	there	will	be	a	spike	of	cache	misses	before	the	system	settles	into	a	new	equilibrium.

The	result	of	this	phase	change	behavior	is	that	caches	will	often	have	bursty	miss	rates:



periods	of	low	cache	misses	interspersed	with	periods	of	high	cache	misses,	as	shown	in
Figure	9.5.	Process	context	switches	will	also	cause	bursty	cache	misses,	as	the	cache
discards	the	working	set	from	the	old	process	and	brings	in	the	working	set	of	the	new
process.

We	can	combine	the	graph	in	Figure	9.4	with	the	table	in	Figure	9.3	to	see	the	impact	of
the	size	of	the	working	set	on	computer	system	performance.	A	program	whose	working
set	fits	in	the	first	level	cache	will	run	four	times	faster	than	one	whose	working	set	fits	in
the	second	level	cache.	A	program	whose	working	set	does	not	fit	in	main	memory	will
run	a	thousand	times	slower	than	one	who	does,	assuming	it	has	access	to	data	center
memory.	It	will	run	a	hundred	thousand	times	slower	if	it	needs	to	go	to	disk.

Because	of	the	increasing	depth	and	complexity	of	the	memory	hierarchy,	an	important
area	of	work	is	the	design	of	algorithms	that	adapt	their	working	set	to	the	memory
hierarchy.	One	focus	has	been	on	algorithms	that	manage	the	gap	between	main	memory
and	disk,	but	the	same	principles	apply	at	other	levels	of	the	memory	hierarchy.

Figure	9.6:	Algorithm	to	sort	a	large	array	that	does	not	fit	into	main	memory,	by	breaking	the	problem	into	pieces	that
do	fit	into	memory.

A	simple	example	is	how	to	efficiently	sort	an	array	that	does	not	fit	in	main	memory.
(Equivalently,	we	could	consider	how	to	sort	an	array	that	does	not	fit	in	the	first	level
cache.)	As	shown	in	Figure	9.6,	we	can	break	the	problem	up	into	chunks	each	of	which
does	fit	in	memory.	Once	we	sort	each	chunk,	we	can	merge	the	sorted	chunks	together
efficiently.	To	sort	a	chunk	that	fits	in	main	memory,	we	can	in	turn	break	the	problem	into



sub-chunks	that	fit	in	the	on-chip	cache.

We	will	discuss	later	in	this	chapter	what	the	operating	system	needs	to	do	when	managing
memory	between	programs	that	in	turn	adapt	their	behavior	to	manage	memory.

9.3.2	Zipf	Model

Although	the	working	set	model	often	describes	program	and	user	behavior	quite	well,	it
is	not	always	a	good	fit.	For	example,	consider	a	web	proxy	cache.	A	web	proxy	cache
stores	frequently	accessed	web	pages	to	speed	web	access	and	reduce	network	traffic.	Web
access	patterns	cause	two	challenges	to	a	cache	designer:

New	data.	New	pages	are	being	added	to	the	web	at	a	rapid	rate,	and	page	contents
also	change.	Every	time	a	user	accesses	a	page,	the	system	needs	to	check	whether
the	page	has	changed	in	the	meantime.

No	working	set.	Although	some	web	pages	are	much	more	popular	than	others,	there
is	no	small	subset	of	web	pages	that,	if	cached,	give	you	the	bulk	of	the	benefit.
Unlike	with	a	working	set,	even	very	small	caches	have	some	value.	Conversely,
increasing	cache	size	yields	diminishing	returns:	even	very	large	caches	tend	to	have
only	modest	cache	hit	rates,	as	there	are	an	enormous	group	of	pages	that	are	visited
from	time	to	time.

A	useful	model	for	understanding	the	cache	behavior	of	web	access	is	the	Zipf
distribution.	Zipf	developed	the	model	to	describe	the	frequency	of	individual	words	in	a
text,	but	it	also	applies	in	a	number	of	other	settings.



Figure	9.7:	Zipf	distribution

Suppose	we	have	a	set	of	web	pages	(or	words),	and	we	rank	them	in	order	of	popularity.
Then	the	frequency	users	visit	a	particular	web	page	is	(approximately)	inversely
proportional	to	its	rank:

Frequency	of	visits	to	the	kth	most	popular	page	∝	1	/	kα

where	α	is	value	between	1	and	2.	A	Zipf	probability	distribution	is	illustrated	in
Figure	9.7.

The	Zipf	distribution	fits	a	surprising	number	of	disparate	phenomena:	the	popularity	of
library	books,	the	population	of	cities,	the	distribution	of	salaries,	the	size	of	friend	lists	in
social	networks,	and	the	distribution	of	references	in	scientific	papers.	The	exact	cause	of
the	Zipf	distribution	in	many	of	these	cases	is	unknown,	but	they	share	a	theme	of
popularity	in	human	social	networks.



Figure	9.8:	Cache	hit	rate	as	a	function	of	the	percentage	of	total	items	that	can	fit	in	the	cache,	on	a	log	scale,	for	a
Zipf	distribution.

A	characteristic	of	a	Zipf	curve	is	a	heavy-tailed	distribution.	Although	a	significant
number	of	references	will	be	to	the	most	popular	items,	a	substantial	portion	of	references
will	be	to	less	popular	ones.	If	we	redraw	Figure	9.4	of	the	relationship	between	cache	hit
rate	and	cache	size,	but	for	a	Zipf	distribution,	we	get	Figure	9.8.	Note	that	we	have
rescaled	the	x-axis	to	be	log	scale.	Rather	than	a	threshold	as	we	see	in	the	working	set
model,	increasing	the	cache	size	continues	to	improve	cache	hit	rates,	but	with
diminishing	returns.

9.4	Memory	Cache	Lookup

Now	that	we	have	outlined	the	available	technologies	for	constructing	caches,	and	the
usage	patterns	that	lend	(or	do	not	lend)	themselves	to	effective	caching,	we	turn	to	cache
design.	How	do	we	find	whether	an	item	is	in	the	cache,	and	what	do	we	do	when	we	run
out	of	room	in	the	cache?	We	answer	the	first	question	here,	and	we	defer	the	second
question	to	the	next	section.

A	memory	cache	maps	a	sparse	set	of	addresses	to	the	data	values	stored	at	those
addresses.	You	can	think	of	a	cache	as	a	giant	table	with	two	columns:	one	for	the	address
and	one	for	the	data	stored	at	that	address.	To	exploit	spatial	locality,	each	entry	in	the



table	will	store	the	values	for	a	block	of	memory,	not	just	the	value	for	a	single	memory
word.	Modern	Intel	processors	cache	data	in	64	byte	chunks.	For	operating	systems,	the
block	size	is	typically	the	hardware	page	size,	or	4	KB	on	an	Intel	processor.

We	need	to	be	able	to	rapidly	convert	an	address	to	find	the	corresponding	data,	while
minimizing	storage	overhead.	The	options	we	have	for	cache	lookup	are	all	of	the	same
ones	we	explored	in	the	previous	chapter	for	address	lookup:	we	can	use	a	linked	list,	a
multi-level	tree,	or	a	hash	table.	Operating	systems	use	each	of	those	techniques	in
different	settings,	depending	on	the	size	of	the	cache,	its	access	pattern,	and	how	important
it	is	to	have	very	rapid	lookup.

For	hardware	caches,	the	design	choices	are	more	limited.	The	latency	gap	between	cache
levels	is	very	small,	so	any	added	overhead	in	the	lookup	procedure	can	swamp	the	benefit
of	the	cache.	To	make	lookup	faster,	hardware	caches	often	constrain	where	in	the	table
we	might	find	any	specific	address.	This	constraint	means	that	there	could	be	room	in	one
part	of	the	table,	but	not	in	another,	raising	the	cache	miss	rate.	There	is	a	tradeoff	here:	a
faster	cache	lookup	needs	to	be	balanced	against	the	cost	of	increased	cache	misses.

Three	common	mechanisms	for	cache	lookup	are:

Figure	9.9:	Fully	associative	cache	lookup.	The	cache	checks	the	address	against	every	entry	and	returns	the	matching
value,	if	any.

Fully	associative.	With	a	fully	associative	cache,	the	address	can	be	stored	anywhere
in	the	table,	and	so	on	a	lookup,	the	system	must	check	the	address	against	all	of	the
entries	in	the	table	as	illustrated	in	Figure	9.9.	There	is	a	cache	hit	if	any	of	the	table
entries	match.	Because	any	address	can	be	stored	anywhere,	this	provides	the	system
maximal	flexibility	when	it	needs	to	choose	an	entry	to	discard	when	it	runs	out	of
space.

We	saw	two	examples	of	fully	associative	caches	in	the	previous	chapter.	Until	very
recently,	TLBs	were	often	fully	associative	—	the	TLB	would	check	the	virtual	page
against	every	entry	in	the	TLB	in	parallel.	Likewise,	physical	memory	is	a	fully
associative	cache.	Any	page	frame	can	hold	any	virtual	page,	and	we	can	find	where



each	virtual	page	is	stored	using	a	multi-level	tree	lookup.	The	set	of	page	tables
defines	whether	there	is	a	match.

A	problem	with	fully	associative	lookup	is	the	cumulative	impact	of	Moore’s	Law.
As	more	memory	can	be	packed	on	chip,	caches	become	larger.	We	can	use	some	of
the	added	memory	to	make	each	table	entry	larger,	but	this	has	a	limit	depending	on
the	amount	of	spatial	locality	in	typical	applications.	Alternately,	we	can	add	more
table	entries,	but	this	means	more	lookup	hardware	and	comparators.	As	an	example,
a	2	MB	on-chip	cache	with	64	byte	blocks	has	32K	cache	table	entries!	Checking
each	address	against	every	table	entry	in	parallel	is	not	practical.

Figure	9.10:	Direct	mapped	cache	lookup.	The	cache	hashes	the	address	to	determine	which	location	in	the	table
to	check.	The	cache	returns	the	value	stored	in	the	entry	if	it	matches	the	address.

Direct	mapped.	With	a	direct	mapped	cache,	each	address	can	only	be	stored	in	one
location	in	the	table.	Lookup	is	easy:	we	hash	the	address	to	its	entry,	as	shown	in
Figure	9.10.	There	is	a	cache	hit	if	the	address	matches	that	entry	and	a	cache	miss
otherwise.

A	direct	mapped	cache	allows	efficient	lookup,	but	it	loses	much	of	that	advantage	in
decreased	flexibility.	If	a	program	happens	to	need	two	different	addresses	that	both
hash	to	the	same	entry,	such	as	the	program	counter	and	the	stack	pointer,	the	system
will	thrash.	We	will	first	get	the	instruction;	then,	oops,	we	need	the	stack.	Then,
oops,	we	need	the	instruction	again.	Then	oops,	we	need	the	stack	again.	The
programmer	will	see	the	program	running	slowly,	with	no	clue	why,	as	it	will	depend
on	which	addresses	are	assigned	to	which	instructions	and	data.	If	the	programmer
inserts	a	print	statement	to	try	to	figure	out	what	is	going	wrong,	that	might	shift	the
instructions	to	a	different	cache	block,	making	the	problem	disappear!

Set	associative.	A	set	associative	cache	melds	the	two	approaches,	allowing	a
tradeoff	of	slightly	slower	lookup	than	a	direct	mapped	cache	in	exchange	for	most	of
the	flexibility	of	a	fully	associative	cache.	With	a	set	associative	cache,	we	replicate
the	direct	mapped	table	and	lookup	in	each	replica	in	parallel.	A	k	set	associative
cache	has	k	replicas;	a	particular	address	block	can	be	in	any	of	the	k	replicas.	(This



is	equivalent	to	a	hash	table	with	a	bucket	size	of	k.)	There	is	a	cache	hit	if	the
address	matches	any	of	the	replicas.

A	set	associative	cache	avoids	the	problem	of	thrashing	with	a	direct	mapped	cache,
provided	the	working	set	for	a	given	bucket	is	larger	than	k.	Almost	all	hardware
caches	and	TLBs	today	use	set	associative	matching;	an	8-way	set	associative	cache
structure	is	common.

Figure	9.11:	Set	associative	cache	lookup.	The	cache	hashes	the	address	to	determine	which	location	to	check.	The
cache	checks	the	entry	in	each	table	in	parallel.	It	returns	the	value	if	any	of	the	entries	match	the	address.

Direct	mapped	and	set	associative	caches	pose	a	design	challenge	for	the	operating
system.	These	caches	are	much	more	efficient	if	the	working	set	of	the	program	is	spread
across	the	different	buckets	in	the	cache.	This	is	easy	with	a	TLB	or	a	virtually	addressed
cache,	as	each	successive	virtual	page	or	cache	block	will	be	assigned	to	a	cache	bucket.	A
data	structure	that	straddles	a	page	or	cache	block	boundary	will	be	automatically	assigned
to	two	different	buckets.

However,	the	assignment	of	physical	page	frames	is	up	to	the	operating	system,	and	this
choice	can	have	a	large	impact	on	the	performance	of	a	physically	addressed	cache.	To
make	this	concrete,	suppose	we	have	a	2	MB	physically	addressed	cache	with	8-way	set
associativity	and	4	KB	pages;	this	is	typical	for	a	high	performance	processor.	Now
suppose	the	operating	system	happens	to	assign	page	frames	in	a	somewhat	odd	way,	so
that	an	application	is	given	physical	page	frames	that	are	separated	by	exactly	256	KB.
Perhaps	those	were	the	only	page	frames	that	were	free.	What	happens?



Figure	9.12:	When	caches	are	larger	than	the	page	size,	multiple	page	frames	can	map	to	the	same	slice	of	the	cache.	A
process	assigned	page	frames	that	are	separated	by	exactly	the	cache	size	will	only	use	a	small	portion	of	the	cache.
This	applies	to	both	set	associative	and	direct	mapped	caches;	the	figure	assumes	a	direct	mapped	cache	to	simplify	the
illustration.

If	the	hardware	uses	the	low	order	bits	of	the	page	frame	to	index	the	cache,	then	every
page	of	the	current	process	will	map	to	the	same	buckets	in	the	cache.	We	show	this	in
Figure	9.12.	Instead	of	the	cache	having	2	MB	of	useful	space,	the	application	will	only	be
able	to	use	32	KB	(4	KB	pages	times	the	8-way	set	associativity).	This	makes	it	a	lot	more
likely	for	the	application	to	thrash.

Even	worse,	the	application	would	have	no	way	to	know	this	had	happened.	If	by	random
chance	an	application	ended	up	with	page	frames	that	map	to	the	same	cache	buckets,	its
performance	will	be	poor.	Then,	when	the	user	re-runs	the	application,	the	operating
system	might	assign	the	application	a	completely	different	set	of	page	frames,	and
performance	returns	to	normal.

To	make	cache	behavior	more	predictable	and	more	effective,	operating	systems	use	a
concept	called	page	coloring.	With	page	coloring,	physical	page	frames	are	partitioned
into	sets	based	on	which	cache	buckets	they	will	use.	For	example,	with	a	2	MB	8-way	set
associative	cache	and	4	KB	pages,	there	will	be	64	separate	sets,	or	colors.	The	operating
system	can	then	assign	page	frames	to	spread	each	application’s	data	across	the	various
colors.

9.5	Replacement	Policies

Once	we	have	looked	up	an	address	in	the	cache	and	found	a	cache	miss,	we	have	a	new
problem.	Which	memory	block	do	we	choose	to	replace?	Assuming	the	reference	pattern
exhibits	temporal	locality,	the	new	block	is	likely	to	be	needed	in	the	near	future,	so	we
need	to	choose	some	block	of	memory	to	evict	from	the	cache	to	make	room	for	the	new



data.	Of	course,	with	a	direct	mapped	cache	we	do	not	have	a	choice:	there	is	only	one
block	that	can	be	replaced.	In	general,	however,	we	will	have	a	choice,	and	this	choice	can
have	a	significant	impact	on	the	cache	hit	rate.

As	with	processor	scheduling,	there	are	a	number	of	options	for	the	replacement	policy.
We	caution	that	there	is	no	single	right	answer!	Many	replacement	policies	are	optimal	for
some	workloads	and	pessimal	for	others,	in	terms	of	the	cache	hit	rate;	policies	that	are
good	for	a	working	set	model	will	not	be	good	for	Zipf	workloads.

Policies	also	vary	depending	on	the	setting:	hardware	caches	use	a	different	replacement
policy	than	the	operating	system	does	in	managing	main	memory	as	a	cache	for	disk.	A
hardware	cache	will	often	have	a	limited	number	of	replacement	choices,	constrained	by
the	set	associativity	of	the	cache,	and	it	must	make	its	decisions	very	rapidly.	In	the
operating	system,	there	is	often	both	more	time	to	make	a	choice	and	a	much	larger
number	cached	items	to	consider;	e.g.,	with	4	GB	of	memory,	a	system	will	have	a	million
separate	4	KB	pages	to	choose	from	when	deciding	which	to	replace.	Even	within	the
operating	system,	the	replacement	policy	for	the	file	buffer	cache	is	often	different	than
the	one	used	for	demand	paged	virtual	memory,	depending	on	what	information	is	easily
available	about	the	access	pattern.

We	first	discuss	several	different	replacement	policies	in	the	abstract,	and	then	in	the	next
two	sections	we	consider	how	these	concepts	are	applied	to	the	setting	of	demand	paging
memory	from	disk.

9.5.1	Random

Although	it	may	seem	arbitrary,	a	practical	replacement	policy	is	to	choose	a	random
block	to	replace.	Particularly	for	a	first-level	hardware	cache,	the	system	may	not	have	the
time	to	make	a	more	complex	decision,	and	the	cost	of	making	the	wrong	choice	can	be
small	if	the	item	is	in	the	next	level	cache.	The	bookkeeping	cost	for	more	complex
policies	can	be	non-trivial:	keeping	more	information	about	each	block	requires	space	that
may	be	better	spent	on	increasing	the	cache	size.

Random’s	biggest	weakness	is	also	its	biggest	strength.	Whatever	the	access	pattern	is,
Random	will	not	be	pessimal	—	it	will	not	make	the	worst	possible	choice,	at	least,	not	on
average.	However,	it	is	also	unpredictable,	and	so	it	might	foil	an	application	that	was
designed	to	carefully	manage	its	use	of	different	levels	of	the	cache.

9.5.2	First-In-First-Out	(FIFO)

A	less	arbitrary	policy	is	to	evict	the	cache	block	or	page	that	has	been	in	memory	the
longest,	that	is,	First	In	First	Out,	or	FIFO.	Particularly	for	using	memory	as	a	cache	for
disk,	this	can	seem	fair	—	each	program’s	pages	spend	a	roughly	equal	amount	of	time	in
memory	before	being	evicted.

Unfortunately,	FIFO	can	be	the	worst	possible	replacement	policy	for	workloads	that
happen	quite	often	in	practice.	Consider	a	program	that	cycles	through	a	memory	array
repeatedly,	but	where	the	array	is	too	large	to	fit	in	the	cache.	Many	scientific	applications



do	an	operation	on	every	element	in	an	array,	and	then	repeat	that	operation	until	the	data
reaches	a	fixed	point.	Google’s	PageRank	algorithm	for	determining	which	search	results
to	display	uses	a	similar	approach.	PageRank	iterates	repeatedly	through	all	pages,
estimating	the	popularity	of	a	page	based	on	the	popularity	of	the	pages	that	refer	to	it	as
computed	in	the	previous	iteration.

FIFO

Ref. 		A 		B 		C 		D 		E 		A 		B 		C 		D 		E 		A 		B 		C 		D 		E

1 		A 	 	 	 		E 	 	 	 		D 	 	 	 		C 	 	

2 	 		B 	 	 	 		A 	 	 	 		E 	 	 	 		D 	

3 	 	 		C 	 	 	 		B 	 	 	 		A 	 	 	 		E

4 	 	 	 		D 	 	 	 		C 	 	 	 		B 	 	 	

Figure	9.13:	Cache	behavior	for	FIFO	for	a	repeated	scan	through	memory,	where	the
scan	is	slightly	larger	than	the	cache	size.	Each	row	represents	the	contents	of	a	page
frame	or	cache	block;	each	new	reference	triggers	a	cache	miss.

On	a	repeated	scan	through	memory,	FIFO	does	exactly	the	wrong	thing:	it	always	evicts
the	block	or	page	that	will	be	needed	next.	Figure	9.13	illustrates	this	effect.	Note	that	in
this	figure,	and	other	similar	figures	in	this	chapter,	we	show	only	a	small	number	of	cache
slots;	note	that	these	policies	also	apply	to	systems	with	a	very	large	number	of	slots.

9.5.3	Optimal	Cache	Replacement	(MIN)

If	FIFO	can	be	pessimal	for	some	workloads,	that	raises	the	question:	what	replacement
policy	is	optimal	for	minimizing	cache	misses?	The	optimal	policy,	called	MIN,	is	to
replace	whichever	block	is	used	farthest	in	the	future.	Equivalently,	the	worst	possible
strategy	is	to	replace	the	block	that	is	used	soonest.

Optimality	of	MIN

The	proof	that	MIN	is	optimal	is	a	bit	involved.	If	MIN	is	not	optimal,	there	must	be
some	alternative	optimal	replacement	policy,	which	we	will	call	ALT,	that	has	fewer
cache	misses	than	MIN	on	some	specific	sequence	of	references.	There	may	be	many
such	alternate	policies,	so	let	us	focus	on	the	one	that	differs	from	MIN	at	the	latest
possible	point.	Consider	the	first	cache	replacement	where	ALT	differs	from	MIN	—	by
definition,	ALT	must	choose	a	block	to	replace	that	is	used	sooner	than	the	block	chosen
by	MIN.



We	construct	a	new	policy,	ALT′,	that	is	at	least	as	good	as	ALT,	but	differs	from	MIN	at
a	later	point	and	so	contradicts	the	assumption.	We	construct	ALT′	to	differ	from	ALT	in
only	one	respect:	at	the	first	point	where	ALT	differs	from	MIN,	ALT′	chooses	to	evict
the	block	that	MIN	would	have	chosen.	From	that	point,	the	contents	of	the	cache	differ
between	ALT	and	ALT′	only	for	that	one	block.	ALT	contains	y,	the	block	referenced
farther	in	the	future;	ALT′	is	the	same,	except	it	contains	x,	the	block	referenced	sooner.
On	subsequent	cache	misses	to	other	blocks,	ALT′	mimics	ALT,	evicting	exactly	the	same
blocks	that	ALT	would	have	evicted.

It	is	possible	that	ALT	chooses	to	evict	y	before	the	next	reference	to	x	or	y;	in	this	case,
if	ALT′	chooses	to	evict	x,	the	contents	of	the	cache	for	ALT	and	ALT′	are	identical.
Further,	ALT′	has	the	same	number	of	cache	misses	as	ALT,	but	it	differs	from	MIN	at	a
later	point	than	ALT.	This	contradicts	our	assumption	above,	so	we	can	exclude	this	case.

Eventually,	the	system	will	reference	x,	the	block	that	ALT	chose	to	evict;	by
construction,	this	occurs	before	the	reference	to	y,	the	block	that	ALT′	chose	to	evict.
Thus,	ALT	will	have	a	cache	miss,	but	ALT′	will	not.	ALT	will	evict	some	block,	q,	to
make	room	for	x;	now	ALT	and	ALT′	differ	only	in	that	ALT	contains	y	and	ALT′
contains	q.	(If	ALT	evicts	y	instead,	then	ALT	and	ALT′	have	the	same	cache	contents,
but	ALT′	has	fewer	misses	than	ALT,	a	contradiction.)	Finally,	when	we	reach	the
reference	to	y,	ALT′	will	take	a	cache	miss.	If	ALT′	evicts	q,	then	it	will	have	the	same
number	of	cache	misses	as	ALT,	but	it	will	differ	from	MIN	at	a	point	later	than	ALT,	a
contradiction.

As	with	Shortest	Job	First,	MIN	requires	knowledge	of	the	future,	and	so	we	cannot
implement	it	directly.	Rather,	we	can	use	it	as	a	goal:	we	want	to	come	up	with
mechanisms	which	are	effective	at	predicting	which	blocks	will	be	used	in	the	near	future,
so	that	we	can	keep	those	in	the	cache.

If	we	were	able	to	predict	the	future,	we	could	do	even	better	than	MIN	by	prefetching
blocks	so	that	they	arrive	“just	in	time”	—	exactly	when	they	are	needed.	In	the	best	case,
this	can	reduce	the	number	of	cache	misses	to	zero.	For	example,	if	we	observe	a	program
scanning	through	a	file,	we	can	prefetch	the	blocks	of	the	file	into	memory.	Provided	we
can	read	the	file	into	memory	fast	enough	to	keep	up	with	the	program,	the	program	will
always	find	its	data	in	memory	and	never	have	a	cache	miss.

