BEVELOPIVERNTS IR
WATER SGIENGE

D.CLARKE

GROUNDWATER DISGHARGE
- TESTS: SIMULATION

AND ANALYSIS

ELSEVIER

GROUNDWATER DISCHARGE TESTS:
SIMULATION AND ANALYSIS

DEVELOPMENTS IN WATER SCIENCE, 37

OTHER TITLES IN THIS SERIES

1 G.BUGLIARELLO AND F. GUNTER
COMPUTER SYSTEMS AND WATER RESOURCES
2 H.L. GOLTERMAN
PHYSIOLOGICAL LIMNOLOGY
3 Y.Y.HAUMES, W.A. HALLAND H.T. FREEDMAN
MULTIOBJECTIVE OPTIMIZATION IN WATER RESOURCES SYSTEMS:
THE SURROGATE WORTH TRADE-OFF-METHOD
4 J.J.FRIED
GROUNDWATER POLLUTION
5 N.RAJARATNAM
TURBULENT JETS
6 D.STEPHENSON
PIPELINE DESIGN FOR WATER ENGINEERS
7 V.HALEK AND J. SVEC
GROUNDWATER HYDRAULICS
8 J.BALEK
HYDROLOGY AND WATER RESOURCES IN TROPICAL AFRICA
9 T.A. McMAHON AND R.G. MEIN
RESERVOIR CAPACITY AND YIELD
10 G.KOVACS
SEEPAGE HYDRAULICS
11 W.H. GRAF AND C.H. MORTIMER (EDITORS)
HYDRODYNAMICS OF LAKES: PROCEEDINGS OF A SYMPOSIUM
12~-13 OCTOBER 1978, LAUSANNE, SWITZERLAND
12 W.BACK AND D.A. STEPHENSON (EDITORS)
CONTEMPORARY HYDROGEOLOGY: THE GEORGE BURKE MAXEY MEMORIAL VOLUME
13 M.A. MARINO AND J.N. LUTHIN
SEEPAGE AND GROUNDWATER
14 D. STEPHENSON
STORMWATER HYDROLOGY AND DRAINAGE
15 D. STEPHENSON
PIPELINE DESIGN FOR WATER ENGINEERS
(completely revised edition of Vol. 6 in the series)
18 W.BACK AND R. LETOLLE (EDITORS)
SYMPOSIUM ON GEOCHEMISTRY OF GROUNDWATER
17 A.H.EL-SHAARAWI (EDITOR) IN COLLABORATION WITH S.R. ESTERBY
TIME SERIES METHODS IN HYDROSCIENCES
18 J. BALEK
HYDROLOGY AND WATER RESOURCES IN TROPICAL REGIONS
19 D. STEPHENSON
PIPEFLOW ANALYSIS
20 1.ZAVOIANU
MORPHOMETRY OF DRAINAGE BASINS
21 M.M.A. SHAHIN
HYDROLOGY OF THE NILE BASIN
22 H.C.RIGGS
STREAMFLOW CHARACTERISTICS
23 M. NEGULESCU
MUNICIPAL WASTEWATER TREATMENT
24 |.G. EVERETT
GROUNDWATER MONITORING HANDBOOK FOR COAL AND OIL SHALE DEVELOPMENT
26 W. KINZELBACH
GROUNDWATER MODELLING: AN INTRODUCTION WITH SAMPLE PROGRAMS IN BASIC
268 D.STEPHENSON AND M.E. MEADOWS
KINEMATIC HYDROLOGY AND MODELLING
27 A.M. EL-SHAARAWI AND R.E. KWIATKOWSKI (EDITORS)
STATISTICAL ASPECTS OF WATER QUALITY MONITORING - PROCEEDINGS OF THE WORKSHOP HELD AT
THE CANADIAN CENTRE FOR INLAND WATERS, OCTOBER 1986
28 M. JERMAR
WATER RESOURCES AND WATER MANAGEMENT
29 G.W.ANNANDALE
RESERVOIR SEDIMENTATION
30 D.CLARKE
MICROCOMPUTER PROGRAMS IN GROUNDWATER
31 R.H.FRENCH
HYDRAULIC PROCESSES IN ALLUVIAL FANS
32 L. VOTRUBA, Z. KOS, K. NACHAZEL, A. PATERA AND V. ZEMAN
ANALYSIS OF WATER RESOURCE SYSTEMS
33 L.VOTRUBA AND V. BROZA
WATER MANAGEMENT IN RESERVOIRS
34 D. STEPHENSON
WATER AND WASTEWATEH SYSTEMS ANALYSIS
36 M.A.CELIAETAL.
COMPUTATIONAL METHODS iIN WATER RESOURCES, VOLUME 1 MODELING SURFACE AND SUB-SUR-
FACE FLOWS. PROCEEDINGS OF THE VII INTERNATIONAL CONFERENCE, MIT, USA, JUNE 1988
36 M.A.CELIAETAL.
COMPUTATIONAL METHODS IN WATER RESOURCES, VOLUME 2 NUMERICAL METHODS FOR TRANS-
PgRT Ar‘:ql)E P;I;gROLOGICAL PROCESSES. PROCEEDINGS OF THE VII INTERNATIONAL CONFERENCE, MIT,
USA, JUl 8

I;PQIIIISNIIWATEII DISGHARGE
SIMULATION AND ANALYSIS

D. CLARKE
20 Musgrave St. Crystal brook, S.A. 5523 Australia

ELSEVIER

Amsterdam — Oxford — New York — Tokyo 1988

ELSEVIER SCIENCE PUBLISHERS B.V.
Sara Burgerhartstraat 25
P.0.Box 211, 1000 AE Amsterdam, The Netherlands

Distributors for the United States and Canada:

ELSEVIER SCIENCE PUBLISHING COMPANY INC.
655, Avenue of the Americas
New York, NY 10010, U.S.A.

Library of Congress Cataloging-in-Publication Data

Clarke, Dennis,

Groundwater discharge test simulation and analysis : microcomputer

programmes in turbo Pascal / D. Clarke.
p. cm. -~ (Developments in water science ; 37)

Includes index.

ISBN 0-444-43037-7 : f1 180.00

1. Groundwater flow--Measurement--Computer programs. 2. Turbo
Pascal (Computer program) I. Title. 1II. Series.
GB1197.7.C58 1988
551.4'9'0724--dc19 88-24574

cIpP

ISBN 0-444-43037-7(Vol.37}
ISBN 0-444-41669-2(Series)

© Elsevier Science Publishers B.V., 1988

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without the prior written permission of the publisher, Elsevier Science Publish-
ers B.V./ Physical Sciences & Engineering Division, P.O. Box 330, 1000 AH Amsterdam, The
Netherlands.

Special regulations for readers in the U.S.A. — This publication has been registered with the
Copyright Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained
from the CCC about conditions under which photocopies of parts of this publication may be
made in the USA. All other copyright questions, including photocopying outside of the USA,
should be referred to the publisher.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or
property as a matter of products liability, negligence or otherwise, or from any use or opera-
tion of any methods, products, instructions or ideas contained in the material herein.

Printed in The Netherlands

Appreciation

I wish to thank Zack Sibenaler, Bob Read, and Don Armstrong for all their help
over the years with hydrogeological questions, and Michael Cobb for his
encouragement.

I should also thank the multitude of workers, investigators, and writers who’s
work formed the background for the programs in this book. This book is a very
imperfect application of selected parts of an enormous amount of work that has
gone before it.

To my young son, Ken, and daughter, Julia, I must apologise for chasing them
away from their computer games so many times.

Especially, I thank my wife, Denece, for her patient help and encouragement in
the writing of this book.

Disclaimer

While the programs in this book are given in the belief that they will give correct
results if they are used as instructed, no responsibility is assumed by the author
or publisher for any errors, mistakes, or misrepresentations that may occur from
the use of these programs, and no compensation can be given for any damages or
losses whatever their cause.

Trademarks
Lotus 1-2-3 is a trademark of Lotus Development Corporation.

IBM is a trademark of International Business Machines Corporation.
MS-DOS is a trademark of Microsoft Corporation.

Vi

CONTENTS

Introduction

VRN L R LN

AIMS OF THE BOOK........cciiiiimiinniiiinnene oo srovns
COMPUTER METHODS USED FOR GROUNDWATER PROBLEMS...........coceenane.
WHY TURBO PASCALY ...ttt sssees
WHAT YOU NEED ...ttt i sisesn s e asascsessss srenses
GETTING STARTED ..ottt sisessre st cnsoses
THE PROGRAMS ON DISKocviviimiiniiininiiiniirimsssses e s
LAYOUT OF THE CHAPTERS ...t ssississsnesenseasies

Preliminary

1.
2.

8.
9.

MOVING AROUND THE PROGRAMSooiciiiiinienennnennienenenesrnessmemenoesosreoens
FILE GW.BATciviitierieniinieniensienieiesiessesssessissssestesssersssssssssssssesssssssssssrsssssssessossessassases
2.1 Function Of GW.BATcccoovieiiiiierrreicrinieesicsreessisnissresessssssnsessisnossessosessesseessonses
2.2 Filelisting, GW.BAT.....ccccvcriveniiriireenennrnrenressessesaesasssessessessesssssnsssosssssesessessinases
PROGRAM GWSTARTc.covniiirenrriieninniirennesiesseoeisiisessessesieossasssssessossssesssssiessassossaniesessses
3.1 Program listing, GWSTART.PAS.........ccootriiiteit e
PROGRAM GWMENU ..o esessesisnsesersessesssssesssssesssess ssaeses
4.1 Program listing, GWMENU.PAS ...t
INCLUDE FILE FIRST.SEGc.ccoocvviiireiiirrrinenreerinssesessssesesnssressesssesessssssssssssesssssessns
5.1 Procedures and functions of file FIRST.SEGc.ccecevierrivienenenenienienienensniensinnnns
5.2 Include file FIRST.SEG, KeY lINES ...covveivuiriiveerenreininirninesiecoiesissinensesisssssessessessesns
5.3 Include file FIRST.SEG, liStINGccocoerierrerirrinrienerei e narnnsnsesressisnseressssesessens
INCLUDE FILE SAVE.PRC.......coccvtvvinrinennnnrenenenmissesresesesiesesnsssenressssesseeseaes suesses
6.1 Procedures and functions of file SAVE.PRC.......c.cccocvimneninininicnrmrerenenienie e
6.2 Include file SAVE.PRC, KeY liN€S......cceererrevricricrniniiceireninsieciesieseeressessneessesiassasaens
6.3 Include file SAVE.PRC, HSHNE ...covevrevirrerrininriiesnienennisenenensensensersesessessensensessesens
INCLUDE FILE READ.PRC reeeire et byt et a b b e ot e R et s eher e n e R Rt et e e s eereaes
7.1 Procedures and functions of file READ.PRC........cccccrvrunrininnmninvineeniierennnnessnerees
7.2 Include file READ.PRC, KeY liNES......ccceerivmenrierienrinecreseeiensenrnnsnsnssiesossessaseseens
7.3 Include file READ.PRC, lIStNZ..c.cocvuiviveernirinrineriimnieeninssisnasisessessisssesonsenes sessens
INCLUDE FILE READSAVE.PRC.......coocorvvvtemiticririeeeenrernrvesneteerneseteseensssssesesssenssesnasens
REFERENCGES ..ottt iiieiinriiesiveresressonosssotestessississsssesiessestissssssrasssessessaesseserssssssensrsens

Chapter 1
Data handling

1.
2.

THE AIMS OF PROGRAM DTDHAcoooiieiciinrtnnresveneineinninsnoressessessesssesessesvessesssesses
FUNCTIONS OF THE PROGRAM: (MENU ONE)
2.1 Entry of discharge test data via the keyboard......

2.1.1 The form of data required.........cccocvvervenne

2.1.2 Entry of data with times in minutes.............

2.1.3 Entry of data with times as date and day
2.2 Editthe data in MEMOTY ..c.oveiviieiiiiiiriiieni et sse e s srennen
2.3 Solve the Well EQUALION ...o.cvvvirieiirriirtrierierrenieereesreerreeseesessrsessrsssessessesessmrssesseresseene
2.4 Read afile from disK......ooeiceeiiniiiiieiiininiiereniesesrsesenressestesesatiasssessassaoseostonsssues
2.5 Savethedatato a disK fIle.....cccvrvririerrieriinierrrirserr e s s eeeee e e saee

ANV bE B WN - —

2.6 View the data iN MEMOTYccovvieviiveeiiiesissisieriseiessiesiseetssiossssessssnssssresinsisssissnssnsts 38

2.7 Print the data i MEMOTYccovvierreiercreeicerrceeenreesiersesest sttt s resn st srsebavasresnen 38

3. FUNCTIONS OF THE PROGRAM: (MENU TWO)ccoourvnrmmmrrenminnisisinnninissiennes 38
3.1 Alteran individual ENtTY ...c.cocvcciierrcccricin e e 38

3.2 Add 2 CONSIANT 10 ENITIES ...oeivrrenrierireerienerreerersersenseresserrensestessaresnmssestsssissssssssosssnesss 38

3.3 Multiply entries DY @ CONSIANL......ccververrrercrerniarisireesiosiirosissssiressssesissisassuessessssnessons 39

3.4 Delete @ TEAAINEG .ovveeereveeirriereierrerrerieerieiesaaseressmesessassussasstsssessnesrssssssssessesssarsrssssees 39

3.5 Delete a number of readingsccovvnreniiviinreimnniveiinniimeisaessn s s 40

3.6 Simulate full recovery between diSCharge Stages........cecerrrrrrerrerseerimesnrseesesrnossssessns 40

3.7 CONVETTHME 10 1/1 . ureverivrenrecinrreeriereeniesinsaniriessuosissnssnesrsssinsssissesessnesssssssansssassersnsns 43

3.8 Convert time to (root t minus root t’) SQUATed........c.ceecvvverivenrnesiimesrmesrmssnns e 45

3.9 Correct data for background “ROISE™cocurniimrcrnnieniicnnienninesntcseineenenninns 46
3.10 Change the test desCription data.........cccevrevreeninenrnniienieimmiessssessissmesese 47
3.11 Merge current data with another fileccovniniicincminnin. 49
3.12 Sort into order of INCreasing timecccoceeurevreseniinnn s 49

4. FUNCTIONS OF THE PROGRAM: (MENU THREE)ccccvecnviiivcnnneniinirercnsiiiinnns 49
4.1 Unitsin the well qUation.........coccviviiiiiiiniiiiieecenieeie i esreressreosrnsessssssessnsssessasssssas 50

4.2 Data rEQUITEIMENIS ..vveererrrireeievreseesseneeesrseseesserersessseasrisnsseessesesssostsresiaosssossosasonssssses 51

4.3 The modified StErnberg AnalysiS......cccvviverrirrvioreresrireresrerassesseesiserssasssonssssssesssosios 53

4.4 Rorabaugh’s ProCeAUIEc...vcoeviveicrerererieenreescsaeersrressesseseesresssesesesssassrsnsivassonssnens 60

4.5 Thesimpler s/Q vs. Q MEthOdooevvrireerrrnienrieeiineicenrecrenseceereesresessssssessonsraesions 62

4,6 Checking the results Of an analysis..........ccooverveeereverenrenesreresoneseesenseesienmsesreessessessiues 63

5. THE PROGRAM ITSELF ...t citisiseninessnssnnsssines sonsssnsssnssssesases senesasssassiese 64
5.1 The make up 0f the SOUTCE COAC.....eivrmveriierieerrirrrrrirrereenrecsressrereessesnsessenensensssnsssennes 64

5.2 The INCIUAE fIlES....ccvvrerirrererirrrirerreeseresrre e ener e ber e sreeresnesis b s st sasssssssrobssnsaen 64

5.3 The object COE ..ot s sassasnens 64

6. PROGRAM DTDHA.PAS, TECHNICAL COMMENTS........ccocecivrnieerirerernesionenneresenses 65
6.1 Procedures and functions of file DTDHA.PAScocvvriiniinnnincnineneesssnsnnns 65

6.2 Procedures and functions of file DTDHMEN2.SEGccccoivvvvmnenennienvorsenniennes 71

6.3 Procedures and functions of file DTDHMENZI.SEGccccoiveiivrriennviienivnisssninens 80

7. KEY LINES OF PROGRAM DTDHA..........cocivvtirvinieerninenrsreiensessismsersosssesssaessasessersescacs 88
7.1 File DTDHA.PAS, K€Y lINES ...couvvvviririrreiicnniererinerrtresrnsesesesesssssssssssssnsresssesansrssessse 88

7.2 Include file DTDHMEN2.SEG, Key HNES.......ccceeeriieriienienrirnennenesesssnnsnessisassessnsosaes 88

7.3 Include file DTDHMENZ3.SEG, Key lINeS......c.cocvrmrrerinrenivoricrnninseesesnsssisessesssiasssessenss 89

8. DTDHA PROGRAM LISTINGccooeoiriirrrieircerrcerinisresesresnessesesinssosesesssassrssencssnasesnenee 90
8.1 File DTDHA.PAS, liStINGccovvvririicririreriieniseisesrernsiesessessinssssessesssssessssessessssssssassosss 90

8.2 Include file DTDHMEN2.SEG, LiStINg......cccocvreererrerreierierinssriassssessmssssesssssrarsaesienes 100

8.3 Include file DTDHMENJ.SEG, liStINg......cccecuvvirerieriiieninrecrnniecronescsrsreesseseseessossonss 111

9. REFERENCGESooioiiiieiveertisiestriessorestirnseessssessesssssessesssessassssvessasassssssssressnssssostssssosennssnes 124

Chapter 2

Simulations 125
1. AN EXPLANATION OF THE AQUIFER TYPESc.occoiviivnnininnrnnnirenonseemensenseessnes 125
2. AN EXPLANATION OF BOUNDARIES........cccooiviinniirinenenniescstsies i s rsesssssessssssans 126
2.1 Simulation of partial boundaries 127

3. SOME DEMONSTRATION RUNSccoovvnmriieanens 128
3.1 A single drawdown in a simple confined aQUIfer.........cccovuereeinieerierninsceniessesnnieesrenne 128

3.2 Asingle drawdown in an unconfined aqUifer..........ccvivivvrimninivieniienessenennnenne 129

3.3 A simulation of a discharge test in a bounded leaky aquiferccoovvurivrvemvioriniens 129

3.4 A three part unconfined drawdOWn CUIVEcccvecenenrevniiisrininiimsessessereeresssensesssres 133

4. PROGRAM DRAWDOWN, TECHNICAL COMMENTScccocorienmennrernivervensinennns 134
4.1 Some selected Program VAriables...........ccveeriieiieriennecreienesnirnssnorenemssessossessessesseres 134

4.2 File DRAWDOWN.PAS, description by program Section.............couvuervrirrerceresnivens 135

4.2.1 The main part of program DRAWDOWNcconvriemrnrnnvernenerecrereeniees 135

VIII

4.2.2 Procedures and functions of file DRAWDOWN.PAScccooveiivveceeennnn
4.3 Procedures and functions of file LEAKFUN2.FUN

4.3.1 Definition of inverse leakage coefficient............cocooviriinniineiinniceccee

4.3.2 Definition of RB......................
PROGRAM DRAWDOWN, KEY LINES...
5.1 File Drawdown.Pas, key lines...............
5.2 Include file LeakFun2.Fun, key lines....
DRAWDOWN, PROGRAM LISTING..........
6.1 File DRAWDOWN. PAS, listing
6.2 Include file LEAKFUN2.FUN, listing
6.3 REFERENCES.........coitiiiimietintietrereenscetretete et e saessesbsbsse sesassassabasteseressessensenesereans

Chapter 3
Simulation (2)

1.

cwa L

THE USE OF UNITS IN SIM7....ooiiiice et
A DEMONSTRATION RUN ...ttt s a s s
PROCEDURES AND FUNCTIONSoooiiiiiiiiiiminccni s s
KEY LINES
PROGRAM SIM7.PAS, LISTING ..ottt e
REFERENCES ...t e

Chapter 4
Simulation (3)

1.
2.

N s

NEUMAN'S UNCONFINED WELL FUNCTIONcoioiiirieieteeirrererene e e snsneane e
USING THE PROGRAM........ccoviieircenieenre e

2.1 Anexample TUN......ccieniiiccineiree e

2.2 Joining the three segments of the sSimulation.........c..occocorvvveernienieeinnie e
2.3 Results from NEUMAN compared to those from program DRAWDOWN...
THE LIMITS OF THE TABLED DATAoociiiiiiiteieteeniceceneireeeeseeresaveneeneens
3.1 Cautionary NOLESceccvevereverrreceenerereerereesnenveennens

DESCRIPTION BY PROCEDURE AND FUNCTIO
KEY LINES OF PROGRAM NEUMAN L.....ccooiiiiiiiiiiirireniestiesercnerrastesseeseeseeseesraeneas
LISTING OF PROGRAM NEUMAN.......coccontieirininncenceieteeserer et sassne s e
REFERENCES ..o ooiiiieiieeiereeeie e rtesteseessteatesteste s saressessnassas sasessasssessassensessssssessnsanns

Chapter 5
Joining files

|

2.
3.
4,

AN EXAMPLE OF THE USE OF PROGRAM JOINWTDccooiniiiniricnicinccrene
DESCRIPTION OF PROGRAM JOINWTD BY PROCEDURES AND FUNCTIONS ..
KEY LINES OF PROGRAM JOINWTD......ccoiiimiiiiiiiiiniiciiiiie s
LISTING OF PROGRAM JOINWTDccocoviiniiiiiiniiiiii et

Chapter 6
Plotting

I,
2.

HARDWARE REQUIREMENTS FOR GRAPHIC OUTPUT....
USING THE PROGRAM.......cooiiiiecee e e s enee e e
2.1 Altering the program names for a Hewlett-Packard plotter....
2.2 Running the programi...........ccoceeiireveereesioriocrneresensersosessessenne
2.3 Graphing deVICES ...ccvvirvveriirererierieeiecrreentercentecnees e riee st eese e esseeaeesressaenaanreneernesaansane

2.3.1 SCreen Braph .oo..ooeiceeceee et e et a e s ebe st eta et erba s

2.3.2 PIOLET BraPN.c...ooceeriireeieencrirerce e st eenseesrerssenenesmesnessreesreonnensesnesnsasaesnsare sreone

2.3.3 Disk flle raph....c..ccvooiiiiiieces e e et e sre s
2.4 Anexample screen graph
2.5 Graph types available on the SCTEENccovviericeniereiiiriericnnrrrerecr e e eresereenens

167
167
168
169
173
173
176
176
177
187
187
195

2.6 OULPULLO A PIOLET .ottt ecreteeresreeveeraessesareeseaessbessnessessasssessansnenssnssensens 216

2.6.1 Standard scale log-log graph....... e 217

2.7 Graph types available on a plotter......... e 217

2.8 Scaling of graphsceeevvevvvevrneneene ... 224

2.9 Sending disk file data to a plottercccevvvevrevrerereerernens .. 224

3. NOTES SPECIFIC TO THE ROLAND DXY-880 PLOTTER..... . 225

4. NOTES SPECIFIC TO THE H-P COLOR PRO PLOTTER 226

4.1 Configuring your system for the H-P plotter e 227

4.2 Instruction set differences..........cccoververvvenns e 227

5. A DEFINITION OF SELECTED VARIABLES AND CONSTANTScccocvevrrcerrecnennenes 228

S.1 0 Variables. ..o . 228

5.2 COMSLANLS .eiviieieieiinieeete e st eresees e sseseeenseeseeseeseraeesenaseseneaseessaseessersnesasssasssssnsassasssan 229

6. A DESCRIPTION OF PLOTWTD BY PROCEDURES AND FUNCTIONS..........cc..... 229

7. KEY LINES OF PROGRAM PLOTWTD .. 246

8. KEY LINES OF PROGRAM PLOTWTD........oooiiictrieteiee e eeee e e sass et nassasenas 247

9. LISTING OF PROGRAM PLOTWTD (ROLAND VERSION)ccoccvveeirierieeeeiereneenns 249

10. LISTING OF PROGRAM PLOTWTD (HEWLETT-PACKARD VERSION)................. 270

Chapter 7

Analysis 282

I. AIMOFTHE PROGRAM........o oot et st ese s e s se e sse st see e esenenes 283

2. LIMITATIONS OF THE PROGRAM..... .. 283

3. USING ANALYZE.......cccccovvvurvirenennenen ... 284

3.1 Thegraph................. . 285

4. A CONFINED AQUIFER................. . 285
4.1 Calculation of transmissivity

4.2 Calculation of storage coefficient...
4.3 Fitting a Theis curve to the data....

5. LEAKY CONFINED AQUIFERS............
5.1 Calculation of leakage coefficientc.......
5.2 Fitting a leaky aquifer type curve t0 the datacccocvvvenvenrennrnnnienecrnienrennnierineeees
6. A BOUNDED CONFINED AQUIFER.c.ccoooiimtictireecriirecresseersevesesesssereseesnesssesssensens
6.1 Curve fitting for T, S, and image well distance...
6.2 Curve fitting for image well diStance OnlYooccveveeviecrieceeicerieeenree e s
6.3 Curve fitting for a semibounded aqUIfercccooveveeieereicireereeneee e
7. A CONFINED STRIP AQUIFER..........cccoveunenen.
7.1 Finding width of the strip, given Tand S
7.2 Semistrip - finding width, given T, T2, and S................
7.3 Semistrip - finding width and T2, T ans S are given.... . 295
8. AN UNCONFINED AQUIFER.......ccccovriirerimeerirereierniereneens .. 295
8.1 Curve fitting for T, S, and aquifer thickness.... .. 296
8.2 Aquifer thickness, given Tand Sccccoevveerrennnens . 296
9. DESCRIPTION BY PROCEDURE AND FUNCTION . 296
10. REFERENCESc.ooecmintviintecrrrnneneneenereenieeserennenennes .. 317
11. KEY LINES OF FILE ANALYZE.PAS.... .. 319
12. KEY LINES OF FILE BOUNDPFIT.PRCccccoovieitrvrerenrecrerevensonemessisssssrsesssssssssessenses 320
13. THE DIFFERENCES BETWEEN FILES LEAKFUN2 FUN AND LEAKFUNC.FUN... 321
14. LISTING OF FILE ANALYZE.PAScoiitiriinirertiiniectssesisesesssesesssssessesesssnsensessens 322
15. LISTING OF FILE BOUNDFIT.PRC......cccocviviriininerinirinrstesies e seeressssesssesessensessessessensens 354
Appendix A Disk data file fOrmMat.........ccooieiiiiiiiiciiecece et rasere e 361

Appendix B The use of Turbo Pascal VErsion 3..........ccoovviiviiiiiiiieiie v e eas v 363

X

ADDPENAIX € EITOT MESSABES ...vevvveereurrreriierinciieseersosiesnisssosiosssesissisersossesssesnosnesessamssmssessessessesnssnen 365
Appendix D Converting a data file from Lotus 1-2-3 to FTD format..........c.cocecvvenicncnerncrccnnins 367
EPIIOBUE ...eovviitiirerrccenrier s istese sttt et esstsas b st esr s bt sassae e s e s bb e b s e bR s SR Lo b Lo b o s s e e st s s e e R e b s s enn 368

Introduction 1

Introduction

1. AIMS OF THE BOOK

This book 1s written with the intention of providing tools for the
practising hydrogeologist, in a similar vein to it's predecessor, Micro-
computer Programs for Groundwater Studies (Clarke 1987). Emphasis is placed
on utility rather than on theoretical rigor.