9.5.4	Least	Recently	Used	(LRU)

One	way	to	predict	the	future	is	to	look	at	the	past.	If	programs	exhibit	temporal	locality,
the	locations	they	reference	in	the	future	are	likely	to	be	the	same	as	the	ones	they	have
referenced	in	the	recent	past.

A	replacement	policy	that	captures	this	effect	is	to	evict	the	block	that	has	not	been	used
for	the	longest	period	of	time,	or	the	least	recently	used	(LRU)	block.	In	software,	LRU	is
simple	to	implement:	on	every	cache	hit,	you	move	the	block	to	the	front	of	the	list,	and
on	a	cache	miss,	you	evict	the	block	at	the	end	of	the	list.	In	hardware,	keeping	a	linked
list	of	cached	blocks	is	too	complex	to	implement	at	high	speed;	instead,	we	need	to
approximate	LRU,	and	we	will	discuss	exactly	how	in	a	bit.



LRU

Ref. 		A 		B 		A 		C 		B 		D 		A 		D 		E 		D 		A 		E 		B 		A 		C

1 		A 	 		+ 	 	 	 		+ 	 	 	 		+ 	 	 		+ 	

2 	 		B 	 	 		+ 	 	 	 	 	 	 	 		+ 	 	

3 	 	 	 		C 	 	 	 	 		E 	 	 		+ 	 	 	

4 	 	 	 	 	 		D 	 		+ 	 		+ 	 	 	 	 		C

FIFO

1 		A 	 		+ 	 	 	 		+ 	 		E 	 	 	 	 	 	

2 	 		B 	 	 		+ 	 	 	 	 	 		A 	 	 		+ 	

3 	 	 	 		C 	 	 	 	 	 	 	 		+ 		B 	 	

4 	 	 	 	 	 		D 	 		+ 	 		+ 	 	 	 	 		C

MIN

1 		A 	 		+ 	 	 	 		+ 	 	 	 		+ 	 	 		+ 	

2 	 		B 	 	 		+ 	 	 	 	 	 	 	 		+ 	 		C

3 	 	 	 		C 	 	 	 	 		E 	 	 		+ 	 	 	

4 	 	 	 	 	 		D 	 		+ 	 		+ 	 	 	 	 	

Figure	9.14:	Cache	behavior	for	LRU	(top),	FIFO	(middle),	and	MIN	(bottom)	for	a
reference	pattern	that	exhibits	temporal	locality.	Each	row	represents	the	contents	of	a
page	frame	or	cache	block;	+	indicates	a	cache	hit.	On	this	reference	pattern,	LRU	is	the
same	as	MIN	up	to	the	final	reference,	where	MIN	can	choose	to	replace	any	block.

In	some	cases,	LRU	can	be	optimal,	as	in	the	example	in	Figure	9.14.	The	table	illustrates
a	reference	pattern	that	exhibits	a	high	degree	of	temporal	locality;	when	recent	references
are	more	likely	to	be	referenced	in	the	near	future,	LRU	can	outperform	FIFO.

LRU



Ref. 		A 		B 		C 		D 		E 		A 		B 		C 		D 		E 		A 		B 		C 		D 		E

1 		A 	 	 	 		E 	 	 	 		D 	 	 	 		C 	 	

2 	 		B 	 	 	 		A 	 	 	 		E 	 	 	 		D 	

3 	 	 		C 	 	 	 		B 	 	 	 		A 	 	 	 		E

4 	 	 	 		D 	 	 	 		C 	 	 	 		B 	 	 	

MIN

1 		A 	 	 	 	 		+ 	 	 	 	 		+ 	 	 		+ 	

2 	 		B 	 	 	 	 		+ 	 	 	 	 		+ 		C 	 	

3 	 	 		C 	 	 	 	 		+ 		D 	 	 	 	 		+ 	

4 	 	 	 		D 		E 	 	 	 	 		+ 	 	 	 	 		+

Figure	9.15:	Cache	behavior	for	LRU	(top)	and	MIN	(bottom)	for	a	reference	pattern	that
repeatedly	scans	through	memory.	Each	row	represents	the	contents	of	a	page	frame	or
cache	block;	+	indicates	a	cache	hit.	On	this	reference	pattern,	LRU	is	the	same	as	FIFO,
with	a	cache	miss	on	every	reference;	the	optimal	strategy	is	to	replace	the	most	recently
used	page,	as	that	will	be	referenced	farthest	into	the	future.

On	this	particular	sequence	of	references,	LRU	behaves	similarly	to	the	optimal	strategy
MIN,	but	that	will	not	always	be	the	case.	In	fact,	LRU	can	sometimes	be	the	worst
possible	cache	replacement	policy.	This	occurs	whenever	the	least	recently	used	block	is
the	next	one	to	be	referenced.	A	common	situation	where	LRU	is	pessimal	is	when	the
program	makes	repeated	scans	through	memory,	illustrated	in	Figure	9.15;	we	saw	earlier
that	FIFO	is	also	pessimal	for	this	reference	pattern.	The	best	possible	strategy	is	to
replace	the	most	recently	referenced	block,	as	this	block	will	be	used	farthest	into	the
future.

9.5.5	Least	Frequently	Used	(LFU)

Consider	again	the	case	of	a	web	proxy	cache.	Whenever	a	user	accesses	a	page,	it	is	more
likely	for	that	user	to	access	other	nearby	pages	(spatial	locality);	sometimes,	as	with	a
flash	crowd,	it	can	be	more	likely	for	other	users	to	access	the	same	page	(temporal
locality).	On	the	surface,	Least	Recently	Used	seems	like	a	good	fit	for	this	workload.

However,	when	a	user	visits	a	rarely	used	page,	LRU	will	treat	the	page	as	important,	even



though	it	is	probably	just	a	one-off.	When	I	do	a	Google	search	for	a	mountain	hut	for	a
stay	in	Western	Iceland,	the	web	pages	I	visit	will	not	suddenly	become	more	popular	than
the	latest	Facebook	update	from	Katy	Perry.

A	better	strategy	for	references	that	follow	a	Zipf	distribution	is	Least	Frequently	Used
(LFU).	LFU	discards	the	block	that	has	been	used	least	often;	it	therefore	keeps	popular
pages,	even	when	less	popular	pages	have	been	touched	more	recently.

LRU	and	LFU	both	attempt	to	predict	future	behavior,	and	they	have	complementary
strengths.	Many	systems	meld	the	two	approaches	to	gain	the	benefits	of	each.	LRU	is
better	at	keeping	the	current	working	set	in	memory;	once	the	working	set	is	taken	care	of,
however,	LRU	will	yield	diminishing	returns.	Instead,	LFU	may	be	better	at	predicting
what	files	or	memory	blocks	will	be	needed	in	the	more	distant	future,	e.g.,	after	the	next
working	set	phase	change.

Replacement	policy	and	file	size

Our	discussion	up	to	now	has	assumed	that	all	cached	items	are	equal,	both	in	size	and	in
cost	to	replace.	When	these	assumptions	do	not	hold,	however,	we	may	sometimes	want
to	vary	the	policy	from	LFU	or	LFU,	that	is,	to	keep	some	items	that	are	less	frequently
or	less	recently	used	ahead	of	others	that	are	more	frequently	or	more	recently	used.

For	example,	consider	a	web	proxy	that	caches	files	to	improve	web	responsiveness.
These	files	may	have	vastly	different	sizes.	When	making	room	for	a	new	file,	we	have	a
choice	between	evicting	one	very	large	web	page	object	or	a	much	larger	number	of
smaller	objects.	Even	if	each	small	file	is	less	frequently	used	than	the	large	file,	it	may
still	make	sense	to	keep	the	small	files.	In	aggregate	they	may	be	more	frequently	used,
and	therefore	they	may	have	a	larger	benefit	to	overall	system	performance.	Likewise,	if	a
cached	item	is	expensive	to	regenerate,	it	is	more	important	to	keep	cached	than	one	that
is	more	easily	replaced.

Parallel	computing	makes	the	calculus	even	more	complex.	The	performance	of	a	parallel
program	depends	on	its	critical	path	—	the	minimum	sequence	of	steps	for	the	program	to
produce	its	result.	Cache	misses	that	occur	on	the	critical	path	affect	the	response	time
while	those	that	occur	off	the	critical	path	do	not.	For	example,	a	parallel	MapReduce	job
forks	a	set	of	tasks	onto	processors;	each	task	reads	in	a	file	and	produces	an	output.
Because	MapReduce	must	wait	until	all	tasks	are	complete	before	moving	onto	the	next
step,	if	any	file	is	not	cached	it	is	as	bad	as	if	all	of	the	needed	files	were	not	cached.

9.5.6	Belady’s	Anomaly

Intuitively,	it	seems	like	it	should	always	help	to	add	space	to	a	memory	cache;	being	able
to	store	more	blocks	should	always	either	improve	the	cache	hit	rate,	or	at	least,	not	make
the	cache	hit	rate	any	worse.	For	many	cache	replacement	strategies,	this	intuition	is	true.
However,	in	some	cases,	adding	space	to	a	cache	can	actually	hurt	the	cache	hit	rate.	This
is	called	Belady’s	anomaly,	after	the	person	that	discovered	it.

First,	we	note	that	many	of	the	schemes	we	have	defined	can	be	proven	to	yield	no	worse



cache	behavior	with	larger	cache	sizes.	For	example,	with	the	optimal	strategy	MIN,	if	we
have	a	cache	of	size	k	blocks,	we	will	keep	the	next	k	blocks	that	will	be	referenced.	If	we
have	a	cache	of	size	k	+	1	blocks,	we	will	keep	all	of	the	same	blocks	as	with	a	k	sized
cache,	plus	the	additional	block	that	will	be	the	k	+	1	next	reference.

We	can	make	a	similar	argument	for	LRU	and	LFU.	For	LRU,	a	cache	of	size	k	+	1	keeps
all	of	the	same	blocks	as	a	k	sized	cache,	plus	the	block	that	is	referenced	farthest	in	the
past.	Even	if	LRU	is	a	lousy	replacement	policy	—	if	it	rarely	keeps	the	blocks	that	will	be
used	in	the	near	future	—	it	will	always	do	at	least	as	well	as	a	slightly	smaller	cache	also
using	the	same	replacement	policy.	An	equivalent	argument	can	be	used	for	LFU.

FIFO	(3	slots)

Ref. 		A 		B 		C 		D 		A 		B 		E 		A 		B 		C 		D 		E

1 		A 	 	 		D 	 	 		E 	 	 	 	 		+

2 	 		B 	 	 		A 	 	 		+ 	 		C 	 	

3 	 	 		C 	 	 		B 	 	 		+ 	 		D 	

FIFO	(4	slots)

1 		A 	 	 	 		+ 	 		E 	 	 	 		D 	

2 	 		B 	 	 	 		+ 	 		A 	 	 	 		E

3 	 	 		C 	 	 	 	 	 		B 	 	 	

4 	 	 	 		D 	 	 	 	 	 		C 	 	

Figure	9.16:	Cache	behavior	for	FIFO	with	two	different	cache	sizes,	illustrating
Belady’s	anomaly.	For	this	sequence	of	references,	the	larger	cache	suffers	ten	cache
misses,	while	the	smaller	cache	has	one	fewer.

Some	replacement	policies,	however,	do	not	have	this	behavior.	Instead,	the	contents	of	a
cache	with	k	+	1	blocks	may	be	completely	different	than	the	contents	of	a	cache	with	k
blocks.	As	a	result,	there	cache	hit	rates	may	diverge.	Among	the	policies	we	have
discussed,	FIFO	suffers	from	Belady’s	anomaly,	and	we	illustrate	that	in	Figure	9.16.

9.6	Case	Study:	Memory-Mapped	Files

To	illustrate	the	concepts	presented	in	this	chapter,	we	consider	in	detail	how	an	operating
system	can	implement	demand	paging.	With	demand	paging,	applications	can	access	more



memory	than	is	physically	present	on	the	machine,	by	using	memory	pages	as	a	cache	for
disk	blocks.	When	the	application	accesses	a	missing	memory	page,	it	is	transparently
brought	in	from	disk.	We	start	with	the	simpler	case	of	a	demand	paging	for	a	single,
memory-mapped	file	and	then	extend	the	discussion	to	managing	multiple	processes
competing	for	space	in	main	memory.

As	we	discussed	in	Chapter	3,	most	programs	use	explicit	read/write	system	calls	to
perform	file	I/O.	Read/write	system	calls	allow	the	program	to	work	on	a	copy	of	file	data.
The	program	opens	a	file	and	then	invokes	the	system	call	read	to	copy	chunks	of	file	data
into	buffers	in	the	program’s	address	space.	The	program	can	then	use	and	modify	those
chunks,	without	affecting	the	underlying	file.	For	example,	it	can	convert	the	file	from	the
disk	format	into	a	more	convenient	in-memory	format.	To	write	changes	back	to	the	file,
the	program	invokes	the	system	call	write	to	copy	the	data	from	the	program	buffers	out	to
disk.	Reading	and	writing	files	via	system	calls	is	simple	to	understand	and	reasonably
efficient	for	small	files.

An	alternative	model	for	file	I/O	is	to	map	the	file	contents	into	the	program’s	virtual
address	space.	For	a	memory-mapped	file,	the	operating	system	provides	the	illusion	that
the	file	is	a	program	segment;	like	any	memory	segment,	the	program	can	directly	issue
instructions	to	load	and	store	values	to	the	memory.	Unlike	file	read/write,	the	load	and
store	instructions	do	not	operate	on	a	copy;	they	directly	access	and	modify	the	contents	of
the	file,	treating	memory	as	a	write-back	cache	for	disk.

We	saw	an	example	of	a	memory-mapped	file	in	the	previous	chapter:	the	program
executable	image.	To	start	a	process,	the	operating	system	brings	the	executable	image
into	memory,	and	creates	page	table	entries	to	point	to	the	page	frames	allocated	to	the
executable.	The	operating	system	can	start	the	program	executing	as	soon	as	the	first	page
frame	is	initialized,	without	waiting	for	the	other	pages	to	be	brought	in	from	disk.	For
this,	the	other	page	table	entries	are	set	to	invalid	—	if	the	process	accesses	a	page	that	has
not	reached	memory	yet,	the	hardware	traps	to	the	operating	system	and	then	waits	until
the	page	is	available	so	it	can	continue	to	execute.	From	the	program’s	perspective,	there
is	no	difference	(except	for	performance)	between	whether	the	executable	image	is
entirely	in	memory	or	still	mostly	on	disk.

We	can	generalize	this	concept	to	any	file	stored	on	disk,	allowing	applications	to	treat	any
file	as	part	of	its	virtual	address	space.	File	blocks	are	brought	in	by	the	operating	system
when	they	are	referenced,	and	modified	blocks	are	copied	back	to	disk,	with	the
bookkeeping	done	entirely	by	the	operating	system.

9.6.1	Advantages

Memory-mapped	files	offer	a	number	of	advantages:

Transparency.	The	program	can	operate	on	the	bytes	in	the	file	as	if	they	are	part	of
memory;	specifically,	the	program	can	use	a	pointer	into	the	file	without	needing	to
check	if	that	portion	of	the	file	is	in	memory	or	not.

Zero	copy	I/O.	The	operating	system	does	not	need	to	copy	file	data	from	kernel
buffers	into	user	memory	and	back;	rather,	it	just	changes	the	program’s	page	table



entry	to	point	to	the	physical	page	frame	containing	that	portion	of	the	file.	The
kernel	is	responsible	for	copying	data	back	and	forth	to	disk.	We	should	note	that	it	is
possible	to	implement	zero	copy	I/O	for	explicit	read/write	file	system	calls	in	certain
restricted	cases;	we	will	explain	how	in	the	next	chapter.

Pipelining.	The	program	can	start	operating	on	the	data	in	the	file	as	soon	as	the	page
tables	have	been	set	up;	it	does	not	need	to	wait	for	the	entire	file	to	be	read	into
memory.	With	multiple	threads,	a	program	can	use	explicit	read/write	calls	to
pipeline	disk	I/O,	but	it	needs	to	manage	the	pipeline	itself.

Interprocess	communication.	Two	or	more	processes	can	share	information
instantaneously	through	a	memory-mapped	file	without	needing	to	shuffle	data	back
and	forth	to	the	kernel	or	to	disk.	If	the	hardware	architecture	supports	it,	the	page
table	for	the	shared	segment	can	also	be	shared.

Large	files.	As	long	as	the	page	table	for	the	file	can	fit	in	physical	memory,	the	only
limit	on	the	size	of	a	memory-mapped	file	is	the	size	of	the	virtual	address	space.	For
example,	an	application	may	have	a	giant	multi-level	tree	indexing	data	spread	across
a	number	of	disks	in	a	data	center.	With	read/write	system	calls,	the	application	needs
to	explicitly	manage	which	parts	of	the	tree	are	kept	in	memory	and	which	are	on
disk;	alternatively,	with	memory-mapped	files,	the	application	can	leave	that
bookkeeping	to	the	operating	system.

9.6.2	Implementation

To	implement	memory-mapped	files,	the	operating	system	provides	a	system	call	to	map
the	file	into	a	portion	of	the	virtual	address	space.	In	the	system	call,	the	kernel	initializes
a	set	of	page	table	entries	for	that	region	of	the	virtual	address	space,	setting	each	entry	to
invalid.	The	kernel	then	returns	to	the	user	process.

Figure	9.17:	Before	a	page	fault,	the	page	table	has	an	invalid	entry	for	the	referenced	page	and	the	data	for	the	page	is
stored	on	disk.



Figure	9.18:	After	the	page	fault,	the	page	table	has	a	valid	entry	for	the	referenced	page	with	the	page	frame
containing	the	data	that	had	been	stored	on	disk.	The	old	contents	of	the	page	frame	are	stored	on	disk	and	the	page
table	entry	that	previously	pointed	to	the	page	frame	is	set	to	invalid.

When	the	process	issues	an	instruction	that	touches	an	invalid	mapped	address,	a	sequence
of	events	occurs,	illustrated	in	Figures	9.17	and		9.18:

TLB	miss.	The	hardware	looks	the	virtual	page	up	in	the	TLB,	and	finds	that	there	is
not	a	valid	entry.	This	triggers	a	full	page	table	lookup	in	hardware.

Page	table	exception.	The	hardware	walks	the	multi-level	page	table	and	finds	the
page	table	entry	is	invalid.	This	causes	a	hardware	page	fault	exception	trap	into	the
operating	system	kernel.

Convert	virtual	address	to	file	offset.	In	the	exception	handler,	the	kernel	looks	up
in	its	segment	table	to	find	the	file	corresponding	to	the	faulting	virtual	address	and
converts	the	address	to	a	file	offset.

Disk	block	read.	The	kernel	allocates	an	empty	page	frame	and	issues	a	disk
operation	to	read	the	required	file	block	into	the	allocated	page	frame.	While	the	disk
operation	is	in	progress,	the	processor	can	be	used	for	running	other	threads	or
processes.

Disk	interrupt.	The	disk	interrupts	the	processor	when	the	disk	read	finishes,	and	the
scheduler	resumes	the	kernel	thread	handling	the	page	fault	exception.

Page	table	update.	The	kernel	updates	the	page	table	entry	to	point	to	the	page
frame	allocated	for	the	block	and	sets	the	entry	to	valid.

Resume	process.	The	operating	system	resumes	execution	of	the	process	at	the
instruction	that	caused	the	exception.

TLB	miss.	The	TLB	still	does	not	contain	a	valid	entry	for	the	page,	triggering	a	full
page	table	lookup.



Page	table	fetch.	The	hardware	walks	the	multi-level	page	table,	finds	the	page	table
entry	valid,	and	returns	the	page	frame	to	the	processor.	The	processor	loads	the	TLB
with	the	new	translation,	evicting	a	previous	TLB	entry,	and	then	uses	the	translation
to	construct	a	physical	address	for	the	instruction.

To	make	this	work,	we	need	an	empty	page	frame	to	hold	the	incoming	page	from	disk.	To
create	an	empty	page	frame,	the	operating	system	must:

Select	a	page	to	evict.	Assuming	there	is	not	an	empty	page	of	memory	already
available,	the	operating	system	needs	to	select	some	page	to	be	replaced.	We	discuss
how	to	implement	this	selection	in	Section	9.6.3	below.

Find	page	table	entries	that	point	to	the	evicted	page.	The	operating	system	then
locates	the	set	of	page	table	entries	that	point	to	the	page	to	be	replaced.	It	can	do	this
with	a	core	map	—	an	array	of	information	about	each	physical	page	frame,
including	which	page	table	entries	contain	pointers	to	that	particular	page	frame.

Set	each	page	table	entry	to	invalid.	The	operating	system	needs	to	prevent	anyone
from	using	the	evicted	page	while	the	new	page	is	being	brought	into	memory.
Because	the	processor	can	continue	to	execute	while	the	disk	read	is	in	progress,	the
page	frame	may	temporarily	contain	a	mixture	of	bytes	from	the	old	and	the	new
page.	Therefore,	because	the	TLB	may	cache	a	copy	of	the	old	page	table	entry,	a
TLB	shootdown	is	needed	to	evict	the	old	translation	from	the	TLB.

Copy	back	any	changes	to	the	evicted	page.	If	the	evicted	page	was	modified,	the
contents	of	the	page	must	be	copied	back	to	disk	before	the	new	page	can	be	brought
into	memory.	Likewise,	the	contents	of	modified	pages	must	also	be	copied	back
when	the	application	closes	the	memory-mapped	file.

Figure	9.19:	When	a	page	is	clean,	its	dirty	bit	is	set	to	zero	in	both	the	TLB	and	the	page	table,	and	the	data	in
memory	is	the	same	as	the	data	stored	on	disk.



Figure	9.20:	On	the	first	store	instruction	to	a	clean	page,	the	hardware	sets	the	dirty	bit	for	that	page	in	the	TLB	and
the	page	table.	The	contents	of	the	page	will	differ	from	what	is	stored	on	disk.

How	does	the	operating	system	know	which	pages	have	been	modified?	A	correct,	but
inefficient,	solution	is	to	simply	assume	that	every	page	in	a	memory-mapped	file	has
been	modified;	if	the	data	has	not	been	changed,	the	operating	system	will	have	wasted
some	work,	but	the	contents	of	the	file	will	not	be	affected.

A	more	efficient	solution	is	for	the	hardware	to	keep	track	of	which	pages	have	been
modified.	Most	processor	architectures	reserve	a	bit	in	each	page	table	entry	to	record
whether	the	page	has	been	modified.	This	is	called	a	dirty	bit.	The	operating	system
initializes	the	bit	to	zero,	and	the	hardware	sets	the	bit	automatically	when	it	executes	a
store	instruction	for	that	virtual	page.	Since	the	TLB	can	contain	a	copy	of	the	page	table
entry,	the	TLB	also	needs	a	dirty	bit	per	entry.	The	hardware	can	ignore	the	dirty	bit	if	it	is
set	in	the	TLB,	but	whenever	it	goes	from	zero	to	one,	the	hardware	needs	to	copy	the	bit
back	to	the	corresponding	page	table	entry.	Figures	9.19	and		9.20	show	the	state	of	the
TLB,	page	table,	memory	and	disk	before	and	after	the	first	store	instruction	to	a	page.

If	there	are	multiple	page	table	entries	pointing	at	the	same	physical	page	frame,	the	page
is	dirty	(and	must	be	copied	back	to	disk)	if	any	of	the	page	tables	have	the	dirty	bit	set.
Normally,	of	course,	a	memory-mapped	file	will	have	a	single	page	table	shared	between
all	of	the	processes	mapping	the	file.

Because	evicting	a	dirty	page	takes	more	time	than	evicting	a	clean	page,	the	operating
system	can	proactively	clean	pages	in	the	background.	A	thread	runs	in	the	background,
looking	for	pages	that	are	likely	candidates	for	being	evicted	if	they	were	clean.	If	the
hardware	dirty	bit	is	set	in	the	page	table	entry,	the	kernel	resets	the	bit	in	the	page	table
entry	and	does	a	TLB	shootdown	to	remove	the	entry	from	the	TLB	(with	the	old	value	of
the	dirty	bit).	It	then	copies	the	page	to	disk.	Of	course,	the	on-chip	processor	memory
cache	and	write	buffers	can	contain	modifications	to	the	page	that	have	not	reached	main
memory;	the	hardware	ensures	that	the	new	data	reaches	main	memory	before	those	bytes
are	copied	to	the	disk	interface.

The	kernel	can	then	restart	the	application;	it	need	not	wait	for	the	block	to	reach	disk	—
if	the	process	modifies	the	page	again,	the	hardware	will	simply	reset	the	dirty	bit,



signaling	that	the	block	cannot	be	reclaimed	without	saving	the	new	set	of	changes	to	disk.

Emulating	a	hardware	dirty	bit	in	software

Interestingly,	hardware	support	for	a	dirty	bit	is	not	strictly	required.	The	operating
system	can	emulate	a	hardware	dirty	bit	using	page	table	access	permissions.	An
unmodified	page	is	set	to	allow	only	read-only	access,	even	though	the	program	is
logically	allowed	to	write	the	page.	The	program	can	then	execute	normally.	On	a	store
instruction	to	the	page,	the	hardware	will	trigger	a	memory	exception.	The	operating
system	can	then	record	the	fact	that	the	page	is	dirty,	upgrade	the	page	protection	to	read-
write,	and	restart	the	process.

To	clean	a	page	in	the	background,	the	kernel	resets	the	page	protection	to	read-only	and
does	a	TLB	shootdown.	The	shootdown	removes	any	translation	that	allows	for	read-
write	access	to	the	page,	forcing	subsequent	store	instructions	to	cause	another	memory
exception.

9.6.3	Approximating	LRU

A	further	challenge	to	implementing	demand	paged	memory-mapped	files	is	that	the
hardware	does	not	keep	track	of	which	pages	are	least	recently	or	least	frequently	used.
Doing	so	would	require	the	hardware	to	keep	a	linked	list	of	every	page	in	memory,	and	to
modify	that	list	on	every	load	and	store	instruction	(and	for	memory-mapped	executable
images,	every	instruction	fetch	as	well).	This	would	be	prohibitively	expensive.	Instead,
the	hardware	maintains	a	minimal	amount	of	access	information	per	page	to	allow	the
operating	system	to	approximate	LRU	or	LFU	if	it	wants	to	do	so.

We	should	note	that	explicit	read/write	file	system	calls	do	not	have	this	problem.	Each
time	a	process	reads	or	writes	a	file	block,	the	operating	system	can	keep	track	of	which
blocks	are	used.	The	kernel	can	use	this	information	to	prioritize	its	cache	of	file	blocks
when	the	system	needs	to	find	space	for	a	new	block.

Most	processor	architectures	keep	a	use	bit	in	each	page	table	entry,	next	to	the	hardware
dirty	bit	we	discussed	above.	The	operating	system	clears	the	use	bit	when	the	page	table
entry	is	initialized;	the	bit	is	set	in	hardware	whenever	the	page	table	entry	is	brought	into
the	TLB.	As	with	the	dirty	bit,	a	physical	page	is	used	if	any	of	the	page	table	entries	have
their	use	bit	set.



Figure	9.21:	The	clock	algorithm	sweeps	through	each	page	frame,	collecting	the	current	value	of	the	use	bit	for	that
page	and	resetting	the	use	bit	to	zero.	The	clock	algorithm	stops	when	it	has	reclaimed	a	sufficient	number	of	unused
page	frames.

The	operating	system	can	leverage	the	use	bit	in	various	ways,	but	a	commonly	used
approach	is	the	clock	algorithm,	illustrated	in	Figure	9.21.	Periodically,	the	operating
system	scans	through	the	core	map	of	physical	memory	pages.	For	each	page	frame,	it
records	the	value	of	the	use	bit	in	the	page	table	entries	that	point	to	that	frame,	and	then
clears	their	use	bits.	Because	the	TLB	can	have	a	cached	copy	of	the	translation,	the
operating	system	also	does	a	shootdown	for	any	page	table	entry	where	the	use	bit	is
cleared.	Note	that	if	the	use	bit	is	already	zero,	the	translation	cannot	be	in	the	TLB.	While
it	is	scanning,	the	kernel	can	also	look	for	dirty	and	recently	unused	pages	and	flush	these
out	to	disk.

Each	sweep	of	the	clock	algorithm	through	memory	collects	one	bit	of	information	about
page	usage;	by	adjusting	the	frequency	of	the	clock	algorithm,	we	can	collect	increasingly
fine-grained	information	about	usage,	at	the	cost	of	increased	software	overhead.	On
modern	systems	with	hundreds	of	thousands	and	sometimes	millions	of	physical	page
frames,	the	overhead	of	the	clock	algorithm	can	be	substantial.

The	policy	for	what	to	do	with	the	usage	information	is	up	to	the	operating	system	kernel.
A	common	policy	is	called	not	recently	used,	or	k’th	chance.	If	the	operating	system	needs
to	evict	a	page,	the	kernel	picks	one	that	has	not	been	used	(has	not	had	its	use	bit	set)	for
the	last	k	sweeps	of	the	clock	algorithm.	The	clock	algorithm	partitions	pages	based	on
how	recently	they	have	been	used;	among	page	frames	in	the	same	k’th	chance	partition,
the	operating	system	can	evict	pages	in	FIFO	order.



Some	systems	trigger	the	clock	algorithm	only	when	a	page	is	needed,	rather	than
periodically	in	the	background.	Provided	some	pages	have	not	been	accessed	since	the	last
sweep,	an	on-demand	clock	algorithm	will	find	a	page	to	reclaim.	If	all	pages	have	been
accessed,	e.g.,	if	there	is	a	storm	of	page	faults	due	to	phase	change	behavior,	then	the
system	will	default	to	FIFO.

Emulating	a	hardware	use	bit	in	software

Hardware	support	for	a	use	bit	is	also	not	strictly	required.	The	operating	system	kernel
can	emulate	a	use	bit	with	page	table	permissions,	in	the	same	way	that	the	kernel	can
emulate	a	hardware	dirty	bit.	To	collect	usage	information	about	a	page,	the	kernel	sets
the	page	table	entry	to	be	invalid	even	though	the	page	is	in	memory	and	the	application
has	permission	to	access	the	page.	When	the	page	is	accessed,	the	hardware	will	trigger
an	exception	and	the	operating	system	can	record	the	use	of	the	page.	The	kernel	then
changes	the	permission	on	the	page	to	allow	access,	before	restarting	the	process.	To
collect	usage	information	over	time,	the	operating	system	can	periodically	reset	the	page
table	entry	to	invalid	and	shootdown	any	cached	translations	in	the	TLB.

Many	systems	use	a	hybrid	approach.	In	addition	to	active	pages	where	the	hardware
collects	the	use	bit,	the	operating	system	maintains	a	pool	of	unused,	clean	page	frames
that	are	unmapped	in	any	virtual	address	space,	but	still	contain	their	old	data.	When	a
new	page	frame	is	needed,	pages	in	this	pool	can	be	used	without	any	further	work.
However,	if	the	old	data	is	referenced	before	the	page	frame	is	reused,	the	page	can	be
pulled	out	of	the	pool	and	mapped	back	into	the	virtual	address	space.

Systems	with	a	software-managed	TLB	have	an	even	simpler	time.	Each	time	there	is	a
TLB	miss	with	a	software-managed	TLB,	there	is	a	trap	to	the	kernel	to	look	up	the
translation.	During	the	trap,	the	kernel	can	update	its	list	of	frequently	used	pages.

9.7	Case	Study:	Virtual	Memory

We	can	generalize	on	the	concept	of	memory-mapped	files,	by	backing	every	memory
segment	with	a	file	on	disk.	This	is	called	virtual	memory.	Program	executables,
individual	libraries,	data,	stack	and	heap	segments	can	all	be	demand	paged	to	disk.
Unlike	memory-mapped	files,	though,	process	memory	is	ephemeral:	when	the	process
exits,	there	is	no	need	to	write	modified	data	back	to	disk,	and	we	can	reclaim	the	disk
space.

The	advantage	of	virtual	memory	is	flexibility.	The	system	can	continue	to	function	even
though	the	user	has	started	more	processes	than	can	fit	in	main	memory	at	the	same	time.
The	operating	system	simply	makes	room	for	the	new	processes	by	paging	the	memory	of
idle	applications	to	disk.	Without	virtual	memory,	the	user	has	to	do	memory	management
by	hand,	closing	some	applications	to	make	room	for	others.

All	of	the	mechanisms	we	have	described	for	memory-mapped	files	apply	when	we
generalize	to	virtual	memory,	with	one	additional	twist.	We	need	to	balance	the	allocation
of	physical	page	frames	between	processes.	Unfortunately,	this	balancing	is	quite	tricky.	If



we	add	a	few	extra	page	faults	to	a	system,	no	one	will	notice.	However,	a	modern	disk
can	handle	at	most	100	page	faults	per	second,	while	a	modern	multi-core	processor	can
execute	10	billion	instructions	per	second.	Thus,	if	page	faults	are	anything	but	extremely
rare,	performance	will	suffer.

9.7.1	Self-Paging

One	consideration	is	that	the	behavior	of	one	process	can	significantly	hurt	the
performance	of	other	programs	running	at	the	same	time.	For	example,	suppose	we	have
two	processes.	One	is	a	normal	program,	with	a	working	set	equal	to	say,	a	quarter	of
physical	memory.	The	other	program	is	greedy;	while	it	can	run	fine	with	less	memory,	it
will	run	faster	if	it	is	given	more	memory.	We	gave	an	example	of	this	earlier	with	the	sort
program.

Can	you	design	a	program	to	take	advantage	of	the	clock	algorithm	to	acquire	more	than
its	fair	share	of	memory	pages?

Figure	9.22:	The	“pig”	program	to	greedily	acquire	memory	pages.	The	implementation
assumes	we	are	running	on	a	multicore	computer.	When	the	pig	triggers	a	page	fault	by
touching	a	new	memory	page	(soFar),	the	operating	system	will	find	all	of	the	pig’s	pages
up	to	soFar	recently	used.	The	operating	system	will	keep	these	in	memory	and	it	will



choose	to	evict	a	page	from	some	other	application.

We	give	an	example	in	Figure	9.22,	which	we	will	dub	“pig”	for	obvious	reasons.	It
allocates	an	array	in	virtual	memory	equal	in	size	to	physical	memory;	it	then	uses
multiple	threads	to	cycle	through	memory,	causing	each	page	to	be	brought	in	while	the
other	pages	remain	very	recently	used.

A	normal	program	sharing	memory	with	the	pig	will	eventually	be	frozen	out	of	memory
and	stop	making	progress.	When	the	pig	touches	a	new	page,	it	triggers	a	page	fault,	but
all	of	its	pages	are	recently	used	because	of	the	background	thread.	Meanwhile,	the	normal
program	will	have	recently	touched	many	of	its	pages	but	there	will	be	some	that	are	less
recently	used.	The	clock	algorithm	will	choose	those	for	replacement.

As	time	goes	on,	more	and	more	of	the	pages	will	be	allocated	to	the	pig.	As	the	number
of	pages	assigned	to	the	normal	program	drops,	it	starts	experiencing	page	faults	at	an
increasing	frequency.	Eventually,	the	number	of	pages	drops	below	the	working	set,	at
which	point	the	program	stops	making	much	progress.	Its	pages	are	even	less	frequently
used,	making	them	easier	to	evict.

Of	course,	a	normal	user	would	probably	never	run	(or	write!)	a	program	like	this,	but	a
malicious	attacker	launching	a	computer	virus	might	use	this	approach	to	freeze	out	the
system	administrator.	Likewise,	in	a	data	center	setting,	a	single	server	can	be	shared
between	multiple	applications	from	different	users,	for	example,	running	in	different
virtual	machines.	It	is	in	the	interest	of	any	single	application	to	acquire	as	many	physical
resources	as	possible,	even	if	that	hurts	performance	for	other	users.

A	widely	adopted	solution	is	self-paging.	With	self-paging,	each	process	or	user	is
assigned	its	fair	share	of	page	frames,	using	the	max-min	scheduling	algorithm	we
described	in	Chapter	7.	If	all	of	the	active	processes	can	fit	in	memory	at	the	same	time,
the	system	does	not	need	to	page.	As	the	system	starts	to	page,	it	evicts	the	page	from
whichever	process	has	the	most	allocated	to	it.	Thus,	the	pig	would	only	be	able	to
allocate	its	fair	share	of	page	frames,	and	beyond	that	any	page	faults	it	triggers	would
evict	its	own	pages.

Unfortunately,	self-paging	comes	at	a	cost	in	reduced	resource	utilization.	Suppose	we
have	two	processes,	both	of	which	allocate	large	amounts	of	virtual	address	space.
However,	the	working	sets	of	the	two	programs	can	fit	in	memory	at	the	same	time,	for
example,	if	one	working	set	takes	up	2/3rds	of	memory	and	the	other	takes	up	1/3rd.	If
they	cooperate,	both	can	run	efficiently	because	the	system	has	room	for	both	working
sets.	However,	if	we	need	to	bulletproof	the	operating	system	against	malicious	programs
by	self-paging,	then	each	will	be	assigned	half	of	memory	and	the	larger	program	will
thrash.

9.7.2	Swapping

Another	issue	is	what	happens	as	we	increase	the	workload	for	a	system	with	virtual
memory.	If	we	are	running	a	data	center,	for	example,	we	can	share	physical	machines
among	a	much	larger	number	of	applications	each	running	in	a	separate	virtual	machine.



To	reduce	costs,	the	data	center	needs	to	support	the	maximum	number	of	applications	on
each	server,	within	some	performance	constraint.

If	the	working	sets	of	the	applications	easily	fit	in	memory,	then	as	page	faults	occur,	the
clock	algorithm	will	find	lightly	used	pages	—	that	is,	those	outside	of	the	working	set	of
any	process	—	to	evict	to	make	room	for	new	pages.	So	far	so	good.	As	we	keep	adding
active	processes,	however,	their	working	sets	may	no	longer	fit,	even	if	each	process	is
given	their	fair	share	of	memory.	In	this	case,	the	performance	of	the	system	will	degrade
dramatically.

This	can	be	illustrated	by	considering	how	system	throughput	is	affected	by	the	number	of
processes.	As	we	add	work	to	the	system,	throughput	increases	as	long	as	there	is	enough
processing	capacity	and	I/O	bandwidth.	When	we	reach	the	point	where	there	are	too
many	tasks	to	fit	entirely	in	memory,	the	system	starts	demand	paging.	Throughput	can
continue	to	improve	if	there	are	enough	lightly	used	pages	to	make	room	for	new	tasks,
but	eventually	throughput	levels	off	and	then	falls	off	a	cliff.	In	the	limit,	every	instruction
will	trigger	a	page	fault,	meaning	that	the	processor	executes	at	100	instructions	per
second,	rather	than	10	billion	instructions	per	second.	Needless	to	say,	the	user	will	think
the	system	is	dead	even	if	it	is	in	fact	inching	forward	very	slowly.

As	we	explained	in	the	Chapter	7	discussion	on	overload	control,	the	only	way	to	achieve
good	performance	in	this	case	is	to	prevent	the	overload	condition	from	occurring.	Both
response	time	and	throughput	will	be	better	if	we	prevent	additional	tasks	from	starting	or
if	we	remove	some	existing	tasks.	It	is	better	to	completely	starve	some	tasks	of	their
resources,	if	the	alternative,	assigning	each	task	their	fair	share,	will	drag	the	system	to	a
halt.

Evicting	an	entire	process	from	memory	is	called	swapping.	When	there	is	too	much
paging	activity,	the	operating	system	can	prevent	a	catastrophic	degradation	in
performance	by	moving	all	of	the	page	frames	of	a	particular	process	to	disk,	preventing	it
from	running	at	all.	Although	this	may	seem	terribly	unfair,	the	alternative	is	that	every
process,	not	just	the	swapped	process,	will	run	much	more	slowly.	By	distributing	the
swapped	process’s	pages	to	other	processes,	we	can	reduce	the	number	of	page	faults,
allowing	system	performance	to	recover.	Eventually	the	other	tasks	will	finish,	and	we	can
bring	the	swapped	process	back	into	memory.

9.8	Summary	and	Future	Directions

Caching	is	central	to	many	areas	of	computer	science:	caches	are	used	in	processor	design,
file	systems,	web	browsers,	web	servers,	compilers,	and	kernel	memory	management,	to
name	a	few.	To	understand	these	systems,	it	is	important	to	understand	how	caches	work,
and	even	more	importantly,	when	they	fail.

The	management	of	memory	in	operating	systems	is	a	particularly	useful	case	study.
Every	major	commercial	operating	system	includes	support	for	demand	paging	of
memory,	using	memory	as	a	cache	for	disk.	Often,	application	memory	pages	and	blocks
in	the	file	buffer	are	allocated	from	a	common	pool	of	memory,	where	the	operating
system	attempts	to	keep	blocks	that	are	likely	to	be	used	in	memory	and	evicting	those
blocks	that	are	less	likely	to	be	used.	However,	on	modern	systems,	the	difference	between



finding	a	block	in	memory	and	needing	to	bring	it	in	from	disk	can	be	as	much	as	a	factor
of	100,000.	This	makes	virtual	memory	paging	fragile,	acceptable	only	when	used	in
small	doses.

Moving	forward,	several	trends	are	in	progress:

Low	latency	backing	store.	Due	to	the	weight	and	power	drain	of	magnetic	disks,
many	portable	devices	have	moved	to	solid	state	persistent	storage,	such	as	non-
volatile	RAM.	Current	solid	state	storage	devices	have	significantly	lower	latency
than	disk,	and	even	faster	devices	are	likely	in	the	future.	Similarly,	the	move	towards
data	center	computing	has	added	a	new	option	to	memory	management:	using
DRAM	on	other	nodes	in	the	data	center	as	a	low-latency,	very	high	capacity	backing
store	for	local	memory.	Both	of	these	trends	reduce	the	cost	of	paging,	making	it
relatively	more	attractive.

Variable	page	sizes.	Many	systems	use	a	standard	4	KB	page	size,	but	there	is
nothing	fundamental	about	that	choice	—	it	is	a	tradeoff	chosen	to	balance	internal
fragmentation,	page	table	overhead,	disk	latency,	the	overhead	of	collecting	dirty	and
usage	bits,	and	application	spatial	locality.	On	modern	disks,	it	only	takes	twice	as
long	to	transfer	256	contiguous	pages	as	it	does	to	transfer	one,	so	internally,	most
operating	systems	arrange	disk	transfers	to	include	many	blocks	at	a	time.	With	new
technologies	such	as	low	latency	solid	state	storage	and	cluster	memory,	this	balance
may	shift	back	towards	smaller	effective	page	sizes.

Memory	aware	applications.	The	increasing	depth	and	complexity	of	the	memory
hierarchy	is	both	a	boon	and	a	curse.	For	many	applications,	the	memory	hierarchy
delivers	reasonable	performance	without	any	special	effort.	However,	the	wide	gulf
in	performance	between	the	first	level	cache	and	main	memory,	and	between	main
memory	and	disk,	implies	that	there	is	a	significant	performance	benefit	to	tuning
applications	to	the	available	memory.	The	poses	a	particular	challenge	for	operating
systems	to	adapt	to	applications	that	are	adapting	to	their	physical	resources.

Exercises

1.	 A	computer	system	has	a	1	KB	page	size	and	keeps	the	page	table	for	each	process	in
main	memory.	Because	the	page	table	entries	are	usually	cached	on	chip,	the	average
overhead	for	doing	a	full	page	table	lookup	is	40	ns.	To	reduce	this	overhead,	the
computer	has	a	32-entry	TLB.	A	TLB	lookup	requires	1	ns.	What	TLB	hit	rate	is
required	to	ensure	an	average	virtual	address	translation	time	of	2	ns?

2.	 Most	modern	computer	systems	choose	a	page	size	of	4	KB.
a.	 Give	a	set	of	reasons	why	doubling	the	page	size	might	increase	performance.
b.	 Give	a	set	of	reasons	why	doubling	the	page	size	might	decrease	performance.

3.	 For	each	of	the	following	statements,	indicate	whether	the	statement	is	true	or	false,
and	explain	why.

a.	 A	direct	mapped	cache	can	sometimes	have	a	higher	hit	rate	than	a	fully
associative	cache	(on	the	same	reference	pattern).



b.	 Adding	a	cache	never	hurts	performance.

4.	 Suppose	an	application	is	assigned	4	pages	of	physical	memory	and	the	memory	is
initially	empty.	It	then	references	pages	in	the	following	sequence:

ACBDBAEFBFAGEFA

a.	 Show	how	the	system	would	fault	pages	into	the	four	frames	of	physical
memory,	using	the	LRU	replacement	policy.

b.	 Show	how	the	system	would	fault	pages	into	the	four	frames	of	physical
memory,	using	the	MIN	replacement	policy.

c.	 Show	how	the	system	would	fault	pages	into	the	four	frames	of	physical
memory,	using	the	clock	replacement	policy.

5.	 Is	least	recently	used	a	good	cache	replacement	algorithm	to	use	for	a	workload
following	a	zipf	distribution?	Briefly	explain	why	or	why	not.

6.	 Briefly	explain	how	to	simulate	a	modify	bit	per	page	for	the	page	replacement
algorithm	if	the	hardware	does	not	provide	one.

7.	 Suppose	we	have	four	programs:
a.	 One	exhibits	both	spatial	and	temporal	locality.
b.	 One	touches	each	page	sequentially,	and	then	repeats	the	scan	in	a	loop.
c.	 One	references	pages	according	to	a	Zipf	distribution	(e.g.,	it	is	a	web	server	and

its	memory	consists	of	cached	web	pages).
d.	 One	generates	memory	references	completely	at	random	using	a	uniform

random	number	generator.

All	four	programs	use	the	same	total	amount	of	virtual	memory	—	that	is,	they	both
touch	N	distinct	virtual	pages,	amongst	a	much	larger	number	of	total	references.

For	each	program,	sketch	a	graph	showing	the	rate	of	progress	(instructions	per	unit
time)	of	each	program	as	a	function	of	the	physical	memory	available	to	the	program,
from	0	to	N,	assuming	the	page	replacement	algorithm	approximates	least	recently
used.

8.	 Suppose	a	program	repeatedly	scans	linearly	through	a	large	array	in	virtual	memory.
In	other	words,	if	the	array	is	four	pages	long,	its	page	reference	pattern	is
ABCDABCDABCD…

For	each	of	the	following	page	replacement	algorithms,	sketch	a	graph	showing	the
rate	of	progress	(instructions	per	unit	time)	of	each	program	as	a	function	of	the
physical	memory	available	to	the	program,	from	0	to	N,	where	N	is	sufficient	to	hold
the	entire	array.

a.	 FIFO
b.	 Least	recently	used
c.	 Clock	algorithm
d.	 Nth	chance	algorithm
e.	 MIN

9.	 Consider	a	computer	system	running	a	general-purpose	workload	with	demand



paging.	The	system	has	two	disks,	one	for	demand	paging	and	one	for	file	system
operations.	Measured	utilizations	(in	terms	of	time,	not	space)	are	given	in
Figure	9.23.

Processor	utilization 20.0%

Paging	Disk 99.7%

File	Disk 10.0%

Network 5.0%

Figure	9.23:	Measured	utilizations	for	sample	system	under	consideration.

For	each	of	the	following	changes,	say	what	its	likely	impact	will	be	on	processor
utilization,	and	explain	why.	Is	it	likely	to	significantly	increase,	marginally	increase,
significantly	decrease,	marginally	decrease,	or	have	no	effect	on	the	processor
utilization?

a.	 Get	a	faster	CPU

b.	 Get	a	faster	paging	disk

c.	 Increase	the	degree	of	multiprogramming

10.	 An	operating	system	with	a	physically	addressed	cache	uses	page	coloring	to	more
fully	utilize	the	cache.

a.	 How	many	page	colors	are	needed	to	fully	utilize	a	physically	addressed	cache,
with	1	TB	of	main	memory,	an	8	MB	cache	with	4-way	set	associativity,	and	a	4
KB	page	size?

b.	 Develop	an	algebraic	formula	to	compute	the	number	of	page	colors	needed	for
an	arbitrary	configuration	of	cache	size,	set	associativity,	and	page	size.

11.	 The	sequence	of	virtual	pages	referenced	by	a	program	has	length	p	with	n	distinct
page	numbers	occurring	in	it.	Let	m	be	the	number	of	page	frames	that	are	allocated
to	the	process	(all	the	page	frames	are	initially	empty).	Let	n	>	m.

a.	 What	is	the	lower	bound	on	the	number	of	page	faults?
b.	 What	is	the	upper	bound	on	the	number	of	page	faults?

The	lower/upper	bound	should	be	for	any	page	replacement	policy.

12.	 You	have	decided	to	splurge	on	a	low	end	netbook	for	doing	your	operating	systems
homework	during	lectures	in	your	non-computer	science	classes.	The	netbook	has	a
single-level	TLB	and	a	single-level,	physically	addressed	cache.	It	also	has	two	levels
of	page	tables,	and	the	operating	system	does	demand	paging	to	disk.

The	netbook	comes	in	various	configurations,	and	you	want	to	make	sure	the



configuration	you	purchase	is	fast	enough	to	run	your	applications.	To	get	a	handle
on	this,	you	decide	to	measure	its	cache,	TLB	and	paging	performance	running	your
applications	in	a	virtual	machine.	Figure	9.24	lists	what	you	discover	for	your
workload.