All of the programs given in this work were developed with the dual
intention that they should be both as useful as possible, be clear and
sufficiently self explanatory for others to use with a minimum of learning
time.

A decision has been made to provide computer output that shows, as far
as practicable, the steps taken in arriving at a solution, so that the user
may be in a position to follow the 'reasoning' and judge the validity of a
particular case. An alternative would have been to concentrate on producing
pretty or impressive graphical and printed output. Perhaps some users may
wish to modify the programs to do this, but I did not see that as being the
most desirable course in a book designed to show how computers can be used to
provide answers to field questions. The output from these programs tries to
be tidy, but providing information is given much more weight than aesthetic
values.

Why another book on very much the same theme as one written only a few
years previously? The short answer is that the use and availability of comp-
uters and computer software is changing, as also is my exposure to new hard-
ware and software. Whatever it's qualifications, the IBM PC has set a much
needed standard for the providers of software; this standard had not yet had
such a great effect when my first book was being written, so that work was
aimed more broadly. Memory comes more cheaply with each year, so it can be
used more liberally by programming languages that are more memory hungry than
Basic 1s. The advances in computing hardware and software, and the advances
in the authors experience, allow programs that are more powerful, easier to
use, faster, and which cover more ground than those of the older work.

The main differences between this and the older book are:

1/ The programs of this book are written in Turbo Pascal rather
than in Basic.

2/ This book covers more ground than the last (eg. simulation of
drawdown following Neuman's Unconfined Well Function, &a more versatile

plotting program, and much more discharge test analysis.

2 Introduction

3/ This book 1s less elementary than the last. It does not start
with simple solutions to basic functions and work up from there, rather it
explains fully functioning programs right from the first chapter. This does
not mean that this book is for more experienced programmers than the last;
while greater experience may be necessary if one is to fully understand the
operation of the programs, less should be needed to use them.

4/ Concentrating on one group of computers (IBM PC and clones) has

allowed the use of screen graphics.

2. COMPUTER METHODS USED FOR GROUNDWATER PROBLEMS

Geology in general, and hydrogeology especially, often involves applying
numerical values to naturally occurring systems; eg. an age to a rock form-
ation, or a transmissivity to an aquifer. While in physics quantities may be
known to high degrees of accuracy, hydrogeology uses approximations and
generalizations. It 1s often not possible, or even desirable, to be totally
accurate. eg. The age of which part of the formation? - the transmissivity
of which part of the aquifer, and in which direction? Answers will be
required for these questions at times, but often an approximate answer for
the whole unit is all that is needed.

The moment one applies a mathematical equation (ie. a model) to a ground-
water problem, even if that equation 1is as simple a Darcy's law (Bouwer,
1978), some simplifying assumptions must be made. To 1list a few common
assumptions;

1/ The porous medium is homogeneous.

2/ The piezometers used to monitor the system give values that are
representative of a significant cross-section of the system rather than of
Jjust one point.

3/ Vertical flow within the aquifer is negligible.

4/ The aquifer is fully confined.

5/ The aquifer is of infinite extent.

In reality these assumptions are very often not justified.

If unjustified simplifying assumptions are applied to a complex real
world situation in order to obtain information on that system, then it
follows that the information so obtained will at best be approximate. Only
in an ideal (and therefore nonexistent) groundwater system will our methods
of mathematical analysis give completely accurate answers.

Hydrogeology is not, cannot be, an exact science. The skill of the
competent and experienced hydrogeologist rests largely in his/her ability to

make meaningful generalizations and approximations, and in knowing how far

Introduction 3

these can be pushed before errors become so great as to invalidate any
conclusions that he/she may make.

These arguments must be borne 1in mind in using the programs in this
book. There seems to be a tendency among some people to take any numbers
produced by a computer to be absolutely correct. There is a saying in
computer science; '"rubbish in - rubbish out". You cannot expect the output
of your computer to be better than it's input. In many cases errors in data
will be magnified, and results will be less accurate than input.

If all this sounds pessimistic and defeatist, then it is time for a note
of optimism. Very often the bulk properties of an aquifer can be approx-
imated by average figures in such a way as to produce a reasonable simulation
of the behaviour of that aquifer under given conditions of recharge or
discharge. I've seen discharge test results from many wells that indicated
an aquifer that behaved very similarly to an ideal infinite, confined,
homogeneous, isotropic aquifer, at least for the duration of the test.

In summary, I would like to make two suggestions.

1/ Don't expect five figure accuracy when using these programs to
evaluate some aquifer parameter, often one figure, or even order of magnitude
values may be both useful and the best that can be expected.

2/ Perhaps there are times when mathematical rigour should take

second place to seat of the pants empiricism?

3. WHY TURBO PASCAL?

This relatively new language is a super-set of standard Pascal and has
quickly become extremely popular. It 1is quite true that Basic is a much
better known language, but I cannot imagine anyone who has taken the trouble
to learn Turbo Pascal, ever by choice using Basic again. Fortran seems
popular among those who were trained in the use of Fortran as the programming
language for science applications, but does anyone ever choose to learn
Fortran after becoming proficient in Pascal?

The ease of use of Turbo Pascal, it's exceptionally good editor,
it's speed, and it's (Pascal's) structure, are probably it's main
advantages. A program who's source code occupies around 30 kilobytes can be
compiled directly into memory in about 20 seconds on even a relatively slow
PC, or it can be stored on disk as a stand alone machine language program.

Turbo Pascal can be expected to be around three to four times as
fast in run time as interpreted Basic in most groundwater applications, but

it may be twenty or more time fasier than Basic in such tasks as sorting.

y Introduction

The relative difference if your computer has a maths co-processor will be
greater than this.
The programs were written using Turbo Pascal version 3.0.

4. WHAT YOU NEED

These programs were written on an IBM PC XT compatible microcomputer
with a colour graphics adaptor (CGA) and a maths co-processor. They should
run on any computer of the IBM PC type, so long as there i1s at least 250k
avallable to the programs. Some of the programs use monochrome graphics, and
some use colour graphics. Program PLOTWTD uses a plotter with either the DXY
or HPGL set of commands. So if you want to use all of the programs to their
full potential you will need a colour monitor, a colour graphics adaptor, and
a plotter such as the Roland DXY 880, or one of the Hewlett-Packard range.

Useful but not essential are a hard (fixed) disk, a maths co-processor,
and 640k of RAM. Failing a hard disk, at least two floppy disk drives are
probably essential.

5. GETTING STARTED

The programs may be typed in from the book if you do not have them on
disk (see below). If there are only one or two programs that you are
interested in, then this may be the best course. If you decide to type the
programs in from the book, or if you want to be able to modify them in any
way, you will require the Turbo Pascal editor/compiler, which at the time of
writing was available for around $60 US in Australia. If you have the
programs on disk, and you do not wish to alter them, you do not need Turbo
Pascal.

If you do have the disks then you should copy the programs onto another
working disk, and then put the distribution disks away in a safe place. If
your computer has a hard disk, then I recommend making a new directory (see
your Dos manual), and copying all the programs from the distribution disks
into that directory. Perhaps two new directories would be better, with the
programs in one and your diacharge test data files in the other (see the
notes on GW.BAT in the next section of this book, Preliminaries).

If you have a two floppy system, or if you want to get straight into
using the programs, then simply place your working copy of the disk
containing the executable code in the default disk drive, type GW2, and press
enter. This will get you to a preliminary message, and on pressing any key

you will be shown a menu. You may choose from the menu by pressing the

Introduction 5

indicated key. You will notice that in all cases in these programs, when a
choice may be indicated by one key, it is not necessary to press Enter after
pressing that key.

From this point onward, you will have to consult the instructions for

the individual programs.

6. THE PROGRAMS ON DISK

To avoid the tedious Job of typing the programs in from the listings,
you may purchase them on two thirteen centimetre (5 1/4 inch) double sided
floppy disks for Australian$70 (approx. US$52) from the author at Clarke
Computer Services, 20 Musgrave St., Crystal Brook, S.A., Australia, 5523.
(20% sales tax is payable by buyers inside Australia.) The disks will be
dispatched by air mail when the buyer is outside of Australia. There is no
extra charge for postage and packing.

The disks are in a format compatible with an IBM PC. One disk contains
the source code, and the other contains the executable object code. If you
ask for object code suitable for an 8087 maths co-processor when you order,
then that will be supplied, otherwise it will be assumed that your computer
does not have this chip. (Code compiled to not use an 8087 chip will run
when one is present, but the opposite is not true.)

The programs as printed in this book will not be entirely free of
'bugs*'. I anticipate improving, upgrading, and adding to the programs in the
future. If you find problems in your use of the programs, or you see room
for improvement or expansion, please contact me. If you are reporting a
'bug' please take care to give very full and specific information about how
the problem arose in writing, or better, on disk with the data involved.

7. LAYOUT OF THE CHAPTERS
Each chapter describes one or more programs. Each program description
has three parts;

1/ The program from the users point of view. Non programmers
should be able to follow this description.

2/ A description by procedure and function. This section describes
the way the programs work in words. It is this section that gives the
equations and algorithms on which the programs are based.

3/ A 1list of the key 1lines of the program. This, at a glance,
shows the locations of the beginnings of all procedures and functions, and

6 Introduction

any other major feature, within the program.

4/ The program 1listing itself. The programs are listed with each
line numbered. The line numbers must not be typed in to your computer, they
are for vreference only. You will notice that some program lines in the
listings are too long to go on one printed line. When typed in, these

program lines should be placed entirely on one screen line.

8. UNITS

It would be very nice to be able to assume that every user would be
happy to use units based on the metre and the day, but this cannot reasonably
be assumed. This is especially so as discharge test times are usually dealt
with in minutes.

Units are suggested by the programs, and are assumed in some places.
Whether users wish to be bound by the suggestions is entirely up to them, but
if they do not then they must consider the consequences of their decision.

The programs assume metres as the unit of length in all cases. The time
unit assumed depends on the application, and will normally be specified.
Entry of discharge test data assumes that times will be in minutes and
drawdowns in metres, but if the wuser wants to enter times in days and
drawdowns in feet there 1s no problem (at least until analysis is
attempted). The programs always assume that the times stored on disk file
are 1in minutes, but for any analytical operation times are converted to days
so that a consistent unit set is achieved. (This causes no problems in DTDHA
when data 1is picked up from disk file, an analytical operation done, and the
data re-saved. Jt will go back to the file in minutes if it came off in
minutes; unless a specific instruction was given to change the form of the
data.)

I suggest that users stay with the assumed units as far as possible when
analysis is involved. The choice of unit for data entry is of little con-
sequence, data units are very easy to change at will using program DTDHA.
Cosmetic modification to the graphing program, PLOTWTD, will be required if

you want your graphs to say that drawdowns are in feet.

9. REFERENCES
Bouwer, H., (1978). Groundwater Hydrology, 480pp. McGraw-Hill Kogakusha.
Clarke, D.K., 1987. Microcomputer Programs for Groundwater Studies.
Developments in Water Science, 30. Elsevier, Amsterdam/Oxford/New
York/Tokyo, 340pp.

Preliminary 7

Preliminary

This section describes some small programs which serve to call up the
main programs described in the body of this book. It alsc details some files
which are used by the main programs in reading and writing discharge test
data files. Readers who are not interested in the operational aspects of the
programming might wish to pass over this section and go directly to Chapter
One, although some notice should be taken of the notes on the batch file
GW.BAT.

1. MOVING AROUND THE PROGRAMS

Several of the programs in this book are quite large, and all deal with
basically the same subject, so it is convenient to have some controlled and
easy method of moving around from one program to another, or from one part of
a program to another part.

When a Turbo Pascal program is compiled to produce a compiled (COM)
file, it always includes a library of functions, whether or not these may be
required in the particular program; this can lead to waste of disk or memory
space when several programs are involved. However, it is possible to compile
only one program into the COM form, and all related programs into chain (CHN)
form (see Appendix B); the chain files do not require their own library, but
use that of the COM file. If this method is used, then the programs must be
linked together in use, the program in the COM file being called first, and
the chain files being accessed from there.

Turbo Pascal does not give a simple way of producing a directory of disk
files, but this can be provided from a short batch file which may be called
from Turbo.

The preliminary programs described in this section can provide the
structure from which the main programs are accessed. Note that the
preliminary programs are not essential, any one of the groundwater programs
in this book can be compiled as a COM file and then used on it's own; but
going from one program to another is easier, and the integration of the group

is improved, if these are used.

2. FILE GW.BAT
This 1is a batch file which gives the program group the ability of
obtaining directories of data files. To use the file you have two

alternative courses, you may use the file as it is and tailor your

8 Preliminary

directories to suit, or you can tailor the file to suit your directories.

1/ If the file is to be used as it is then your discharge test data
files must be on drive C in a subdirectory named PT (for pump test) which is
itself in a subdirectory named DAT (for data).

2/ If you wish to modify the file, then you have full control over
the placement of your data files.

If you wish to use the batch file, GW.BAT, as it is, then you can create
the needed subdirectories by typing the following commands from the root
directory. Type in the commands between the quotes. Type "md dat", press
Enter, type "cd dat", press Enter, type "md pt", press Enter.

If you choose to modify the batch file then the simplest modification is
to change only those lines which refer to the path to your data files (lines
3, 11, and 15). For example, if you want to have your discharge test data in
a subdirectory having the path \dtest (a first level subdirectory), then you
would change all occurrences of "\dat\pt" to "\dtest". Another example,
perhaps you are using only two floppy drives, and you want your discharge
test data files to be on drive B; then you could change "c:\dat\pt" in both
lines 11 and 15 to "b:"™ (and 1line 3 could be removed as it now becomes
redundant).

Beginners to the use of DOS commands will have to refer to their DOS
manuals to learn how to use the editor 'Edlin' to alter a Batch file.

2.1. Function of GW.BAT

The Append statement used in line 3 tells your computer to always check
in the stated directory when any data file is called for. This can save you
having to type 1in the full path and file name whenever you want a data file
read. Note that the append statement will not cause a data file to be
written to the stated directory; it will go to the default directory unless
you specifically state the path name. For example, when any one of the
programs asks for a file name under which to store data, if you give the name
"c:\dat\pt\test” then the file will go into a file named "test" (with the
extension wtd if you have asked for an ASCII file, or ftd if you have asked
for a 'fast' file), on drive C:, in subdirectory pt of subdirectory dat
(supposing those subdirectories exist).

Program GWMENU is not able to o¢all GW.BAT unless GW.BAT originally
called program GWSTART. ie, This batch file is not useable unless you start
the programs by writing GW (or GW2) and pressing Enter. If you ask for a
directory when at the primary menu by pressing d, then you will be asked to
specify Wtd or Ftd (Wtd 1s the extension name of an ASCII Well Test Data

Preliminary 9

file, while Ftd is that of a Fast well Test Data file). Depending on your
decision, the Turbo Pascal 'Halt' command will be given the parameter 63 or

64, The Halt command will cause program execution to be terminated, and
control will pass back to this batch file because it called the Turbo Pascal
program group. The parameter then becomes a batch file error level, and

controls the way in which the directory is called for.

Note that the command 1line parameter 1 will be passed to GWSTART.COM
when it is first called, but 2 will be passed on any call after a directory.
It is the value of this parameter that lets GWSTART know:

1/ 1f it was not called from GW.BAT (parameter neither 1 nor 2),

2/ whether it is being called before any directory has been
provided (parameter equals 1),

3/ or whether it 1s being called after a directory (parameter

equals 2).

I suggest that the user should freely change this file to suit his own
needs, and to suit the configuration of his PC.

A second, simpler, version of GW.BAT, named GW2.BAT, has been included
on the program disk. This does not contain an Append statement, and will
read files from the default directory.

2.2. File listing, GW.BAT

echo off

cls

append \dat\pt

gwstart 1

tbegin

if errorlevel 65 goto end
if errorlevel 64 goto ftd
if errorlevel 63 goto wtd
goto end

10 :wtd

11 dir c:\dat\pt\®.wtd/w

12 pause

13 goto ret

14 :ftd

15 dir c:\dat\pt\®.ftd/w

16 pause

17 :ret

18 gwstart 2

19 goto begin

20 :end

WO UNEWN =

3. PROGRAM GWSTART

This program, when compiled, serves as the essential COM file to which
all the chain (CHN) files can refer for access to the functions of the Turbo
Pascal run time library. As a minor funection, it causes an introductory

10 Preliminary

message to be displayed when the G/W programs are first called up. On
finishing, this program passes control to the primary menu program for the
G/W group, GWMENU.CHN.

If you compile this program, then use the Turbo Pascal COM option, and
be sure to set the Code Segment and Data Segment values to those given in
line 2 of the program. Please refer to your Turbo Pascal manual for an
explanation.

As with all the programs of this book, GWSTART contains the Include file
FIRST.SEG. This file is a collection of those variables, procedures and
functions that are common to most of the programs. It is described and
listed later in this section.

There 1is little else that need be said of GWSTART, except a few words on
the use of the ChainTo procedure. This 1s described in the notes on the
Include File FIRST.SEG which contains it. At this point it is only necessary
to say that on ending, this program attempts to call up the chain file
GWMENU.CHN, and if it cannot be found then the present program, GWSTART.COM,

will abort with an appropriate message.

3.1. Program listing, GWSTART.PAS

1 Program GWSTART PAS; {A COM file for well test data handlers etc.

2 Code segment minimum is 0A40, data segment minimum is 0680 paragraphs.
3 Turbo Pascal apparently cannot take more code in a chain file.}

I

5 {$I First.seg}

6

T var

8 Ch: char;

9

10 Procedure Introduction;
11 var Ch: Char;

12 begin
13 writeln(' The GW set of programs');
14 writeln;

15 writeln(' These programs are subject to copyright by Clarke Computer
Services,');

16 writeln('20 Musgrave St., Crystal Brook, 5523, South Australia.');

17 writeln(! If you have difficuities in using these programs and
cannot solve them');

18 writeln('by reference to the instructions please contact the above
address.');

19 writeln; writeln(' Disclaimer');

20 writeln(' While the programs are supplied in the belief that they
work as described,');

21 writeln('Clarke Computer Services make no guarantee at all, and take
no');

22 writeln('responsibility for any damages whatever, which may arise out
of the use');

23 writeln('or misuse of these programs.'); writeln;

24 writeln;

25 writeln('Press any key to continue.');

Preliminary 11

26 Chi='x'; repeat read(kbd,Ch) until Ch<{'x';

27 end; {Procedure Introduction}

28

29 begin {Main part of Program GWSTART}

30 ClrScr; TextColor(Green); I0Code:=1;

31 if ParamStr(1)<>'2' then Introduction;

32 if (ParamStr(1)<>'1') and (ParamStr(1)<>'2') then

33 Dbegin

34 writeln('ERROR: This program has been called direct. Directory ',
35 'will not be available.');

36 delay(2000);

37 end;

38 ChainTo('GWMENU.CHN',IOCode);
39 if I0Code<>0
40 then begin

L] writeln('Unable to execute program GWMENU.CHN!');
42 end;
43 end.

4. PROGRAM GWMENU

As is the case with GWSTART, this is a small and simple program.
Neither of these 1is essential to the running of any of the main programs of
this book, but as explained above they do make the set of programs more
integrated.

The program consists of two main parts, the first of which (procedure
DisplayMenu) displays a menu giving the names of all the major programs, and
the name of the key which should be pressed to get to each. The second part
calls the chain file appropriate to the key pressed.

Two alternatives other than an exit to one of the G/W program are
avallable, these are to press E to end the program, or to press D to have a
directory of discharge test data files displayed. The first of these simply
results in termination of this program, while the second is a little more
involved. On pressing D, you will be asked: "Which type of data file, Wtd,
or Ftd?" (line 63). Here you indicate your choice by pressing either W (to
indicate a file with the extension WID, an ASCII file), or F (to indicate a
file with the extension FID, a machine language, or 'fast' file). (See
Appendix A for more information of data file formats.) Function CapOptions
(explained under the notes on file FIRST.SEG), then returns a 1 if W has been
pressed, or a 2 if it was F that was pressed. The value returned is added to
62 in line 65 and the result is used as the parameter passed to DOS (the disk
operating system) by the Halt command. It is this number that batch file
GW.BAT then uses to decide the class of discharge test data files that are to

have their names displayed.

12

O O=IOWM =WN -

Preliminary

4.1. Program listing, GWMENU.PAS

Program GWMENU_PAS;
{$I First.seg}

var
Finished: boolean;
Ch: char;
TempInt: integer;
ProgFileName: ShortString;
const
ValidResponse:
set Of char=[l1l'l2|'|Al,'Jl’INI,IPI’ISI’|D',IEI];

Procedure DisplayMenu;
begin

writeln(' GW primary menu');

writeln;

writeln(' Which program do you want to run?');

writeln('Press the indicated number or letter key.');

writeln; writeln;

writeln('1: DTDHA Discharge Test Data Handling and Analysis;'

writeln('2: DRAWDOWN Calculate drawdowns in various aquifers;');

writeln('A: ANALYZE Analyze aquifer test data;');

writeln('J: JOINWTD Join a leaky aq. simulation to an unconfined
aqg.'