Measurement Value

PCacheMiss	=	probability	of	a	cache	miss 0.01

PTLBmiss	=	probability	of	a	TLB	miss 0.01

Pfault	=	probability	of	a	page	fault,	given	a	TLB	miss	occurs 0.00002

T	cache	=	time	to	access	cache 1	ns	=	0.001	μs

T	TLB	=	time	to	access	TLB 1	ns	=	0.001	μs

T	DRAM	=	time	to	access	main	memory 100	ns	=	0.1	μs

T	disk	=	time	to	transfer	a	page	to/from	disk 107	ns	=	10	ms

Figure	9.24:	Sample	measurements	of	cache	behavior	on	the	low-end	netbook
described	in	the	exercises.

The	TLB	is	refilled	automatically	by	the	hardware	on	a	TLB	miss.	The	page	tables
are	kept	in	physical	memory	and	are	not	cached,	so	looking	up	a	page	table	entry
incurs	two	memory	accesses	(one	for	each	level	of	the	page	table).	You	may	assume
the	operating	system	keeps	a	pool	of	clean	pages,	so	pages	do	not	need	to	be	written
back	to	disk	on	a	page	fault.

a.	 What	is	the	average	memory	access	time	(the	time	for	an	application	program	to
do	one	memory	reference)	on	the	netbook?	Express	your	answer	algebraically
and	compute	the	result	to	two
significant	digits.

b.	 The	netbook	has	a	few	optional	performance	enhancements:

Item Specs Price

Faster	disk	drive Transfers	a	page	in	7	ms $100

500	MB	more	DRAMMakes	probability	of	a	page	fault	0.00001 $100



Faster	network	card Allows	paging	to	remote	memory. $100

With	the	faster	network	card,	the	time	to	access	remote	memory	is	500	ms,	and
the	probability	of	a	remote	memory	miss	(need	to	go	to	disk),	given	there	is	a
page	fault	is	0.5.

Suppose	you	have	$200.	What	options	should	you	buy	to	maximize	the
performance	of	the	netbook	for	this	workload?

13.	 On	a	computer	with	virtual	memory,	suppose	a	program	repeatedly	scans	through	a
very	large	array.	In	other	words,	if	the	array	is	four	pages	long,	its	page	reference
pattern	is	ABCDABCDABCD…

Sketch	a	graph	showing	the	paging	behavior,	for	each	of	the	following	page
replacement	algorithms.	The	y-axis	of	the	graph	is	the	number	of	page	faults	per
referenced	page,	varying	from	0	to	1;	the	x-axis	is	the	size	of	the	array	being	scanned,
varying	from	smaller	than	physical	memory	to	much	larger	than	physical	memory.
Label	any	interesting	points	on	the	graph	on	both	the	x	and	y	axes.

a.	 FIFO
b.	 LRU
c.	 Clock
d.	 MIN

14.	 Consider	two	programs,	one	that	exhibits	spatial	and	temporal	locality,	and	the	other
that	exhibits	neither.	To	make	the	comparison	fair,	they	both	use	the	same	total
amount	of	virtual	memory	—	that	is,	they	both	touch	N	distinct	virtual	pages,	among
a	much	larger	number	of	total	references.

Sketch	graphs	showing	the	rate	of	progress	(instructions	per	unit	time)	of	each
program	as	a	function	of	the	physical	memory	available	to	the	program,	from	0	to	N,
assuming	the	clock	algorithm	is	used	for	page	replacement.

a.	 Program	exhibiting	locality,	running	by	itself

b.	 Program	exhibiting	no	locality,	running	by	itself

c.	 Program	exhibiting	locality,	running	with	the	program	exhibiting	no	locality
(assume	both	have	the	same	value	for	N).

d.	 Program	exhibiting	no	locality,	running	with	the	program	exhibiting	locality
(assume	both	have	the	same	N).

15.	 Suppose	we	are	using	the	clock	algorithm	to	decide	page	replacement,	in	its	simplest
form	(“first-chance”	replacement,	where	the	clock	is	only	advanced	on	a	page	fault
and	not	in	the	background).

A	crucial	issue	in	the	clock	algorithm	is	how	many	page	frames	must	be	considered
in	order	to	find	a	page	to	replace.	Assuming	we	have	a	sequence	of	F	page	faults	in	a
system	with	P	page	frames,	let	C(F,P)	be	the	number	of	pages	considered	for
replacement	in	handling	the	F	page	faults	(if	the	clock	hand	sweeps	by	a	page	frame
multiple	times,	it	is	counted	each	time).



a.	 Give	an	algebraic	formula	for	the	minimum	possible	value	of	C(F,P).

b.	 Give	an	algebraic	formula	for	the	maximum	possible	value	of	C(F,P).





10.	Advanced	Memory	Management

All	problems	in	computer	science	can	be	solved	by	another	level	of	indirection.	—David
Wheeler

At	an	abstract	level,	an	operating	system	provides	an	execution	context	for	application
processes,	consisting	of	limits	on	privileged	instructions,	the	process’s	memory	regions,	a
set	of	system	calls,	and	some	way	for	the	operating	system	to	periodically	regain	control
of	the	processor.	By	interposing	on	that	interface	—	most	commonly,	by	catching	and
transforming	system	calls	or	memory	references	—	the	operating	system	can	transparently
insert	new	functionality	to	improve	system	performance,	reliability,	and	security.

Interposing	on	system	calls	is	straightforward.	The	kernel	uses	a	table	lookup	to	determine
which	routine	to	call	for	each	system	call	invoked	by	the	application	program.	The	kernel
can	redirect	a	system	call	to	a	new	enhanced	routine	by	simply	changing	the	table	entry.

A	more	interesting	case	is	the	memory	system.	Address	translation	hardware	provides	an
efficient	way	for	the	operating	system	to	monitor	and	gain	control	on	every	memory
reference	to	a	specific	region	of	memory,	while	allowing	other	memory	references	to
continue	unaffected.	(Equivalently,	software-based	fault	isolation	provides	many	of	the
same	hooks,	with	different	tradeoffs	between	interposition	and	execution	speed.)	This
makes	address	translation	a	powerful	tool	for	operating	systems	to	introduce	new,
advanced	services	to	applications.	We	have	already	shown	how	to	use	address	translation
for:

Protection.	Operating	systems	use	address	translation	hardware,	along	with	segment
and	page	table	permissions,	to	restrict	access	by	applications	to	privileged	memory
locations	such	as	those	in	the	kernel.

Fill-on-demand/zero-on-demand.	By	setting	some	page	table	permissions	to
invalid,	the	kernel	can	start	executing	a	process	before	all	of	its	code	and	data	has
been	loaded	into	memory;	the	hardware	will	trap	to	the	kernel	if	the	process
references	data	before	it	is	ready.	Similarly,	the	kernel	can	zero	data	and	heap	pages
in	the	background,	relying	on	page	reference	faults	to	catch	the	first	time	an
application	uses	an	empty	page.	The	kernel	can	also	allocate	memory	for	kernel	and
user	stacks	only	as	needed.	By	marking	unused	stack	pages	as	invalid,	the	kernel
needs	to	allocate	those	pages	only	if	the	program	executes	a	deep	procedure	call
chain.

Copy-on-write.	Copy-on-write	allows	multiple	processes	to	have	logically	separate
copies	of	the	same	memory	region,	backed	by	a	single	physical	copy	in	memory.
Each	page	in	the	region	is	mapped	read-only	in	each	process;	the	operating	system
makes	a	physical	copy	only	when	(and	if)	a	page	is	modified.

Memory-mapped	files.	Disk	files	can	be	made	part	of	a	process’s	virtual	address
space,	allowing	the	process	to	access	the	data	in	the	file	using	normal	processor
instructions.	When	a	page	from	a	memory-mapped	file	is	first	accessed,	a	protection



fault	traps	to	the	operating	system	so	that	it	can	bring	the	page	into	memory	from
disk.	The	first	write	to	a	file	block	can	also	be	caught,	marking	the	block	as	needing
to	be	written	back	to	disk.

Demand	paged	virtual	memory.	The	operating	system	can	run	programs	that	use
more	memory	than	is	physically	present	on	the	computer,	by	catching	references	to
pages	that	are	not	physically	present	and	filling	them	from	disk	or	cluster	memory.

In	this	chapter,	we	explore	how	to	construct	a	number	of	other	advanced	operating	system
services	by	catching	and	re-interpreting	memory	references	and	system	calls.

Chapter	roadmap:

Zero-Copy	I/O.	How	do	we	improve	the	performance	of	transferring	blocks	of	data
between	user-level	programs	and	hardware	devices?	(Section	10.1)

Virtual	Machines.	How	do	we	execute	an	operating	system	on	top	of	another
operating	system,	and	how	can	we	use	that	abstraction	to	introduce	new	operating
system	services?	(Section	10.2)

Fault	Tolerance.	How	can	we	make	applications	resilient	to	machine	crashes?
(Section	10.3)

Security.	How	can	we	contain	malicious	applications	that	can	exploit	unknown	faults
inside	the	operating	system?	(Section	10.4)

User-Level	Memory	Management.	How	do	we	give	applications	control	over	how
their	memory	is	managed?	(Section	10.5)

10.1	Zero-Copy	I/O



Figure	10.1:	A	web	server	gets	a	request	from	the	network.	The	server	first	asks	the	kernel	to	copy	the	requested	file
from	disk	or	its	file	buffer	into	the	server’s	address	space.	The	server	then	asks	the	kernel	to	copy	the	contents	of	the
file	back	out	to	the	network.

A	common	task	for	operating	systems	is	to	stream	data	between	user-level	programs	and
physical	devices	such	as	disks	and	network	hardware.	However,	this	streaming	can	be
expensive	in	processing	time	if	the	data	is	copied	as	it	moves	across	protection	boundaries.
A	network	packet	needs	to	go	from	the	network	interface	hardware,	into	kernel	memory,
and	then	to	user-level;	the	response	needs	to	go	from	user-level	back	into	kernel	memory
and	then	from	kernel	memory	to	the	network	hardware.

Consider	the	operation	of	the	web	server,	as	pictured	in	Figure	10.1.	Almost	all	web
servers	are	implemented	as	user-level	programs.	This	way,	it	is	easy	to	reconfigure	server
behavior,	and	bugs	in	the	server	implementation	do	not	necessarily	compromise	system
security.

A	number	of	steps	need	to	happen	for	a	web	server	to	respond	to	a	web	request.	For	this
example,	assume	that	the	connection	between	the	client	and	server	is	already	established,
there	is	a	server	thread	allocated	to	each	client	connection,	and	we	use	explicit	read/write
system	calls	rather	than	memory	mapped	files.

Server	reads	from	network.	The	server	thread	calls	into	the	kernel	to	wait	for	an
arriving	request.

Packet	arrival.	The	web	request	arrives	from	the	network;	the	network	hardware
uses	DMA	to	copy	the	packet	data	into	a	kernel	buffer.

Copy	packet	data	to	user-level.	The	operating	system	parses	the	packet	header	to
determine	which	user	process	is	to	receive	the	web	request.	The	kernel	copies	the
data	into	the	user-level	buffer	provided	by	the	server	thread	and	returns	to	user-level.



Server	reads	file.	The	server	parses	the	data	in	the	web	request	to	determine	which
file	is	requested.	It	issues	a	file	read	system	call	back	to	the	kernel,	providing	a	user-
level	buffer	to	hold	the	file	contents.

Data	arrival.	The	kernel	issues	the	disk	request,	and	the	disk	controller	copies	the
data	from	the	disk	into	a	kernel	buffer.	If	the	file	data	is	already	in	the	file	buffer
cache,	as	will	often	be	the	case	for	popular	web	requests,	this	step	is	skipped.

Copy	file	data	to	user-level.	The	kernel	copies	the	data	into	the	buffer	provided	by
the	user	process	and	returns	to	user-level.

Server	write	to	network.	The	server	turns	around	and	hands	the	buffer	containing
the	file	data	back	to	the	kernel	to	send	out	to	the	network.

Copy	data	to	kernel.	The	kernel	copies	the	data	from	the	user-level	buffer	into	a
kernel	buffer,	formats	the	packet,	and	issues	the	request	to	the	network	hardware.

Data	send.	The	hardware	uses	DMA	to	copy	the	data	from	the	kernel	buffer	out	to
the	network.

Although	we	have	illustrated	this	with	a	web	server,	a	similar	process	occurs	for	any
application	that	streams	data	in	or	out	of	a	computer.	Examples	include	a	web	client,
online	video	or	music	service,	BitTorrent,	network	file	systems,	and	even	a	software
download.	For	each	of	these,	data	is	copied	from	hardware	into	the	kernel	and	then	into
user-space,	or	vice	versa.

We	could	eliminate	the	extra	copy	across	the	kernel-user	boundary	by	moving	each	of
these	applications	into	the	kernel.	However,	that	would	be	impractical	as	it	would	require
trusting	the	applications	with	the	full	power	of	the	operating	system.	Alternately,	we	could
modify	the	system	call	interface	to	allow	applications	to	directly	manipulate	data	stored	in
a	kernel	buffer,	without	first	copying	it	to	user	memory.	However,	this	is	not	a	general-
purpose	solution;	it	would	not	work	if	the	application	needed	to	do	any	work	on	the	buffer
as	opposed	to	only	transferring	it	from	one	hardware	device	to	another.

Instead,	two	solutions	to	zero-copy	I/O	are	used	in	practice.	Both	eliminate	the	copy	across
the	kernel-user	boundary	for	large	blocks	of	data;	for	small	chunks	of	data,	the	extra	copy
does	not	hurt	performance.

The	more	widely	used	approach	manipulates	the	process	page	table	to	simulate	a	copy.	For
this	to	work,	the	application	must	first	align	its	user-level	buffer	to	a	page	boundary.	The
user-level	buffer	is	provided	to	the	kernel	on	a	read	or	write	system	call,	and	its	alignment
and	size	is	up	to	the	application.

The	key	idea	is	that	a	page-to-page	copy	from	user	to	kernel	space	or	vice	versa	can	be
simulated	by	changing	page	table	pointers	instead	of	physically	copying	memory.

For	a	copy	from	user-space	to	the	kernel	(e.g.,	on	a	network	or	file	system	write),	the
kernel	changes	the	permissions	on	the	page	table	entry	for	the	user-level	buffer	to	prevent
it	from	being	modified.	The	kernel	must	also	pin	the	page	to	prevent	it	from	being	evicted
by	the	virtual	memory	manager.	In	the	common	case,	this	is	enough	—	the	page	will	not
normally	be	modified	while	the	I/O	request	is	in	progress.	If	the	user	program	does	try	to
modify	the	page,	the	program	will	trap	to	the	kernel	and	the	kernel	can	make	an	explicit



copy	at	that	point.

Figure	10.2:	The	contents	of	the	page	table	before	and	after	the	kernel	“copies”	data	to	user-level	by	swapping	the	page
table	entry	to	point	to	the	kernel	buffer.

In	the	other	direction,	once	the	data	is	in	the	kernel	buffer,	the	operating	system	can
simulate	a	copy	up	to	user-space	by	switching	the	pointer	in	the	page	table,	as	shown	in
Figure	10.2.	The	process	page	table	originally	pointed	to	the	page	frame	containing	the
(empty)	user	buffer;	now	it	points	to	the	page	frame	containing	the	(full)	kernel	buffer.	To
the	user	program,	the	data	appears	exactly	where	it	was	expected!	The	kernel	can	reclaim
any	physical	memory	behind	the	empty	buffer.

More	recently,	some	hardware	I/O	devices	have	been	designed	to	be	able	to	transfer	data
to	and	from	virtual	addresses,	rather	than	only	to	and	from	physical	addresses.	The	kernel
hands	the	virtual	address	of	the	user-level	buffer	to	the	hardware	device.	The	hardware
device,	rather	than	the	kernel,	walks	the	multi-level	page	table	to	determine	which
physical	page	frame	to	use	for	the	device	transfer.	When	the	transfer	completes,	the	data	is
automatically	where	it	belongs,	with	no	extra	work	by	the	kernel.	This	procedure	is	a	bit
more	complicated	for	incoming	network	packets,	as	the	decision	as	to	which	process
should	receive	which	packet	is	determined	by	the	contents	of	the	packet	header.	The
network	interface	hardware	therefore	has	to	parse	the	incoming	packet	to	deliver	the	data
to	the	appropriate	process.

10.2	Virtual	Machines

A	virtual	machine	is	a	way	for	a	host	operating	system	to	run	a	guest	operating	system	as
an	application	process.	The	host	simulates	the	behavior	of	a	physical	machine	so	that	the
guest	system	behaves	as	if	it	was	running	on	real	hardware.	Virtual	machines	are	widely
used	on	client	machines	to	run	applications	that	are	not	native	to	the	current	version	of	the
operating	system.	They	are	also	widely	used	in	data	centers	to	allow	a	single	physical
machine	to	be	shared	between	multiple	independent	uses,	each	of	which	can	be	written	as
if	it	has	system	administrator	control	over	the	entire	(virtual)	machine.	For	example,



multiple	web	servers,	representing	different	web	sites,	can	be	hosted	on	the	same	physical
machine	if	they	each	run	inside	a	separate	virtual	machine.

Address	translation	throws	a	wrinkle	into	the	challenge	of	implementing	a	virtual
machine,	but	it	also	opens	up	opportunities	for	efficiencies	and	new	services.

Figure	10.3:	A	virtual	machine	typically	has	two	page	tables:	one	to	translate	from	guest	process	addresses	to	the	guest
physical	memory,	and	one	to	translate	from	guest	physical	memory	addresses	to	host	physical	memory	addresses.

10.2.1	Virtual	Machine	Page	Tables

With	virtual	machines,	we	have	two	sets	of	page	tables,	instead	of	one,	as	shown	in
Figure	10.3:

Guest	physical	memory	to	host	physical	memory.	The	host	operating	system
provides	a	set	of	page	tables	to	constrain	the	execution	of	the	guest	operating	system
kernel.	The	guest	kernel	thinks	it	is	running	on	real,	physical	memory,	but	in	fact	its
addresses	are	virtual.	The	hardware	page	table	translates	each	guest	operating	system
memory	reference	into	a	physical	memory	location,	after	checking	that	the	guest	has
permission	to	read	or	write	each	location.	This	way	the	host	operating	system	can
prevent	bugs	in	the	guest	operating	system	from	overwriting	memory	in	the	host,
exactly	as	if	the	guest	were	a	normal	user-level	process.

Guest	user	memory	to	guest	physical	memory.	In	turn,	the	guest	operating	system
manages	page	tables	for	its	guest	processes,	exactly	as	if	the	guest	kernel	was	running
on	real	hardware.	Since	the	guest	kernel	does	not	know	anything	about	the	physical
page	frames	it	has	been	assigned	by	the	host	kernel,	these	page	tables	translate	from
the	guest	process	addresses	to	the	guest	operating	system	kernel	addresses.

First,	consider	what	happens	when	the	host	operating	system	transfers	control	to	the	guest
kernel.	Everything	works	as	expected.	The	guest	operating	system	can	read	and	write	its
memory,	and	the	hardware	page	tables	provide	the	illusion	that	the	guest	kernel	is	running
directly	on	physical	memory.



Now	consider	what	happens	when	the	guest	operating	system	transfers	control	to	the	guest
process.	The	guest	kernel	is	running	at	user-level,	so	its	attempt	to	transfer	of	control	is	a
privileged	instruction.	Thus,	the	hardware	processor	will	first	trap	back	to	the	host.	The
host	kernel	can	then	simulate	the	transfer	instruction,	handing	control	to	the	user	process.

However,	what	page	table	should	we	use	in	this	case?	We	cannot	use	the	page	table	as	set
up	by	the	guest	operating	system,	as	the	guest	operating	system	thinks	it	is	running	in
physical	memory,	but	it	is	actually	using	virtual	addresses.	Nor	can	we	use	the	page	table
as	set	up	by	the	host	operating	system,	as	that	would	provide	permission	to	the	guest
process	to	access	and	modify	the	guest	kernel	data	structures.	If	we	grant	access	to	the
guest	kernel	memory	to	the	guest	process,	then	the	behavior	of	the	virtual	machine	will	be
compromised.

Figure	10.4:	To	run	a	guest	process,	the	host	operating	system	constructs	a	shadow	page	table	consisting	of	the
composition	of	the	contents	of	the	two	page	tables.

Instead,	we	need	to	construct	a	composite	page	table,	called	a	shadow	page	table,	that
represents	the	composition	of	the	guest	page	table	and	the	host	page	table,	as	shown	in
Figure	10.4.	When	the	guest	kernel	transfers	control	to	a	guest	process,	the	host	kernel
gains	control	and	changes	the	page	table	to	the	shadow	version.

To	keep	the	shadow	page	table	up	to	date,	the	host	operating	system	needs	to	keep	track	of
changes	that	either	the	guest	or	the	host	operating	systems	make	to	their	page	tables.	This
is	easy	in	the	case	of	the	host	OS	—	it	can	check	to	see	if	any	shadow	page	tables	need	to
be	updated	before	it	changes	a	page	table	entry.

To	keep	track	of	changes	that	the	guest	operating	system	makes	to	its	page	tables,
however,	we	need	to	do	a	bit	more	work.	The	host	operating	system	sets	the	memory	of
the	guest	page	tables	as	read-only.	This	ensures	that	the	guest	OS	traps	to	the	host	every



time	it	attempts	to	change	a	page	table	entry.	The	host	uses	this	trap	to	change	the	both	the
guest	page	table	and	the	corresponding	shadow	page	table,	before	resuming	the	guest
operating	system	(with	the	page	table	still	read-only).

Paravirtualization

One	way	to	enable	virtual	machines	to	run	faster	is	to	assume	that	the	guest	operating
system	is	ported	to	the	virtual	machine.	The	hardware	dependent	layer,	specific	to	the
underlying	hardware,	is	replaced	with	code	that	understands	about	the	virtual	machine.
This	is	called	paravirtualization,	because	the	resulting	guest	operating	system	is	almost,
but	not	precisely,	the	same	as	if	it	were	running	on	real,	physical	hardware.

Paravirtualization	is	helpful	in	several	ways.	Perhaps	the	most	important	is	handling	the
idle	loop.	What	should	happen	when	the	guest	operating	system	has	no	threads	to	run?	If
the	guest	believes	it	is	running	on	physical	hardware,	then	nothing	—	the	guest	spins
waiting	for	more	work	to	do,	perhaps	putting	itself	in	low	power	mode.	Eventually	the
hardware	will	cause	a	timer	interrupt,	transferring	control	to	the	host	operating	system.
The	host	can	then	decide	whether	to	resume	the	virtual	machine	or	run	some	other	thread
(or	even	some	other	virtual	machine).

With	paravirtualization,	however,	the	idle	loop	can	be	more	efficient.	The	hardware
dependent	software	implementing	the	idle	loop	can	trap	into	the	host	kernel,	yielding	the
processor	immediately	to	some	other	use.

Likewise,	with	paravirtualization,	the	hardware	dependent	code	inside	the	guest	operating
system	can	make	explicit	calls	to	the	host	kernel	to	change	its	page	tables,	removing	the
need	for	the	host	to	simulate	guest	page	table	management.

The	Intel	architecture	has	recently	added	direct	hardware	support	for	the	composition	of
page	tables	in	virtual	machines.	Instead	of	a	single	page	table,	the	hardware	can	be	set	up
with	two	page	tables,	one	for	the	host	and	one	for	the	guest	operating	system.	When
running	a	guest	process,	on	a	TLB	miss,	the	hardware	translates	the	virtual	address	to	a
guest	physical	page	frame	using	the	guest	page	table,	and	the	hardware	then	translates	the
guest	physical	page	frame	to	the	host	physical	page	frame	using	the	host	page	table.	In
other	words,	the	TLB	contains	the	composition	of	the	two	page	tables,	exactly	as	if	the
host	maintained	an	explicit	shadow	page	table.	Of	course,	if	the	guest	operating	system
itself	hosts	a	virtual	machine	as	a	guest	user	process,	then	the	guest	kernel	must	construct
a	shadow	page	table.

Although	this	hardware	support	simplifies	the	construction	of	virtual	machines,	it	is	not
clear	if	it	improves	performance.	The	handling	of	a	TLB	miss	is	slower	since	the	host
operating	system	must	consult	two	page	tables	instead	of	one;	changes	to	the	guest	page
table	are	faster	because	the	host	does	not	need	to	maintain	the	shadow	page	table.	It
remains	to	be	seen	if	this	tradeoff	is	useful	in	practice.

10.2.2	Transparent	Memory	Compression



A	theme	running	throughout	this	book	is	the	difficulty	of	multiplexing	multiplexors.	With
virtual	machines,	both	the	host	operating	system	and	the	guest	operating	system	are
attempting	to	do	the	same	task:	to	efficiently	multiplex	a	set	of	tasks	onto	a	limited	amount
of	memory.	Decisions	the	guest	operating	system	takes	to	manage	its	memory	may	work
at	cross-purposes	to	the	decisions	that	the	host	operating	system	takes	to	manage	its
memory.

Efficient	use	of	memory	can	become	especially	important	in	data	centers.	Often,	a	single
physical	machine	in	a	data	center	is	configured	to	run	many	virtual	machines	at	the	same
time.	For	example,	one	machine	can	host	many	different	web	sites,	each	of	which	is	too
small	to	merit	a	dedicated	machine	on	its	own.

To	make	this	work,	the	system	needs	enough	memory	to	be	able	to	run	many	different
operating	systems	at	the	same	time.	The	host	operating	system	can	help	by	sharing
memory	between	guest	kernels,	e.g.,	if	it	is	running	two	guest	kernels	with	the	same
executable	kernel	image.	Likewise,	the	guest	operating	system	can	help	by	sharing
memory	between	guest	applications,	e.g.,	if	it	is	running	two	copies	of	the	same	program.
However,	if	different	guest	kernels	both	run	a	copy	of	the	same	user	process	(e.g.,	both	run
the	Apache	web	server),	or	use	the	same	library,	the	host	kernel	has	no	(direct)	way	to
share	pages	between	those	two	instances.

Another	example	occurs	when	a	guest	process	exits.	The	guest	operating	system	places	the
page	frames	for	the	exiting	process	on	the	free	list	for	reallocation	to	other	processes.	The
contents	of	any	data	pages	will	never	be	used	again;	in	fact,	the	guest	kernel	will	need	to
zero	those	pages	before	they	are	reassigned.	However,	the	host	operating	system	has	no
(direct)	way	to	know	this.	Eventually	those	pages	will	be	evicted	by	the	host,	e.g.,	when
they	become	least	recently	used.	In	the	meantime,	however,	the	host	operating	system
might	have	evicted	pages	from	the	guest	that	are	still	active.

One	solution	is	to	more	tightly	coordinate	the	guest	and	host	memory	managers	so	that
each	knows	what	the	other	is	doing.	We	discuss	this	in	more	detail	later	in	this	Chapter.

Commercial	virtual	machine	implementations	take	a	different	approach,	exploiting
hardware	address	protection	to	manage	the	sharing	of	common	pages	between	virtual
machines.	These	systems	run	a	scavenger	in	the	background	that	looks	for	pages	that	can
be	shared	across	virtual	machines.	Once	a	common	page	is	identified,	the	host	kernel
manipulates	the	page	table	pointers	to	provide	the	illusion	that	each	guest	has	its	own	copy
of	the	page,	even	though	the	physical	representation	is	more	compact.



Figure	10.5:	When	a	host	kernel	runs	multiple	virtual	machines,	it	can	save	space	by	storing	a	delta	to	an	existing	page
(page	A)	and	by	using	the	same	physical	page	frame	for	multiple	copies	of	the	same	page	(page	B).

There	are	two	cases	to	consider,	shown	in	Figure	10.5:

Multiple	copies	of	the	same	page.	Two	different	virtual	machines	will	often	have
pages	with	the	same	contents.	An	obvious	case	is	zeroed	pages:	each	kernel	keeps	a
pool	of	pages	that	have	been	zeroed,	ready	to	be	allocated	to	a	new	process.	If	each
guest	operating	system	were	running	on	its	own	machine,	there	would	be	little	cost	to
keeping	this	pool	at	the	ready;	no	one	else	but	the	kernel	can	use	that	memory.
However,	when	the	physical	machine	is	shared	between	virtual	machines,	having
each	guest	keep	its	own	pool	of	zero	pages	is	wasteful.

Instead,	the	host	can	allocate	a	single	zero	page	in	physical	memory	for	all	of	these
instances.	All	pointers	to	the	page	will	be	set	read-only,	so	that	any	attempt	to	modify
the	page	will	cause	a	trap	to	the	host	kernel;	the	kernel	can	then	allocate	a	new
(zeroed)	physical	page	for	that	use,	exactly	as	in	copy-on-write.	Of	course,	the	guest
kernels	do	not	need	to	tell	anyone	when	they	create	a	zero	page,	so	in	the
background,	the	host	kernel	runs	a	scavenger	to	look	for	zero	pages	in	guest	memory.
When	it	finds	one,	it	reclaims	the	physical	page	and	changes	the	page	table	pointers
to	point	at	the	shared	zero	page,	with	read-only	permission.

The	scavenger	can	do	the	same	for	other	shared	page	frames.	The	code	and	data
segments	for	both	applications	and	shared	libraries	will	often	be	the	same	or	quite



similar,	even	across	different	operating	systems.	An	application	like	the	Apache	web
server	will	not	be	re-written	from	scratch	for	every	separate	operating	system;	rather,
some	OS-specific	glue	code	will	be	added	to	match	the	portable	portion	of	the
application	to	its	specific	environment.

Compression	of	unused	pages.	Even	if	a	page	is	different,	it	may	be	close	to	some
other	page	in	a	different	virtual	machine.	For	example,	different	versions	of	the
operating	system	may	differ	in	only	some	small	respects.	This	provides	an
opportunity	for	the	host	kernel	to	introduce	a	new	layer	in	the	memory	hierarchy	to
save	space.

Instead	of	evicting	a	relatively	unused	page,	the	operating	system	can	compress	it.	If
the	page	is	a	delta	of	an	existing	page,	the	compressed	version	may	be	quite	small.
The	kernel	manipulates	page	table	permissions	to	maintain	the	illusion	that	the	delta
is	a	real	page.	The	full	copy	of	the	page	is	marked	read-only;	the	delta	is	marked
invalid.	If	the	delta	is	referenced,	it	can	be	re-constituted	as	a	full	page	more	quickly
than	if	it	was	stored	on	disk.	If	the	original	page	is	modified,	the	delta	can	be	re-
compressed	or	evicted,	as	necessary.

10.3	Fault	Tolerance

All	systems	break.	Despite	our	best	efforts,	application	code	can	have	bugs	that	cause	the
process	to	exit	abruptly.	Operating	system	code	can	have	bugs	that	cause	the	machine	to
halt	and	reboot.	Power	failures	and	hardware	errors	can	also	cause	a	system	to	stop
without	warning.

Most	applications	are	structured	to	periodically	save	user	data	to	disk	for	just	these	types
of	events.	When	the	operating	system	or	application	restarts,	the	program	can	read	the
saved	data	off	disk	to	allow	the	user	to	resume	their	work.

In	this	section,	we	take	this	a	step	further,	to	see	if	we	can	manage	memory	to	recover
application	data	structures	after	a	failure,	and	not	just	user	file	data.

10.3.1	Checkpoint	and	Restart

One	reason	we	might	want	to	recover	application	data	is	when	a	program	takes	a	long	time
to	run.	If	a	simulation	of	the	future	global	climate	takes	a	week	to	compute,	we	do	not
want	to	have	to	start	again	from	scratch	every	time	there	is	a	power	glitch.	If	enough
machines	are	involved	and	the	computation	takes	long	enough,	it	is	likely	that	at	least	one
of	the	machines	will	encounter	a	failure	sometime	during	the	computation.

Of	course,	the	program	could	be	written	to	treat	its	internal	data	as	precious	—	to
periodically	save	its	partial	results	to	a	file.	To	make	sure	the	data	is	internally	consistent,
the	program	would	need	some	natural	stopping	point;	for	example,	the	program	can	save
the	predicted	climate	for	2050	before	it	moves	onto	computing	the	climate	in	2051.

A	more	general	approach	is	to	have	the	operating	system	use	the	virtual	memory	system	to
provide	application	recovery	as	a	service.	If	we	can	save	the	state	of	a	process,	we	can
transparently	restart	it	whenever	the	power	fails,	exactly	where	it	left	off,	with	the	user



none	the	wiser.

Figure	10.6:	By	checkpointing	the	state	of	a	process,	we	can	recover	the	saved	state	of	the	process	after	a	failure	by
restoring	the	saved	copy.

To	make	this	work,	we	first	need	to	suspend	each	thread	executing	in	the	process	and	save
its	state	—	the	program	counter,	stack	pointer,	and	registers	to	application	memory.	Once
all	threads	are	suspended,	we	can	then	store	a	copy	of	the	contents	of	the	application
memory	on	disk.	This	is	called	a	checkpoint	or	snapshot,	illustrated	in	Figure	10.6.	After	a
failure,	we	can	resume	the	execution	by	restoring	the	contents	of	memory	from	the
checkpoint	and	resuming	each	of	the	threads	from	from	exactly	the	point	we	stopped
them.	This	is	called	an	application	restart.

What	would	happen	if	we	allow	threads	to	continue	to	run	while	we	are	saving	the
contents	of	memory	to	disk?	During	the	copy,	we	have	a	race	condition:	some	pages	could
be	saved	before	being	modified	by	some	thread,	while	others	could	be	saved	after	being
modified	by	that	same	thread.	When	we	try	to	restart	the	application,	its	data	structures
could	appear	to	be	corrupted.	The	behavior	of	the	program	might	be	different	from	what
would	have	happened	if	the	failure	had	not	occurred.

Fortunately,	we	can	use	address	translation	to	minimize	the	amount	of	time	we	need	to
have	the	system	stalled	during	a	checkpoint.	Instead	of	copying	the	contents	of	memory	to
disk,	we	can	mark	the	application’s	pages	as	copy-on-write.	At	this	point,	we	can	restart
the	program’s	threads.	As	each	page	reaches	disk,	we	can	reset	the	protection	on	that	page
to	read-write.	When	the	program	tries	to	modify	a	page	before	it	reaches	disk,	the
hardware	will	take	an	exception,	and	the	kernel	can	make	a	copy	of	the	page	—	one	to	be



saved	to	disk	and	one	to	be	used	by	the	running	program.

We	can	take	checkpoints	of	the	operating	system	itself	in	the	same	way.	It	is	easiest	to	do
this	if	the	operating	system	is	running	in	a	virtual	machine.	The	host	can	take	a	checkpoint
by	stopping	the	virtual	machine,	saving	the	processor	state,	and	changing	the	page	table
protections	(in	the	host	page	table)	to	read-only.	The	virtual	machine	is	then	safe	to	restart
while	the	host	writes	the	checkpoint	to	disk	in	the	background.

Checkpoints	and	system	calls

An	implementation	challenge	for	checkpoint/restart	is	to	correctly	handle	any	system
calls	that	are	in	process.	The	state	of	a	program	is	not	only	its	user-level	memory;	it	also
includes	the	state	of	any	threads	that	are	executing	in	the	kernel	and	any	per-process	state
maintained	by	the	kernel,	such	as	its	open	file	descriptors.	While	some	operating	systems
have	been	designed	to	allow	the	kernel	state	of	a	process	to	be	captured	as	part	of	the
checkpoint,	it	is	more	common	for	checkpointing	to	be	supported	only	at	the	virtual
machine	layer.	A	virtual	machine	has	no	state	in	the	kernel	except	for	the	contents	of	its
memory	and	processor	registers.	If	we	need	to	take	a	checkpoint	while	a	trap	handler	is	in
progress,	the	handler	can	simply	be	restarted.

Process	migration	is	the	ability	to	take	a	running	program	on	one	system,	stop	its
execution,	and	resume	it	on	a	different	machine.	Checkpoint	and	restart	provide	a	basis	for
transparent	process	migration.	For	example,	it	is	now	common	practice	to	checkpoint	and
migrate	entire	virtual	machines	inside	a	data	center,	as	one	way	to	balance	load.	If	one
system	is	hosting	two	web	servers,	each	of	which	becomes	heavily	loaded,	we	can	stop
one	and	move	it	to	a	different	machine	so	that	each	can	get	better	performance.

10.3.2	Recoverable	Virtual	Memory

Taking	a	complete	checkpoint	of	a	process	or	a	virtual	machine	is	a	heavyweight
operation,	and	so	it	is	only	practical	to	do	relatively	rarely.	We	can	use	copy-on-write	page
protection	to	resume	the	process	after	starting	the	checkpoint,	but	completing	the
checkpoint	will	still	take	considerable	time	while	we	copy	the	contents	of	memory	out	to
disk.

Can	we	provide	an	application	the	illusion	of	persistent	memory,	so	that	the	contents	of
memory	are	restored	to	a	point	not	long	before	the	failure?	The	ability	to	do	this	is	called
recoverable	virtual	memory.	An	example	where	we	might	like	recoverable	virtual	memory
is	in	an	email	client;	as	you	read,	reply,	and	delete	email,	you	do	not	want	your	work	to	be
lost	if	the	system	crashes.

If	we	put	efficiency	aside,	recoverable	virtual	memory	is	possible.	First,	we	take	a
checkpoint	so	that	some	consistent	version	of	the	application’s	data	is	on	disk.	Next,	we
record	an	ordered	sequence,	or	log,	of	every	update	that	the	application	makes	to	memory.
Once	the	log	is	written	to	disk	we	recover	after	a	failure	by	reading	the	checkpoint	and
applying	the	changes	from	the	log.

This	is	exactly	how	most	text	editors	save	their	backups,	to	allow	them	to	recover



uncommitted	user	edits	after	a	machine	or	application	failure.	A	text	editor	could
repeatedly	write	an	entire	copy	of	the	file	to	a	backup,	but	this	would	be	slow,	particularly
for	a	large	file.	Instead,	a	text	editor	will	write	a	version	of	the	file,	and	then	it	will	append
a	sequence	of	every	change	the	user	makes	to	that	version.	To	avoid	having	to	separately
write	every	typed	character	to	disk,	the	editor	will	batch	changes,	e.g.,	all	of	the	changes
the	user	made	in	the	past	100	milliseconds,	and	write	those	to	disk	as	a	unit.	Even	if	the
very	latest	batch	has	not	been	written	to	disk,	the	user	can	usually	recover	the	state	of	the
file	at	almost	the	instant	immediately	before	the	machine	crash.

A	downside	of	this	algorithm	for	text	editors	is	that	it	can	cause	information	to	be	leaked
without	it	being	visible	in	the	current	version	of	the	file.	Text	editors	sometimes	use	this
same	method	when	the	user	hits	“save”	—	just	append	any	changes	from	the	previous
version,	rather	than	writing	a	fresh	copy	of	the	entire	file.	This	means	that	the	old	version
of	a	file	can	potentially	still	be	recovered	from	a	file.	So	if	you	write	a	memo	insulting
your	boss,	and	then	edit	it	to	tone	it	down,	it	is	best	to	save	a	completely	new	version	of
your	file	before	you	send	it	off!

Will	this	method	work	for	persistent	memory?	Keeping	a	log	of	every	change	to	every
memory	location	in	the	process	would	be	too	slow.	We	would	need	to	trap	on	every	store
instruction	and	save	the	value	to	disk.	In	other	words,	we	would	run	at	the	speed	of	the
trap	handler,	rather	than	the	speed	of	the	processor.

However,	we	can	come	close.	When	we	take	a	checkpoint,	we	mark	all	pages	as	read-only
to	ensure	that	the	checkpoint	includes	a	consistent	snapshot	of	the	state	of	the	process’s
memory.	Then	we	trap	to	the	kernel	on	the	first	store	instruction	to	each	page,	to	allow	the
kernel	to	make	a	copy-on-write.	The	kernel	resets	the	page	to	be	read-write	so	that
successive	store	instructions	to	the	same	page	can	go	at	full	speed,	but	it	can	also	record
the	page	as	having	been	modified.

Figure	10.7:	The	operating	system	can	recover	the	state	of	a	memory	segment	after	a	crash	by	saving	a	sequence	of
incremental	checkpoints.

We	can	take	an	incremental	checkpoint	by	stopping	the	program	and	saving	a	copy	of	any
pages	that	have	been	modified	since	the	previous	checkpoint.	Once	we	change	those	pages
back	to	read-only,	we	can	restart	the	program,	wait	a	bit,	and	take	another	incremental



checkpoint.	After	a	crash,	we	can	recover	the	most	recent	memory	by	reading	in	the	first
checkpoint	and	then	applying	each	of	the	incremental	checkpoints	in	turn,	as	shown	in
Figure	10.7.

How	much	work	we	lose	during	a	machine	crash	is	a	function	of	how	quickly	we	can
completely	write	an	incremental	checkpoint	to	disk.	This	is	governed	by	the	rate	at	which
the	application	creates	new	data.	To	reduce	the	cost	of	an	incremental	checkpoint,
applications	needing	recoverable	virtual	memory	will	designate	a	specific	memory
segment	as	persistent.	After	a	crash,	that	memory	will	be	restored	to	the	latest	incremental
checkpoint,	allowing	the	program	to	quickly	resume	its	work.

10.3.3	Deterministic	Debugging

A	key	to	building	reliable	systems	software	is	the	ability	to	locate	and	fix	problems	when
they	do	occur.	Debugging	a	sequential	program	is	comparatively	easy:	if	you	give	it	the
same	input,	it	will	execute	the	same	code	in	the	same	order,	and	produce	the	same	output.

Debugging	a	concurrent	program	is	much	harder:	the	behavior	of	the	program	may	change
depending	on	the	precise	scheduling	order	chosen	by	the	operating	system.	If	the	program
is	correct,	the	same	output	should	be	produced	on	the	same	input.	If	we	are	debugging	a
program,	however,	it	is	probably	not	correct.	Instead,	the	precise	behavior	of	the	program
may	vary	from	run	to	run	depending	on	which	threads	are	scheduled	first.

Debugging	an	operating	system	is	even	harder:	not	only	does	the	operating	system	make
widespread	use	of	concurrency,	but	it	is	hard	to	tell	sometimes	what	is	its	“input”	and
“output.”

It	turns	out,	however,	that	we	can	use	a	virtual	machine	abstraction	to	provide	a	repeatable
debugging	environment	for	an	operating	system,	and	we	can	in	turn	use	that	to	provide	a
repeatable	debugging	environment	for	concurrent	applications.

It	is	easiest	to	see	this	on	a	uniprocessor.	The	execution	of	an	operating	system	running	in
a	virtual	machine	can	only	be	affected	by	three	factors:	its	initial	state,	the	input	data
provided	by	its	I/O	devices,	and	the	precise	timing	of	interrupts.

Because	the	host	kernel	mediates	each	of	these	for	the	virtual	machine,	it	can	record	them
and	play	them	back	during	debugging.	As	long	as	the	host	exactly	mimics	what	it	did	the
first	time,	the	behavior	of	the	guest	operating	system	will	be	the	same	and	the	behavior	of
all	applications	running	on	top	of	the	guest	operating	system	will	be	the	same.

Replaying	the	input	is	easy,	but	how	do	we	replay	the	precise	timing	of	interrupts?	Most
modern	computer	architectures	have	a	counter	on	the	processor	to	measure	the	number	of
instructions	executed.	The	host	operating	system	can	use	this	to	measure	how	many
instructions	the	guest	operating	system	(or	guest	application)	executed	between	the	point
where	the	host	gave	up	control	of	the	processor	to	the	guest,	and	when	control	returned	to
the	kernel	due	to	an	interrupt	or	trap.

To	replay	the	precise	timing	of	an	asynchronous	interrupt,	the	host	kernel	records	the	guest
program	counter	and	the	instruction	count	at	the	point	when	the	interrupt	was	delivered	to
the	guest.	On	replay,	the	host	kernel	can	set	a	trap	on	the	page	containing	the	program



counter	where	the	next	interrupt	will	be	taken.	Since	the	guest	might	visit	the	same
program	counter	multiple	times,	the	host	kernel	uses	the	instruction	count	to	determine
which	visit	corresponds	to	the	one	where	the	interrupt	was	delivered.	(Some	systems	make
this	even	easier,	by	allowing	the	kernel	to	request	a	trap	whenever	the	instruction	count
reaches	a	certain	value.)

Moreover,	if	we	want	to	skip	ahead	to	some	known	good	intermediate	point,	we	can	take	a
checkpoint,	and	play	forward	the	sequence	of	interrupts	and	input	data	from	there.	This	is
important	as	sometimes	bugs	in	operating	systems	can	take	weeks	to	manifest	themselves;
if	we	needed	to	replay	everything	from	boot	the	debugging	process	would	be	much	more
cumbersome.

Matters	are	more	complex	on	a	multicore	system,	as	the	precise	behavior	of	both	the	guest
operating	system	and	the	guest	applications	will	depend	on	the	precise	ordering	of
instructions	across	the	different	processors.	It	is	an	ongoing	area	of	research	how	best	to
provide	deterministic	execution	in	this	setting.	Provided	that	the	program	being	debugged
has	no	race	conditions	—	that	is,	no	access	to	shared	memory	outside	of	a	critical	section
—	then	its	behavior	will	be	deterministic	with	one	more	piece	of	information.	In	addition
to	the	initial	state,	inputs,	and	asynchronous	interrupts,	we	also	need	to	record	which
thread	acquires	each	critical	section	in	which	order.	If	we	replay	the	threads	in	that	order
and	deliver	interrupts	precisely	and	provide	the	same	device	input,	the	behavior	will	be	the
same.	Whether	this	is	a	practical	solution	is	still	an	open	question.

10.4	Security

Hardware	or	software	address	translation	provides	a	basis	for	executing	untrusted
application	code,	to	allow	the	operating	system	kernel	to	protect	itself	and	other
applications	from	malicious	or	buggy	implementations.

A	modern	smartphone	or	tablet	computer,	however,	has	literally	hundreds	of	thousands	of
applications	that	could	be	installed.	Many	or	most	are	completely	trustworthy,	but	others
are	specifically	designed	to	steal	or	corrupt	local	data	by	exploiting	weaknesses	in	the
underlying	operating	system	or	the	natural	human	tendency	to	trust	technology.	How	is	a
user	to	know	which	is	which?	A	similar	situation	exists	for	the	web:	even	if	most	web	sites
are	innocuous,	some	embed	code	that	exploits	known	vulnerabilities	in	the	browser
defenses.

If	we	cannot	limit	our	exposure	to	potentially	malicious	applications,	what	can	we	do?
One	important	step	is	to	keep	your	system	software	up	to	date.	The	malicious	code	authors
recognize	this:	a	recent	survey	showed	that	the	most	likely	web	sites	to	contain	viruses	are
those	targeted	at	the	most	novice	users,	e.g.,	screensavers	and	children’s	games.

In	this	section,	we	discuss	whether	there	are	additional	ways	to	use	virtual	machines	to
limit	the	scope	of	malicious	applications.

Suppose	you	want	to	download	a	new	application,	or	visit	a	new	web	site.	There	is	some
chance	it	will	work	as	advertised,	and	there	is	some	chance	it	will	contain	a	virus.	Is	there
any	way	to	limit	the	potential	of	the	new	software	to	exploit	some	unknown	vulnerability
in	your	operating	system	or	browser?



One	interesting	approach	is	to	clone	your	operating	system	into	a	new	virtual	machine,
and	run	the	application	in	the	clone	rather	than	on	the	native	operating	system.	A	virtual
machine	constructed	for	the	purpose	of	executing	suspect	code	is	called	a	virtual	machine
honeypot.	By	using	a	virtual	machine,	if	the	code	turns	out	to	be	malicious,	we	can	delete
the	virtual	machine	and	leave	the	underlying	operating	system	as	it	was	before	we
attempted	to	run	the	application.

Creating	a	virtual	machine	to	execute	a	new	application	might	seem	extravagant.
However,	earlier	in	this	chapter,	we	discussed	various	ways	to	make	this	more	efficient:
shadow	page	tables,	memory	compression,	efficient	checkpoint	and	restart,	and	copy-on-
write.	And	of	course,	reinstalling	your	system	after	it	has	become	infected	with	a	virus	is
even	slower!

Both	researchers	and	vendors	of	commercial	anti-virus	software	make	extensive	use	of
virtual	machine	honeypots	to	detect	and	understand	viruses.	For	example,	a	frequent
technique	is	to	create	an	array	of	virtual	machines,	each	with	a	different	version	of	the
operating	system.	By	loading	a	potential	virus	into	each	one,	and	then	simulating	user
behavior,	we	can	more	easily	determine	which	versions	of	software	are	vulnerable	and
which	are	not.

A	limitation	is	that	we	need	to	be	able	to	tell	if	the	browser	or	operating	system	running	in
the	virtual	machine	honeypot	has	been	corrupted.	Often,	viruses	operate	instantly,	by
attempting	to	install	logging	software	or	scanning	the	disk	for	sensitive	information	such
as	credit	card	numbers.	There	is	nothing	to	keep	the	virus	from	lying	in	wait;	this	has
become	more	common	recently,	particularly	those	designed	for	military	or	business
espionage.

Another	limitation	is	that	the	virus	might	be	designed	to	infect	both	the	guest	operating
system	running	in	the	clone	and	the	host	kernel	implementing	the	virtual	machine.	(In	the
case	of	the	web,	the	virus	must	infect	the	browser,	the	guest	operating	system,	and	the
host.)	As	long	as	the	system	software	is	kept	up	to	date,	the	system	is	vulnerable	only	if
the	virus	is	able	to	exploit	some	unknown	weakness	in	the	guest	operating	system	and	a
separate	unknown	weakness	in	the	host	implementation	of	the	virtual	machine.	This
provides	defense	in	depth,	improving	security	through	multiple	layers	of	protection.