,' simulation;');

writeln('N: NEUMAN Simulation by Neuman''s unconfined well
function;‘);

writeln('P: PLOTWID Plot well test data on the VDU screen;');

)

writeln('S: SIMT7 Simulation of drawdown from a pumped well;');
writeln;

writeln('D: To view the directory of data files;');
writeln('E: To end GW and return to Dos.');

end; {Procedure DisplayMenu}

begin
ClrSer; Finished:=false;
repeat
DisplayMenu;
repeat
Ch:='x'; repeat read(kbd,Ch) until Ch<>'x'; Ch:=UpCase(Ch);
until Ch in ValidResponse;
if (Ch<>'E') and (Ch<>'D')
then begin
case Ch of
'1': ProgFileName:='DTDHA.CHN';
t2': ProgFileName:='DRAWDOWN.CHN';
*A': ProgFileName:='ANALYZE.CHN';
'J*: ProgFileName:='JOINWTD.CHN';
'N': ProgFileName:='NEUMAN.CHN';
'P': ProgFlleName:='PLOTWTID.CHN';
tSt: ProgFileName:='SIM7.CHN';
end; {of cases}
ChainTo{ProgFileName,I0Code);
Ch:="x"';
i1f I0Code<>0
then begin

Preliminary 13

56 writeln('Sorry, this option is not available.');
57 writeln('Please select another.');

58 Delay(2000); ClrSer;

59 end;

60 end; {if Ch<{>'E' etec.}
61 if Ch='D'
62 then begin

63 writeln('Which type of data file, ');
64 TempInt:=CapOptions('Wtd, or Ftd? ');
65 halt (TempInt+62);

66 end; {if Ch='D'}

67 1f Ch='E' then Finished:=true;
68 until Finished

69 end.

5. INCLUDE FILE FIRST.SEG

This file contains the global variables that are common to all the
Pascal programs of this book, and the functions and procedures that are of
particularly general use.

An important variable type is MainVec, which 1s the vector (single
dimensional array) type that 48 used for the very basic purpose of holding
time, drawdown, or discharge rate data. Pointer variables of this type are
used in those programs that have need to hold more than one set of discharge
test data at one time.

5.1. Procedures and functions of file FIRST.SEG
CapOptions function Line 28
Purpose: to take a string containing several options which are indicated

by words beginning with capital letters, to allow the user to indicate which
option is required, and to return the ordinal number of the chosen option.

The string passed to the function is first displayed, with all capitals
vwhite, and all other characters green. At the same time, a copy is made of
all the capital 1letters, and stored in the string, Valid. The keyboard is
then monitored until a key is pressed who's capital form is contained in
Valid. Finally, the ordinal position of the indicated capital is given to
CapOptions, to be returned to the calling routine.

Response function Line 60

Purpose: to take a 1list of valid responses, allow the user to choose
one, and return the choice.

The 1list of choices must be a short string of capital letters, and is
placed in the variable, Targ. The keyboard is monitored until a key corres-
ponding to one member of the list is pressed, then the capitalised form of
the selected letter is displayed and returned.

14 Preliminary

ReadReal function Line T4

Purpose: to allow the user to input a real number, and to reject any
invalid entries.

Unlike basic, Turbo Pascal by itself does not object, and ask for a
repeat, 1f a wuser enters something invalid when &a numerical entry is
expected. This, and functions ReadInt and ReadIntInput, have been written to
make up for this lack.

First a record is taken of the position of the cursor before the user
enters anything. The user's entry is picked up in the global string, Short,
and an attempt is made to convert this to a real in the same line of code.
If an error is found in the conversion, then Result is given a non zero
value, and the message 'Invalid' is displayed for one second at the place on
the screen where the 'number' was typed. After the seconds delay, the
message is removed, and the cursor is returned to it's original position.

If no error occurs in the conversion, then the result is returned to the
calling routine. Note that a nul entry (the pressing of the Enter key before
any character is typed) is also oonsidered to be invalid, although it is
acceptable to the built in Turbo Pascal Val routine. Finally the number of
lines that were passed to the routine in variable, Num, are printed on the

screen - in preparation for the next display.

ReadInt function Line 95
This function 1is almost identical to ReadReal except that it accepts an
integer, where that function accepts a real; please refer to the notes on

that function for an explanation.

ReadIntInput function Line 116
Again, very similar to the function ReadReal, please refer to those
notes. Here an integer is read in, and a nul input is acceptable. If a nul

input is entered, then zero will be returned to the calling routine.

ChainTo procedure Line 138

Purpose: to chain to a file who's name is given.

All of the Pascal programs given in this book can terminate and pass
execution to another program file having the extension name of 'CHN'. This
procedure brings about that operation. If the chain file is not found, then
integer variable, 10Code, (input-output code) will receive a non zero value

and control will pass back to the calling routine.

5.2. Include file FIRST.SEG, key lines

{#-eu-- Include file FIRST.SEG ===-= #}

Preliminary

28 Function CapOptions {Choice of a highlighted option.
60 Function Response {Exit only on receiving an acceptable key entry.

74 Function ReadReal {Reads a real number from the user, rejects errors.

95 Function ReadInt {Reads an integer from the user, rejects errors.
138 Procedure ChainTo {Chain to another file, return code if not found}
116 Function ReadIntInput {Reads an integer or nul from the user.

15

149 {#-—--- End of include file FIRST.SEG -----#}
5.3. Include file FIRST.SEG, listing

1

2 (%{$I FIRST.SEG}*®)

3

R Include file FIRST.SEG ==-—= #}

5 type

6 MainVec=array[1..500] of real;

7 LongString=string(80];

8 MedString=String[40];

9 ShortString=string[20];

10 Test=(Discharge, Recovery, Simulation, TOverT1);
11 Well=(Pumped, Observation);

12 TypeOfData=(FTD, WTD);

13 Rec=record

14 OneTime, OneDd, OneRate: real;

15 end;

16

17 var

18 Error: boolean;

19 I, J, First, IOCode: integer;
20 TempVal, Num: real;
21 Exten, Short, Answer: ShortString;
22 FileName: MedString;
23 Long: LongString;

24 ThisRec: Rec;

25 DataType: TypeOfData;

26 FtdFile: file of Rec; WtdFile: text; MainFile: file of byte;
27
28 Function CapOptions {Choice of a highlighted option.
29 Prints a string, beginning at the current cursor position, highlights
30 all capital letters, and returns the ordinal number of the chosen option}
31 (LongStr: LongString):integer;
32 type CapSet= set of char;
33 const AllCaps: CapSet=['A'..'2'];
34 var
35 I: byte; Valid: String[10]; Ch, Cap: char;
36 begin
37 Valid:=''; Cap:=' ';
38 For I:=1 to Length(LongStr) do
39 Dbegin
40 Ch:=copy(LongStr,I,1);
41 if Ch in AllCaps
42 then
43 begin

4y TextColor(White); write(Copy(LongStr,I,1));
45 Valid:=Valid+Copy(LongStr,I,1);

46 end
u7 else

48 begin

Preliminary

TextColor(Green); write(Copy(LongStr,I,1));

end {else}
end; {(for}
while pos(Cap,Valid)=0 do
begin
read (kbd,Cap); Cap:=UpCase(Cap);
end;

write(' ',Cap); writeln;
CapOptions:=Pos(Cap,Valid);
end; {Function CapOptions}

Function Response {Exit only on receiving an acceptable key entry.
The ordinal number of the key's position in the list is returned}
(Targ: ShortString): ShortString;
var
Temp: byte;
Ch: Char;
begin
repeat
read (Kbd,Ch);
Temp :=Pos(UpCase(Ch), Targ)
until Temp>0;
writeln(Ch); Response:=zUpCase(Ch);
end; {Function Response}

Function ReadReal {Reads a real number from the user, rejects errors.
The number of line feeds to be output is passed to this function in
Num}
(Num: real):real;
var
I, J, X, Y: byte;
Result: integer;
begin
X:=WhereX; Y:=WhereY; Result:=1; I:=round(Num);
while (Result<>0) or (length(Short)=0) do
begin
read (Short); Val(Short,Num,Result);
if (Result<>0) or (length(Short)=0) then

begin
GotoXY(X,Y); write('Invalid'); Delay(1000);
GotoXY(X,Y); write(' '); GotoXY(X,Y);
end;
end;

ReadReal :=Num;
for J:=1 to I do writeln;
end; {Function ReadReal}

Function ReadInt {Reads an integer from the user, rejects errors.
The number of line feeds produced is passed to this function in I}
(I: Integer): Integer;
var
J, X, Y: byte;
Num, Result: integer;
begin
X:=WhereX; Y:=WhereY; Result:=1; Short:='';
while (Result<>0) or (length(Short)=0) do
begin
read (Short); Val(Short,Num,Result);
if (Result<>0) or (length(Short)=0) then

Preliminary 17

107 begin

108 GotoXY(X,Y); write('Invalid'); Delay(1000);
109 GotoXY(X,Y); write(!' '); GotoXY(X,Y);
110 end;

111 end;

112 ReadInt:=Num;

113 for J:=1 to I do writeln; 114 end; {Function ReadInt}

115

116 Function ReadIntInput {Reads an integer or nul from the user.
117 The number of line feeds produced is passed to this function in I
118 This funct. accepts a nul entry}

119 (I: Integer): Integer;

120 var

121 J, X, Y: byte;

122 Num, Result: integer;

123 begin

124 :=WhereX; Y:=WhereY; Result:=1; Short:=' ';

125 while (Result<>0) and (Short<>'') do

126 begin

127 read (Short); Val(Short,Num,Result);

128 if (Result<>0) and (Short<>'') then

129 begin

130 GotoXY(X,Y); write('Invalid'); Delay(1000);
131 GotoXY(X,Y); write("' ')}; GotoXY(X,Y);
132 end;

133 end;

134 4if Short='!' then ReadIntInput:=0 else ReadIntInput:=Num;

135 for J:=1 to I do writeln;

136 end; {Function ReadIntInput}

137

138 Procedure ChainTo {Chain to another file, return code if not found}
139 (ProgFileName: ShortString; var IOCode: integer);

140 var

141 CFile: file of byte;

142 begin

143 Assign(CFile,ProgFileName);
144 {$I-})

145 Chain(CFile);

146 {$I+}

147 IO0Code:=IOResult;
148 end; {Procedure ChainTo}
149 {#--mun End of include file FIRST.SEG ----- #}

6. INCLUDE FILE SAVE.PRC

This file contains all the procedures and functions neceasary to save a
set of discharge test data to a disk file.

The user interacts with the procedures of this file in several places.
He is informed of the last file name used (if a file name has been used
previously). He 18 asked to specify the type of file that he wants the data
stored in, elther ‘'fast', or 'human readable'. (A 'fast' file is stored in
machine language and 1is unreadable to anything other than another Turbo
Pascal program designed to read that file. A 'human readable' file is
written in ASCII and 1is readable by any ASCII editor, and it is printable,
and displayable.)

Next the user is asked to enter the path name (if any), and the file
name by which he wishes to save the current data. An example of a path name
and file name is "\dat\pt\mytest". The first part, the "\dat\pt", tells the
disk operating system (DOS) that the file is to be stored in a subdirectory
called '"pt" (short for pump test) which is itself in a subdirectory called

18 Preliminary

"dat" (short for data). The last part, "mytest", is the name that will be
given to the file. The user must not specify a file name extension, that
will be given by the program. It will depend upon and indicate the type of
the file.

It is possible that a file may exist in the directory specified by the
path name (or in the default directory if no path name is given). It is also
possible that the path name may be invalid; it may name subdirectories that
do not exist. Both of these possibilities are checked, and any errors or
conflicts are reported to the user.

6.1. Procedures and functions of file SAVE.PRC

Exist function Line 5

Purpose: to test for the existence of a file with a given name.

Perhaps the best way to show how this function operates is with and
example. Suppose that FileName = "TestFile". When function Exist is called,
DataType will be set to either FID or WID, suppose that in this case it is
set to WID. Line 10 will Assign WtdFile to "TestFile.WTD", and then line 15
will attempt to reset a file by this name. If no such file exists, an
Input/Output error will occur, and IOResult in line 18 will have a non zero
value.

Called by subprocedure RewriteCheck of procedure SaveData; and as the
same function is also wused in files READ.PRC and READSAVE.PRC, it is again
called by subprocedures ReadWTD and ReadFTD of procedure ReadTestDataFile.

SaveData procedure Line 21
Purpose: to record on disk file all data for a particular discharge
test. SaveData also warns the user when an attempt is made to store data

over that in an existing file, or when an invalid path name or disk
identifier is used.

The procedure is called with all the variables carrying data to be saved
as parameters. This is because some of the programs in this book use pointer
variables, and others do not. By having parameters passed to this procedure,
data held in either pointer variables, or ordinary variables can be saved to
disk.

In 1line 100, if a file name has already been used then the user is
reminded of what it was. This may be useful in a program such as DTDHA, when
a file has been read, edited, and is now to be re-saved.

Lines 101 to 106 arrange the type of file, and the extension file name,
before calling procedure RewriteCheck. This procedure obtains a file name
from the user, tests and reports on the consequences of trying to save the
data under that name. When RewriteCheck has passed the intended file name
and opened the file, either SaveFast or HrSave is called to save the data
from lines 108 or 109.

Called by: any program that has need to store discharge test data to
disk file.

HrSave sub-procedure Line 26

Contained within procedure SaveData

Purpose: to write the discharge test data currently stored in RAM memory
to disk as a sequential ASCII file.

RewriteCheck has already obtained a file name, and checked the validity
of that name; all that remains is the writing of the data. Lines 28 to 31
store the test type code number, the well type code number, the distance
(from pumped well to piezometer), and the number of time/drawdown/discharge
rate records on the first line of the file. Lines 33 to 39 store the records
themselves, and line 40 closes the file.

Called by: the parent procedure, SaveData

Preliminary 19

SaveFast sub-procedure Line 43

Contained within procedure SaveData

Purpose: to write the discharge test data currently stored in RAM memory
to a random access disk file.

This procedure is very similar to HrSave in general. As a random access
file can store only one type of data, this stores records which consist of
three reals each, (Records of the type Rec, as defined in file FIRST.SEG.)
The necessity of storing the test type code number, the well type code
number, the distance, and the number of records is the reason for the
peculiar programming of lines 46 to 56.

Called by: the parent procedure, SaveData

RewriteCheck sub-procedure Line 69

Contained within procedure SaveData

Purposes: 1/ to avoid the unintentional overwriting of an existing file.

2/ to check that any drive specification or path name given by
the user is valid.

Line 76 calls function Exist to achieve the first objective. There are
two segments of code to cover the second objective, one for each file type.
If the drive specification or path name 1is 1illegal, then an attempt to
'rewrite' a file will cause an Input/Output error. This, in turn, will cause
the value of Error to be set to true. Normal exit from the procedure is not
possible until Error is false.

Called by: the parent procedure, SaveData

Calls: function Exist

6.2. Include file SAVE.PRC, key lines
2 {# Include file SAVE.PRC; contains all the procedures and functions
3 # required to save 'fast' and 'human readable' discharge test data
files}
5 Function Exist {Test for existence of a given file}
21 Procedure SaveData {Save calculated series of values to disk file}
26 procedure HrSave; {Human Readable Save}
43 procedure SaveFast; {File fast to save and read, but not human
readable}
69 procedure RewriteCheck; {Check validity of path, and 'rewrite' file}
99 begin {# main part of procedure SaveData}
112 {# End of include file SAVE.PRC}

6.3. Include file SAVE.PRC, listing

{# Include file SAVE.PRC; contains all the procedures and functions
required to save 'fast' and 'human readable' discharge test data
files}

1
2
3
y
5 Function Exist {Test for existence of a given file}
6 (FileName: ShortString): boolean;

7 begin

8 case DataType of

9 FTD: Assign(FtdFile,FileName+'.FTD');

10 WTD: Assign(WtdFile,FileName+'.WTD');

11 end; {of cases}

12 {$I-}

13 case DataType of

14 FTD: Reset(FtdFile);

15 WID: Reset(WtdFile);

16 end; {of cases}

17 {$I+}

20 Preliminary

18 Exist:=(IOResult=0);

19 end; {Function exist}

20

21 Procedure SaveData {Save calculated series of values to disk file}
22 (Time, Drawdown, Rate: MainVec; TestType: Test; WellType:

23 Well; Distance: real; first, last: integer);

24 var Error: boolean;

25
26 procedure HrSave; {Human Readable Save}
27 Dbegin

28 Str(ord(TestType)+1:14,Long);

29 Str(Ord(WellType)+1:14,Short); Long:=Long+Short;
30 Str(Distance:14:3,Short); Long:= Long+Short;

31 Str(Last-First+1:14,Short); Long:= Long+Short;
32 writeln(WtdFile,Long);

33 for I:=first to last do

34 begin

35 Str(Time[I]:14:3,Short); Long:= Short;

36 str(Drawdown[I]:14:3,Short); Long:= Long+Short;
37 Str(Rate[I]:14:3,Short); Long:= Long+Short;

38 writeln(WtdFile,Long);

39 end;

40 Close(WtdFile);
41 end; {sub-procedure HrSave}

32

43 procedure SaveFast; {File fast to save and read, but not human
readable}

44 var Error: boolean;

45 begin

46 with ThisRec do

47 begin

48 OneTime:=ord (TestType);

49 OneDd : =ord (WellType);

50 OneRate:=Distance;

51 end;

52 Write(FtdFile,ThisRec);
53 with ThisRec do

54 begin
55 OneTime:=Last-First+1; OneDd:=0; OneRate:=0;
56 end;

57 Write(FtdFile,ThisRec);
58 for I:=first to last do

59 begin

60 with ThisRec do

61 begin

62 OneTime:=Time[I]; OneDd:=Drawdown[I]; OneRate:=Rate[I];
63 end; {ThisRec}

64 vwrite(FtdFile,ThisRec);

65 end;

66 Close(FtdFile);
67 end; {sub-procedure SaveFast}

69 procedure RewriteCheck; {Check validity of path, and ‘rewrite' file}
70 Dbegin

T {$1-}

72 repeat

73 repeat

TH write('What name to save the file by? '); readln(FileName);

75 I:=1;

Preliminary 21

76 if Exist(FileName)=true

77 then begin

78 write('A file by this name exists, ');

79 Long:='Replace, or Change name?';

80 I:= CapOptions(Long);

81 end; {if Exist}

82 until I=1;

83 case DataType of

84 FTD: begin

85 rewrite(FtdFile);

86 Error:=(I0OResult<>0);

87 if Error then writeln('Error: check path or file name
validity');

88 end; {case FTD}

89 WID: begin

90 rewrite(WtdFile);

9 Error:={IOResult<>0);

92 if Error then writeln('Error: check path or file name
validity');

93 end; {case WTD}

94 end; {of cases}

95 {$1+}

96 until not Error;

97 end; {sub-procedure RewriteCheck]}

98

99 begin {# main part of procedure SaveData}
100 if FileName<>'' then writeln('Last used file name was ',FileName);
101 write('Do you want a '); Long:='Fast save, or a Human readable save?';
102 I:=CapOptions{Long); DataType:=TypeOfData(I-1);
103 write('Chosen type is ');
104 if DataType=FTD then writeln('Fast') else writeln('Human readable');
105 case DataType of FID: Exten:='.FTD'; WTD: Exten:=',WTD'; end;
106 RewriteCheck; {Check validity of path, and 'rewrite' file}
107 case DataType of
108 FTD: SaveFast;
109 WTD: HrSave; 110 end; {of cases} 111 end; {Procedure SaveData}
112 {# End of include file SAVE.PRC}

7. INCLUDE FILE READ.PRC

This file includes all those procedures and functions that are required
to read a discharge test data file of either 'human readable' (ASCII, with a
file name extension of WID) or 'fast' (machine language, with a file name
extension of FTD) form. The user will be asked to specify the name of the
file to be read. If the user does not specify the type of file, then first a
'fast' file will sought, if not found then a 'human readable' file having the
same name will be 1looked for. If neither searches are successful, then he
will be requested to enter another name. If the user specifically does not
want a 'fast' file read, then he must add a '+' 8ign to the file name that he
enters; this will result in the first and only search being for a 'human
readable' file. If it is desired to exit the procedure, and not load a file

at all, then a lower case 'x' must be entered instead of a file name.

22 Preliminary

On successful loading of a data file, the opportunity is given to view
the file and carry out minor editing of the data. Note that editing the data
in memory will not change the file on disk without a specific instruction to
save the modified data back to disk.

T.1. Procedures and functions of file READ.PRC
AlterEntry procedure Line 140

Purpose: to allow the user to alter one record.

This procedure is called after time/drawdown/discharge rate data has
been displayed on the screen. If the user notices one displayed value that
is wrong he can use AlterEntry to change it as he wishes. Line 158 uses
function CapOptions to allow the user to choose between altering time,
drawdown, or discharge rate. Lines 159 to 177 display the current value
before allowing the user to enter a new vdlue.

Called by: procedure ViewReadings

Exist (This function has been described under the notes on file
SAVE.PRC, so it will not be covered again here.)

NoSpaces function Line 8
Purpose: to remove space characters from the string Short, passed to it.

Called by: sub-procedure ReadHuman of procedure ReadTestDataFile

ReadFast sub-procedure Line 76

Purpose: to read in a set of discharge test data from a random access
disk file.

The record used to write the file consisted of three real numbers. The
record itself has the name ThisRec, and it is made up of the three reals,
OneTime, OneDd, and OneRate. The first two records are used to store the
test type code, the well type code, the distance from discharge well to
piezometer, and the number of time/drawdown/discharge rate readings in the
file. This part of the file is read in lines 80 to 88. The data of the
readings themselves make up the remainder of the file, and are read in from
line 89 to 102.

Called by: sub-procedure ReadFTD of procedure ReadTestDataFile.

ReadFTD sub-procedure Line 114
Purpose: to check for the existence of a random access ('fast') file
having a given name, and if found, call ReadFast to read it.

Preliminary 23

If the file is not found, then Boolean variable FileThere is set to
false. This value will be acted upon by procedure ReadTestDataFile.
Called by: the parent procedure ReadTestDataFile.

ReadHuman procedure Line 47

Purpose: to read in a set of discharge test data from a sequential
access disk file.

This procedure has been written so as to be compatible with files
produced by the Basic language programs of my previous book (Clarke 1987), as
well as to glve a clear, alterable, ASCII file. The first line of the file
contains the test type code, the well type code, the distance from discharge
well to piezometer, and the number of time/drawdown/discharge rate readings
in the file. This line is read by the section of code from line 54 to 61.
The data of the readings themselves are read in lines 63 to 73.

Called by: sub-procedure ReadWTD of procedure ReadTestDataFile.

ReadTestDataFile procedure Line 37

Purpose: to control the reading of a file of discharge test data, and to
make the operation as easy as possible for the user.

The procedure is called with all the variables carrying data to be saved
as parameters. This is because some of the programs in this book use pointer
variables, and others do not. By having parameters passed to this procedure,
data held in either pointer variables, or ordinary variables can be saved to
disk.

Line 131 checks for the occurrence of a '+' in the file name entered by
the user; if one 1s present, it indicates the users desire to read a
sequential access file rather than a random access file. If the '+' is
found, then Turbo Pascal gives Result a value indicating it's position in the
string. If it is not found, then Result is given a zero value.

If the user has not included a '+' in his file name, then ReadFTD is
called in an attempt to read a random access data file. If this is
successful the procedure will be concluded. If either the '+' is found, or
the random access file is not found, then ReadWID will be called in an
attempt to read a sequential access file. If this fails, then the user is
called upon to enter another file name.

If the user cannot think of a file name that the program can find, he
may escape by entering 'x', instead of a file name.

Called by: any program having a need to store a set of discharge test
data, or discharge test simulation data, to disk file.

24 Preliminary

ReadWTD sub-procedure Line 105

Purpose: to check for the existence of a sequential access (ASCII, or
'human readable'!) file having a given name, and if found, call ReadHuman to
read it.

If the file i1s not found, then Boolean variable FileThere is set to
false, and control passes back to ReadTestDataFile.

Called by: the parent procedure ReadTestDataFile.

ViewAlterData procedure Line 210

Purpose: first, to allow the user to view the data of the current file,
and second, to allow alteration of one reading.

This procedure by itself causes only the test description data to be
displayed. If the user decides to view the time/drawdown/discharge rate
readings then procedure ViewReadings is called. If alteration of a reading
is required, then ViewReadings calls procedure AlterEntry.

Called by: any program that has need of a display of the current
discharge test data.

Calls: ViewReadings

ViewReadings procedure Line 180
Purpose: to display the time/drawdown/discharge rate data of the current
file, and to call procedure AlterEntry if the user indicates a wish to change
any reading.

The user may enter the number of the reading at which he/she wants the
data display to begin. If the value entered is invalid, being either less
than one or greater than the number of readings on record, it is rejected
(lines 192 and 193). If the user does not enter anything, only pressing the
Enter key, then it 1is assumed that he wants to begin viewing the data from
the first record.

Once the display of data has commenced it proceeds 20 lines at a time,
and the user must respond at the end of each 'screen page'. At each response
it 1is possible to continue the display, alter an entry, or discontinue the
display and exit the procedure. (Lines 195 to 207.)

T.2. Include file READ.PRC, key lines

{#memem Include file READ.PRC w-ww- #
This file contains all the procedures and functs. required to read
6 # 'fast' and ‘human readable' discharge test data files}

8 Function NoSpaces {Removes spaces from a given 'Short' string}
21 Function Exist {Tests for the existence of a given file}

37 Procedure ReadTestDataFile {Read a file of discharge test data}

47 procedure ReadHuman; {Read a human readable file}
76 procedure ReadFast; {Read fast file, not human readable}

4
5

105
114
123
140
180
210
244

WoOoO--ITOuEWwN =

Preliminary

procedure readWTD; {Controls the reading of a WID file}

procedure readFTD; {Controls the reading of a FID file}
begin {# main part of ReadTestDataFile}
Procedure AlterEntry {Allow the alteration of one entry in the file}
Procedure ViewReadings {Display all readings in the data file}
Procedure ViewAlterData {Control the display and alteration of data}
{#meem End of Include file READ.PRC -———- #}

7.3. Include file READ.PRC, listing

(#{$I READ.PRC}¥®)

{#-==-- Include file READ.PRC -==-- #
This file contains all the procedures and functs. required to read
'fast' and 'human readable' discharge test data files}

Function NoSpaces {Removes spaces from a given 'Short' string}
(Short: ShortString): ShortString;
var I: byte;
const Space = ' ';
begin
:=pos{Space,Short);
while I>0 do
begin
delete(Short,I,1); I:=pos(Space,Short);
end;
NoSpaces:=Short;
end; {Function NoSpaces}

Function Exist {Tests for the existence of a given file}
(FileName: ShortString): boolean;
begin
case DataType of
FTD: Assign(FtdFile,FileName+'.FTD');
WID: Assign(WtdFile,FileName+'.WTD');
end; {of cases}
{$1-}
case DataType of
FTD: Reset(FtdFile);
WID: Reset (WtdFile);
end; {of cases}
{$1+]
Exist:=(IOResult=0);
end; {Function exist}

Procedure ReadTestDataFile {Read a file of discharge test data}
(var Time, Drawdown, Rate: MainVec; var TestType: Test; var WellType:
Well;
var Distance: real; var NumData: integer);
var
FileThere: boolean;
TempInt: integer;
Line: LongString;
TempVal: real;
Result: integer;

procedure ReadHuman; {Read a human readable file}
const
TimeStart=1; TimeLen=14;

25

26

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

Preliminary

DdStart=15; DdLen=14;
RateStart=29; RatelLen=18;
begin

writeln('Reading data file, ',FileName+Exten);

Readln(WtdFile,Line);

Short:=copy(Line,1,14); Val(NoSpaces(Short),TempVal,result);

TestType:=Test (round (TempVal)-1);

Short:=copy(Line, 15,14); Val(NoSpaces(Short),TempVal,result);

WellType:=Well (round (TempVal)-1);

Short:=copy(Line,29, 14); Val(NoSpaces(Short),Distance,result);

Short:=copy(Line,43,14);

Val(NoSpaces(Short) ,NumData,result);

I:=0;

for I:=1 to Numbata do

begin
Readln(WtdFile,Line);
Short :=copy(Line,TimeStart ,Timelen);
Val(NoSpaces(Short),Time[I],result);
Short:=copy(Line,DdStart,DdLen);
Val (NoSpaces(Short),Drawdown[I],result);
Short:=copy(Line,RateStart,Ratelen);
Val(NoSpaces(Short),Rate[I],result);

end;

Close(WtdFile);

end; {sub-procedure ReadHuman}

procedure ReadFast; {Read fast file, not human readable}
begin
writeln('Reading file ',FileName+Exten);
seek(FtdFile,0);
read (FtdFile,ThisRec);
with ThisReec do
begin
TestType:=Test (round (OneTime));
WellType:=Well(round(OneDd));
Distance:=0neRate;
end;
seek (FtdFile,1);
read (FtdFile,ThisRec);
with ThisRee do
NumData:=0rd (round (OneTime));
for I:=2 to NumData+1 do
begin
seek (FtdFile,I);
read (FtdFile,ThisRec);
with ThisReec do
begin
Time[I-1]:=0OneTime;
Drawdown[I-1]:=0neDd;
Rate[I-1]:=0OneRate;
end; {ThisRec}
end;
Close(FtdFile);
end; {sub-procedure ReadFast}

procedure readWID; {Controls the reading of a WID file}
begin

DataType:=WTD; Exten:='.WID';

writeln('Attempting to open data file, *,FileName+Exten);

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

Preliminary 27

FileThere:=Exist(FileName);

if FileThere then ReadHuman

else writeln(' This file does not exist.');
end; {sub-procedure readWwTD}

procedure readFTD; {Controls the reading of a FTD file}
begin
DataType:=FTD; Exten:='.FID';
writeln('Attempting to open data file, ',FileName+Exten);
FileThere:=zExist (FileName);
if FileThere then ReadFast
else writeln(' This file does not exist.');
end; {sub-procedure readfFTD}

begin {# main part of ReadTestDataFile}

repeat
writeln('Enter the name of the data file (without an extension).
writeln('Enter a file name of "x" to exit.');
write('Suffix with a + if you want a .WID file. (eg. test+) ');
readln(FileName);
if FileName<>'x' then
begin
Error:=false; Result:=Pos('+',FileName);
if Result<>0 then Delete(FileName,Result,1);
if Result=0 then ReadFTD; {User wants FTD file}
if (Result<>0) or (not FileThere) then ReadWTD;
end;
until FileThere or (FileName='x');
if FileName='x' then NumData:=0;

end; {Procedure ReadTestDataFile}

Procedure AlterEntry {Allow the alteration of one entry in the file}
(var Time, Drawdown, Rate: MainVec; NumData: integer);

var
RecNum, Answer: integer;

begin
writeln(' Alter one reading (record)'); writeln;
writeln("' Please enter the number of the reading you wish to alter,

’
'press Enter!');
write('without typing a number to exit: ');
RecNum:=ReadIntInput(1);
if RecNum<>0 then
begin
if (RecNum<0) or (RecNum>NumData)
then begin
writeln('Invalid reading number!'); delay(2000)
end {then}
else begin
write('Do you want to alter ');
Answer:=CapOptions('Time, Drawdown, or discharge Rate?');
Case Answer of
1: begin
writeln('Current time for this reading is '
,Time[RecNum]:8:1,'min.");
write('Enter new time (min.) '); Time[RecNum]:=ReadReal(2);
end;
2: begin
writeln('Current drawdown for this reading is !

")

.

28

167
168
169
170
1
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

188
189
190
191
192
193
194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Preliminary

,Drawdown{RecNum]:8:3);
write('Enter new drawdown '); Drawdown[RecNum]:=ReadReal(2);
end;
3: begin
writeln('Current discharge rate for this reading is '
,Rate[RecNum]:8:2);
write('Enter new rate '); Rate[RecNum]:=ReadReal(2);
end; {case 3}
end; {all cases}
end; {else}
end; {if RecNum}
end; {Procedure AlterEntry}

Procedure ViewReadings {Display all readings in the data file}
(var Time, Drawdown, Rate: MainVec; NumData: integer);
var

Result: integer;

const
Heading=' No. min. days Drawdown Rate';
begin
writeln{'Which reading number to start listing (press Enter alone if
you');
write('wish to start with the first reading) ? ');
repeat
readln(Short);
if length(Short)=0 then First:=1 else Val(Short,First,Result);
if (First<1) or (First>NumData) then
writeln('Invalid! Please re-enter.');
until (First>=1) and (First<=NumData);
writeln('All times below are in minutes');
I:=First; J:=0;
repeat
writeln(Heading);
repeat
write(I:4,' ',Time[I]:11:3,' ',Time[I]/1440:9:4,"
' ,Drawdown[I]:9:4);
writeln(' ',Rate[I]:9:2);
I:=I+1; Ji=d+1;
until (J=20) or (ID>NumbData);
Result:=CapOptions('Continue, Alter, or Exit? ');
if Result=2 then AlterEntry(Time, Drawdown, Rate, NumData);
J:=03
until (IDNumData) or (Result=3);
end; {Procedure ViewReadings}

Procedure ViewAlterData {Control the display and alteration of data}
(var Time, Drawdown, Rate: MainVec; TestType: Test; WellType: Well;
Distance: real; NumData: integer);
var
Ch: Char;
I, J, First: integer;
begin
ClrSer;
write('Test type is ');
Case TestType of
Discharge:
writeln('Discharge');
Recovery:
writeln('Recovery');

Preliminary 29

224 Simulation:

225 writeln('Simulation');
226 TOverT1:
227 writeln('t/t1 recovery');

228 end; {of cases}
229 write('Well type is ');
230 case WellType of

231 Pumped :

232 Writeln('Pumped');

233 Observation:

234 writeln('Observation');

235 end; {of cases}

236 writeln('Distance = ',Distance:10:2,'m');

237 writeln('The number of data is ',NumData);

238 writeln;

239 write('Do you want to see the time/drawdown/discharge rate data? ');
240 Short:='YN';

241 if Response(Short)='Y' then

242 ViewReadings(Time, Drawdown, Rate, NumData);

243 end; {Procedure ViewAlterData}

24y {#eeeee End of Include file READ.PRC -==w- #}

8. INCLUDE FILE READSAVE.PRC
This file will not be listed because it consists simply of file SAVE.PRC
appended onto file READ.PRC. (As both files contain the function FileExist,

one copy of this function must be removed from the resulting file.)

9. REFERENCE

Clarke, D.K., 1987. Microcomputer Programs for Groundwater Studies.
Developments in Water Science, 30. Elsevier, Amsterdam/Oxford/New
York/Tokyo, 340pp.

This Page Intentionally Left Blank

Data Handling 31

Chapter 1

The program described in this chapter has been named DIDHA for the
initial 1letters of the words Discharge Test Data Handling and Analysis. It
is similar to, but more advanced than, a previous program by the same name
published in Clarke, 1987.

If you have the programs on disk, then pleas note that DTDHA is compiled
as a chain file, and it cannot be run directly while in this form. To run
program DTDHA first follow the instructions in the introduction to commence
the execution of the controlling program, GW.COM. From the primary menu
which will be displayed, press the key indicated to activate program DTDHA.

1. THE AIMS OF PROGRAM DTDHA

Computers have great and 1largely untapped potential in handling and
analysing data from water well discharge tests; whether such tests are for
the purpose of assessing a well or an aquifer. Discharge test data can be
stored on floppy disk and accessed as required for analysis, printing, or
display. Careful naming of the disk files, and of the disks themselves will
enable easy access of a very large number of discharge tests.

(Those readers who have need of a library of several thousand discharge
tests will find a data base program allowing efficient indexing, to be well
worth while. Commercial programs are available for this purpose.)

At this time the only practical way of getting hand written data into a
computer 1is by typing it in via a keyboard (although optical character
scanners are becoming cheaper and better), therefore the first purpose of
DTDHA is to allow this job to be done as efficiently as possible.

Having once loaded the data into a computer there is no limit to the
number of ways it can be manipulated for various purposes. For example it
might be desirable to convert all recorded water level recovery times into
the t/t1 form, or convert water levels referred to ground level so that
they refer to standing water level. The computer can be used to produce
graphs of the data, of a type to suit the aquifer type, and the users
preference; DTDHA will record the data on a disk file so that program PLOTWTD
can graph it. Of course we would be ridiculously under utilising a computer
if we stopped at entering and manipulating the data; in the computer we have
a tool that can be used to great advantage for analysis of discharge test
data. The analytical jobs done by DTDHA comprise three different methods of
solving the coefficients of the well equation. Analysis to do with aquifers

32 Data Handling

is handled by program ANALYZE (see Chapter 7) using data from a disk file
produced by program DTDHA.

If discharge test analysis is possible by microcomputer, then so to is
simulation. Program DRAWDOWN produces files of simulated discharge test data
that may be displayed, printed, edited, or manipulated in other ways using
DTDHA.

Rather than deal with all the applications of DTDHA in summary here,
they will be dealt with one at a time, in detail below.

2. FUNCTIONS OF THE PROGRAM: (MENU ONE)
2.1. Entry of discharge test data via the keyboard

Assuming that you have field data that you wish to analyze or file, the
first thing that must be done is to type the manually collected data into the
computer. This task is the most trying and uninteresting of all. The more
fortunate readers may have office staff who can do this job for them, others
will have to take the time to do it themselves. The data entry routines of
DTDHA are designed primarily to minimise the key punching required to achieve
the desired result. Secondary aims are to allow quick and easy correction of
errors, and to help users keep track of exactly where they are in the
process.

There are two methods of data entry available, both of which are called
up via the first option of the main menu of DTDHA. Most frequently used will
be the option of entry of times as elapsed minutes measured from the begin-
ning of the discharge test. In long tests, or in long recoveries, it is
sometimes more convenient to record the date and time of day, rather than the
number of minutes since the beginning of the test. Manually converting this
to elapsed minutes can become an irksome and repetitive task, so provision is
made for entry of times in this form.

On selection of the data entry option at the main menu you will have to
answer some questions about the source of the data before entry of times,
drawdowns, and discharge rates begins. The first question will be whether
the test 1is a discharge test, recovery test, or a simulation. You reply to
this question by pressing one key, the initial letter of the chosen word.
Your answer will be recorded when the data is saved to disk file, and will be
retrieved whenever the file is read, but it will not have any effect on any
operations which may later be done on the data. The second question will be
whether the well in which the measurements were taken was a pumped well, or

an observation well. Again, the answer will be recorded, but it will not

Data Handling 33

take any important part in later operations. The third and last question of
this type wlll be either:

1/ the distance between the pumped well and the observation well,
if you indicated that the readings concern an observation well, or

2/ the effective radius of the well, if a pumped well is involved.
Please note that the answer to this question is very important in case one
above, as the value will be used if you later ask for the storage coefficient
to be calculated from the entered data (or have some curve fitting process
done by program ANALYZE). As storage coefficient cannot be reliably
calculated for the data recorded from the pumped well, the figure you enter
as the effective radius is less important.

After answering the above questions, you will be required to indicate
whether you want to enter times as minutes (ie. the time for each drawdown
reading as the interval, in minutes, from commencement of discharge, to the
moment of the drawdown determination), or as a calendar date and time of day.

If there are already data in memory, newly entered data will go onto the
end of existing data. If there are no data in memory, newly entered data
will begin with record number one.

RECORD The data are stored and handled in terms of records, each of
which 1s sequentually numbered. A record consists of a group of data
including one time, one drawdown, and one discharge rate, where the drawdown
and discharge rate were true at the specified time. This concept is central
to understanding the operations of many of the programs of this book. (In
this book the term Reading will be used almost synonymously with Record when
the latter is applied to discharge test data.)

2.1.1. The form of data required

In the simplest case of a discharge test consisting of a single pumping
rate, data plainly will be in the form of a time, measured from the beginning
of discharge; a drawdown, measured at that time; and a discharge rate, also
measured, or assumed, at that time.

In the case of a multistage discharge test, the form that the data must
take 1is not so obvious. For most purposes, times are to be measured from the
beginning of the first discharge phase. The exception is when there are a
series of discharge phases with full recovery (not measured, or at least, not
recorded) between the phases. In this latter case, the times to be entered
into the computer should relate to the commencement of the particular

stages. If the data is in this form of separate stages, then the user must

34 Data Handling

realize that it cannot be treated as one integrated whole; it must rather be
treated as a consecutive series of separate discharge tests.

CHANGES 1IN DISCHARGE RATE An example. You pumped for thirty minutes
at 100 cubic metres per day, and then increased the discharge rate to 200
cubic metres per day. You took a drawdown reading a moment before the rate
was increased, and then another a minute and 12 seconds after the increase.
The relevant part of your data should have a form something like... Time 30,
Drawdown 3.23, Rate 100; Time 31.2, Drawdown 4.85, Rate 200; etc. Looking
at this data it could be supposed that the discharge rate increased at any
time between 30 and 31.2 minutes. The programs of this book assume that the
rate increase was immediately after the last reading at the old rate; ie. the

increase occurred around 30.000001 minutes.

2.1.2. Entry of data with times in minutes

If you are unsure of how to get to this point, first follow the prelimin-
ary steps given in the introduction (Setting up the Disks and Files), and at
the beginning of this chapter (Executing DTDHA).

The program will ask for you to specify the time of the current record
(or reading). Note that the times -1, and -2 minutes are used to indicate
something other than time to the program (see below), so they cannot be used
as times. If you should happen to want to enter a time of say -1 minutes,
(perhaps for an observation well reading one minute before the starting of
the pump) you will have to use a number close to, but not equal to -1,
instead. For example you could enter -1.0000001. Real numbers in Turbo
Pascal have approximately eleven decimal digits of precision, so there is
little 1likelihood of the program mistaking your entry for -1. (The 8087
version of Turbo has around 16 decimal digits of precision.)

Enter the time of the reading in minutes, and press Enter to indicate
that you are ready. You will next be called upon to enter the drawdown at
the given time, and then the discharge rate.

As the discharge rate is normally constant for a number of readings, it
would involve unnecessary typing to enter it for every time/drawdown pair.
Therefore, after the first record, if you do not indicate that you want to
enter a new discharge rate by typing a '+' sign at the end of the drawdown,
it will be assumed that the discharge rate remains unchanged.

DATA ENTRY ERROR If you enter a wrong value by mistake, and you want
to correct it, you can enter a time of -1 to indicate that you want to 'back
up' to the 1last record, and re-enter it. If you enter a time wrongly, and

realize that fact when you are about to enter the drawdown; go ahead and

Data Handling 35

enter some figure for the drawdown, and then enter -1 for the following
time. Any value that is in error and is not corrected here may be corrected
later from the data editing menu, menu 2.

ENDING DATA ENTRY To tell the program that you do not want to enter

any more readings, enter a time of -2.

2.1.3. Entry of data with times as date and day

Sometimes 1t may be more convenient to enter the time of a reading by
reference to the time and calendar date of that reading. If a strip aquifer,
or an aquifer bounded on all sides is suspected, then a recovery period of a
week or so may be desirable. A few special purpose discharge tests may
continue for up to a year. In cases such as these, the computer can be given
the Jjob of converting the date and time of day to the time in elapsed minutes
from the beginning of discharge.

If you use this option it will be necessary for you to enter the date
and time of the beginning of the test before entering any reading times.

Entry of a particular point in time will begin with specification of the
minute, followed by the hour, day, month, and year.

¢ ENTRY OF MINUTE As in the above option, enter -1 to back up, or -2
to end the data entry session. The only other valid entries here are the
integers from 0 to 59 inclusive. If you want to enter fractions of a minute,
you will have use the other data entry method.

ENTRY OF HOUR Here the only valid entries are the integers from 0 to
23 inclusive, am and pm are not used.

ENTRY OF DAY Valid entries are the date of any day which occurres in
the current month. The validity of the day will be checked after entry of
the month and year. eg. 29th of February, 1989 is not valid as that is not a
leap year. Valid entries, then are the integers from 1 to 28, 29, 30 or 31
depending on the month, and in the case of February, also depending upon the
year.

After entry of the date of commencement of the test, the day must be
suffixed (or prefixed) with a + to go on to entry of the month, this saves
some Kkey punching because in most cases the next reading will be in the same
month, making it unnecessary to re-enter the same month.

ENTRY OF MONTH Valid entries are integers from 1 to 12 inclusive.
After entry of the date of commencement of the test, the month must be
suffixed (or prefixed) with a + to go on to entry of the year. If this is
not done, then the year of the present reading will be assumed to be the same

as that of the previous reading.

36 Data Handling

ENTRY OF YEAR Here any integer from 0 to 3000 is valid. In almost
all cases the short form of the year may be used; eg. 89 instead of 1989, as
under the Gregorian calendar the year 0089 would not be a leap year just as
the year 1989 will not be a leap year, etc. There will be a minor exception
if 100 is used instead of 2000, as the year 100 was not a leap year (or would
not have been, had the Gregorian calendar been in use then), but the year
2000 will be.

After you have entered data, or altered data and returned to the main
menu, a message will be displayed above the menu reminding you to save the
new data to disk before leaving the program. If you Wwere to forget to save
the data, and attempt to return to the primary menu (the GW menu), you would
be given a reminder that your data have not been stored on disk. Please note
that leaving any program causes the data in memory to be lost, unless you
specifically ask that it be saved to a disk file.

2.2. Edit the data in memory

This option takes you to menu number two; see below. If you attempt to
take this course before there are any data in memory, the program will refuse
and give you an error message. After having gone to menu two, the program
will assume that you have altered the data, and will display a message above
the main menu reminding you to save the altered data before exiting the

program.

2.3. Solve the well equation

This option takes you to menu three; see below. As above, you may not

use this until there are data in memory.

2.4, Read a file from disk

You may use this to load a discharge test data file previously produced
by this or some other program. When asked by any of these programs for a
file name do not suffix it with an extension name. This program expects data
files to have an extension of either '.FID' or '.WID', and it will search for
them 1in that order. Therefore if files having the same name but different
extensions are present, and you want the program to read the one with the
'.WID' extension and not the one with the '.FID' extension, you will have to
specifically indicate your desire by typing a '+' sign on the end of the file
name. (The program will inform you of this at the time.)

Drive names and directory names (path names) are acceptable as a part of

a file name, but 1if no path name 1is given, the program will search the

Data Handling 37

default drive and directory. If a file with the given name and an extension
of either '.FTD' or '.WID' cannot be found in the drive and directory that
you have specified, then you will be informed and asked to enter another file
name.

If your data files are all on a special directory, consider using the
DOS command 'Assign' to tell the operating system to always check that
directory, as an alternative to typing in the full path and file name every
time you want to load a file. (See also the notes on batch file GW.BAT in
the Preliminary section of this book.) Bear in mind, however, that if DOS is
not given the full path and file name when told to save the file, it will go
onto the default directory. These programs have 1little control over
directory usage, except when specific names are given by the person using the
programs.

After the data file has been successfully found and read, you will have
the opportunity of viewing it. If you do choose to view it, then you can
alter some of the data at that time by specifying the number of the record
that you wish to alter.

DATA FILE NAME EXTENSIONS Disk files containing discharge test data
produced by these programs will have file name extensions of either 'FTD' or
"WID'. The former is a contraction of 'Fast Test Data', and the latter, of

'Well Test Data'. For more details see Appendix A.

2.5. Save the data to a disk file
Having entered or edited your data, this option can be taken to save it

to disk. The program will not save the data to disk automatically at any
time, it will only do so if you specifically tell it to using this option.

You will be asked to specify whether you want the data saved in a ‘'Fast!
file, or in a ‘'Human readable' file. See the notes in Appendix A on file
formats.

VALID DATA FILE NAMES You will be asked for a file name without an
extension, you may also use a valid path name. Examples of some valid file
names for use with any of these programs are: 'test', 'A:test2', '3rdtest’,
and assuming there is a first level subdirectory called 'data' on your disk
then ‘'\data\pumptest' would be a valid file name. Names like 'test.dat', and
'pumptest.' are not valid.

If you choose to write a 'Human readable' file, then your data file will
be given the extension file name 'WID', and if you use the 'Fast' file
format, then the extension name will be 'FTD'. The former is compatible with
the programs of the earlier book (Clarke 1987), the latter is not.

38 Data Handling

2.6. View the data in memory

The data of the current file will be displayed on the video display unit
twenty records at a time. While times are normally stored in the computers
memory in this program in minutes, they will be displayed in both minutes and
days. You will have the choice of viewing all, or a selected part of the
data; and if you notice a value which is wrong, you will be able to change
it.

At the end of each screen 'page', you will be asked whether you want to
continue, exit, or alter something. If you choose to continue then the next
sequence of records will be displayed, if you choose to exit, you will be
returned to the main menu. The third option, alteration of data, will allow
you to change one reading. You will be asked to enter the number of the
reading that you want to alter. If you press Enter without first typing a
number at this stage you will be able to get back to viewing the rest of the
data without changing anything. If you type a valid reading number you will
be asked whether you want to enter a new time, drawdown, or discharge rate.
Having pressed T, D, or R, you will then be given the current value for that

item, and be asked to enter a new value.

2.7. Print the data in memory

Similar to the above option, but the output is sent to the printer
rather than to the screen. If your printer writes 66 lines to the page, and
it 1is started at the top of a page the output should be correctly paginated.
Unlike viewing the data however, here the whole of the data will be printed,
there is no option for printing a part of the data.