10.5	User-Level	Memory	Management

With	the	increasing	sophistication	of	applications	and	their	runtime	systems,	most	widely
used	operating	systems	have	introduced	hooks	for	applications	to	manage	their	own
memory.	While	the	details	of	the	interface	differs	from	system	to	system,	the	hooks
preserve	the	role	of	the	kernel	in	allocating	resources	between	processes	and	in	preventing
access	to	privileged	memory.	Once	a	page	frame	has	been	assigned	to	a	process,	however,
the	kernel	can	leave	it	up	to	the	process	to	determine	what	to	do	with	that	resource.

Operating	systems	can	provide	applications	the	flexibility	to	decide:

Where	to	get	missing	pages.	As	we	noted	in	the	previous	chapter,	a	modern	memory
hierarchy	is	deep	and	complex:	local	disk,	local	non-volatile	memory,	remote
memory	inside	a	data	center,	or	remote	disk.	By	giving	applications	control,	the



kernel	can	keep	its	own	memory	hierarchy	simple	and	local,	while	still	allowing
sophisticated	applications	to	take	advantage	of	network	resources	when	they	are
available,	even	when	those	resources	are	on	machines	running	completely	different
operating	systems.

Which	pages	can	be	accessed.	Many	applications	such	as	browsers	and	databases
need	to	set	up	their	own	application-level	sandboxes	for	executing	untrusted	code.
Today	this	is	done	with	a	combination	of	hardware	and	software	techniques,	as	we
described	in	Chapter	8.	Finer-grained	control	over	page	fault	handling	allows	more
sophisticated	models	for	managing	sharing	between	regions	of	untrusted	code.

Which	pages	should	be	evicted.	Often,	an	application	will	have	better	information
than	the	operating	system	over	which	pages	it	will	reference	in	the	near	future.

Many	applications	can	adapt	the	size	of	their	working	set	to	the	resources	provided	by	the
kernel	but	they	will	have	worse	performance	whenever	there	is	a	mismatch.

Garbage	collected	programs.	Consider	a	program	that	does	its	own	garbage
collection.	When	it	starts	up,	it	allocates	a	block	of	memory	in	its	virtual	address
space	to	serve	as	the	heap.	Periodically,	the	program	scans	through	the	heap	to
compact	its	data	structures,	freeing	up	room	for	additional	data	structures.	This
causes	all	pages	to	appear	to	be	recently	used,	confounding	the	kernel’s	memory
manager.	By	contrast,	the	application	knows	that	the	best	page	to	replace	is	one	that
was	recently	cleaned	of	application	data.

It	is	equally	confounding	to	the	application.	How	does	the	garbage	collector	know
how	much	memory	it	should	allocate	for	the	heap?	Ideally,	the	garbage	collector
should	use	exactly	as	much	memory	as	the	kernel	is	able	to	provide,	and	no	more.	If
the	runtime	heap	is	too	small,	the	program	must	garbage	collect,	even	though	more
page	frames	available.	If	the	heap	is	too	large,	the	kernel	will	page	parts	of	the	heap
to	disk	instead	of	asking	the	application	to	pay	the	lower	overhead	of	compacting	its
memory.

Databases.	Databases	and	other	data	processing	systems	often	manipulate	huge	data
sets	that	must	be	streamed	from	disk	into	memory.	As	we	noted	in	Chapter	9,
algorithms	for	large	data	sets	will	be	more	efficient	if	they	are	customized	to	the
amount	of	available	physical	memory.	If	the	operating	system	evicts	a	page	that	the
database	expects	to	be	in	memory,	these	algorithms	will	run	much	more	slowly.

Virtual	machines.	A	similar	issue	arises	with	virtual	machines.	The	guest	operating
system	running	inside	of	a	virtual	machine	thinks	it	has	a	set	of	physical	page	frames,
which	it	can	assign	to	the	virtual	pages	of	applications	running	in	the	virtual	machine.
In	reality,	however,	the	page	frames	in	the	guest	operating	system	are	virtual	and	can
be	paged	to	disk	by	the	host	operating	system.	If	the	host	operating	system	could	tell
the	guest	operating	system	when	it	needed	to	steal	a	page	frame	(or	donate	a	page
frame),	then	the	guest	would	know	exactly	how	many	page	frames	were	available	to
be	allocated	to	its	applications.

In	each	of	these	cases,	the	performance	of	a	resource	manager	can	be	compromised	if	it



runs	on	top	of	a	virtualized,	rather	than	a	physical,	resource.	What	is	needed	is	for	the
operating	system	kernel	to	communicate	how	much	memory	is	assigned	to	a	process	or
virtual	machine	so	that	the	application	to	do	its	own	memory	management.	As	processes
start	and	complete,	the	amount	of	available	physical	memory	will	change,	and	therefore
the	assignment	to	each	application	will	change.

To	handle	these	needs,	most	operating	systems	provide	some	level	of	application	control
over	memory.	Two	models	have	emerged:

Pinned	pages.	A	simple	and	widely	available	model	is	to	allow	applications	to	pin
virtual	memory	pages	to	physical	page	frames,	preventing	those	pages	from	being
evicted	unless	absolutely	necessary.	Once	pinned,	the	application	can	manage	its
memory	however	it	sees	fit,	for	example,	by	explicitly	shuffling	data	back	and	forth
to	disk.

Figure	10.8:	The	operation	of	a	user-level	page	handler.	On	a	page	fault,	the	hardware	traps	to	the	kernel;	if	the
fault	is	for	a	segment	with	a	user-level	pager,	the	kernel	passes	the	fault	to	the	user-level	handler	to	manage.	The
user-level	handler	is	pinned	in	memory	to	avoid	recursive	faults.

User-level	pagers.	A	more	general	solution	is	for	applications	to	specify	a	user-level
page	handler	for	a	memory	segment.	On	a	page	fault	or	protection	violation,	the
kernel	trap	handler	is	invoked.	Instead	of	handling	the	fault	itself,	the	kernel	passes
control	to	user-level	handler,	as	in	a	UNIX	signal	handler.	The	user-level	handler	can
then	decide	how	to	manage	the	trap:	where	to	fetch	the	missing	page,	what	action	to
take	if	the	application	was	sandbox,	and	which	page	to	replace.	To	avoid	infinite
recursion,	the	user-level	page	handler	must	itself	be	stored	in	pinned	memory.

10.6	Summary	and	Future	Directions



In	this	chapter,	we	have	argued	that	address	translation	provides	a	powerful	tool	for
operating	systems	to	provide	a	set	of	advanced	services	to	applications	to	improve	system
performance,	reliability,	and	security.	Services	such	as	checkpointing,	recoverable
memory,	deterministic	debugging,	and	honeypots	are	now	widely	supported	at	the	virtual
machine	layer,	and	we	believe	that	they	will	come	to	be	standard	in	most	operating
systems	as	well.

Moving	forward,	it	is	clear	that	the	demands	on	the	memory	management	system	for
advanced	services	will	increase.	Not	only	are	memory	hierarchies	becoming	increasingly
complex,	but	the	diversity	of	services	provided	by	the	memory	management	system	has
added	even	more	complexity.

Operating	systems	often	go	through	cycles	of	gradually	increasing	complexity	followed	by
rapid	shifts	back	towards	simplicity.	The	recent	commercial	interest	in	virtual	machines
may	yield	a	shift	back	towards	simpler	memory	management,	by	reducing	the	need	for	the
kernel	to	provide	every	service	that	any	application	might	need.	Processor	architectures
now	directly	support	user-level	page	tables.	This	potentially	opens	up	an	entire	realm	for
more	sophisticated	runtime	systems,	for	those	applications	that	are	themselves	miniature
operating	systems,	and	a	concurrent	simplification	of	the	kernel.	With	the	right	operating
system	support,	applications	will	be	able	to	set	up	and	manage	their	own	page	tables
directly,	implement	their	own	user-level	process	abstractions,	and	provide	their	own
transparent	checkpointing	and	recovery	on	memory	segments.

Exercises

1.	 This	question	concerns	the	operation	of	shadow	page	tables	for	virtual	machines,
where	a	guest	process	is	running	on	top	of	a	guest	operating	system	on	top	of	a	host
operating	system.	The	architecture	uses	paged	segmentation,	with	a	32-bit	virtual
address	divided	into	fields	as	follows:

| 		4	bit	segment	number 		| 		12	bit	page	number 		| 		16	bit	offset 		|

The	guest	operating	system	creates	and	manages	segment	and	page	tables	to	map	the
guest	virtual	addresses	to	guest	physical	memory.	These	tables	are	as	follows	(all
values	in	hexadecimal):

Segment	Table Page	Table	A Page	Table	B

0 Page	Table	A 0 0002 0 0001

1 Page	Table	B 1 0006 1 0004



x (rest	invalid) 2 0000 2 0003

3 0005 x (rest	invalid)

x (rest	invalid)

The	host	operating	system	creates	and	manages	segment	and	page	tables	to	map	the
guest	physical	memory	to	host	physical	memory.	These	tables	are	as	follows:

Segment	Table Page	Table	K

0 Page	Table	K 0 BEEF

x (rest	invalid) 1 F000

2 CAFE

3 3333

4 (invalid)

5 BA11

6 DEAD

7 5555

x (rest	invalid)

a.	 Find	the	host	physical	address	corresponding	to	each	of	the	following	guest
virtual	addresses.	Answer	“invalid	guest	virtual	address”	if	the	guest	virtual
address	is	invalid;	answer	“invalid	guest	physical	address	if	the	guest	virtual
address	maps	to	a	valid	guest	physical	page	frame,	but	the	guest	physical	page
has	an	invalid	virtual	address.

i.	 00000000
ii.	 20021111
iii.	 10012222



iv.	 00023333
v.	 10024444

b.	 Using	the	information	in	the	tables	above,	fill	in	the	contents	of	the	shadow
segment	and	page	tables	for	direct	execution	of	the	guest	process.

c.	 Assuming	that	the	guest	physical	memory	is	contiguous,	list	three	reasons	why
the	host	page	table	might	have	an	invalid	entry	for	a	guest	physical	page	frame,
with	valid	entries	on	either	side.

2.	 Suppose	we	doing	incremental	checkpoints	on	a	system	with	4	KB	pages	and	a	disk
capable	of	transferring	data	at	10	MB/s.

a.	 What	is	the	maximum	rate	of	updates	to	new	pages	if	every	modified	page	is
sent	in	its	entirety	to	disk	on	every	checkpoint	and	we	require	that	each
checkpoint	reach	disk	before	we	start	the	next	checkpoint?

b.	 Suppose	that	most	pages	saved	during	an	incremental	checkpoint	are	only
partially	modified.	Describe	how	you	would	design	a	system	to	save	only	the
modified	portions	of	each	page	as	part	of	the	checkpoint.
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Glossary

absolute	path
A	file	path	name	interpreted	relative	to	the	root	directory.

abstract	virtual	machine
The	interface	provided	by	an	operating	system	to	its	applications,	including	the
system	call	interface,	the	memory	abstraction,	exceptions,	and	signals.

ACID	properties
A	mnemonic	for	the	properties	of	a	transaction:	atomicity,	consistency,	isolation,	and
durability.

acquire-all/release-all
A	design	pattern	to	provide	atomicity	of	a	request	consisting	of	multiple	operations.
A	thread	acquires	all	of	the	locks	it	might	need	before	starting	to	process	a	request;	it
releases	the	locks	once	the	request	is	done.

address	translation
The	conversion	from	the	memory	address	the	program	thinks	it	is	referencing	to	the
physical	location	of	the	memory.

affinity	scheduling
A	scheduling	policy	where	tasks	are	preferentially	scheduled	onto	the	same	processor
they	had	previously	been	assigned,	to	improve	cache	reuse.

annual	disk	failure	rate
The	fraction	of	disks	expected	to	failure	each	year.

API
See:	application	programming	interface.

application	programming	interface
The	system	call	interface	provided	by	an	operating	system	to	applications.

arm
An	attachment	allowing	the	motion	of	the	disk	head	across	a	disk	surface.

arm	assembly
A	motor	plus	the	set	of	disk	arms	needed	to	position	a	disk	head	to	read	or	write	each
surface	of	the	disk.

arrival	rate
The	rate	at	which	tasks	arrive	for	service.

asynchronous	I/O
A	design	pattern	for	system	calls	to	allow	a	single-threaded	process	to	make	multiple
concurrent	I/O	requests.	When	the	process	issues	an	I/O	request,	the	system	call
returns	immediately.	The	process	later	on	receives	a	notification	when	the	I/O
completes.

asynchronous	procedure	call
A	procedure	call	where	the	caller	starts	the	function,	continues	execution
concurrently	with	the	called	function,	and	later	waits	for	the	function	to	complete.

atomic	commit
The	moment	when	a	transaction	commits	to	apply	all	of	its	updates.

atomic	memory
The	value	stored	in	memory	is	the	last	value	stored	by	one	of	the	processors,	not	a
mixture	of	the	updates	of	different	processors.



atomic	operations
Indivisible	operations	that	cannot	be	interleaved	with	or	split	by	other	operations.

atomic	read-modify-write	instruction
A	processor-specific	instruction	that	lets	one	thread	temporarily	have	exclusive	and
atomic	access	to	a	memory	location	while	the	instruction	executes.	Typically,	the
instruction	(atomically)	reads	a	memory	location,	does	some	simple	arithmetic
operation	to	the	value,	and	stores	the	result.

attribute	record
In	NTFS,	a	variable-size	data	structure	containing	either	file	data	or	file	metadata.

availability
The	percentage	of	time	that	a	system	is	usable.

average	seek	time
The	average	time	across	seeks	between	each	possible	pair	of	tracks	on	a	disk.

AVM
See:	abstract	virtual	machine.

backup
A	logically	or	physically	separate	copy	of	a	system’s	main	storage.

base	and	bound	memory	protection
An	early	system	for	memory	protection	where	each	process	is	limited	to	a	specific
range	of	physical	memory.

batch	operating	system
An	early	type	of	operating	system	that	efficiently	ran	a	queue	of	tasks.	While	one
program	was	running,	another	was	being	loaded	into	memory.

bathtub	model
A	model	of	disk	device	failure	combining	device	infant	mortality	and	wear	out.

Belady’s	anomaly
For	some	cache	replacement	policies	and	some	reference	patterns,	adding	space	to	a
cache	can	hurt	the	cache	hit	rate.

best	fit
A	storage	allocation	policy	that	attempts	to	place	a	newly	allocated	file	in	the
smallest	free	region	that	is	large	enough	to	hold	it.

BIOS
The	initial	code	run	when	an	Intel	x86	computer	boots;	acronym	for	Basic
Input/Output	System.	See	also:	Boot	ROM.

bit	error	rate
The	non-recoverable	read	error	rate.

bitmap
A	data	structure	for	block	allocation	where	each	block	is	represented	by	one	bit.

block	device
An	I/O	device	that	allows	data	to	be	read	or	written	in	fixed-sized	blocks.

block	group
A	set	of	nearby	disk	tracks.

block	integrity	metadata
Additional	data	stored	with	a	block	to	allow	the	software	to	validate	that	the	block
has	not	been	corrupted.

blocking	bounded	queue



A	bounded	queue	where	a	thread	trying	to	remove	an	item	from	an	empty	queue	will
wait	until	an	item	is	available,	and	a	thread	trying	to	put	an	item	into	a	full	queue	will
wait	until	there	is	room.

Bohrbugs
Bugs	that	are	deterministic	and	reproducible,	given	the	same	program	input.	See	also:
Heisenbugs.

Boot	ROM
Special	read-only	memory	containing	the	initial	instructions	for	booting	a	computer.

bootloader
Program	stored	at	a	fixed	position	on	disk	(or	flash	RAM)	to	load	the	operating
system	into	memory	and	start	it	executing.

bounded	queue
A	queue	with	a	fixed	size	limit	on	the	number	of	items	stored	in	the	queue.

bounded	resources
A	necessary	condition	for	deadlock:	there	are	a	finite	number	of	resources	that
threads	can	simultaneously	use.

buffer	overflow	attack
An	attack	that	exploits	a	bug	where	input	can	overflow	the	buffer	allocated	to	hold	it,
overwriting	other	important	program	data	structures	with	data	provided	by	the
attacker.	One	common	variation	overflows	a	buffer	allocated	on	the	stack	(e.g.,	a
local,	automatic	variable)	and	replaces	the	function’s	return	address	with	a	return
address	specified	by	the	attacker,	possibly	to	code	“pushed”	onto	the	stack	with	the
overflowing	input.

bulk	synchronous
A	type	of	parallel	application	where	work	is	split	into	independent	tasks	and	where
each	task	completes	before	the	results	of	any	of	the	tasks	can	be	used.

bulk	synchronous	parallel	programming
See:	data	parallel	programming.

bursty	distribution
A	probability	distribution	that	is	less	evenly	distributed	around	the	mean	value	than
an	exponential	distribution.	See:	exponential	distribution.	Compare:	heavy-tailed
distribution.

busy-waiting
A	thread	spins	in	a	loop	waiting	for	a	concurrent	event	to	occur,	consuming	CPU
cycles	while	it	is	waiting.

cache
A	copy	of	data	that	can	be	accessed	more	quickly	than	the	original.

cache	hit
The	cache	contains	the	requested	item.

cache	miss
The	cache	does	not	contain	the	requested	item.

checkpoint
A	consistent	snapshot	of	the	entire	state	of	a	process,	including	the	contents	of
memory	and	processor	registers.

child	process
A	process	created	by	another	process.	See	also:	parent	process.



Circular	SCAN
See:	CSCAN.

circular	waiting
A	necessary	condition	for	deadlock	to	occur:	there	is	a	set	of	threads	such	that	each
thread	is	waiting	for	a	resource	held	by	another.

client-server	communication
Two-way	communication	between	processes,	where	the	client	sends	a	request	to	the
server	to	do	some	task,	and	when	the	operation	is	complete,	the	server	replies	back	to
the	client.

clock	algorithm
A	method	for	identifying	a	not	recently	used	page	to	evict.	The	algorithm	sweeps
through	each	page	frame:	if	the	page	use	bit	is	set,	it	is	cleared;	if	the	use	bit	is	not
set,	the	page	is	reclaimed.

cloud	computing
A	model	of	computing	where	large-scale	applications	run	on	shared	computing	and
storage	infrastructure	in	data	centers	instead	of	on	the	user’s	own	computer.

commit
The	outcome	of	a	transaction	where	all	of	its	updates	occur.

compare-and-swap
An	atomic	read-modify-write	instruction	that	first	tests	the	value	of	a	memory
location,	and	if	the	value	has	not	been	changed,	sets	it	to	a	new	value.

compute-bound	task
A	task	that	primarily	uses	the	processor	and	does	little	I/O.

computer	virus
A	computer	program	that	modifies	an	operating	system	or	application	to	copy	itself
from	computer	to	computer	without	the	computer	owner’s	permission	or	knowledge.
Once	installed	on	a	computer,	a	virus	often	provides	the	attacker	control	over	the
system’s	resources	or	data.

concurrency
Multiple	activities	that	can	happen	at	the	same	time.

condition	variable
A	synchronization	variable	that	enables	a	thread	to	efficiently	wait	for	a	change	to
shared	state	protected	by	a	lock.

continuation
A	data	structure	used	in	event-driven	programming	that	keeps	track	of	a	task’s	current
state	and	its	next	step.

cooperating	threads
Threads	that	read	and	write	shared	state.

cooperative	caching
Using	the	memory	of	nearby	nodes	over	a	network	as	a	cache	to	avoid	the	latency	of
going	to	disk.

cooperative	multi-threading
Each	thread	runs	without	interruption	until	it	explicitly	relinquishes	control	of	the
processor,	e.g.,	by	exiting	or	calling	thread_yield.

copy-on-write
A	method	of	sharing	physical	memory	between	two	logically	distinct	copies	(e.g.,	in



different	processes).	Each	shared	page	is	marked	as	read-only	so	that	the	operating
system	kernel	is	invoked	and	can	make	a	copy	of	the	page	if	either	process	tries	to
write	it.	The	process	can	then	modify	the	copy	and	resume	normal	execution.

copy-on-write	file	system
A	file	system	where	an	update	to	the	file	system	is	made	by	writing	new	versions	of
modified	data	and	metadata	blocks	to	free	disk	blocks.	The	new	blocks	can	point	to
unchanged	blocks	in	the	previous	version	of	the	file	system.	See	also:	COW	file
system.

core	map
A	data	structure	used	by	the	memory	management	system	to	keep	track	of	the	state	of
physical	page	frames,	such	as	which	processes	reference	the	page	frame.

COW	file	system
See:	copy-on-write	file	system.

critical	path
The	minimum	sequence	of	steps	for	a	parallel	application	to	compute	its	result,	even
with	infinite	resources.

critical	section
A	sequence	of	code	that	operates	on	shared	state.

cross-site	scripting
An	attack	against	a	client	computer	that	works	by	compromising	a	server	visited	by
the	client.	The	compromised	server	then	provides	scripting	code	to	the	client	that
accesses	and	downloads	the	client’s	sensitive	data.

cryptographic	signature
A	specially	designed	function	of	a	data	block	and	a	private	cryptographic	key	that
allows	someone	with	the	corresponding	public	key	to	verify	that	an	authorized	entity
produced	the	data	block.	It	is	computationally	intractable	for	an	attacker	without	the
private	key	to	create	a	different	data	block	with	a	valid	signature.

CSCAN
A	variation	of	the	SCAN	disk	scheduling	policy	in	which	the	disk	only	services
requests	when	the	head	is	traveling	in	one	direction.	See	also:	Circular	SCAN.

current	working	directory
The	current	directory	of	the	process,	used	for	interpreting	relative	path	names.

data	breakpoint
A	request	to	stop	the	execution	of	a	program	when	it	references	or	modifies	a
particular	memory	location.

data	parallel	programming
A	programming	model	where	the	computation	is	performed	in	parallel	across	all
items	in	a	data	set.

deadlock
A	cycle	of	waiting	among	a	set	of	threads,	where	each	thread	waits	for	some	other
thread	in	the	cycle	to	take	some	action.

deadlocked	state
The	system	has	at	least	one	deadlock.

declustering
A	technique	for	reducing	the	recovery	time	after	a	disk	failure	in	a	RAID	system	by
spreading	redundant	disk	blocks	across	many	disks.



defense	in	depth
Improving	security	through	multiple	layers	of	protection.

defragment
Coalesce	scattered	disk	blocks	to	improve	spatial	locality,	by	reading	data	from	its
present	storage	location	and	rewriting	it	to	a	new,	more	compact,	location.

demand	paging
Using	address	translation	hardware	to	run	a	process	without	all	of	its	memory
physically	present.	When	the	process	references	a	missing	page,	the	hardware	traps	to
the	kernel,	which	brings	the	page	into	memory	from	disk.

deterministic	debugging
The	ability	to	re-execute	a	concurrent	process	with	the	same	schedule	and	sequence
of	internal	and	external	events.

device	driver
Operating	system	code	to	initialize	and	manage	a	particular	I/O	device.

direct	mapped	cache
Only	one	entry	in	the	cache	can	hold	a	specific	memory	location,	so	on	a	lookup,	the
system	must	check	the	address	against	only	that	entry	to	determine	if	there	is	a	cache
hit.

direct	memory	access
Hardware	I/O	devices	transfer	data	directly	into/out	of	main	memory	at	a	location
specified	by	the	operating	system.	See	also:	DMA.

dirty	bit
A	status	bit	in	a	page	table	entry	recording	whether	the	contents	of	the	page	have
been	modified	relative	to	what	is	stored	on	disk.

disk	buffer	memory
Memory	in	the	disk	controller	to	buffer	data	being	read	or	written	to	the	disk.

disk	infant	mortality
The	device	failure	rate	is	higher	than	normal	during	the	first	few	weeks	of	use.

disk	wear	out
The	device	failure	rate	rises	after	the	device	has	been	in	operation	for	several	years.

DMA
See:	direct	memory	access.

dnode
In	ZFS,	a	file	is	represented	by	variable-depth	tree	whose	root	is	a	dnode	and	whose
leaves	are	its	data	blocks.

double	indirect	block
A	storage	block	containing	pointers	to	indirect	blocks.

double-checked	locking
A	pitfall	in	concurrent	code	where	a	data	structure	is	lazily	initialized	by	first,
checking	without	a	lock	if	it	has	been	set,	and	if	not,	acquiring	a	lock	and	checking
again,	before	calling	the	initialization	function.	With	instruction	re-ordering,	double-
checked	locking	can	fail	unexpectedly.

dual	redundancy	array
A	RAID	storage	algorithm	using	two	redundant	disk	blocks	per	array	to	tolerate	two
disk	failures.	See	also:	RAID	6.

dual-mode	operation



Hardware	processor	that	has	(at	least)	two	privilege	levels:	one	for	executing	the
kernel	with	complete	access	to	the	capabilities	of	the	hardware	and	a	second	for
executing	user	code	with	restricted	rights.	See	also:	kernel-mode	operation.	See	also:
user-mode	operation.

dynamically	loadable	device	driver
Software	to	manage	a	specific	device,	interface,	or	chipset,	added	to	the	operating
system	kernel	after	the	kernel	starts	running.

earliest	deadline	first
A	scheduling	policy	that	performs	the	task	that	needs	to	be	completed	first,	but	only
if	it	can	be	finished	in	time.