3. FUNCTIONS OF THE PROGRAM: (MENU TWO)
Menu ¢two is concerned with alterations to the data. Details of the
options available from menu two are given below. You will not be able to

reach menu two until there are data in memory.

3.1. Alter an individual entry

This uses the same procedure that can be used to alter an individual
entry from the data viewing option (see above). You will simply be asked
which reading you want to alter, and then allowed to alter that reading.

3.2. Add a constant to entries

This can be used for Jobs such as converting water levels measured from

Data Handling 39

some reference point, to true drawdowns referred to the SWL (standing water
level).

CHANGING REFERENCE POINTS For example, the original SWL was 10.23m
below the TOC. (top of casing), and during your discharge test, all water
levels were measured from TOC. These measurements were subsequently entered
into DTDHA as 'drawdowns'. You can use this option to change all water level
readings to true drawdowns by adding -10.23 to all the 'drawdowns' in the
file.

CHANGING REFERENCE TIMES Suppose that you entered recovery times as
times measured from stopping the pump and you want to change them to times
measured from commencement of discharge. If duration of discharge was 1440
min., then just add 1440 to all readings relating to recovery.

This option, and the next, allow you to do the field work the simplest
way possible, and then make any necessary adjustments to the data after you

have typed it into your computer.

3.3. Multiply entries by a constant

This can be used for changing units, correcting for readings taken in
angle holes, etc.

CONVERSION OF FEET TO METRES If, for example, you measured your
drawdowns in decimal feet and you want to convert them to metres, multiply
them all by 0.3048.

ANGLE HOLE READINGS If your drawdowns were measured in a 60 degree
angle hole, and you want to convert them to metres head equivalent, multiply
them all by 0.86603 (Sine 60 degrees). (You may also have to alter the
reference point using the option above.)

Several conversion factors which you may require are displayed at the

time you use this function.

3.4. Delete a reading
The reading number is required for this operation, ie. you must tell the

computer that you want to delete reading number x, rather than the reading at
time x, or the reading having a drawdown of x.

If a reading is deleted there is obviously going to be a gap left in the
data. In practice, a reading is not really deleted, rather it is overwritten
with a copy of the data of the succeeding reading, which is itself then
overwritten with a copy of the next, and 8o on., Finally, the variable
recording the total number of readings is decremented by one. This process,

then, involves the renumbering of all readings after the one that is deleted.

40 Data Handling

For example, suppose that the latter part of your recorded times is as
in the first pair of columns below, and you want to delete the reading for
134 minutes because it 1s a typographical error. The second pair of columns
show your data after deleting reading number 42. Of course the drawdown and

discharge rate recorded against the deleted time would also be deleted.

record # time record # time
40 1220 40 1220
41 1280 | 1280
b2 134 42 1340
43 1340 43 1400
4y 1400 Ly 1440
45 1440

DELETING SEVERAL READINGS To delete more than one reading, (other
than consecutive readings) start by deleting the one with the highest number
and work down to the one with the lowest number. If you start with low
numbers and work up, the Jjob will be more complicated because of the
renumbering mentioned above.

You may find it simpler to use an ASCII editor to alter a WTD data
file. If you chose this method, then take care to change the last number on
the top line, which records the number of readings in the file (ie. the total
number of lines in the file, minus one).

3.5. Delete a number of readings

Use this if you want to delete a number of consecutive readings. eg.
from a file ocontaining both discharge and recovery data, you might want to
delete all the recovery data, save the discharge data under a new file name,
reload the original (combined) data, delete the discharge data, and save the
recovery data under a new name. At the end of this operation you would have
three files, the first containing all the data, the second containing the
discharge data only, and the last containing the recovery data alone.

Take care to keep track of what you are doing in deleting data. It is
easy to make mistakes and delete some part that you did not intend to. I
strongly recommend having a backup set of your data files on a separate disk
in case of emergenciles.

3.6. Simulate full recovery between discharge stages

To reduce time, and hence costs, in running a multistage discharge

Data Handling 1

test, it is a common practice to change from one discharge rate to the next
with no recovery period between. On the other hand, methods of evaluating
the coefficients of the well equation usually call for full recovery between
steps. It is possible to graphically convert the data to the form it may be
expected to take had there been full recovery before each step. (See the
procedures and functions section for a description of this algorithm.) The
program segment called here automates this imperfect graphical procedure.

Data converted by this method will have times converted, as well as the
drawdowns of all stages after the first. While the times assoclated with the
input data must all relate to the beginning of the first discharge stage, the
output times will all relate to the beginning of the simulated fully
recovered single stages.

As an example, the graphs of Figures 1.1 and 1.2 are from simulated
discharge test data. (The data were produced by program SIM7, the graphs
were printed copies of screen graphs produced by program PLOTWID, the
conversion to simulated full recovery between readings was done by program
DTDHA.) This discharge test consisted of four fifty minute stages at 200,
280, 360, and 450 cubic metres per day. The data that produced the first
graph had reading times, 1, 2.3, 3.8, ... 34.9, 45, 50, 51, 52.3, ... 84.9,
95, 100, 101, 102.3, ... 134.9, 145, 150, 151, 152.3, ... and so on. These
were converted to 1, 2.3, 3.8 ... 34.9, 45, 50, for the first stage, followed
by 1, 2.3, ... 34.9, 45, 50, for the second, and similarly for the third and
last stages. This latter is the form of data required for both the Rorabaugh
analysis, or the s/Q vs. Q analysis for evaluation of the coefficients of the
well equation.

It is important to realize that this feature gives only approximate
results, Even when theoretically correct data is used as a starting point,
as that used in Figures 1.1 and 1.2, this option will not bring it back to
exactly what it would have been if there was full recovery between steps.
The necessity of wusing this imperfect operation before calculating the
coefficients of the well equation by Rorabaugh's method, or by the s/Q vs. Q
method 1s perhaps the greatest disadvantage of those methods. It is also one
of the strongest points in favour of using the Modified Sternberg Analysis.

The amount of error in conversion increases greatly with the later
steps, and the latter parts of the latter steps. The second step will be
converted with great accuracy, the third step with fair accuracy, but
thereafter accuracy will diminish substantially. As an example of the degree

of accuracy, examine table 1.1.

42 Data Handling

Figure 1.1

1.8

1.9 T

\

o " 0.0 1. 1000

Graphed discharge well data from a simulated four stage discharge test.
Drawdown increases linearly down the y scale, while time increases
logarithmically along the x scale.

The simulation used the well equation with A=0.003 (time unit minutes),
B=0.005, C=0.00001, n=2. There were four discharge stages, each of 50
minutes; the discharge rates were 200, 280, 360, and 450 cubic metres per
day.

Figure 1.2

1.0

7.0 -

.8
1.0 10.0 10. 1008

The simulated discharge test data of Figure 1.1 converted to simulate
full recovery between stages. The scale of the graph 1s identical to that of

Figure 1.1 to allow ease of comparison.

Data Handling 43

Table 1.1

Time Step No. Actual drawdown Converted drawdown
1 min, 2 8.000m 8.000m

28.8 2 11.503 11.503

1 3 16.500 16.511

28.8 3 21.754 21.757

1 y 28.00 27.80

28.8 4 35.01 34.86

1 5 42.50 41,95

28.8 5 51.26 50.86

The ‘'actual drawdowns' of table 1.1 are calculated for single step
simulations by program SIM7, while the 'converted drawdowns' are produced by
converting the data from a five step discharge simulation to imitate full
recovery between steps. This simulation was based on a well equation with
A=0.01 (time unit minutes), B=0.012, C=0.00015, and n=2. Each discharge step
was 0.02 days (28.8 minutes) 1long, and the discharge rates were 100, 200,
300, 400 and 500 cubic metres per day, in that order. (This is not the
simulation used to produce figures 1.1 and 1.2.)

3.7. Convert time to t/t'
The later part of recovery data from a single rate discharge test in a

simple, 1infinite, homogeneous and isotropic confined aquifer will fall on a
straight line when plotted on a semilogarithmic graph as t/t' where t is the
time of a reading measured from the beginning of discharge, and t' is the
time of the same reading measured from the end of discharge.

The equation of Theis (1935) for residual drawdown reduces to

2.3Q t
log — (1.1)
4 PiIT t!

s' =

where s8' is the residual drawdown,
Q is discharge rate,
T is transmissivity,
and t and t' are defined above.

To solve this equation for T, s8' 1is plotted against t/t' on
semilogarithmic paper. A straight line is fitted through the data points.
The slope of this line is equal to 2.3 Q/ 4 P1 T and also to the change in
s' per unit log (base 10) cycle. (Termed the Delta s' slope.) Thus T can be

calculated as

44 Data Handling

2.3Q
T =

- _ (1.2)
4 P1 Delta s!'

or more simply,

0.183 Q
T_

g — (1.3)
Delta s'

Bouwer (1978) describes the use of these equations on pages 99 and 100.

This procedure automates the conversion of recorded times to t/t'. You
do not need to tell the program when the recovery began, it will search for
the first period of 2zero discharge, and convert the times for the whole of
this period.

Use recovery data with time converted to t/t' to calculate transmissiv-
ity for your recovery period (using program ANALYZE), or to graphically
confirm that the water level in your well is returning to the original level
(using program PLOTWTD); but do not attempt solutions of the well equation
from data in this form.

Figure 1.3

2
0.60 ‘, Y

1.0

1.8 i

1.4 z

™ ne 108, 1008 10

Simulated piezometer readings from a single stage one day discharge test
in a simple confined aquifer, followed by a further three days of residual
drawdown readings. The times of the residual drawdown readings have been
converted to t/t' before plotting. The lower line is the drawdown phase, and
the upper line is the recovery phase. Note that the recovery is in line with
the origin.

This simulation was produced by program DRAWDOWN for a piezometer at 35m
from a discharging well, T=900, S=0.0007, and a discharge rate of 2000 cubic
metres per day.

Data Handling 45

3.8. Convert time to (root t minus root t') squared

As recovery data with times converted to t/t' from a simple isotropic
aquifer will fall on a straight line on a semilogarithmic graph, so recovery
data from the later part of recovery in a simple strip aquifer will fall in a
straight 1line when plotted on double 1linear paper with drawdown plotted
against square root of t minus the square root of t'. (The later part of
drawdown data from a single rate test in such an aquifer will fall on a
straight 1line when plotted against the square root of time on double linear
paper.)

A slightly different way of producing virtually the same graph is to
construct a graph with linear drawdown on the y axis, and to mark the x axis
off in proportion to the square root of time. Figure 1.4 uses this method.
Note that the time reference lines of figure 1.4 are labelled 0, 60, 240,
540, 960, and 1500. The square roots of these numbers are approximately 0,
7.75, 15.49, 23.24, 30.98, and 38.72. The increment in each case is one
fifth of the square root of 1500. The advantage of using a graph of this
typre, rather than using one marked with the square root of time along the x
scale, is that times can be read directly from the graph. The plotting of
root t minus root t' on such a graph requires that the values be first

squared.

Figure 1.4

1.0 :

2
.4 Y

.. !a

.0 .

Y™ . . sa. L

Simulated piezometer readings from a single stage one day discharge test
in a confined strip aquifer, followed by a further nine days of residual
drawdown readings. The times of the residual drawdown readings have been
converted to (root t - root t')"2 before plotting. The lower line is the
drawdown phase, and the upper 1line 1is the recovery phase. Note that the
recovery is in 1line with the origin, as 1s to be expected from a strip of
infinite length with no leakage from the sides.

46 Data Handling

The simulation of Figure 1.4 was produced by program DRAWDOWN for a
piezometer at 35m from a discharging well, T=900, S=0.0007, and a discharge
rate of 2000 cubic metres per day. The discharging well was 100m from the
boundary, the piezometer 11Tm from the same boundary, and the strip was 325m
wide.

The present option will convert times from the first period of recovery
(zero discharge rate) to the above (root t minus root t') squared values in

very much the same way as the previous option produced t/t' values.

3.9. Correct data for background 'noise’
BACKGROUND NOISE During an aquifer test of duration no more than

around six hours, background noise in the form of rises or falls in the water

level in observation wells can probably be safely ignored. In aquifer tests
lasting much longer than this however, noise due to variations in atmospheric
pressure etc. must be considered, especially if drawdowns in the observation
wells are small.

The simplest way of allowing for background is to monitor a well in the
same aquifer sufficlently far away from the discharging well to be unaffected
by the pumping. Then the readings from this well are subtracted from the
readings from the aquifer test observation well to remove the noise from the
data. (Of course it 1is necessary that the background well is in the same
aquifer as the discharge test observation well, and that it is unaffected by
noise to which the test observation well is not subject; ie. irrigation
pumping etc.)

If your background well has a different barometric susceptibility to the
aquifer test observation well, you may use a conversion factor of less than,
or greater than, 1. The background readings will all be multiplied by this
factor before they are subtracted from the aquifer test readings.

USING A BAROMETER FOR BACKGROUND CORRECTION It is possible to use a
barometer to measure background, but using barometric pressures to correct
observation well readings is a 1little more complicated than using water
levels from a background well, First, the barometric pressure readings must
be entered into a data file as if they were drawdowns. Next they should all
be multiplied by 0.0102 to convert them to metres head equivalent, then a
constant will need to be subtracted to bring the pressures back to around
zZero. (Exactly what that constant is will depend on the circumstances at the
time, I have used 10.25.) Now the ¢two files, barometric pressure, and
observation well readings should be graphed on the VDU using PLOTWTD, so that
the amplitudes of the two curves can be compared. The factor that you use

Data Handling 47

for the correction operation could be decided from the results of this
comparison.

For the description that follows it will be assumed that a disk file of
readings from a background noise monitoring observation well is available.

1/ Load the data to be corrected into memory in DTDHA.

2/ Select 'Correct for background' from menu two.

3/ You will now be asked for the name of the file holding your
background data; give 1it.

4/ Enter the correction factor when requested.

5/ The data in both files will be checked to make sure that all
times are 1n increasing order. An error message will be displayed if one or
other 1s found to be out of order. (If order is the only problem with your
file, it can be corrected using the sort option, see below).

6/ All being well, the correction of the observation well data will
now commence. The amount of correction to be applied will be calculated by
linear interpolation of the background data for each recorded time in the
observation well file.

7/ 1If the first reading in the observation well was taken at a time
before the first reading in the background well, then this correction will be
calculated by extrapolation from the first two readings in the background
well. This situation 1s to be avoided. Start your readings in your back-
ground well before you start your discharge test, and then give these early
readings negative times. (eg. ten minutes before the beginning of the test
would give time = -10.)

8/ If the duration of the readings in the background well was less
than those in the observation well then plainly it will not be possible to
correct all the data. In this case those data that can be corrected will be,
and those that cannot be will be deleted from the end of the file.

Figures 1.5 and 1.6 show some real field data before and after correct-

ion for background.

3.10. Change the test description data

This very simple facility allows you to change that part of the data
file which records a little about the origin of the data.

CHANGE R, THE DISTANCE You may use this to change the number which

records the distance from the discharging well to the observation well or
plezometer. This number is of great importance when analysing discharge test

data for storage coefficient.

48 Data Handling

Figure 1.5

-f:44
-0

..,.?r\l\,_l\,, At /\
LA

Y
.18 V

N Aol
015 AR~
. M

0.5 i “NV\
o:u \‘

The upper curve is the drawdown in a background well. The lower curve
is the data from an observation well presumed to be subject to the same
'noise’. Some similarity in the curves can be seen; and the need for
sufficiently frequent, or near simultaneous, readings in both wells is
obvious.

Figure 1.6
.

(B () VKVA\ 1
8.15 \kl*/ﬂ\\‘

- W\\I\‘MYA

[\

.25
.39
.08 4] 12000 15008 2008 0000
This 4is the above observation well data after correction for background
noise. In this case it is plain that the observation well was subject to
some noise in addition to that recorded in the background well, but there is
some smoothing of the curve. (Note that the y scale on this graph is

slightly different to that of Figure 1.5, and also that the data has been

truncated because the background readings did not continue as long as those
of the observation well.)

(In the case of drawdown readings taken in a pumped well, R is the
effective radius, and has little importance, largely because it can usually
be very poorly known.)

Data Handling 49

CHANGE THE WELL TYPE A code in the data file records whether the
data came from a pumped well or a piezometer (observation well). This may be
changed using this option.

CHANGE THE TEST TYPE A code in the file records the type of 'test!'
from which the data came, discharge test, recovery test, or simulation. This

code can also be changed here.

3.11. Merge current data with another file

Two discharge test data files can be Joined together to make one with
this option. The data of the file that is currently in memory retains it's
existing record numbers; and a new file, who's name must be specified, will
be appended to the current data. It makes no difference if the current data
were in a file with the 'FTD' extension, and the data to be appended are in a
file with the 'WID' extension because the actual data in a file are quite
independent of the form in which they are stored.

The following is a hypothetical example of the use of this option. The
data from the drawdown part of an aquifer test were entered into a file named
Test1d, and the recovery data from the same test were stored in a file named
Testir. To combine both into one file, first load Testid into memory, then
merge Testir. If the times in the recovery file were recorded as elapsed
minutes since the end of discharge, you may now wish to change them to
elapsed minutes since the beginning of discharge using the 'Add a constant'
facility described above.

3.12. Sort into order of increasing time

If your data are out of order for some reason you may wish to use this
option to return them into the correct order. You may, for example, have
added several previously overlooked readings to the end of the file and now
want to have them placed in their proper poaition.

Note that there are times when it is desirable to store data in an order
other than that of increasing times. eg. If the times associated with
recovery have been converted to t/t', or if your data have been converted to

simulate full recovery between readings.

4, FUNCTIONS OF THE PROGRAM: (MENU THREE)
This 1last major menu is concerned with three methods for the solution of
the well equation. Most readers will be familiar with the well equation, but

a short description might be useful for those who are not.

50 Data Handling

THE WELL EQUATION The drawdown at any time after commencement of steady
rate discharge from a fully penetrating well in a homogeneous, isotropiec,
infinite, confined aquifer can be approximated by use of the equation;

s=A Q+BQLlogt+ CQn (1.4%)

where;

s is the drawdown in the discharging well,

t is time from commencement of discharge,

Q is the discharge rate,

A and B are coefficients dependent upon characteristics of the

aquifer and well,
C 1s the coefficient quantifying the 'well loss',
and n has a value of between 1.5 and 3. (See Jacob, 1947; Rorabaugh,

1953; Lennox, 1966; and Bouwer, 1978.)

The exponent, n, above 1s often assumed to be equal to 2. Two of the
procedures below, the =3/Q vs. Q method, and the Sternberg method, make this
assumption, while Rorabaugh's procedure evaluates the exponent. It is
because Rorabaugh's procedure evaluates the exponent that it requires a
minimum of three discharge stages, while the other methods can make do with
two.

The so called well loss is apparently due to the relatively high
velocity flow near the well being turbulent. (While flow within a porous
aquifer is very rarely sufficiently fast to be turbulent, flow through the
slotted casing, gravel pack, or well screen may well be.)

The coefficient B 1s directly proportional to the delta s slope of the
time-drawdown data from a constant rate discharge test plotted with the
drawdown on a linear scale, and the time on a logarithmic (base 10) scale.
Consequently, B 1is inversely proportional to transmissivity. The remaining

coefficient, A, is apparently associated with non turbulent aquifer losses.

4.1. Units in the well equation

The units used for time and discharge rate in the calculation of the
well equation do not need to be consistent with each other. All that matters
is that any time a particular well equation is used, it is used with the same
units that were employed at the time of it's evaluation. As discharge test
times are normally stored as minutes, and discharge rates (to be consistent

with metres and days at the time of calculation of transmissivities and

Data Handling 51

storage coefficients etc.) are stored in cubic metres per day, these units
are assumed here (and are assumed in program SIM7, which produces data from a
glven well equation).

The value of A will differ according to the time unit used for the
drawdown readings, in the analyses presented in this program A will be given
for both days and minutes.

This work will not provide a detalled explanation of the use and limits
of the well equation.

4.2, Data requirements
There are a number of constraints on the form in which the data must be

if they are to be acceptable for the various methods of solution of the well
equation. The following notes will attempt to cover this, for more general
information of the form of data used or produced by these programs, refer to
Appendix A.

NUMBER OF STEPS A minimum of two discharge steps at different rates
is required for solution by methods not evaluating the exponent, three are
required if the exponent is to be evaluated (Rorabaugh's method). I would
recommend a minimum of three discharge phases for Sternberg and for the s/Q
vs. Q method, and four for Rorabaugh, to allow a best fit solution to be
found. Field data will rarely produce a very good fit, and having an
additional step or two will allow you to see how good the fit is between the
field data and the given well equation. Use of the minimum allowable number
of steps should lead to a rather misleading perfect fit.

Note that the Rorabaugh and s/Q vs. Q method will only count the steps
up to the first recovery step (not including the recovery step). Any
discharge steps after a period of =zero discharge (except for initial
conditions) will be ignored.

ORGANIZATION OF STEP DATA The Sternberg analysis requires the times
in the data all to relate to the beginning of discharge. The other two
methods expect to find the data as a series of consecutive steps with times
in each step being measured from the beginning of that step. In other words,
Sternberg uses data from a single discharge test having a number of different
discharge rates; while the other methods expect data from a number of
independent discharge tests each having a constant discharge rate, and being
consecutively placed in one data file.

Sternberg also expects the initial conditions to be present as the first
datum group, the other methods will work with initial conditions present or

52 Data Handling

absent. (The initial conditions are the drawdown and discharge rate at time
zero.) The initial discharge rate must be zero, and the initial drawdown
will normally be zero, but as Sternberg is capable of producing a well
equation from pressure heads (in metres) instead of drawdowns, the value
recorded as the initial *drawdown' can actually be the initial head.

As an example, we have a test consisting of three thirty minute steps.
If the data was to be used for Sternberg, the times would start with 0
minutes, and then probably 1, 2, ... 28, 30, for the first step, 31, 32, ...
58, 60, for the second step, and 61, 62, ... 86, 88, 90, for the last step.
The discharge rate would have been increased at the end of each step, ie. at
30, and 60 minutes from the beginning of the first step. Sternberg does not
expect full recovery between steps.

The same data in a form suitable for the other two methods would start
with 0 minutes (optionally), and then 1, 2, ... 28, 30, for the first step,
followed by 1, 2, ... 28, 30, for the second step, and 1, 2, ... 26, 28, 30,
for the last step. The most important difference here is that these steps
must be data from quite independent discharge steps, there having been full
recovery between each test. (If your data came from a test with consecutive
steps, with no recovery, then full recovery must be simulated using something
like the facility described above, under menu two.)

Any of the three methods can work with data having a long last step, eg.
data from a test which started with three short steps, and then went on to a
long higher rate step would be quite acceptable.

Sternberg works best if a recovery step is included. 1In fact several
recovery steps can be included anywhere in the discharge test, so a temporary
pump failure causes no problems, so long as the person running the test goes
on taking readings.

Sternberg can handle periods of continually changing discharge rate,
while the other two methods expect distinet steps having a constant discharge
rate within each. Especially when using the Sternberg procedure, care must
be taken that the discharge rate is defined correctly at all times.

The times 1in the data used for the Sternberg analysis must be in
increasing order, so if you add the drawdown and discharge rate at time zero
(initial conditions) to the end of the data file, be sure to sort them into
order (using the sort option of Menu 2) before running Sternberg. Obviously,
since the data for the other tests must be in the form of several 'independ-
ent' discharge tests, then they must not be sorted. If one or other of the
procedures rejects your data, have a 1look at it's form using the view or

printout options, and consider the points raised in this section.

Data Handling 53

4.3. The modified Sternberg analysis
The modified Sternberg analysis, when applied to the data of the five
step simulation of table 1.1 (Simulation of Full Recovery between Discharge

Stages, above) and given a time of 25min., should produce coefficients for
the well equation of A=0.0100, B=0.0120, C=0.000150; id.nt.cal to those used
to produce the simulation.

The algorithm can best be described in a series of steps.

1/ At the beginning, three tests for invalid data are carried out.
First the data are checked for ordering of times, an error message is
displayed and the procedure is aborted if it is found that each time is not
greater than that which preceded it. Next, the program checks for initial
conditions; the drawdown and discharge rate for time zero must be present,

and the discharge rate at time zero must be zero.

2/ If the data passed the first checks for validity, the program
moves on to the calculation of the vector StrnVec(x). The values in this

vector are given by the equation;

StraVec, = J=: Delta QJ Log1o(t1-tj_1) (1.5)
This in turn involves several separate steps.

(1) The first element of the vector SternVec[x] is set to
zero.

(2) Delta Q(i) is calculated for each time after the first,
and stored in vector DeltaQ(x).

(3) Then SternvVec(i) is the sum of all the terms;
DeltaQ(J)*Log(Time(1i)-Time(j-1)) for J from 2 to 1. Of course, terms in
which DeltaQ(j) equals zero have zero value; they are not calculated. The
values of the elements in SternVec are displayed on the screen as they are
calculated.

To make the operation of the program easier to understand, try running
it on a file produced by program SIM7 as below.

Execute GWSTART.COM or GW.BAT (refer to the Introduction if you don't
know how to do this). Call up program SIM7 from the GW menu. Specify a time
unit of minutes. Enter a value of 0.004 for the well equation coefficient,
A, 0.003 for B, 0.00005 for C, and 2 for the exponent n. When asked for
discharge rates and the ending times of each step enter the following.

54 Data Handling

Step Discharge rate Time at end of step

1 100 50 (First step completed OK.)

2 0 60 (The pump stopped for ten min.)

3 200 100 (Forty minutes of the 'second' step.)
y 0 110 (That pump is no goodl)

5 200 140 (Enough at 200m"3/day.)

6 300 190 ('Third' step went OK.)

7 0 1440 (Normal recovery.)

The simulation above produces a file which would be difficult to analyse
using methods other than the Sternberg analysis because of the 'pump'
stopping twice during the test. The second part of what we will suppose was
intended to be the second step (200m”“3/day) does not help the Sternberg
analysis at all, but was included to illustrate a point below. This
simulation should yield the results (from step 2/ above) given in table 1.2.

It is probably worth using this data to i1llustrate the way in which
changes in discharge rate are handled (mentioned above). Note from the table
that reading number 36 gives the discharge rate (Q) as zero at time 110
minutes, and reading number 37 gives the discharge rate as 200 at time 111
minutes. This means that the discharge rate increased from O to 200
immediately after time 110 minutes.

In the example data, if readings number 37 to 44 inclusive are deleted,
correct results will still be obtained from the analysis. On the other hand,
if readings number 39 to 46 are deleted, then it will appear that the
discharge rate of 200 finished immediately after reading number 38, at 112.3
minutes, rather than the correct value of 140 minutes, and erroneous results
will be calculated.

3/ After the calculation of the vector StrnVec, a small menu will
be displayed. The menu gives the options of;

(1) Listing of the data in their present state to the
printer. For checking, manual analysis, etc. (This was used to produce
Table 1.2.)

(2) Display of the data on the screen; again, this would
probably be required for checking.

(3) The third option is the most important; this will cause
the remainder of the analysis to be performed.

Table 1.2

Sternberg output data

Data Handling

No. Q min. days Drawdown Delta Q Stern. vec.
1 0.0 0.0 0.0000 0.000 0.00 0.00
2 100.0 1.0 0.0007 0.900 100.00 0.00
3 100.0 2.3 0.0016 1.006 0.00 35.41
4 100.0 3.8 0.0027 1.076 0.00 58.51
5 100.0 5.8 0.0041 1.130 0.00 76.69
6 100.0 8.4 0.0058 1.177 0.00 92.26
7 100.0 11.5 0.0080 1.219 0.00 106.23
8 100.0 15.5 0.0108 1.257 0.00 119.15
9 100.0 20.6 0.0143 1.294 0.00 131.35

10 100.0 26.9 0.0187 1.329 0.00 143.03

11 100.0 34.9 0.0243 1.363 0.00 154.32

12 100.0 45.0 0.0313 1.396 0.00 165.33
13 100.0 50.0 0.0347 1.410 0.00 169.90

i 0.0 51.0 0.0354 0.512 -100.00 170.76

15 0.0 52.3 0.0363 0.409 0.00 136.41
16 0.0 53.8 0.0374 0.344 0.00 114.60

17 0.0 55.8 0.0388 0.294 0.00 98.01

18 0.0 58.4 0.0405 0.253 0.00 84.36

19 0.0 60.0 0.0417 0.233 0.00 77.82

20 200.0 61.0 0.0424 3.023 200.00 T4.39

21 200.0 62.3 0.0432 3.224 0.00 141.39

22 200.0 63.8 0.0443 3.350 0.00 183.40

23 200.0 65.8 0.0457 3.446 0.00 215.25

24 200.0 68.4 0.0475 3.525 0.00 241.59

25 200.0 71.5 0.0497 3.594 0.00 264.58

26 200.0 75.5 0.0525 3.656 0.00 285.39

27 200.0 80.6 0.0560 3.714 0.00 304.77

28 200.0 86.9 0.0604 3.770 0.00 323.23

29 200.0 94.9 0.0659 3.823 0.00 341.13

30 200.0 100.0 0.0694 3.852 0.00 350.51

31 0.0 101.0 0.0701 1.057 ~-200.00 352.23

32 0.0 102.3 0.0710 0.851 0.00 283.52

33 0.0 103.8 0.0721 0.720 0.00 239.89

34 0.0 105.8 0.0735 0.620 0.00 206.64

35 0.0 108.4 0.0753 0.538 0.00 179.27

36 0.0 110.0 0.0764 0.498 0.00 166.12

37 200.0 111.0 0.0771 3.278 200.00 159.23

38 200.0 112.3 0.0780 3.467 0.00 222.36

39 200.0 113.8 0.0791 3.580 0.00 260.10

40 200.0 115.8 0.0804 3.662 0.00 287.33

41 200.0 118.4 0.0822 3.726 0.00 308.78

42 200.0 121.5 0.0844 3.780 0.00 326.65

43 200.0 125.5 0.0872 3.827 0.00 342.21

4y 200.0 130.6 0.0907 3.869 0.00 356.31

55

56 Data Handling

Table 1.2 continued

No. Q min. days Drawdown Delta Q Stern. vec.
45 200.0 136.9 0.0951 3.909 0.00 369.53
46 200.0 140.0 0.0972 3.924 0.00 374.82
47 300.0 141.0 0.0979 6.829 100.00 376.43
48 300.0 142.3 0.0988 6.941 0.00 413.80
49 300.0 143.8 0.0999 7.018 0.00 439.27
50 300.0 145.8 0.1013 7.081 0.00 460.30
51 300.0 148.4 0.1030 7.138 0.00 479.25
52 300.0 151.5 0.1052 7.192 0.00 497.21
53 300.0 155.5 0.1080 7.24% 0.00 514.79
54 300.0 160.6 0.1115 7.297 0.00 532.38
55 300.0 166.9 0.1159 7.351 0.00 550.25
56 300.0 174.9 0.1215 7.406 0.00 568.59
57 300.0 185.0 0.1285 T7.463 0.00 587.53
58 300.0 190.0 0.1319 7.487 0.00 595.72
59 0.0 191.0 0.1326 1.792 -300.00 597.28
60 0.0 192.3 0.1335 1.479 0.00 492.99
61 0.0 193.8 0.1346 1.278 0.00 426.07
62 0.0 195.8 0.1360 1.123 0.00 374.46
63 0.0 198.4 0.1378 0.994 0.00 331.35
64 0.0 201.5 0.1400 0.881 0.00 293.79
65 0.0 205.5 0.1427 0.781 0.00 260.26
66 0.0 210.6 0.1462 0.690 0.00 229.92
67 0.0 216.9 0.1506 0.607 0.00 202.29
68 0.0 224.9 0.1562 0.531 0.00 177.08
69 0.0 235.0 0.1632 0.462 0.00 154,10
70 0.0 247.7 0.1720 0.400 0.00 133.25
T 0.0 263.7 0.1831 0.343 0.00 114,44
72 0.0 283.9 0.1971 0.293 0.00 97.60
73 0.0 309.3 0.2148 0.248 0.00 82.64
T4 0.0 341.3 0.2370 0.208 0.00 69.48
75 0.0 381.6 0.2650 0.174 0.00 58.02
76 0.0 432.14 0.3003 0.144 0.00 48.13
T7 0.0 496.4 0.3447 0.119 0.00 39.68
78 0.0 577.0 0.4007 0.098 0.00 32.53
79 0.0 678.6 0.4713 0.080 0.00 26.53
80 0.0 806.6 0.5601 0.065 0.00 21.54
81 0.0 967.9 0.6721 0.052 0.00 17.43
82 0.0 1171.1 0.8132 0.042 0.00 14.05
83 0.0 1427.1 0.9910 0.034 0.00 11.29
84 0.0 1440.0 1.0000 0.034 0.00 11.18

4/ Printout or display of the StrnVeec data needs no further
explanation, so these notes will go on to explain the calculation of the well
equation. The next step is to mark the beginnings and endings of each
discharge step. For this purpose, a step has been defined as consisting of a

minimum of three consecutive records each having identical discharge rate.

Data Handling 57

The step numbers, and the first and 1last records within each step, are

displayed as they are recorded.

5/ The discharge rates for all the steps defined above are recorded
in the vector StepRate(x). As the data in this recovery step are of great
importance in a subsequent part of the analysis, tests should be arranged to
finish with a longish recovery period; or to include a reasonably long period
of recovery. A recovery step is not essential, but is likely to lead to a

more accurate evaluation of the coefficients of the well equation.

6/ In a manual Sternberg analysis, it would be necessary to produce
a graph with the values of the StrnVec (along the x axis) plotted against
drawdowns (along the y axis). For the sake of this explanation this graph is
given in Figure 1.7.

Figure 1.7

0 [T

1.8 ' LI ¥ |
T 13 Tiin M L 1 '
.0 3
3.0 T
' s £33 =

L0 LY P

3.0

6.0

3
7.0 b :,..."
8.0
.0 128. 24, 3%0. L 8 0.

A graph of the type which would be used for manual analysis of Sternberg

data. Note that on the graph the data from several steps falls on one line.

All the data from the zero discharge rate steps, 2, 4, and 7 fall on the top
line of the graph, and the data from both the 200 kilolitre per day steps, 3
and 5, fall on the line between 3 and 4 metres drawdown. Refer also to table
1.3 on the following page.

The next section of the program calculates and displays the slopes and y
intercepts for all of the steps as if they were plotted on a graph. Assuming
a confined, homogenecus, isotropic, unbounded aquifer, all the slopes should
be identiecal. In this imperfect world they are unlikely to be so; therefore

the average slope is used to calculate the coefficient, B, of the well

58 Data Handling

equation. This is displayed immediately after it is calculated (see Table
1.3).

Table 1.3

Step Y intercept Slope

1 0.900 0.0030
2 0.000 0.0030
3 2.800 0.0030
Yy 0.000 0.0030
5 2.800 0.0030
6 5.700 0.0030
7 0.000 0.0030

The user is asked to "Press any key to continue" before progressing
further with the analysis, so that he/she has a chance to examine the
information given in the displays that accompanied the above operations. If
there are more than five steps then the earlier data will scroll off the
screen by the time the later data is displayed; to prevent this the program
can be temporarily stopped by holding down <Ctrl)> and pressing <Num Lock>.
To continue after stopping the program in this way, press any key.

This section also calculates the y intercept divided by the discharge
rate for each (non zero discharge rate) step, for possible later use. This
is stored in the vector YQ(x).

7/ A decision 1is now made on the method which is to be used to
calculate the coefficients A and C, based on the presence or absence of

recovery step data.

8/ If no recovery data is present, then the slope and y intercept
of StepRate(x) vs. YQ(x), with YQ(x) on the y axis, is calculated by linear
regression. Well equation coefficient A is equal to the y intercept produced
by this operation, and coefficient C is equal to the slope. As this method
relies on projecting the step trends back to the y axis, any slight errors in
the step data will be magnified. I have therefore called this the inferior
method of calculating the coefficients A and C.

9/ If the data does contain a recovery step, then a rather more

involved, but probably also more accurate method may be used to evaluate A
and C.

Referring to Figure 1.7, the distances between the Q=0 line (the long,

top line) and each of the other lines corresponds to the drawdown at one

minute for each respective discharge rate. In the case of the example data

Data Handling 59

it 4is not necessary for us to check the graph, we can see what the one minute
drawdowns are from the slope and Y intercept information displayed at this
point in the analysis (see Table 1.3).

All the slopes are identical for this artificial data, therefore one
point on a given line will be the same distance from a second line as is any
other point on the first line (because the lines are parallel). The Y
intercepts of the steps having zero drawdown are all equal to zero, so the
one minute drawdown for Q=100 is 0.9m, for Q=200 is 2.8m, and for Q=300 is
5.7Tm as would be expected given A=0.004, and C=0.00005, and remembering that
the B term is zero because Log 1 (minute) equals zero.

Real data would not be 80 consistent, so instead of measuring the
distance between the 1lines at their Y intercepts, the distance between them
is measured from a point about half way along the data of each non zero
step. The one minute drawdowns for each non zero discharge rate step is

displayed as it is calculated.

10/ The last step in the solution involves;

(1) Take each step from the first to the second to last in
turn. In the program and in these notes, the current step will be called I.

(2) For each step I, take each of the other steps in turn.
(Each of these will be called J.)

(3) Subtract the drawdown (or head) of step J from that of
step I. Call this D2.

(4) Subtract the discharge rate of step I from that of step
J. Call this Qf.

(5) Sum the discharge rate for each of these steps. Call this

Q2.
Table 1.4
I dJ D2 Q1 Q2 D2/Q1
1 3 1.9 100 300 0.019
1 5 1.9 100 300 0.019
1 6 4.8 200 400 0.024
1 i -0.9 -100 100 0.009
5 6 2.9 100 500 0.029
5 7 -2.8 -200 200 0.014
6 7 -5.7 -300 300 0.019

You will notice from the source code that the decision to do these
calculations is dependent upon certain restrictions. The calculations will
not be done if either of the two steps involved is a recovery step other than

the main recovery step, or if the relative difference in discharge rate

60 Data Handling

between the two steps involved i1s less than 8%, or if the first of the two
steps involved is the main recovery step. The variable TempInti is given the
total number of the selected datum pairs.

(6) Calculate the slope and y intercept of the best fit line
through the selected Q2 (on the x scale) vs. the corresponding D2/Q1. This
operation can easily be checked manually by use of the displayed data, if so
desired. You will notice from the code that the variables D2, Q1, and Q2
hold data very temporarily, and that the linear regression analysis is given
these values as they are calculated. Also, as these values are calculated
they are displayed.

(7) Coefficient A is equal to this Y intercept, and
coefficient C 1is equal to this slope. These coefficients, as well as the
previously calculated value for B, are displayed at this time.

The coefficients given by the program should be very close to those used
in SIMT7 to produce the simulated data, but their exact value will depend upon
the truncation errors in the particular computer system (usually insignif-
icant in Turbo Pascal), and on the precision lost if data is stored in an
ASCII file between SIM7 and this program. In the case of field data any loss
of precision will be trivial in comparison with errors of measurement and
errors due to disparities between the theoretical model and reality, but the
data handling errors may be significant when simulated data are analysed.
Using an ASCII file (WID) for the data transfer, my computer gave A=0.003997,
B=0.003001, and C=0.00005001, a maximum error of less than 0.1%. With data
transferred in a machine language (FTD) file, and using an 8087 co-processor,
their was no error (to the accuracy of the displayed results).

After the display of the coefficients of the well equation, execution
passes to the section of code which allows the user to enter trial values for
discharge and duration of pumping, and then calculates the drawdown to be

expected from each pair of values according to the well equation.

4.4, Rorabaugh's procedure

This has been adapted from Bouwer (1978) and was originally published by
Rorabaugh (1953). Note that for this and the next analysis method, the data
must be in the form of full recovery between stages; see the notes on
'Conversion to simulate full recovery between discharge stages' above.

At some time, t, after the commencement of pumping, when the water level
is no longer declining rapidly, for any given discharge rate the drawdown, s,
can be approximated by the equation;

3=CQ+C, q° (1.6)

Data Handling 61

where s is the measured drawdown at the given time,
Cr is a constant (at a particular time) relating to the formation,
Q is the discharge rate,
Cw is a constant relating to the well ('C' of the well equation),

and n is the exponent of the well equation.

Bouwer (1978, pp 83, 84) described the procedure. A value is first
guessed for Cf and then 8/Q-Cf is plotted against Q on double logarithmic
paper for each discharge stage. The value of Cf is discovered by making
progressive adjustments wuntil the 1line is as straight as can be obtained.
When the value of Cf has been obtained, n can be calculated as the slope
plus one. Cw can now be calculated from the equation above. While this
procedure is slow and tedious when done manually, it lends itself very well
to computerisation.

Given the transmissivity, drawdown and the discharge rate at a
particular time, the Y intercept of the delta s slope is calculated, and then
the coefficients of the well equation may be evaluated using;

A = {Yi - Cy * exp[1ln(Q1) * n]} / Q4 (1.7)
B=0.183 /T (1.8)
CamCy (1.9)

where Y1 is the y intercept of the log (base 10) of time (on the x scale)
against the drawdown (on the y scale),

exp[x] represents the natural exponent of x, ie. e’x,

1n(x) represents the natural logarithm of x,

Qq is the discharge rate of the first stage,

T is the transmissivity,

Cw and n are defined above.

If the user does not wish to enter the transmissivity, drawdown, and
discharge rate, then the program will look up the drawdowns and discharge
rate for the last five readings of the first step, and calculate a slope and
y intercept. Transmissivity is calculated from the slope.

These coefficients may now be used in a well equation of the form given

in equation 1.4,

62 Data Handling

As with the Sternberg analysis, execution now passes to the section of
code which allows the user to enter trial values for discharge and duration
of pumping, and then calculates the drawdown to be expected from each pair of
values according to the well equation.

4.5. The simpler s/Q vs. Q method
This method is probably the simplest and most commonly applied

(manually) of the solutions of the well equation. A minimum of two discharge
steps at different rates are required for solution by this method, three or
more are better. The data must be in the form of complete recovery between
steps. Several checks on the form of the data are made at the early stages
of this procedure.

The program will ask for a time to use in the analysis. All that is
required here 1is a time after the first reading of each step, and before the
end of each step. eg. If your test had three steps, each of 30 minutes, and
the first reading was taken at one minute in each step, then you could enter
any number between one and thirty. Unlike the Rorabaugh procedure, here it
should make no difference to the calculated coefficients exactly what time is
entered.

The drawdown for each step at one minute (where log time = 0) is
calculated by linear regression. (There may be a one minute reading for each
step, but as well storage effects can be very significant at such an early
time, 1t was felt better to use all the data of the step to calculate one
minute drawdown, than to place great reliance on the one minuted readings.)

The next step 1s to calculate 3/Q for each step (where s is the one
minute drawdown, and Q is discharge rate). Here the program departs from the
manual method slightly. Manually, the s/Q values would be plotted on the y
scale of a graph against Q on the x scale, with both scales being linear.
The computer, of course, does not need to plot the data, but calculates the
slope and y intercept of the best fit straight 1line, again by linear
regression. This slope and y intercept are then used to calculate A and C of
the well equation.

The coefficients are calculated as:

L
"

The y intercept above,
0.183 / transmissivity,
the slope above.

w
"

and C

Data Handling 63

The transmissivity can be entered by the user, or the user may have it
calculated from the data of the first step of the discharge test data.
After solution of the coefficients of the well equation, this procedure

also allows the user to do trial projections.

4.6. Checking the results of an analysis

The user may make a note of the coefficients and exponent produced by
whichever of these methods he uses to analyze his data, and then use program
SIM7 to simulate the discharge test which produced the original data. A comp-
arison of the simulated and real data will show how successful the operation
was. I see this ability to use one method or program to check the results of
another quickly and easily, as one of the great advantages of microcomputers
in comparison to manual methods. The more checks one carries out on ones
work, the less likelihood of errors (this applies just as much to the use of
computers as at any other time).

Using each of the above methods to solve the well equation for the data

used to produce Figure 1.2 the results obtained were:

Entered values Sternberg Rorabaugh 8/Q vs. Q
A = 0.003 0.0030 0.0018 0.003
B = 0.005 0.0050 0.0050 0.0050
C = 0.00001 0.00001 0.00008 0.000009
ns=2 2 assumed 1.7 2 assumed

Several of these values are very different to those entered into SIM7,
but the important point is not really how well the original values can be
retrieved, but rather how well the final well equation fits the time/draw-
down/discharge rate data. The table below shows drawdown values calculated

for each method for a range of discharge rates and times.

Q (m"3/day) t (min.) Sternberg Rorabaugh s/Q vs. Q
230 80 3.408 3.413 3.411
230 10 2.369 2.373 2.372
430 50 6.791 6.755 6.747
430 30 6.315 6.277 6.270
300 1200 6.419 6.428 6.410

The figures above show that although the Rorabaugh analysis gave
coefficients that differed quite widely from the other methods, when one came
to calculating drawdowns the answers were very similar (there is less than
one percent variation between all the above drawdowns for a given Q and t).
In a real discharge test analysis situation, the choice of the best method to
use will be dependent upon the form of the data, (some tests can only be
analysed by the Sternberg method) and perhaps the perceived fit between the

64 Data Handling

model and the real drawdowns. It seems to me to be impossible to say whether
or not the ability of the Rorabaugh method to calculate the value of the
exponent gives this method a decided advantage over the others, given the
variability of field data.

5. THE PROGRAM ITSELF

Program DTDHA 1s one of the largest programs in this book. If it were
significantly larger then it might be better broken into two or more
independent, or semi-independent, parts that could be edited and compiled

separately.

5.1. The make up of the source code

Rather than have all the source code in one file, it has been broken up
into five blocks. There 1is the main file, DTDHA.PAS, and four 'Include’
files, FIRST.SEG, READSAVE.PRC, DTDHMEN2.SEG, and DTDHMEN3.SEG. Turbo Pascal
uses Include files as a way of limiting the amount of source code that must
be 1in the computers memory at one time. When it is time to compile the
program, the Include files are called up from disk as directed in the source

code.

5.2. The Include files
File FIRST.SEG contains variables that are global to all the programs in

the GWTS group. It also contains procedures and functions that are used very
widely in the group.

File READSAVE.PRC, as the name implies, contains all those procedures
and functions that are required to read or save a disk data file. This
Include file is also used in many of the programs of the GWTS group.

File DTDHMEN2.SEG contains all those procedures and functions that have
to do with the options of menu number two, and file DTDHMEN3.SEG contains
those that have to do with menu 3.

5.3. The object code

If compiled as one integral program, the object code of DTDHA would be
too large to be useable as a Turbo Pascal chain file. Two large parts of the
object code are therefore compiled into separate overlay files; only one of
which is called into the computers memory at any one time. The two parts are

those that handle everything to do with menu two and menu three respectively.

Data Handling 65

6. PROGRAM DTDHA.PAS, TECHNICAL COMMENTS

One of the 1limitations of Turbo Pascal (version 3.0) is that the data
space 1s limited to a maximum of 64k bytes under normal circumstances. In
the case of the programs of this book this limitation does not present a
problem until one wishes to store more than one set of discharge test data in
memory at one time. The way around the problem is to use pointer variables
which are dynamically allocated while the program is running. This program
has a maximum of two discharge test data files in memory at one time, so two
sets of pointers are used (see line 556 of file DTDHA.PAS). This major array
variable is named VRP, short for Vector Record Pointer.

VECTOR RECORD POINTER Each VRP array consists of three vectors which
are themselves made up of an array of 500 reals. Note that the memory used
by these arrays will be greater when Turbo 87 is used than with normal Turbo,
as the former uses eight bytes per real and the latter six. For the same
reason, if the programs are compiled under Turbo 87, then they will not be
able to read data files of the FTD type produced by a program compiled under
normal Turbo, and vice-versa.

The source code of this program is contained mainly in three files. The
procedures and functions of each file are explained below under the name of
the file in which they occur. The order is the same as that in which compil-
ation takes place, beginning with DTDHA.PAS, and followed by DTDHMEN2.SEG,
and DTDHMEN3.SEG. Within each file the explanatory notes are arranged in
alphabetical order of procedure/function name.

In the notes that follow, full explanations will be given only for those

procedures and functions who's workings might not be self explanatory.

6.1. Procedures and functions of file DTDHA.PAS

Display sub-procedure Line 239
Purpose: to display a short string at the current cursor position, and
after a delay of one second, to erase the message, and return the cursor to

it's initial position.

DisplayRecentData procedure Line 175

Purpose: to display the data of the last three readings so that the user
can check his/her progress in data entry.

The heading is displayed first, and then, in order, the data of the
third to last, second to last, and last readings. eg. Lines 182-184 display
the data of the third to last reading, so long as such a reading exists (line

66 Data Handling

180). The statements controlling the position of this display are in lines
177, 179, 187, and 195.