EDF
See:	earliest	deadline	first.

efficiency
The	lack	of	overhead	in	implementing	an	abstraction.

erasure	block
The	unit	of	erasure	in	a	flash	memory	device.	Before	any	portion	of	an	erasure	block
can	be	over-written,	every	cell	in	the	entire	erasure	block	must	be	set	to	a	logical	“1.”

error	correcting	code
A	technique	for	storing	data	redundantly	to	allow	for	the	original	data	to	be	recovered
even	though	some	bits	in	a	disk	sector	or	flash	memory	page	are	corrupted.

event-driven	programming
A	coding	design	pattern	where	a	thread	spins	in	a	loop;	each	iteration	gets	and
processes	the	next	I/O	event.

exception
See:	processor	exception.

executable	image
File	containing	a	sequence	of	machine	instructions	and	initial	data	values	for	a
program.

execution	stack
Space	to	store	the	state	of	local	variables	during	procedure	calls.

exponential	distribution
A	convenient	probability	distribution	for	use	in	queueing	theory	because	it	has	the
property	of	being	memoryless.	For	a	continuous	random	variable	with	a	mean	of	1⁄λ,
the	probability	density	function	is	f(x)	=	λ	times	e	raised	to	the	-λx.

extent
A	variable-sized	region	of	a	file	that	is	stored	in	a	contiguous	region	on	the	storage
device.

external	fragmentation
In	a	system	that	allocates	memory	in	contiguous	regions,	the	unusable	memory
between	valid	contiguous	allocations.	A	new	request	for	memory	may	find	no	single
free	region	that	is	both	contiguous	and	large	enough,	even	though	there	is	enough
free	memory	in	aggregate.

fairness
Partitioning	of	shared	resources	between	users	or	applications	either	equally	or
balanced	according	to	some	desired	priorities.

false	sharing



Extra	inter-processor	communication	required	because	a	single	cache	entry	contains
portions	of	two	different	data	structures	with	different	sharing	patterns.

fate	sharing
When	a	crash	in	one	module	implies	a	crash	in	another.	For	example,	a	library	shares
fate	with	the	application	it	is	linked	with;	if	either	crashes,	the	process	exits.

fault	isolation
An	error	in	one	application	should	not	disrupt	other	applications,	or	even	the
operating	system	itself.

file
A	named	collection	of	data	in	a	file	system.

file	allocation	table
An	array	of	entries	in	the	FAT	file	system	stored	in	a	reserved	area	of	the	volume,
where	each	entry	corresponds	to	one	file	data	block,	and	points	to	the	next	block	in
the	file.

file	data
Contents	of	a	file.

file	descriptor
A	handle	to	an	open	file,	device,	or	channel.	See	also:	file	handle.	See	also:	file
stream.

file	directory
A	list	of	human-readable	names	plus	a	mapping	from	each	name	to	a	specific	file	or
sub-directory.

file	handle
See:	file	descriptor.

file	index	structure
A	persistently	stored	data	structure	used	to	locate	the	blocks	of	the	file.

file	metadata
Information	about	a	file	that	is	managed	by	the	operating	system,	but	not	including
the	file	contents.

file	stream
See:	file	descriptor.

file	system
An	operating	system	abstraction	that	provides	persistent,	named	data.

file	system	fingerprint
A	checksum	across	the	entire	file	system.

fill-on-demand
A	method	for	starting	a	process	before	all	of	its	memory	is	brought	in	from	disk.	If
the	first	access	to	the	missing	memory	triggers	a	trap	to	the	kernel,	the	kernel	can	fill
the	memory	and	then	resume.

fine-grained	locking
A	way	to	increase	concurrency	by	partitioning	an	object’s	state	into	different	subsets
each	protected	by	a	different	lock.

finished	list
The	set	of	threads	that	are	complete	but	not	yet	de-allocated,	e.g.,	because	a	join	may
read	the	return	value	from	the	thread	control	block.

first-in-first-out



A	scheduling	policy	that	performs	each	task	in	the	order	in	which	it	arrives.
flash	page	failure

A	flash	memory	device	failure	where	the	data	stored	on	one	or	more	individual	pages
of	flash	are	lost,	but	the	rest	of	the	flash	continues	to	operate	correctly.

flash	translation	layer
A	layer	that	maps	logical	flash	pages	to	different	physical	pages	on	the	flash	device.
See	also:	FTL.

flash	wear	out
After	some	number	of	program-erase	cycles,	a	given	flash	storage	cell	may	no	longer
be	able	to	reliably	store	information.

fork-join	parallelism
A	type	of	parallel	programming	where	threads	can	be	created	(forked)	to	do	work	in
parallel	with	a	parent	thread;	a	parent	may	asynchronously	wait	for	a	child	thread	to
finish	(join).

free	space	map
A	file	system	data	structure	used	to	track	which	storage	blocks	are	free	and	which	are
in	use.

FTL
See:	flash	translation	layer.

full	disk	failure
When	a	disk	device	stops	being	able	to	service	reads	or	writes	to	all	sectors.

full	flash	drive	failure
When	a	flash	device	stops	being	able	to	service	reads	or	writes	to	all	memory	pages.

fully	associative	cache
Any	entry	in	the	cache	can	hold	any	memory	location,	so	on	a	lookup,	the	system
must	check	the	address	against	all	of	the	entries	in	the	cache	to	determine	if	there	is	a
cache	hit.

gang	scheduling
A	scheduling	policy	for	multiprocessors	that	performs	all	of	the	runnable	tasks	for	a
particular	process	at	the	same	time.

Global	Descriptor	Table
The	x86	terminology	for	a	segment	table	for	shared	segments.	A	Local	Descriptor
Table	is	used	for	segments	that	are	private	to	the	process.

grace	period
For	a	shared	object	protected	by	a	read-copy-update	lock,	the	time	from	when	a	new
version	of	a	shared	object	is	published	until	the	last	reader	of	the	old	version	is
guaranteed	to	be	finished.

green	threads
A	thread	system	implemented	entirely	at	user-level	without	any	reliance	on	operating
system	kernel	services,	other	than	those	designed	for	single-threaded	processes.

group	commit
A	technique	that	batches	multiple	transaction	commits	into	a	single	disk	operation.

guest	operating	system
An	operating	system	running	in	a	virtual	machine.

hard	link
The	mapping	between	a	file	name	and	the	underlying	file,	typically	when	there	are



multiple	path	names	for	the	same	underlying	file.
hardware	abstraction	layer

A	module	in	the	operating	system	that	hides	the	specifics	of	different	hardware
implementations.	Above	this	layer,	the	operating	system	is	portable.

hardware	timer
A	hardware	device	that	can	cause	a	processor	interrupt	after	some	delay,	either	in
time	or	in	instructions	executed.

head
The	component	that	writes	the	data	to	or	reads	the	data	from	a	spinning	disk	surface.

head	crash
An	error	where	the	disk	head	physically	scrapes	the	magnetic	surface	of	a	spinning
disk	surface.

head	switch	time
The	time	it	takes	to	re-position	the	disk	arm	over	the	corresponding	track	on	a
different	surface,	before	a	read	or	write	can	begin.

heap
Space	to	store	dynamically	allocated	data	structures.

heavy-tailed	distribution
A	probability	distribution	such	that	events	far	from	the	mean	value	(in	aggregate)
occur	with	significant	probability.	When	used	for	the	distribution	of	time	between
events,	the	remaining	time	to	the	next	event	is	positively	related	to	the	time	already
spent	waiting	—	you	expect	to	wait	longer	the	longer	you	have	already	waited.

Heisenbugs
Bugs	in	concurrent	programs	that	disappear	or	change	behavior	when	you	try	to
examine	them.	See	also:	Bohrbugs.

hint
A	result	of	some	computation	whose	results	may	no	longer	be	valid,	but	where	using
an	invalid	hint	will	trigger	an	exception.

home	directory
The	sub-directory	containing	a	user’s	files.

host	operating	system
An	operating	system	that	provides	the	abstraction	of	a	virtual	machine,	to	run	another
operating	system	as	an	application.

host	transfer	time
The	time	to	transfer	data	between	the	host’s	memory	and	the	disk’s	buffer.

hyperthreading
See:	simultaneous	multi-threading.

I/O-bound	task
A	task	that	primarily	does	I/O,	and	does	little	processing.

idempotent
An	operation	that	has	the	same	effect	whether	executed	once	or	many	times.

incremental	checkpoint
A	consistent	snapshot	of	the	portion	of	process	memory	that	has	been	modified	since
the	previous	checkpoint.

independent	threads
Threads	that	operate	on	completely	separate	subsets	of	process	memory.



indirect	block
A	storage	block	containing	pointers	to	file	data	blocks.

inode
In	the	Unix	Fast	File	System	(FFS)	and	related	file	systems,	an	inode	stores	a	file’s
metadata,	including	an	array	of	pointers	that	can	be	used	to	find	all	of	the	file’s
blocks.	The	term	inode	is	sometimes	used	more	generally	to	refer	to	any	file	system’s
per-file	metadata	data	structure.

inode	array
The	fixed	location	on	disk	containing	all	of	the	file	system’s	inodes.	See	also:
inumber.

intentions
The	set	of	writes	that	a	transaction	will	perform	if	the	transaction	commits.

internal	fragmentation
With	paged	allocation	of	memory,	the	unusable	memory	at	the	end	of	a	page	because
a	process	can	only	be	allocated	memory	in	page-sized	chunks.

interrupt
An	asynchronous	signal	to	the	processor	that	some	external	event	has	occurred	that
may	require	its	attention.

interrupt	disable
A	privileged	hardware	instruction	to	temporarily	defer	any	hardware	interrupts,	to
allow	the	kernel	to	complete	a	critical	task.

interrupt	enable
A	privileged	hardware	instruction	to	resume	hardware	interrupts,	after	a	non-
interruptible	task	is	completed.

interrupt	handler
A	kernel	procedure	invoked	when	an	interrupt	occurs.

interrupt	stack
A	region	of	memory	for	holding	the	stack	of	the	kernel’s	interrupt	handler.	When	an
interrupt,	processor	exception,	or	system	call	trap	causes	a	context	switch	into	the
kernel,	the	hardware	changes	the	stack	pointer	to	point	to	the	base	of	the	kernel’s
interrupt	stack.

interrupt	vector	table
A	table	of	pointers	in	the	operating	system	kernel,	indexed	by	the	type	of	interrupt,
with	each	entry	pointing	to	the	first	instruction	of	a	handler	procedure	for	that
interrupt.

inumber
The	index	into	the	inode	array	for	a	particular	file.

inverted	page	table
A	hash	table	used	for	translation	between	virtual	page	numbers	and	physical	page
frames.

kernel	thread
A	thread	that	is	implemented	inside	the	operating	system	kernel.

kernel-mode	operation
The	processor	executes	in	an	unrestricted	mode	that	gives	the	operating	system	full
control	over	the	hardware.	Compare:	user-mode	operation.

LBA



See:	logical	block	address.
least	frequently	used

A	cache	replacement	policy	that	evicts	whichever	block	has	been	used	the	least	often,
over	some	period	of	time.	See	also:	LFU.

least	recently	used
A	cache	replacement	policy	that	evicts	whichever	block	has	not	been	used	for	the
longest	period	of	time.	See	also:	LRU.

LFU
See:	least	frequently	used.

Little’s	Law
In	a	stable	system	where	the	arrival	rate	matches	the	departure	rate,	the	number	of
tasks	in	the	system	equals	the	system’s	throughput	multiplied	by	the	average	time	a
task	spends	in	the	system:	N	=	X	R.

liveness	property
A	constraint	on	program	behavior	such	that	it	always	produces	a	result.	Compare:
safety	property.

locality	heuristic
A	file	system	block	allocation	policy	that	places	files	in	nearby	disk	sectors	if	they
are	likely	to	be	read	or	written	at	the	same	time.

lock
A	type	of	synchronization	variable	used	for	enforcing	atomic,	mutually	exclusive
access	to	shared	data.

lock	ordering
A	widely	used	approach	to	prevent	deadlock,	where	locks	are	acquired	in	a	pre-
determined	order.

lock-free	data	structures
Concurrent	data	structure	that	guarantees	progress	for	some	thread:	some	method	will
finish	in	a	finite	number	of	steps,	regardless	of	the	state	of	other	threads	executing	in
the	data	structure.

log
An	ordered	sequence	of	steps	saved	to	persistent	storage.

logical	block	address
A	unique	identifier	for	each	disk	sector	or	flash	memory	block,	typically	numbered
from	1	to	the	size	of	the	disk/flash	device.	The	disk	interface	converts	this	identifier
to	the	physical	location	of	the	sector/block.	See	also:	LBA.

logical	separation
A	backup	storage	policy	where	the	backup	is	stored	at	the	same	location	as	the
primary	storage,	but	with	restricted	access,	e.g.,	to	prevent	updates.

LRU
See:	least	recently	used.

master	file	table
In	NTFS,	an	array	of	records	storing	metadata	about	each	file.	See	also:	MFT.

maximum	seek	time
The	time	it	takes	to	move	the	disk	arm	from	the	innermost	track	to	the	outermost	one
or	vice	versa.

max-min	fairness



A	scheduling	objective	to	maximize	the	minimum	resource	allocation	given	to	each
task.

MCS	lock
An	efficient	spinlock	implementation	where	each	waiting	thread	spins	on	a	separate
memory	location.

mean	time	to	data	loss
The	expected	time	until	a	RAID	system	suffers	an	unrecoverable	error.	See	also:
MTTDL.

mean	time	to	failure
The	average	time	that	a	system	runs	without	failing.	See	also:	MTTF.

mean	time	to	repair
The	average	time	that	it	takes	to	repair	a	system	once	it	has	failed.	See	also:	MTTR.

memory	address	alias
Two	or	more	virtual	addresses	that	refer	to	the	same	physical	memory	location.

memory	barrier
An	instruction	that	prevents	the	compiler	and	hardware	from	reordering	memory
accesses	across	the	barrier	—	no	accesses	before	the	barrier	are	moved	after	the
barrier	and	no	accesses	after	the	barrier	are	moved	before	the	barrier.

memory	protection
Hardware	or	software-enforced	limits	so	that	each	application	process	can	read	and
write	only	its	own	memory	and	not	the	memory	of	the	operating	system	or	any	other
process.

memoryless	property
For	a	probability	distribution	for	the	time	between	events,	the	remaining	time	to	the
next	event	does	not	depend	on	the	amount	of	time	already	spent	waiting.	See	also:
exponential	distribution.

memory-mapped	file
A	file	whose	contents	appear	to	be	a	memory	segment	in	a	process’s	virtual	address
space.

memory-mapped	I/O
Each	I/O	device’s	control	registers	are	mapped	to	a	range	of	physical	addresses	on
the	memory	bus.

memristor
A	type	of	solid-state	persistent	storage	using	a	circuit	element	whose	resistance
depends	on	the	amounts	and	directions	of	currents	that	have	flowed	through	it	in	the
past.

MFQ
See:	multi-level	feedback	queue.

MFT
See:	master	file	table.

microkernel
An	operating	system	design	where	the	kernel	itself	is	kept	small,	and	instead	most	of
the	functionality	of	a	traditional	operating	system	kernel	is	put	into	a	set	of	user-level
processes,	or	servers,	accessed	from	user	applications	via	interprocess
communication.

MIN	cache	replacement



See:	optimal	cache	replacement.
minimum	seek	time

The	time	to	move	the	disk	arm	to	the	next	adjacent	track.
MIPS

An	early	measure	of	processor	performance:	millions	of	instructions	per	second.
mirroring

A	system	for	redundantly	storing	data	on	disk	where	each	block	of	data	is	stored	on
two	disks	and	can	be	read	from	either.	See	also:	RAID	1.

model
A	simplification	that	tries	to	capture	the	most	important	aspects	of	a	more	complex
system’s	behavior.

monolithic	kernel
An	operating	system	design	where	most	of	the	operating	system	functionality	is
linked	together	inside	the	kernel.

Moore’s	Law
Transistor	density	increases	exponentially	over	time.	Similar	exponential
improvements	have	occurred	in	many	other	component	technologies;	in	the	popular
press,	these	often	go	by	the	same	term.

mount
A	mapping	of	a	path	in	the	existing	file	system	to	the	root	directory	of	another	file
system	volume.

MTTDL
See:	mean	time	to	data	loss.

MTTF
See:	mean	time	to	failure.

MTTR
See:	mean	time	to	repair.

multi-level	feedback	queue
A	scheduling	algorithm	with	multiple	priority	levels	managed	using	round	robin
queues,	where	a	task	is	moved	between	priority	levels	based	on	how	much	processing
time	it	has	used.	See	also:	MFQ.

multi-level	index
A	tree	data	structure	to	keep	track	of	the	disk	location	of	each	data	block	in	a	file.

multi-level	paged	segmentation
A	virtual	memory	mechanism	where	physical	memory	is	allocated	in	page	frames,
virtual	addresses	are	segmented,	and	each	segment	is	translated	to	physical	addresses
through	multiple	levels	of	page	tables.

multi-level	paging
A	virtual	memory	mechanism	where	physical	memory	is	allocated	in	page	frames,
and	virtual	addresses	are	translated	to	physical	addresses	through	multiple	levels	of
page	tables.

multiple	independent	requests
A	necessary	condition	for	deadlock	to	occur:	a	thread	first	acquires	one	resource	and
then	tries	to	acquire	another.

multiprocessor	scheduling	policy
A	policy	to	determine	how	many	processors	to	assign	each	process.



multiprogramming
See:	multitasking.

multitasking
The	ability	of	an	operating	system	to	run	multiple	applications	at	the	same	time,	also
called	multiprogramming.

multi-threaded	process
A	process	with	multiple	threads.

multi-threaded	program
A	generalization	of	a	single-threaded	program.	Instead	of	only	one	logical	sequence
of	steps,	the	program	has	multiple	sequences,	or	threads,	executing	at	the	same	time.

mutual	exclusion
When	one	thread	uses	a	lock	to	prevent	concurrent	access	to	a	shared	data	structure.

mutually	recursive	locking
A	deadlock	condition	where	two	shared	objects	call	into	each	other	while	still	holding
their	locks.	Deadlock	occurs	if	one	thread	holds	the	lock	on	the	first	object	and	calls
into	the	second,	while	the	other	thread	holds	the	lock	on	the	second	object	and	calls
into	the	first.

named	data
Data	that	can	be	accessed	by	a	human-readable	identifier,	such	as	a	file	name.

native	command	queueing
See:	tagged	command	queueing.

NCQ
See:	native	command	queueing.

nested	waiting
A	deadlock	condition	where	one	shared	object	calls	into	another	shared	object	while
holding	the	first	object’s	lock,	and	then	waits	on	a	condition	variable.	Deadlock
results	if	the	thread	that	can	signal	the	condition	variable	needs	the	first	lock	to	make
progress.

network	effect
The	increase	in	value	of	a	product	or	service	based	on	the	number	of	other	people
who	have	adopted	that	technology	and	not	just	its	intrinsic	capabilities.

no	preemption
A	necessary	condition	for	deadlock	to	occur:	once	a	thread	acquires	a	resource,	its
ownership	cannot	be	revoked	until	the	thread	acts	to	release	it.

non-blocking	data	structure
Concurrent	data	structure	where	a	thread	is	never	required	to	wait	for	another	thread
to	complete	its	operation.

non-recoverable	read	error
When	sufficient	bit	errors	occur	within	a	disk	sector	or	flash	memory	page,	such	that
the	original	data	cannot	be	recovered	even	after	error	correction.

non-resident	attribute
In	NTFS,	an	attribute	record	whose	contents	are	addressed	indirectly,	through	extent
pointers	in	the	master	file	table	that	point	to	the	contents	in	those	extents.

non-volatile	storage
Unlike	DRAM,	memory	that	is	durable	and	retains	its	state	across	crashes	and	power
outages.	See	also:	persistent	storage.	See	also:	stable	storage.



not	recently	used
A	cache	replacement	policy	that	evicts	some	block	that	has	not	been	referenced
recently,	rather	than	the	least	recently	used	block.

oblivious	scheduling
A	scheduling	policy	where	the	operating	system	assigns	threads	to	processors	without
knowledge	of	the	intent	of	the	parallel	application.

open	system
A	system	whose	source	code	is	available	to	the	public	for	modification	and	reuse,	or
a	system	whose	interfaces	are	defined	by	a	public	standards	process.

operating	system
A	layer	of	software	that	manages	a	computer’s	resources	for	its	users	and	their
applications.

operating	system	kernel
The	kernel	is	the	lowest	level	of	software	running	on	the	system,	with	full	access	to
all	of	the	capabilities	of	the	hardware.

optimal	cache	replacement
Replace	whichever	block	is	used	farthest	in	the	future.

overhead
The	added	resource	cost	of	implementing	an	abstraction	versus	using	the	underlying
hardware	resources	directly.

ownership	design	pattern
A	technique	for	managing	concurrent	access	to	shared	objects	in	which	at	most	one
thread	owns	an	object	at	any	time,	and	therefore	the	thread	can	access	the	shared	data
without	a	lock.

page	coloring
The	assignment	of	physical	page	frames	to	virtual	addresses	by	partitioning	frames
based	on	which	portions	of	the	cache	they	will	use.

page	fault
A	hardware	trap	to	the	operating	system	kernel	when	a	process	references	a	virtual
address	with	an	invalid	page	table	entry.

page	frame
An	aligned,	fixed-size	chunk	of	physical	memory	that	can	hold	a	virtual	page.

paged	memory
A	hardware	address	translation	mechanism	where	memory	is	allocated	in	aligned,
fixed-sized	chunks,	called	pages.	Any	virtual	page	can	be	assigned	to	any	physical
page	frame.

paged	segmentation
A	hardware	mechanism	where	physical	memory	is	allocated	in	page	frames,	but
virtual	addresses	are	segmented.

pair	of	stubs
A	pair	of	short	procedures	that	mediate	between	two	execution	contexts.

paravirtualization
A	virtual	machine	abstraction	that	allows	the	guest	operating	system	to	make	system
calls	into	the	host	operating	system	to	perform	hardware-specific	operations,	such	as
changing	a	page	table	entry.

parent	process



A	process	that	creates	another	process.	See	also:	child	process.
path

The	string	that	identifies	a	file	or	directory.
PCB

See:	process	control	block.
PCM

See:	phase	change	memory.
performance	predictability

Whether	a	system’s	response	time	or	other	performance	metric	is	consistent	over
time.

persistent	data
Data	that	is	stored	until	it	is	explicitly	deleted,	even	if	the	computer	storing	it	crashes
or	loses	power.

persistent	storage
See:	non-volatile	storage.

phase	change	behavior
Abrupt	changes	in	a	program’s	working	set,	causing	bursty	cache	miss	rates:	periods
of	low	cache	misses	interspersed	with	periods	of	high	cache	misses.

phase	change	memory
A	type	of	non-volatile	memory	that	uses	the	phase	of	a	material	to	represent	a	data
bit.	See	also:	PCM.

physical	address
An	address	in	physical	memory.

physical	separation
A	backup	storage	policy	where	the	backup	is	stored	at	a	different	location	than	the
primary	storage.

physically	addressed	cache
A	processor	cache	that	is	accessed	using	physical	memory	addresses.

pin
To	bind	a	virtual	resource	to	a	physical	resource,	such	as	a	thread	to	a	processor	or	a
virtual	page	to	a	physical	page.

platter
A	single	thin	round	plate	that	stores	information	in	a	magnetic	disk,	often	on	both
surfaces.

policy-mechanism	separation
A	system	design	principle	where	the	implementation	of	an	abstraction	is	independent
of	the	resource	allocation	policy	of	how	the	abstraction	is	used.

polling
An	alternative	to	hardware	interrupts,	where	the	processor	waits	for	an	asynchronous
event	to	occur,	by	looping,	or	busy-waiting,	until	the	event	occurs.

portability
The	ability	of	software	to	work	across	multiple	hardware	platforms.

precise	interrupts
All	instructions	that	occur	before	the	interrupt	or	exception,	according	to	the	program
execution,	are	completed	by	the	hardware	before	the	interrupt	handler	is	invoked.

preemption



When	a	scheduler	takes	the	processor	away	from	one	task	and	gives	it	to	another.
preemptive	multi-threading

The	operating	system	scheduler	may	switch	out	a	running	thread,	e.g.,	on	a	timer
interrupt,	without	any	explicit	action	by	the	thread	to	relinquish	control	at	that	point.

prefetch
To	bring	data	into	a	cache	before	it	is	needed.

principle	of	least	privilege
System	security	and	reliability	are	enhanced	if	each	part	of	the	system	has	exactly	the
privileges	it	needs	to	do	its	job	and	no	more.

priority	donation
A	solution	to	priority	inversion:	when	a	thread	waits	for	a	lock	held	by	a	lower
priority	thread,	the	lock	holder	is	temporarily	increased	to	the	waiter’s	priority	until
the	lock	is	released.

priority	inversion
A	scheduling	anomaly	that	occurs	when	a	high	priority	task	waits	indefinitely	for	a
resource	(such	as	a	lock)	held	by	a	low	priority	task,	because	the	low	priority	task	is
waiting	in	turn	for	a	resource	(such	as	the	processor)	held	by	a	medium	priority	task.

privacy
Data	stored	on	a	computer	is	only	accessible	to	authorized	users.

privileged	instruction
Instruction	available	in	kernel	mode	but	not	in	user	mode.

process
The	execution	of	an	application	program	with	restricted	rights	—	the	abstraction	for
protection	provided	by	the	operating	system	kernel.

process	control	block
A	data	structure	that	stores	all	the	information	the	operating	system	needs	about	a
particular	process:	e.g.,	where	it	is	stored	in	memory,	where	its	executable	image	is
on	disk,	which	user	asked	it	to	start	executing,	and	what	privileges	the	process	has.
See	also:	PCB.

process	migration
The	ability	to	take	a	running	program	on	one	system,	stop	its	execution,	and	resume	it
on	a	different	machine.

processor	exception
A	hardware	event	caused	by	user	program	behavior	that	causes	a	transfer	of	control
to	a	kernel	handler.	For	example,	attempting	to	divide	by	zero	causes	a	processor
exception	in	many	architectures.

processor	scheduling	policy
When	there	are	more	runnable	threads	than	processors,	the	policy	that	determines
which	threads	to	run	first.

processor	status	register
A	hardware	register	containing	flags	that	control	the	operation	of	the	processor,
including	the	privilege	level.

producer-consumer	communication
Interprocess	communication	where	the	output	of	one	process	is	the	input	of	another.

proprietary	system
A	system	that	is	under	the	control	of	a	single	company;	it	can	be	changed	at	any	time



by	its	provider	to	meet	the	needs	of	its	customers.
protection

The	isolation	of	potentially	misbehaving	applications	and	users	so	that	they	do	not
corrupt	other	applications	or	the	operating	system	itself.

publish
For	a	read-copy-update	lock,	a	single,	atomic	memory	write	that	updates	a	shared
object	protected	by	the	lock.	The	write	allows	new	reader	threads	to	observe	the	new
version	of	the	object.

queueing	delay
The	time	a	task	waits	in	line	without	receiving	service.

quiescent
For	a	read-copy-update	lock,	no	reader	thread	that	was	active	at	the	time	of	the	last
modification	is	still	active.

race	condition
When	the	behavior	of	a	program	relies	on	the	interleaving	of	operations	of	different
threads.