DispMenu procedure Line 517

Purpose: to display the main menu of program DTDHA.

Before the menu itself is displayed, some information about the data at
present in memory is given. Firstly, line 516 tests whether there are any
well test data in memory. If data are not present, then line 517 writes an
appropriate message. If data are present, then the last named file is
given. (Note that this may not be the name under which the data in memory
are stored, it might rather be the name of a file merged with the original
data, or a name under which some part of the data has been saved.) Lines 523
to 530 then write notes on the recorded test type, well type, and the value
of R (which, you may recall, is the distance from the piezometer to the
discharging well when the data refers to a piezometer, but is the effective
radius of the well when the data refers to a discharging well).

Lines 532 and 533 are to give a warning that the data in memory are not
the same as those of any disk file. The boolean variable, DataSaved, is set
to false whenever a call is made to Menu 2, the data modification menu, and
in some other cases when it may be necessary to change the data in memory
(eg. conversion of recovery times to t/t1).

Finally, the menu itself is displayed by the code starting at line 535.

EnterDate subprocedure Line 249

This is a subprocedure of procedure EnterTimeDate.

Purpose: to allow the user to enter the time of day and the date of a
single reading, from the keyboard.

The moment of the particular reading is entered as a minute, hour (on a
24 hour clock, not am/pm), day (as a calendar date), month (by number), and
year (ideally in full eg. 1988, but for most purposes the short form, eg. 88,
is normally acceptable, see main text). Entry of the minute takes place on
line 257, and is validated by the code from there to line 264,

The scene has been set by procedure EnterWTD (line 456), which displayed
instructions applying to entry of times: as minutes, and as date and time of
day.

Note that the Boolean variable GoBack, which is defined in the parent
procedure EnterTimeDate, is made true for a minute entry of -1. The value of
GoBack will be checked by EnterTimeDate, and if found to be true, then the

procedure rolls back to the previous entry.

Data Handling 67

Line 275 refers to Boolean variable SecondTime. If a date is being
entered for the first time, then it is necessary to enter minute, hour, day,
month and year, but if a date has already been entered then it might be
reasonable to assume that the month and year remain the same. SecondTime and
another Boolean, GoOn (set in function ReadIntF), control these conditional
entries.

Called by: the parent procedure, EnterTimeDate.

Calls: functions ReadInt and ReadIntF.

EnterMinutes procedure Line 424
Purpose: to enter and validate a time in minutes, enter a drawdown, and
to ask the user whether the discharge rate is to be changed.

Called by: procedure EnterWTD.

Calls: procedures DisplayRecentData, ReadDrawdown, and function
ReadReal.
EnterTimeDate procedure Line 206

Purpose: to assist the user to enter discharge test times as date and
time of day.

This major procedure contains functions ReadIntF, GetMinutes and
TestDate; and procedures Display and EnterDate.

The first steps are to display a heading and to ask the user to enter
the starting time. (If the total duration of discharge is to be calculated,
then a starting time as well as a time of reading is required.) Procedure
EnterDate is called to obtain the date from the user (line 372). Now that
the starting time is known, it is displayed for the users reference (line
377). Line 381 wuses function GetMinutes to calculate the time in minutes
from the beginning of the year zero to the entered date and time. (This
requires around nine decimal digits of precision, normal Turbo Pascal has
roughly eleven, Turbo 87 has around 15.) Line 383 begins a loop which
controls entry of all the times and dates of the discharge test readings.

Line 386 causes the next time and date to be entered, and if the user
has indicated a desire to delete the last reading, then line 387 sets back
the counter. (Procedure EnterDate will not allow the user to set GoBack on
the first discharge test reading for obvious reasons.) Lines 391 to 396 set
the month and year to the default if the user has not specifically entered
them.

To avoid unnecessary key punching, the discharge rate for any reading

other than the first 1s assumed to be the same as the immediately previous

68 Data Handling

one unless the user includes a '+' sign with the drawdown entry. (The '+'
has been chosen because it is present on the gtandard numerical key pad and
it indicates that something is to be added.) If procedure ReadDrawdown
detected the '+' sign, then the new discharge rate is entered in line 410.

Line 414 displays the data of the previous entry to make keeping track
of progress in data entry easier.

Called by: EnterWTD

Calls: DisplayRecentData

EnterWtd procedure Line 456
Purpose: to supervise the entry of discharge test data via the keyboard.
Called by: the main part of DTDHA
Calls: functions CapOptions and ReadReal, and procedures EnterTimeDate

and EnterMinutes.

FileExist function Line 35

Purpose: to check for the existence of a file by a given name.

This function 1s redundant and may be deleted; unfortunately this fact
was not realised until the work of writing this book was too far advanced to
allow deletion.

FirstLast procedure Line 56

Purpose: Many operations relate to a part of the data which can be
specified by a first and a last record number. This procedure allows the
user to enter these.

The only part of the procedure that might require explanation is the use
of the defaults, around iine 69 to 83. Integer variables First and Last are
set to the first record number (1), and the last record number (the number of
data sets in vector set number 1) in line 69. ReadIntInput (of file First-
.seg) 1s called to enter two temporary integers (lines 72 to 75). Function
ReadIntInput 1is written to return a value of zero if the user presses the
enter key without first pressing some other key. The pressing of <Enter>
without first typing a number is taken as indicating the the user wants to
use the default values, the first and/or last records. Lines 81 and 82
change the values of First and Last if the user entered valid numbers for
these variables.

Data Handling 69

GetMinutes sub-function Line 341

Purpose: to calculate the number of minutes from the beginning of year
zero to the current time and date (on the false assumption that the Gregorian
calendar was in use for all that time).

Lines 350 and 351 calculate the required number for all dates except
those in a leap year and before 29th. of February; line 357 corrects for such
a date.

Note that by the Gregorian calendar there is a leap year on every year
whose number is divisible by 4, except those whose numbers are divisible by
100 and are not divisible by 400. eg. The year 1896 was a leap year (divis-
ible by U4), the year 1900 was not (divisible by 100), and the year 2000 will
be a leap year (divisible by 400).

Called by: parent procedure EnterTimeDate

LinReg procedure Line 87

Purpose: to produce a best fit linear (straight line) function from a
set of data by linear regression.

The linear function is of the form;

y=sx+Y (1.10)

where x and y are respectively the input and output of the function,
s is the slope,
and Y is the y intercept.
LINEAR REGRESSION The equations used for linear regression are;

nsS, -S,8S

s =.__l____E§A§. (1.11)
ns, -8
y =2
S. S, -5,8
Y = ._3__5____25_1. (1.12)
ns, -8
y - S2

where S1 is the sum of all xi yi,
S2 is the sum of all xj,
53 is the sum of all yi,
Sy is the sum of all xi2,
and n is the number of x, y pairs in the data under-going regression
analysis.
Called by: 1/ sub-procedure LinRegCall of procedure SimulateRec (file

DTDHMEN?2.SEG),

70 Data Handling

2/ procedure SimulateRec,
3/ procedure Rorabaugh (file DTDHMEN3.SEG),
4/ procedure SQvsQ (from three points) (file DTDHMEN3.SEG),

5/ subprocedure SolvStrn of procedure Sternberg (file
DTDHMEN3. SEG).
Log function Line 50

Purpose: to calculate logarithms to the base ten.
Constant LnTen is given the value of the natural logarithm (1ln) of ten
in line 34.

PrintData procedure Line 109

Purpose: to produce a properly paginated and easily readable paper copy
of the current set of discharge test data.

Line 122 causes the contents of the variable, FileName to be printed as
part of the heading. Note that if data in memory has been merged with that
from a second file then this variable will contain the last used file name,
and may not be the file name that would be required by the user. Lines 138
to 143 place a string of dashes after every seventh line with the aim of
making the printed data more easily readable.

Called by: the main part of program DTDHA.

ReadDrawdown procedure Line 150

Purpose: to read in a drawdown value from the keyboard, look for a '+'
sign (which would indicate the users desire to change the discharge rate) and
reject typographical errors.,

If the user has entered a '+' sign, then Boolean variable NewRate is
given a true value. (If the pos function fails to find a '+' in the string
Short in line 159, it passes a value of zero to J.) Variable NewRate will be
referred to by the calling procedure.

Called by: procedures EnterTimeDate and EnterMinutes.

ReadFile procedure Line 500

Purpose: to control the reading of data from a disk file; in particular
to warn the user, and give a way out, if there is a danger of overwriting the
data already in memory.

Called by: the main part of program DTDHA.

Data Handling 71

ReadIntF sub-function Line 217

Purpose: to read an integer from the keyboard, and to check the entry
for a '+' sign.

The function is very similar to ReadInt which was described in the
Preliminary section. It also has some similarity to the ReadDrawdown pro-

cedure described above.

SaveFile procedure Line 484
Purpose: to control the saving of data to a disk file.
Called by: the main part of program DTDHA.

TestDate sub-function Line 305

Purpose: to check that the entered date is a valid calendar date.

The greatest part of the code, lines 310 to 333, check that the entered
day number is valid considering the 1length of the particular month; this
involves checking for leap years if the month is February.

Called by: the parent procedure, EnterTimeDate.

6.2. Procedures and functions of file DTDHMEN2.SEG
This file contains all of, and only, overlay procedure MenuTwo. All of

the ‘'procedures' listed below are therefore really subprocedures that are not
available globally.

By calling this and the next file (DTDHMEN3.SEG) overlay procedures,
Turbo can bring one or other into memory as required. The limitation of 64
kilo bytes of object code would be exceeded if an attempt were made to load
both these files (in their compiled form) into memory at the same time and
with the first file DTDHA.PAS. The calling into memory of the overlay pro-
cedures is handled by Turbo Pascal, and is not noticeable to the user except

for the small delay due to disk access.

AddConst procedure Line 138

Purpose: to allow the user to modify any one of the three main vectors,
times, drawdowns, or discharge rates, by adding a constant to all the records
of a contiguous section of one of them.

Called by: the main part of overlay procedure MenuTwo.

Calls: procedure FirstLast, and functions CapOptions and ReadReal of
file DTDHA.PAS.

72 Data Handling

CalcCorrection sub-procedure Line 12

Purpose: to calculate the amount of correction necessary to bring a
measured drawdown into 1line with the readings from a background monitoring
well. It is assumed that the background 'noise' is mainly barometric in
nature, and that it effects both the test well and the background well in a
linear relationship.

The procedure allows for the mis-match between the time of the drawdown
reading and the time of the background reading by linearly interpolating two

background readings using the equations;

k] - 8

s=_ 21 241 (1.13)
to,1 ~ Y2109
- * L] -
C=F %, , (+8% (b -t,,) (1.14)

where S 1s the slope of the line between the two readings from the background
well which bracket the time of the reading in the test well/piezometer.

82,1 1s the ith drawdown reading taken from the background monitoring
well. The ith reading has been chosen as the first reading in background
wells data that has a time greater than that of the drawdown to be corrected.

s82,i-1, from the above can be seen to be the last reading in the back-
ground wells data having a time less than, or equal to, that of the drawdown
to be corrected.

t2,i is the time of the ith reading in the background well.
C is the required amount of correction, in metres.

F 1is the correction factor, which will be one if both wells have equal
barometric susceptibility.

(sq or tq would apply to data from the file to be corrected.)

Called by: the parent procedure, CorrectForBackground.

ChangeDescription procedure Line 547

Purpose: to allow the user, simply and easily, to change the parts of
the file which describe the test from which the data came.

Called by: the main part of procedure MENUTWO.

CorrectForBackground procedure Line 7

Purpose: to control the process of correcting the drawdowns in memory
for background noise such as barometric variations.

The first section of the procedure explains what is to be done, then
gives the user a chance to exit. Line 46 causes the file holding the

Data Handling 72

background data to be loaded into memory under VRP (vector record pointer) 2,
and then line 51 asks for the correction factor (see Equation 1.14, above).

If the times in either file are not in ascending order the correction
procedure will not work correctly, so 1lines 54 to 72 check and report on
this. If some of the later times in the file to be corrected are greater
than those in the background file then it 1s not possible to correct all the
data. In this case those data that can be corrected will be, and the file
will be truncated and a message displayed (line 82).

The actual correction of the data is done by adding the original draw-
down to the value of function CalcCorrection, for the given time, in line 80.

Called by: the main part of overlay procedure DTDHMENZ2.

Calls: sub-function CalcCorrection, and procedure ReadTestDataFile.

DeleteReading procedure Line 226

Purpose: to delete a particular reading from the data file currently in
memory.

The procedure overwrites the specified reading with the data of the
following reading, then overwrites the following reading with the data of the
one after that, etc. until the end of the file. To clarify this explanation
an illustration will be given.

Suppose that there is a file of data which consist of letters of the
alphabet, each of which has a numbered position in the file, and it is
desired to delete record number 6 (character F) of the file. We begin with,

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16

4 B CDEVFGHTIUJI KTULMNO P,

The first step 1s to copy record number 7 to 6:

1 2 3 4 5 6 7 8 9 101112 13 14 15 16

A B CDEGGHTIU JIKTLMNDOP,

This has got rid of the unwanted F, but now there are two copies of G, so
next we copy record number 8 to 7, removing the superfluous G,

12 3 45 6 7 8 9 10111213 14 15 16

A B CDEGHUHTIUJIIKTILMNDOP,
and then repeat this process until the end of the file is reached. When we
come to the point where there are two copies of the P, we no longer need to
over-write, we simply delete the last record by shortening the file. Finally
we have,

1 2 3 45 6 7 8 9 1011 12 13 14 15

A B CDEGHTIJIKTLMNOUP,
which is what is required.

74 Data Handling

Procedure DeleteReading works in exactly this way, with the only
difference being that there are three vectors, rather than one, and the same
numbered record is removed from each.

Called by: the main part of overlay procedure DTDHMENZ2.

Calls: function CapOptions.

DeleteReadings procedure Line 261

Purpose: to remove a contiguous group of readings.

This procedure works in very much the same way as the previously explain-
ed procedure DeleteReading, but instead of copying the records from one
position to the adjacent position, now it is necessary to copy them over a
greater distance. Using the same example as above, suppose we wish to remove
records 6, 7, 8, and 9. The first step is to copy record 10 down to position
6,

1 2 3 45 6 7 8 9 10111213 14 15 16

A B CDEJ GHTIJIKULMNOPOP,
then record 11 1s copled to position 7, and so on until the end of the file.
Finally the file i1s shortened by four records.

Called by: the main part of overlay procedure DTDHMEN2.

Calls: function CapOptions.

DispMenu2 procedure Line 571
Purpose: to display the options of menu number two, the data modificat-
ion menu.

Called by: the main part of overlay procedure DTDHMEN2.

LinRegCall sub-procedure Line 299

Purpose: to obtain a best fit slope and y intercept for a selected set
of times and drawdowns with the times being treated as logarithms (base 10)
of times.

The procedure simply places the 1logs of the times into one vector,
TempVeci1, and the corresponding drawdowns into another vector, TempVec2, and
passes these two vectors to procedure LinReg. K1 holds the number of
elements that 1s contained in each of the vectors.

Called by: the parent procedure, SimulateRec.

Calls: procedure LinReg of file DTDHA.PAS.

Data Handling 75

MarkRec function Line 424

Purpose: to find, and record the location of, the first period of zero
discharge.

Line 432 gives counter I the value of the number of the first record
having a zero discharge rate, or if there are no zero discharge rates, then I
will be equal to the number of readings in the file. Line 436 sets StartRec
equal to the number of the first recovery reading, and DischTime equal to the
total duration of discharge preceding the first period of recovery, so long
as a period of recovery was found. Line 441 records the number of the last
record having a zero discharge rate.

The values picked out above are displayed, and the user is asked if he
is satisfied with them. If he is not (perhaps the first recovery period on
file 1s a very short period of pump failure which the user judges may be
safely ignored) then he must enter the times manually. Manual entry of the
number of the first recovery reading is also possible is the program is
unable to find it (perhaps flow rates were recorded by an automatic device
vwhich recorded some very small number, other than zero, when the pump was
stopped) . The remainder of the code allows manual entry of reading numbers,
and performs some validation of the entered values. Finally function MarkRec
is given a value of true if the algorithm has judged the found or the entered
values to be valid.

Called by: procedures TOverTOne {t over t one) and RTMinusRTOne (root t
minus root t one).

Calls: functions Response, ReadInt, and ReadReal.

MultByConst procedure Line 173
Purpose: to allow the multiplication of all, or any contiguous group, of the
data by a constant.

Line 183 calls procedure FirstLast to have the user enter the numbers of
the first and last records that are to be altered. Line 186 sets ParNum
(parameter number) to 1, 2, or 3, depending on whether Times, Drawdowns, or
discharge rates are to be changed. The remainder of the code displays some
appropriate conversion factors, asks the user for a constant, and multiplies
the chosen data by that constant.

Called by: the main part of overlay procedure MENUTWO

Calls: procedure FirstlLast of file DTDHA.PAS, and functions ReadReal and
CapOptions of file FIRST.SEG.

76 Data Handling

RTMinusRTOne procedure Line 503

Purpose: to convert the times associated with residual drawdown readings
recorded from a test carried out in a strip aquifer to the square of (root t
minus root t one), so that the plotted recovery may parallel the plotted
drawdown.

Line 510 calls function MarkRec to obtain the number of the first and
last readings of the recovery period, the total duration of discharge (up to
the first period of recovery), and to perform some checks on the validity of
the data for the following operations. The conversion of times 1s carried
out by lines 515 and 516 using the following equation:

Ri = (t11/2 - t'31/2)2 (1.15)

vwhere Ri is the ith value of (root t minus root t one) squared,

ti is the time of the ith drawdown reading measured from the
commencement of discharge,

t'y 1is the time of the ith drawdown reading measured from the end of
discharge (alternatively called t one).

It is important to bear in mind that the values of Rj replace the
original wvalues of ti in the main time vector; the original times are
unrecoverable from the t/t' data.

Called by: the main part of overlay procedure MENUTWO.

Calls: function MarkRec.

SimulateRec procedure Line 287

Purpose: to convert the data recorded from a discharge test consisting
of several stages of discharge at different rates immediately following each
other, to simulate a set of single stage tests separated by periods suffic-
iently long to give full recovery from discharge.

Of all the parts of the programs covered in this book, this has given me
the most trouble and I still am not satisfied that the results are as good as
might be obtainable. It is a complex procedure, and is difficult to follow
fully. In spite of this I believe that it gives reasonably accurate results
for data consisting of a set of discharge steps consisting of steps of equal,
or nearly equal, lengths. When one uses this procedure, one assumes that the
aquifer behaves as an infinite, isotropic, and homogeneous confined aquifer,
such as would produce a graph basically similar to that of Figure 1.8. One
failing of this procedure 1s that if a set of short steps is followed by a
(Continued on page 78)

Data Handling T7

Figure 1.8

00

;
10

T
1
100.

Time (min.)

ol x/ -t
[
o
x
L / 4o
b 4
o x -
N F /]
o T x]
n / i
- x -
. / +
x
o
o
-
E
o
& ki 1 L <
o r“ﬁ [«] o «t
o ‘< © o o
o © o -

QNCLUXVOEC 1=

A graphical representation of the process of converting multistage discharge
test data to simulate full recovery between stages.

78 Data Handling

long step, then the later drawdowns of the last step will contain quite large
errors.

Line 313 calls function CheckForStepData to test the validity of the
data for this procedure. The conversion process starts with line 317, and
will be described as a series of steps.

1/ The first discharge stage does not need any conversion. 1It's
slope and y intercept are recorded at line 323.

2/ This procedure 1s an adaptation of a graphical procedure (I
regret that I cannot give a published reference) that involves, in the first
place, plotting the original data on a semilogarithmic graph. The next step
(l1ine 327) involves calculating, for each drawdown reading of step two, the
additional drawdown, beyond that which would have been expected from the
continuation of step one, due to the increased discharge rate. 1In effect,
the drawdown 1line of step one is extended, (line 1 of Fig. 1.8) and the
distance each drawdown reading of step two is below this line is recorded
(eg. distances A and B of Fig. 1.8).

3/ It 1is reasoned that 1if an additional drawdown of x metres
occurred at y minutes into the second stage (due to the increased discharge
rate), and the drawdown due to the discharge rate of the first stage at y
minutes (from the beginning of that stage) was z metres, then had the test
began at the discharge rate of the second stage the drawdown at y minutes
(from the beginning of the first stage) would be x plus z. Lines 326 to 336
use this reasoning to convert the data of step two. (eg. distances A and B
are transferred to A' and B' in Fig. 1.8.) This produces line 2 of Fig. 1.8.

4/ The conversion of subsequent steps is more complex because
there 1is no longer a straight 1line set of data from which the increased
drawdown can be measured. To overcome this deficiency the curve of the
plotted data of step two 1is extended to where it might have been had the
duration of step two been doubled (line 3 of Fig. 1.8). This is done by
adding to the drawdown due to step one (symbolized by line 1), the additional
drawdown that would be expected due to pumping at the rate of step two for
the given time (symbolized by line 2 of Fig. 1.8).

In the case of the example data, for example, there is a reading at
time=58.4 min. As we are extending line 3 beyond the end of step 2, ie.
beyond 100 minutes, we calculate the drawdown that would be due to discharg-
ing at the rate of step one for 50+58.4 minutes. (Line 347 of the program.)
To this must be added the drawdown that would be expected had we pumped only
at the rate of step two right from the beginning of the test, for 58.4

minutes (because we are adding the drawdown due to 58.Y4 minutes pumping at

Data Handling 79

the rate of step two to the drawdown due to 108.4 minutes pumping at the rate
of step one). This figure is calculated by subtracting the drawdown due to
rate one at 58.4 minutes (program line 348) from the drawdown calculated for
rate two at 58.4 minutes (program line 349).

5/ The slope and y intercept of this line is calculated by the
linear regression call of program lines 356 to 363. Now it is possible to
calculate the additional drawdown due to the increased rate of the third step
by measuring the distance from this 1line to the plots of the third stage
(program lines 365 to 376).

Note that even in theoretical data the algorithm has an imperfection at
this point. It assumes that line 3 is straight where-as it would in fact be
slightly curved. It may, or may not, be that this is the only theoretical
error in the algorithm.

6/ The above steps are repeated for all subsequent stages.

Called by: the main part of overlay procedure MENUTWO.

Calls: sub-procedure LinRegCall and procedure CheckForStepData.

SortForTime procedure Line 382

Purpose: to sort the data into order of increasing times.

A Shell-Metzner sorting algorithm is used. It is beyond the scope of
this book to describe the operation of the algorithm, refer to Miller, 1981;
Barden, 1980; or to any of the more complete books on general programming.

Called by: the main part of overlay procedure MENUTWO.

TOverTOne procedure Line 486

Purpose: to convert the times associated with residual drawdown readings
recorded from a test carried out in an infinite confined aquifer to t/t', so
that the plotted recovery may parallel the plotted drawdown.

Line 493 calls function MarkRec to obtain the number of the first and
last readings of the recovery period, the total duration of discharge (up to
the first period of recovery), and to perform some checks on the validity of
the data for the following operations. The conversion of times is carried

out by lines 495 and 500 using the following equation:
T{ = ti / t'i (1.16)
where T{ is the ith value of t/t°',

ti is the time of the ith drawdown reading measured from the

commencement of discharge,

80 Data Handling

t'i is the time of the ith drawdown reading measured from the end of
discharge.
The values of Ti replace the original values of ti in the main time
vector.
Called by: the main part of overlay procedure MENUTWO.
Calls: function MarkRec.

6.3. Procedures and functions of file DTDHMEN3.SEG
DataValid function Line 109
Purpose: to check that the data of the first discharge stage is suitable

for use in calculation of transmissivity.

The last four readings of the first stage are used for this caleculation,
and, as well storage may effect the first one or two readings, it is undesir-
able to wuse them. Therefore, if there are less than seven readings in the
first stage, this function rejects the data for the purpose of calculation of
transmissivity.

Lines 117 to 120 set the marker variable I to point at the last reading
of the first stage. This having been found, I is reset to what will probably
be the first reading to be used for the calculation of transmissivity (line
123). Lines 125 to 133 then display the discharge rate for each of the
selected readings, and line 134 rejects the data if the selected readings
are too close to the beginning of the first discharge stage.

Called by: procedure Rorabaugh.

DisplayData sub-procedure Line 464
Purpose: to display the data of the Sternberg vector.

Called by: sub-procedure StrnMenu of the parent procedure Sternberg.

DispMenu sub sub-procedure Line 646
Purpose: to display the small Sternberg menu.
This is a sub-procedure of sub-procedure StrnMenu.