RAID
A	Redundant	Array	of	Inexpensive	Disks	(RAID)	is	a	system	that	spreads	data
redundantly	across	multiple	disks	in	order	to	tolerate	individual	disk	failures.

RAID	1
See:	mirroring.

RAID	5
See:	rotating	parity.

RAID	6
See:	dual	redundancy	array.

RAID	strip
A	set	of	several	sequential	blocks	placed	on	one	disk	by	a	RAID	block	placement
algorithm.

RAID	stripe
A	set	of	RAID	strips	and	their	parity	strip.

R-CSCAN
A	variation	of	the	CSCAN	disk	scheduling	policy	in	which	the	disk	takes	into
account	rotation	time.

RCU
See:	read-copy-update.

read	disturb	error
Reading	a	flash	memory	cell	a	large	number	of	times	can	cause	the	data	in
surrounding	cells	to	become	corrupted.

read-copy-update
A	synchronization	abstraction	that	allows	concurrent	access	to	a	data	structure	by
multiple	readers	and	a	single	writer	at	a	time.	See	also:	RCU.

readers/writers	lock
A	lock	which	allows	multiple	“reader”	threads	to	access	shared	data	concurrently
provided	they	never	modify	the	shared	data,	but	still	provides	mutual	exclusion
whenever	a	“writer”	thread	is	reading	or	modifying	the	shared	data.

ready	list



The	set	of	threads	that	are	ready	to	be	run	but	which	are	not	currently	running.
real-time	constraint

The	computation	must	be	completed	by	a	deadline	if	it	is	to	have	value.
recoverable	virtual	memory

The	abstraction	of	persistent	memory,	so	that	the	contents	of	a	memory	segment	can
be	restored	after	a	failure.

redo	logging
A	way	of	implementing	a	transaction	by	recording	in	a	log	the	set	of	writes	to	be
executed	when	the	transaction	commits.

relative	path
A	file	path	name	interpreted	as	beginning	with	the	process’s	current	working
directory.

reliability
A	property	of	a	system	that	does	exactly	what	it	is	designed	to	do.

request	parallelism
Parallel	execution	on	a	server	that	arises	from	multiple	concurrent	requests.

resident	attribute
In	NTFS,	an	attribute	record	whose	contents	are	stored	directly	in	the	master	file
table.

response	time
The	time	for	a	task	to	complete,	from	when	it	starts	until	it	is	done.

restart
The	resumption	of	a	process	from	a	checkpoint,	e.g.,	after	a	failure	or	for	debugging.

roll	back
The	outcome	of	a	transaction	where	none	of	its	updates	occur.

root	directory
The	top-level	directory	in	a	file	system.

root	inode
In	a	copy-on-write	file	system,	the	inode	table’s	inode:	the	disk	block	containing	the
metadata	needed	to	find	the	inode	table.

rotating	parity
A	system	for	redundantly	storing	data	on	disk	where	the	system	writes	several	blocks
of	data	across	several	disks,	protecting	those	blocks	with	one	redundant	block	stored
on	yet	another	disk.	See	also:	RAID	5.

rotational	latency
Once	the	disk	head	has	settled	on	the	right	track,	it	must	wait	for	the	target	sector	to
rotate	under	it.

round	robin
A	scheduling	policy	that	takes	turns	running	each	ready	task	for	a	limited	period
before	switching	to	the	next	task.

R-SCAN
A	variation	of	the	SCAN	disk	scheduling	policy	in	which	the	disk	takes	into	account
rotation	time.

safe	state
In	the	context	of	deadlock,	a	state	of	an	execution	such	that	regardless	of	the
sequence	of	future	resource	requests,	there	is	at	least	one	safe	sequence	of	decisions



as	to	when	to	satisfy	requests	such	that	all	pending	and	future	requests	are	met.
safety	property

A	constraint	on	program	behavior	such	that	it	never	computes	the	wrong	result.
Compare:	liveness	property.

sample	bias
A	measurement	error	that	occurs	when	some	members	of	a	group	are	less	likely	to	be
included	than	others,	and	where	those	members	differ	in	the	property	being
measured.

sandbox
A	context	for	executing	untrusted	code,	where	protection	for	the	rest	of	the	system	is
provided	in	software.

SCAN
A	disk	scheduling	policy	where	the	disk	arm	repeatedly	sweeps	from	the	inner	to	the
outer	tracks	and	back	again,	servicing	each	pending	request	whenever	the	disk	head
passes	that	track.

scheduler	activations
A	multiprocessor	scheduling	policy	where	each	application	is	informed	of	how	many
processors	it	has	been	assigned	and	whenever	the	assignment	changes.

scrubbing
A	technique	for	reducing	non-recoverable	RAID	errors	by	periodically	scanning	for
corrupted	disk	blocks	and	reconstructing	them	from	the	parity	block.

secondary	bottleneck
A	resource	with	relatively	low	contention,	due	to	a	large	amount	of	queueing	at	the
primary	bottleneck.	If	the	primary	bottleneck	is	improved,	the	secondary	bottleneck
will	have	much	higher	queueing	delay.

sector
The	minimum	amount	of	a	disk	that	can	be	independently	read	or	written.

sector	failure
A	magnetic	disk	error	where	data	on	one	or	more	individual	sectors	of	a	disk	are	lost,
but	the	rest	of	the	disk	continues	to	operate	correctly.

sector	sparing
Transparently	hiding	a	faulty	disk	sector	by	remapping	it	to	a	nearby	spare	sector.

security
A	computer’s	operation	cannot	be	compromised	by	a	malicious	attacker.

security	enforcement
The	mechanism	the	operating	system	uses	to	ensure	that	only	permitted	actions	are
allowed.

security	policy
What	operations	are	permitted	—	who	is	allowed	to	access	what	data,	and	who	can
perform	what	operations.

seek
The	movement	of	the	disk	arm	to	re-position	it	over	a	specific	track	to	prepare	for	a
read	or	write.

segmentation
A	virtual	memory	mechanism	where	addresses	are	translated	by	table	lookup,	where
each	entry	in	the	table	is	to	a	variable-size	memory	region.



segmentation	fault
An	error	caused	when	a	process	attempts	to	access	memory	outside	of	one	of	its	valid
memory	regions.

segment-local	address
An	address	that	is	relative	to	the	current	memory	segment.

self-paging
A	resource	allocation	policy	for	allocating	page	frames	among	processes;	each	page
replacement	is	taken	from	a	page	frame	already	assigned	to	the	process	causing	the
page	fault.

semaphore
A	type	of	synchronization	variable	with	only	two	atomic	operations,	P()	and	V().	P
waits	for	the	value	of	the	semaphore	to	be	positive,	and	then	atomically	decrements
it.	V	atomically	increments	the	value,	and	if	any	threads	are	waiting	in	P,	triggers	the
completion	of	the	P	operation.

serializability
The	result	of	any	program	execution	is	equivalent	to	an	execution	in	which	requests
are	processed	one	at	a	time	in	some	sequential	order.

service	time
The	time	it	takes	to	complete	a	task	at	a	resource,	assuming	no	waiting.

set	associative	cache
The	cache	is	partitioned	into	sets	of	entries.	Each	memory	location	can	only	be	stored
in	its	assigned	set,	by	it	can	be	stored	in	any	cache	entry	in	that	set.	On	a	lookup,	the
system	needs	to	check	the	address	against	all	the	entries	in	its	set	to	determine	if	there
is	a	cache	hit.

settle
The	fine-grained	re-positioning	of	a	disk	head	after	moving	to	a	new	track	before	the
disk	head	is	ready	to	read	or	write	a	sector	of	the	new	track.

shadow	page	table
A	page	table	for	a	process	inside	a	virtual	machine,	formed	by	constructing	the
composition	of	the	page	table	maintained	by	the	guest	operating	system	and	the	page
table	maintained	by	the	host	operating	system.

shared	object
An	object	(a	data	structure	and	its	associated	code)	that	can	be	accessed	safely	by
multiple	concurrent	threads.

shell
A	job	control	system	implemented	as	a	user-level	process.	When	a	user	types	a
command	to	the	shell,	it	creates	a	process	to	run	the	command.

shortest	job	first
A	scheduling	policy	that	performs	the	task	with	the	least	remaining	time	left	to	finish.

shortest	positioning	time	first
A	disk	scheduling	policy	that	services	whichever	pending	request	can	be	handled	in
the	minimum	amount	of	time.	See	also:	SPTF.

shortest	seek	time	first
A	disk	scheduling	policy	that	services	whichever	pending	request	is	on	the	nearest
track.	Equivalent	to	shortest	positioning	time	first	if	rotational	positioning	is	not
considered.	See	also:	SSTF.



SIMD	(single	instruction	multiple	data)	programming
See	data	parallel	programming

simultaneous	multi-threading
A	hardware	technique	where	each	processor	simulates	two	(or	more)	virtual
processors,	alternating	between	them	on	a	cycle-by-cycle	basis.	See	also:
hyperthreading.

single-threaded	program
A	program	written	in	a	traditional	way,	with	one	logical	sequence	of	steps	as	each
instruction	follows	the	previous	one.	Compare:	multi-threaded	program.

slip	sparing
When	remapping	a	faulty	disk	sector,	remapping	the	entire	sequence	of	disk	sectors
between	the	faulty	sector	and	the	spare	sector	by	one	slot	to	preserve	sequential
access	performance.

soft	link
A	directory	entry	that	maps	one	file	or	directory	name	to	another.	See	also:	symbolic
link.

software	transactional	memory	(STM)
A	system	for	general-purpose	transactions	for	in-memory	data	structures.

software-loaded	TLB
A	hardware	TLB	whose	entries	are	installed	by	software,	rather	than	hardware,	on	a
TLB	miss.

solid	state	storage
A	persistent	storage	device	with	no	moving	parts;	it	stores	data	using	electrical
circuits.

space	sharing
A	multiprocessor	allocation	policy	that	assigns	different	processors	to	different	tasks.

spatial	locality
Programs	tend	to	reference	instructions	and	data	near	those	that	have	been	recently
accessed.

spindle
The	axle	of	rotation	of	the	spinning	disk	platters	making	up	a	disk.

spinlock
A	lock	where	a	thread	waiting	for	a	BUSY	lock	“spins”	in	a	tight	loop	until	some
other	thread	makes	it	FREE.

SPTF
See:	shortest	positioning	time	first.

SSTF
See:	shortest	seek	time	first.

stable	property
A	property	of	a	program,	such	that	once	the	property	becomes	true	in	some	execution
of	the	program,	it	will	stay	true	for	the	remainder	of	the	execution.

stable	storage
See:	non-volatile	storage.

stable	system
A	queueing	system	where	the	arrival	rate	matches	the	departure	rate.

stack	frame



A	data	structure	stored	on	the	stack	with	storage	for	one	invocation	of	a	procedure:
the	local	variables	used	by	the	procedure,	the	parameters	the	procedure	was	called
with,	and	the	return	address	to	jump	to	when	the	procedure	completes.

staged	architecture
A	staged	architecture	divides	a	system	into	multiple	subsystems	or	stages,	where	each
stage	includes	some	state	private	to	the	stage	and	a	set	of	one	or	more	worker	threads
that	operate	on	that	state.

starvation
The	lack	of	progress	for	one	task,	due	to	resources	given	to	higher	priority	tasks.

state	variable
Member	variable	of	a	shared	object.

STM
See:	software	transactional	memory	(STM).

structured	synchronization
A	design	pattern	for	writing	correct	concurrent	programs,	where	concurrent	code	uses
a	set	of	standard	synchronization	primitives	to	control	access	to	shared	state,	and
where	all	routines	to	access	the	same	shared	state	are	localized	to	the	same	logical
module.

superpage
A	set	of	contiguous	pages	in	physical	memory	that	map	a	contiguous	region	of	virtual
memory,	where	the	pages	are	aligned	so	that	they	share	the	same	high-order
(superpage)	address.

surface
One	side	of	a	disk	platter.

surface	transfer	time
The	time	to	transfer	one	or	more	sequential	sectors	from	(or	to)	a	surface	once	the
disk	head	begins	reading	(or	writing)	the	first	sector.

swapping
Evicting	an	entire	process	from	physical	memory.

symbolic	link
See:	soft	link.

synchronization	barrier
A	synchronization	primitive	where	n	threads	operating	in	parallel	check	in	to	the
barrier	when	their	work	is	completed.	No	thread	returns	from	the	barrier	until	all	n
check	in.

synchronization	variable
A	data	structure	used	for	coordinating	concurrent	access	to	shared	state.

system	availability
The	probability	that	a	system	will	be	available	at	any	given	time.

system	call
A	procedure	provided	by	the	kernel	that	can	be	called	from	user	level.

system	reliability
The	probability	that	a	system	will	continue	to	be	reliable	for	some	specified	period	of
time.

tagged	command	queueing
A	disk	interface	that	allows	the	operating	system	to	issue	multiple	concurrent



requests	to	the	disk.	Requests	are	processed	and	acknowledged	out	of	order.	See	also:
native	command	queueing.	See	also:	NCQ.

tagged	TLB
A	translation	lookaside	buffer	whose	entries	contain	a	process	ID;	only	entries	for	the
currently	running	process	are	used	during	translation.	This	allows	TLB	entries	for	a
process	to	remain	in	the	TLB	when	the	process	is	switched	out.

task
A	user	request.

TCB
See:	thread	control	block.

TCQ
See:	tagged	command	queueing.

temporal	locality
Programs	tend	to	reference	the	same	instructions	and	data	that	they	had	recently
accessed.

test	and	test-and-set
An	implementation	of	a	spinlock	where	the	waiting	processor	waits	until	the	lock	is
FREE	before	attempting	to	acquire	it.

thrashing
When	a	cache	is	too	small	to	hold	its	working	set.	In	this	case,	most	references	are
cache	misses,	yet	those	misses	evict	data	that	will	be	used	in	the	near	future.

thread
A	single	execution	sequence	that	represents	a	separately	schedulable	task.

thread	context	switch
Suspend	execution	of	a	currently	running	thread	and	resume	execution	of	some	other
thread.

thread	control	block
The	operating	system	data	structure	containing	the	current	state	of	a	thread.	See	also:
TCB.

thread	scheduler
Software	that	maps	threads	to	processors	by	switching	between	running	threads	and
threads	that	are	ready	but	not	running.

thread-safe	bounded	queue
A	bounded	queue	that	is	safe	to	call	from	multiple	concurrent	threads.

throughput
The	rate	at	which	a	group	of	tasks	are	completed.

time	of	check	vs.	time	of	use	attack
A	security	vulnerability	arising	when	an	application	can	modify	the	user	memory
holding	a	system	call	parameter	(such	as	a	file	name),	after	the	kernel	checks	the
validity	of	the	parameter,	but	before	the	parameter	is	used	in	the	actual
implementation	of	the	routine.	Often	abbreviated	TOCTOU.

time	quantum
The	length	of	time	that	a	task	is	scheduled	before	being	preempted.

timer	interrupt
A	hardware	processor	interrupt	that	signifies	a	period	of	elapsed	real	time.

time-sharing	operating	system



An	operating	system	designed	to	support	interactive	use	of	the	computer.
TLB

See:	translation	lookaside	buffer.
TLB	flush

An	operation	to	remove	invalid	entries	from	a	TLB,	e.g.,	after	a	process	context
switch.

TLB	hit
A	TLB	lookup	that	succeeds	at	finding	a	valid	address	translation.

TLB	miss
A	TLB	lookup	that	fails	because	the	TLB	does	not	contain	a	valid	translation	for	that
virtual	address.

TLB	shootdown
A	request	to	another	processor	to	remove	a	newly	invalid	TLB	entry.

TOCTOU
See:	time	of	check	vs.	time	of	use	attack.

track
A	circle	of	sectors	on	a	disk	surface.

track	buffer
Memory	in	the	disk	controller	to	buffer	the	contents	of	the	current	track	even	though
those	sectors	have	not	yet	been	requested	by	the	operating	system.

track	skewing
A	staggered	alignment	of	disk	sectors	to	allow	sequential	reading	of	sectors	on
adjacent	tracks.

transaction
A	group	of	operations	that	are	applied	persistently,	atomically	as	a	group	or	not	at	all,
and	independently	of	other	transactions.

translation	lookaside	buffer
A	small	hardware	table	containing	the	results	of	recent	address	translations.	See	also:
TLB.

trap
A	synchronous	transfer	of	control	from	a	user-level	process	to	a	kernel-mode	handler.
Traps	can	be	caused	by	processor	exceptions,	memory	protection	errors,	or	system
calls.

triple	indirect	block
A	storage	block	containing	pointers	to	double	indirect	blocks.

two-phase	locking
A	strategy	for	acquiring	locks	needed	by	a	multi-operation	request,	where	no	lock	can
be	released	before	all	required	locks	have	been	acquired.

uberblock
In	ZFS,	the	root	of	the	ZFS	storage	system.

UNIX	exec
A	system	call	on	UNIX	that	causes	the	current	process	to	bring	a	new	executable
image	into	memory	and	start	it	running.

UNIX	fork
A	system	call	on	UNIX	that	creates	a	new	process	as	a	complete	copy	of	the	parent
process.



UNIX	pipe
A	two-way	byte	stream	communication	channel	between	UNIX	processes.

UNIX	signal
An	asynchronous	notification	to	a	running	process.

UNIX	stdin
A	file	descriptor	set	up	automatically	for	a	new	process	to	use	as	its	input.

UNIX	stdout
A	file	descriptor	set	up	automatically	for	a	new	process	to	use	as	its	output.

UNIX	wait
A	system	call	that	pauses	until	a	child	process	finishes.

unsafe	state
In	the	context	of	deadlock,	a	state	of	an	execution	such	that	there	is	at	least	one
sequence	of	future	resource	requests	that	leads	to	deadlock	no	matter	what	processing
order	is	tried.

upcall
An	event,	interrupt,	or	exception	delivered	by	the	kernel	to	a	user-level	process.

use	bit
A	status	bit	in	a	page	table	entry	recording	whether	the	page	has	been	recently
referenced.

user-level	memory	management
The	kernel	assigns	each	process	a	set	of	page	frames,	but	how	the	process	uses	its
assigned	memory	is	left	up	to	the	application.

user-level	page	handler
An	application-specific	upcall	routine	invoked	by	the	kernel	on	a	page	fault.

user-level	thread
A	type	of	application	thread	where	the	thread	is	created,	runs,	and	finishes	without
calls	into	the	operating	system	kernel.

user-mode	operation
The	processor	operates	in	a	restricted	mode	that	limits	the	capabilities	of	the
executing	process.	Compare:	kernel-mode	operation.

utilization
The	fraction	of	time	a	resource	is	busy.

virtual	address
An	address	that	must	be	translated	to	produce	an	address	in	physical	memory.

virtual	machine
An	execution	context	provided	by	an	operating	system	that	mimics	a	physical
machine,	e.g.,	to	run	an	operating	system	as	an	application	on	top	of	another
operating	system.

virtual	machine	honeypot
A	virtual	machine	constructed	for	the	purpose	of	executing	suspect	code	in	a	safe
environment.

virtual	machine	monitor
See:	host	operating	system.

virtual	memory
The	illusion	of	a	nearly	infinite	amount	of	physical	memory,	provided	by	demand
paging	of	virtual	addresses.



virtualization
Provide	an	application	with	the	illusion	of	resources	that	are	not	physically	present.

virtually	addressed	cache
A	processor	cache	which	is	accessed	using	virtual,	rather	than	physical,	memory
addresses.

volume
A	collection	of	physical	storage	blocks	that	form	a	logical	storage	device	(e.g.,	a
logical	disk).

wait	while	holding
A	necessary	condition	for	deadlock	to	occur:	a	thread	holds	one	resource	while
waiting	for	another.

wait-free	data	structures
Concurrent	data	structure	that	guarantees	progress	for	every	thread:	every	method
finishes	in	a	finite	number	of	steps,	regardless	of	the	state	of	other	threads	executing
in	the	data	structure.

waiting	list
The	set	of	threads	that	are	waiting	for	a	synchronization	event	or	timer	expiration	to
occur	before	becoming	eligible	to	be	run.

wear	leveling
A	flash	memory	management	policy	that	moves	logical	pages	around	the	device	to
ensure	that	each	physical	page	is	written/erased	approximately	the	same	number	of
times.

web	proxy	cache
A	cache	of	frequently	accessed	web	pages	to	speed	web	access	and	reduce	network
traffic.

work-conserving	scheduling	policy
A	policy	that	never	leaves	the	processor	idle	if	there	is	work	to	do.

working	set
The	set	of	memory	locations	that	a	program	has	referenced	in	the	recent	past.

workload
A	set	of	tasks	for	some	system	to	perform,	along	with	when	each	task	arrives	and
how	long	each	task	takes	to	complete.

wound	wait
An	approach	to	deadlock	recovery	that	ensures	progress	by	aborting	the	most	recent
transaction	in	any	deadlock.

write	acceleration
Data	to	be	stored	on	disk	is	first	written	to	the	disk’s	buffer	memory.	The	write	is	then
acknowledged	and	completed	in	the	background.

write-back	cache
A	cache	where	updates	can	be	stored	in	the	cache	and	only	sent	to	memory	when	the
cache	runs	out	of	space.

write-through	cache
A	cache	where	updates	are	sent	immediately	to	memory.

zero-copy	I/O
A	technique	for	transferring	data	across	the	kernel-user	boundary	without	a	memory-
to-memory	copy,	e.g.,	by	manipulating	page	table	entries.



zero-on-reference
A	method	for	clearing	memory	only	if	the	memory	is	used,	rather	than	in	advance.	If
the	first	access	to	memory	triggers	a	trap	to	the	kernel,	the	kernel	can	zero	the
memory	and	then	resume.

Zipf	distribution
The	relative	frequency	of	an	event	is	inversely	proportional	to	its	position	in	a	rank
order	of	popularity.
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