Called by: sub-procedure StrnMenu of procedure Sternberg.

DispMenu3 procedure Line 728
Purpose: to display the Well Equation solution menu.
Called by: the main part of overlay procedure MENUTHREE.

Data Handling 81

EnterData sub-procedure Line 99

Purpose: to allow the user to enter the data to be used for the latter
part of the calculation of the Well Equation by Rorabaugh's method, if either
the data are unsuitable, or he/she so chooses.

This subprocedure also calculates the value of Delta s (base e) by using
the equation [Bouwer, 1978 (modified)]:

0.183 Q
Delta 8 = —————— (1.17)
T 1n 10
where Q is the discharge rate,
T is the transmissivity
The natural log of 10 (in 10) is used to produce Delta s to the base e rather
than the more familiar Delta s to the base 10.
Called by: the parent procedure Rorabaugh.

GetDdAndRate procedure Line 8

Purpose: Both the Rorabaugh method and the 8/Q vs. Q method require a
drawdown and a discharge rate for a given time in each of a number of
discharge steps. This procedure produces those values, and at the same time,
counts the number of discharge steps before any period of zero discharge.

There are several potential problems that this procedure must check
for. The user enters the time at which the analysis method i1s to be applied,
so the first test is whether the data will allow calculation of a drawdown
and recording of a discharge rate for the given time. If the entered time is
before the first reading then it is rejected with the message of line 22. If
it is discovered that one of the steps ends before the specified time is
reached, then the error message of line 33 is given. The final check in this
section is that there are at least three steps (lines 37 to 41).

The linear interpolation equation of lines U5 to 47 produces the desired
drawdown figure for each step at the time specified by the user. Note that
at the time this equation is applied the specified time (in variable RorTime)
is between the time VRP[1]".TimeVec[I] and VRP[1]".TimeVec[I+1], and that the
linear interpolation considers only these two values. The rate for each step
is recorded in the following line, 48.

Lines 53 to 5% move the pointer, I, on to the beginning of the next
step; or to the end of the discharge part of the test data. The number of
steps 1is recorded in 1line 59. Notice that the step counter, StepNum, is
incremented in 1line 52, before it is proven that there is another steps data
to follow. It is because of this that 'StepNum-1' is used in line 59.

82 Data Handling

Called by: procedures Rorabaugh and SQvsQ.

PrintSternberg procedure Line 428

Purpose: to produce a printed copy of the discharge test data including
the Sternberg vector. Such a listing would be useful if the user wished to
check the analysis by manual means.

Called by: subprocedure StrnMenu of procedure Sternberg.

Rorabaugh procedure Line 88

Purpose: to calculate the values of the coefficients of the well
equation including the exponent.

This is a major procedure which, including it's several sub-procedures,
uses 188 1lines of code. The main part of the procedure begins at line 137
and ends at 1line 274. Rorabaugh's method of solution of Equation 1.6, and
the method used to calculate the coefficients of the Well Equation from that
point, have been explained previously, so this section will deal only with
the 'mechanical aspects.

The Rorabaugh operation proper is handled by lines 167 to 225. The
first aim of this section 1s to calculate the best fit formation constant
(FormConst in the program, Cf in Equation 1.6). It will be recalled that
the value of Cf is discovered by experiment and use of a graph of Q against
8/Q-Cf (where s is drawdown, and Q is discharge rate). This being so, and
a negative value for Cf being ruled out on grounds of logic (if the format-
ion constant was negative, then the greater the flow rate the less the head
loss), the maximum possible value for Cf is s/Q. The experimental method
used for determining Cf is that of successive bisection (Tremblay and Bunt,
1981).

Briefly, successive bisection is a method that can be used to find a
solution indirectly, when no direct solution is known. It is workable when
one has a test that can be applied to any potential solution to show whether
that solution i1s correct, too great, or too small. Here we must test for
experimental values of Cr. We have a maximum value for Cf (line 175), we
now choose a very small number, 1E-36 (ten to the minus 36th power), as a
minimum value (line 176). The true value of Csf should be between these
limits. Now we choose a point half way between these two values (line 178).
(This could be the arithmetic mean, the geometric mean, or any other mean.
Here the geometric mean has been used.) This value is tested. There are
three possibilities; it might be too large, too small, or acceptable. If it
is found to be too large then it becomes the new upper limit, if too small

Data Handling 83

then it becomes the new lower limit, otherwise it is taken as our solution,
the value of Cf.

The x and y coordinates are calculated in lines 182 and 183, and the
slopes of the 'lines' joining these 'points' are calculated in lines 185 and
186. We now need to know whether, when joined together, these lines tend to
have a concave or convex shape (looking at them from above). As there may
well be more than two 'lines' (actually line segments) involved, it will
quite probably be necessary to test for the average angle (loosely called
curve here) between lines. This is done in lines 190 to 195.

With some discharge test data this method will indicate either a
negligible, or even a negative value for the formation constant. (Presumably
negative formation constants are a product of slight errors in the data, or
are due to the model not accounting for all the variables involved in the
real world situation.) This will cause an early completion to this part of
the algorithm due to the invocation of the code of lines 198 to 202.

Lines 207 to 212 complete the Rorabaugh analysis proper, with the
results being displayed by 1lines 213 to 225. The display shows the
calculated formation 1loss, well 1loss, and total calculated head loss,
together with the actual drawdowns (for the given time) for comparison.
Please note that the variables called A and B at this point are not the A and
B of the Well Equation, but hold temporary values for display.

It will be recalled that Cs above is identical to coefficient C of the
Well Equation, and Exponent above is the exponent of the Well Equation. 1In
order to calculate the values of the remaining coefficients, A and B, it is
necessary to calculate the slope and y intercept of one of the discharge
steps. The first discharge step is used because it is the only one that has
not been changed by the conversion process, with the possible introduction of
errors. Function DataValid (called in line 239) checks the validity of the
data for this calculation, and sets a marker at the last reading of the first
step (LastReading). Lines 249 to 255 call procedure LinReg to produce a best
fit slope and y intercept from the drawdowns against the logs of times for
the 1last five records of the first discharge stage. From that point it is a
simple operation to calculate the remaining values, A (line 262), and B (line
263), using Equations 1.7 and 1.8.

The final significant operation is to allow the user to experiment with
the derived Well Equation, and produce projections given any chosen discharge
rate and duration of discharge. This can be used to both check the validity
of the results, and to calculate the optimal discharge rate for the well.

Called by: the main part of procedure MENUTHREE.

84 Data Handling

Calls: procedures GetDdAndRate, EnterData, LinReg, and RunTrial; and
functions ReadReal and DataValid.

RunTrial procedure Line 62
Purpose: to allow the user to produce trial projections based on the derived
values for the Well Equation.

The Well Equation (Equation 1.4) is in two forms on lines 80 and 81, the
first of these being used when the exponent is assumed to be (or perhaps hap-
pens to be calculated as) two. Unlike Basic and Fortran, Turbo Pascal does
not include an exponentiation function which might be used to raise a number
to any given power. Therefore, when a power of a number is to be obtained,
the same method is used as would be employed with a set of logarithmic
tables. ie. Obtain the logarithm of the number to be raised to a power
[1n(Rate) in 1line 81], multiply by the exponent, and convert back from a
logarithm to a simple number.

Called by: procedures Rorabaugh, SQvsQ, and sub-procedure SolvStrn of
procedure Sternberg.

Calls: function ReadReal.

SolvStrn procedure Line 491

Purpose: to calculate the values of the coefficients of the Well
Equation, given the Sternberg vector and the discharge test data.

A comment on terminology is worthwhile at this point. In the following
discussion, ‘'discharge test stages' will be referred to. By this is meant
those parts of the discharge test which consist of periods of constant flow
rate. By this definition, a flow recession stage (where water flows from an
artesian well against a constant head, at a declining rate), would not be
considered to be a 'discharge test stage'.

The user will be referred back to the main text (section 4.3 of Chapter
1) as this procedure is explained. Line 501 calls on procedure MarkStepData
to produce a discharge rate and first and last reading numbers for each
distinet discharge stage of the test. This information is displayed by lines
506 to 512.

Lines 514 to 526 discovers which of the zero discharge rate stages con-
tains the greatest number of readings. It is this stage that is considered
to be the main recovery stage for the purposes of this analysis (point 5/ of
the main text). TempInt1 holds the number of readings in the longest re-
covery period ocurrently recorded as this loop checks through all the steps.

The sequential number of the main recovery step is stored in variable

Data Handling 85

RecStepNo (line 522); this retains the value zero if there is no recovery
stage.

The code of lines 527 to 544 calculates the slope and y intercept of all
the discharge test stages by calling the linear regression procedure (LinReg,
line 538). Also, the value of the y intercept divided by the discharge rate
for each step is recorded at this time (line 543). The average of these
slopes 1s the value of B in the Well Equation (line 545). This section is
explained under point 6/ of the main text.

The greater part of the remaining portion of this procedure is divided
into two sections, only one of which is used for the analysis of any given
test's data. These are called the 'inferior!' and 'superior' methods for
producing the values of the coefficients A and C of the Well Equation. The
inferior method uses the code of lines 552 to 569, while the more complex
superior method is carried out by 1lines 570 to 634. The inferior method
should be understandable by consulting the code in conjunction with the main
text under point 8/.

The first task in the superior method is to calculate the one minute
drawdowns for each of the (non zero rate) discharge test stages. Referring
to the main text under point 9/, to figure 1.7, and to the code of lines 575
to 584; variable TempInt1 points to the middle plot of the non-zero discharge
rate stage. Lines 579 and 580 then calculate the y coordinate on the zero
discharge rate line at a point vertically (on a graph) above this point.

Please refer to the section of the main text on point 10/ regarding this
part of the solution. As suggested by the literal strings which are dis-
played by 1lines 596 and 597, a number of values are calculated from the data
of chosen pairs of discharge stages. The maximum number of sets of these

values that may be calculated is given by the equation:

(n-1) n
m=s — (1.18)
2
where m is the maximum number of sets,
and n is the number of discharge stages (including the main recovery
stage). This number of sets of values will be used only when there is one
period of =zero discharge, and all discharge stage rates are different from
each other by at least 8%.

As an example of the stage combinations that would be used in this ideal
condition. Given that there are U pumped stages, followed by the recovery
stage (stage number 5), the sets of values would be calculated for the stage
combinations indicated by the asterisks below:

86 Data Handling

W N -
.- s e

]
»
L]
*
2345

In the example data, the stage combinations are:

1 & mse

2

3

b

5 L3

6 *
234567

No combinations use stage 2 or 3 data because those stages are recovery
stages other than the main recovery stage. Stage 3 data i1s not used because
it has the same discharge rate as stage 5.

As these values are calculated, they are displayed, and sums are
produced for use in a linear regression algorithm (lines 619 to 623). The
linear regression is finally carried out on lines 628 and 629 [see 10/ (6) in
the main text]. Coefficient A of the Well Equation is made equal to the
calculated y intercept, and coefficient C, the slope (line 630).

Whether the inferior or superior methods are used, procedure RunTrial is
called (lines 568 and 633) to allow use of the derived Well Equation for
projections or checking purposes.

Called by: subprocedure StrnMenu of procedure Sternberg.

Calls: procedures MarkStepData, LinReg, and subprocedure RunTrial.

SQvsQ procedure Line 276

Purpose: to calculate the coefficients of the Well Equation.

This 1is the simplest solution of the well equation used in this
program. The first part of the code (lines 291 to 315) does some checking on
the form of the data, and counts and marks the beginnings and endings of the
stages. Notice that the stages are counted by searching for a time that is
less than the immediately preceding time (line 298). Line 318 calls pro-
cedure GetDdAndRate mainly to do some more checking on the validity of the
data.

As was the case in the Rorabaugh analysis, a transmissivity figure is
required for the calculation of the value of coefficient B, and this may
either be entered manually, or calculated from the data of the first dis~
charge stage using the equation:

Data Handling 87

0.183 Q

T (1.19)

) Delta s

where Q is the discharge rate,
and Delta s is the slope of the drawdown curve when plotted on semilogarith-

mic paper. This equation is on line 338. The slope is calculated by placing

the times and drawdowns of the first discharge step into two temporary vec-

tors, and then calling the linear regression procedure to find the best fit

slope (line 337).

The main part of this procedure uses the product of drawdown (at time 1
minute, or log time = zero) and discharge rate for each step, 'plotted’
against discharge rate to produce coefficients A (y intercept) and C
(slope). Rather than relying on one reading at time one minute for each
step, all the data of the step are used to produce a best fit straight line
(semi-logarithmic), and the one minute drawdown is taken as the y intercept
of this 1line (line 353). The values of s8/Q for each step are calculated in
line 362, and again procedure linReg is called for the best fit straight line
(1ine 365). Finally, the coefficients of the Well Equation are all
calculated on line 366.

Called by: the main part of procedure MENUTHREE.

Calls: procedures LinReg, GetDdAndRate, RunTrial and functions Response,
Log, and ReadReal.

Sternberg procedure Line 380

Purpose: to calculate the ocoefficients of the Well Equation by use of
the modified Sternberg analysis.

This major procedure (consisting of program lines 380 to 726) contains a
number of sub-procedures; the main part of procedure Sternberg begins at line
671. The first operations are several checks on the suitability of the
data. Lines 676 to 686 test for a continuous sequence of increasing times,
lines 687 to 702 test for the presence of initial conditions (drawdown and
discharge rate at time zero).

Assuming that the tests find the data acceptable, lines 704 to 718
calculate the values for the vector StrnVec using Equation 1.5 (see the main
text). An intermediate step in the calculation of the elements for this
vector is the calculation of the vector DeltaQ which contains the changes in
the discharge rate (line 710).

From 1line 719, the remainder of the modified Sternberg analysis is
called via procedure StrnMenu.

88

Call

8
36
48
50
56
87

105
107
109
149
150
175
206
207
217
239
249
305
341
362
422
b2y
456
482
484
500
517
555

Data Handling

ed by: procedure MENUTHREE.

Calls: procedure StrnMenu,
StrnMenu subprocedure Line 642
Purpose: to allow the user to display or print the values of the vectors
used for the modified Sternberg analysis, or to move on to the later part of
the analysis.
Called by: parent procedure Sternberg.
Calls: subprocedures PrintSternberg, DisplayData, and SolvStrn.
7. KEY LINES OF PROGRAM DTDHA
7.1. File DTDHA.PAS, key lines
Line Text
6 {#} {$I FIRST.SEG}

{# Declaration of variables specially for program DTDHA}
Function FileExist {Test for the existence of a given file}
{#} {$I READSAVE.PRC}
Function Log {Log to base ten}
Procedure FirstLast; {Get first and last record numbers for an operation}
Procedure LinReg {Linear regression}
{#} {$1 DTDHMEN2.SEG}
{#)} {$I DTDHMEN3.SEG}
Procedure PrintData; {Paper copy of discharge test data}
{#--—-- Beginning of section for entry of data via keyboard ----- #}
Procedure ReadDrawdown; {Reads a real number, rejects input errors}
Procedure DisplayRecentData {Display last few readings entered}
{#-mm- Beginning of major procedure EnterTimeDate ----- #}
Procedure EnterTimeDate; {Entry of time and date and related operations}
function ReadIntF {Read an integer, check for + sign}
procedure Display {Display a Short string at current cursor position}
procedure EnterDate {Entry and checking of time and date}
function TestDate {Test that entered date is a valid date}
function GetMinutes {Convert time and date to minutes}
begin {# main part of EnterTimeDate}
{#--emm End of major procedure EnterTimeDate ===-- #}
Procedure EnterMinutes; {Enter a time in minutes}
Procedure EnterWtd; {Control of entry of discharge (or well) test data}
{#---m- End of section for data entry via keyboard ----- #}
Procedure SaveFile; {Control of disk save of discharge test data}
Procedure ReadFile; {Control of disk read of discharge test data}
Procedure DispMenu; {Display main menu of program DTDHA}
begin {# Controlling part of program DTDHA}

7.2. Include file DTDHMEN2.SEG, key lines

Line Text
2 {#} OVERLAY PROCEDURE MENUTWO;
7 Procedure CorrectForBackground; {Correct drawdowns for 'noise'}
12 function CalcCorrection {for a given reading time}
32 begin {# main part of procedure CorrectForBackground}
138 Procedure AddConst; {Option to add a constant to readings}
173 Procedure MultByConst; {Option to multiply readings by a constant}
226 Procedure DeleteReading; {Option to delete a given reading)}

261

Procedure DeleteReadings; {Option to delete a given group of readings}

287 Procedure SimulateRec {Simulate recovery for each discharge stage}

Data Handling 89

299 procedure LinRegCall; {Linear regression call}

382 Procedure SortForTime {Sort into order of increasing times}

424 Function MarkRec {Find and mark the first recovery stage}

486 Procedure TOverTOne; {Convert recovery times to t/t1}

503 Procedure RTMinusRTOne; {Convert recovery times to root t minus root ti1}
547 Procedure ChangeDescription; {Alter data describing discharge test and

well}

571 Procedure DispMenu2; {Display Menu number 2, editing menu}

593 BEGIN {# main part of overlay procedure DTDHMENZ}

622 {# End of include file DTDHMEN2.SEG}

7.3. Include file DTDHMEN3.SEG, key lines
Line Text
3 {#]} OVERLAY PROCEDURE MENUTHREE;
8 Procedure GetDdAndRate {Find the drawdown and rate at a given time}
62 Procedure RunTrial {Produce trial drawdowns from calculated coefficients}
87 {#-=~-- Major procedure Rorabaugh ----- #}
88 Procedure Rorabaugh; {Rorabaugh's analysis of step test data}
99 procedure EnterData; {for manual entry}

109 function DataValid {Check data is valid for calculation of
transmissivity}

137 begin {# main part of Procedure Rorabaugh}

274 {#==e-- End of major procedure Rorabaugh ----- #}

276 Procedure 3QvsQ; {Evaluation of Well Equation by the s/Q vs. Q method}

379 {#-—~-- Begin major procedure Sternberg ----- #}

380 Procedure Sternberg; {Sternberg's analysis of step test data}

428 procedure PrintSternberg; {Print the Sternberg vectors on paper}
464 procedure DisplayData; {Display the Sternberg vectors}

491 procedure SolvStrn; {Solution part of procedure}

642 procedure StrnMenu; {Sternberg menu}

646 procedure DispMenu; {Display Sternberg menu}
671 begin {# main part of Procedure Sternberg}
726 {#=em=m End major procedure Sternberg ----- #}

728 procedure DispMenu3; {Display of menu 3, analysis menu}
748 BEGIN {# main part of overlay procedure MENUTHREE}
766 {# End of include file DTDHMEN3.SEG}

90

W oo~ Swn =

Data Handling

8. DTDHA PROGRAM LISTING

8.1. File DTDHA.PAS, listing

Program DTDHA_PAS; {Discharge Test Data Handling and analysis
of well test data.}

{$R+}
{#} {$I FIRST.SEG}

{# Declaration of variables specially for program DTDHA}
type
PointerVec=array[1..20] of integer;
PointerVec2=array[1..20] of real;
SmallVeczarray[1..100] of real;
VecRec=record
TimeVec, DdVec, RateVec: MainVec;
end;
TimeUnits=(Minutes, Days);
var
DataSaved, NewRate, Finished: boolean;
Ch: char;
Last: integer;
Slope, YIntercept: real;
NumData, NumOfDdLogs: array[1..2] of integer;
Distance: array([1..2] of real;
FirstDatum, LastDatum: PointerVec;
TimeStartStep, TimeEndStep: PointervVec2;
ProgFileName: ShortString;
TestType: array[1..2] of Test; WellType: array[1..2] of Well;
TimeUnit: TimeUnits;
VRP: array[1..2] of “VecRec;
const
ValidResponse: set of char=['1','2','3' 'R','S?" 'V 'P' 'E'];
SpaceLine="
MinDaylLog=3.1583625;
LnTen=2.302585093;

Function FileExist {Test for the existence of a given file}
(FileName: ShortString): boolean;
var ThisFile: File of byte;
begin
Assign(ThisFile,FileName);
{$1-}
Reset (ThisFile);
{$I+}
FileExist:=(I0Result=z0);
close(ThisFile);
end; {Function FileExist}

{#} {$I READSAVE.PRC}

Function Log {Log to base ten}
(Num: real): real;
begin
Log:=zLn(Num)/LnTen;
end; {Function Log}

Procedure FirstLast; {Get first and last record numbers for an
operation}

57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114

Data Handling 91

var
valid: boolean;
TempIntOne, TempIntTwo: integer;
begin
writeln;
write(' Please enter the first, and then the last, reading number
|);
writeln('of interest.');
write('The defaults are the first and last readings of the current ');
writeln('file; ie.');
write('if you press Enter without having entered any numbers, all ');
writeln('the data will');
writeln('be used.'); writeln;
Valid:=false; First:=1; Last:=NumData[1];
while not Valid do
begin
write('Enter the number of the first reading for this operation ');
TempIntOne:=ReadIntInput(1);
write('Enter the number of the last reading for this operation ');
TempIntTwo:=ReadIntInput(2);
if (TempIntOne<0) or ((TempIntOned>TempIntTwo) and (TempIntTwo<>0))
or (TempIntTwo>NumData[1])
then Valid:=false else Valid:=true;
if Valid then
begin
if TempIntOne<>0 then First:=TempIntOne;
if TempIntTwo<>0 then Last:=TempIntTwo;
end; {if}
end; {while}
end; {Procedure FirstLast}

Procedure LinReg {Linear regression}
(Vect, Vec2: Smallvec; Templnt: integer);
var
I: byte;
Sum1, Sum2, Sum3, Sumi: real;
begin
Sum1:=0; Sum2:=0; Sum3:=0; Sumi:=0;
for I:=1 to TempInt do
begin
Sum1:=Sumi+Vec1[I]*Vec2[I];
Sum2:=Sum2+Vec1[I];
Sum3:=Sum3+Vec2[1];
Suml : =Sumy+Sqr(Vec1[1]);
end;
Slope:=(TempInt*Sum1-Sum2*Sum3)/(TempInt *Suml-Sqr(Sum2));
YIntercept:=(Sum3*Suml-Sum2#Sum1)/(TempInt #Sumy-Sqr(Sum2));
end; {Procedure LinReg}

{#} {$I DTDHMEN2.SEG}
{#} {$I DTDHMEN3.SEG}

Procedure PrintData; {Paper copy of discharge test data}

var
I, J, LineCount: integer;

const
StringDash=" ',
Heading=

92

115
116
17
118
119
120
121
122
123
123
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
14l
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

Data Handling

No. min. days Drawdown Discharge rate';

begin
ClrScr;
write('Print data in memory on paper. ');
if CapOptions('Continue or Exit?')=z1 then

begin
writeln('The printer should be switched on and at top of form.');
writeln(lst,' File name, ',FileName);
writeln(lst,' DTDHA ver. 2.0: output data');
writeln(lst);
writeln(lst," ' ,Heading); LineCount:=i;
for I:=1 to NumData[1] do
begin
writeln(lst,! ',I:3,' ',VRP[1]".TimeVec[I]:9:1,' !

,VRP[1]".TimeVec[I]/1440:9:4,' ' ,VRP[1]".DdVec[I]:9:3,'
,VRP[1]".RateVec[I]:9:1);

LineCount :=LineCount+1;

if LineCount=55 then

begin
for J:=1 to 12 do writeln(lst);
writeln(lst,! ' ,Heading);
LineCount:=2
end
else begin
if (LineCount div 7)#7=LineCount then
begin
writeln(lst,' ' ,StringDash);
LineCount :=LineCount+1;
end;
end; {if-then-else}
end; {for I}

end; {if really required}
end; {Procedure PrintData}

----- Beginning of section for entry of data via keyboard -----#}
Procedure ReadDrawdown; {Reads a real number, rejects input errors}

I, d, X, Y: byte;
Result: integer;
begin
X:=WhereX; Y:=WhereY; Result:=1;
while Result<>0 do
begin

read(Short);
J:=pos('+',Short);
if J<O0 then
begin
NewRate:=true;
Delete(Short,J,1);
end
else NewRate:=false;
Val (Short ,Num,Result);
if Result<>0 then

begin
GotoX¥(X,Y); write(‘'Invalid‘); Delay(1000);
GotoXY(X,Y); write(® '); GotoXY(X,Y);
end;

end;

173 end; {Procedure ReadDrawdown}

Data Handling 93

174

175 Procedure DisplayRecentData {Display last few readings entered}

176 (I: integer);

177 begin

178 GotoXY(1,18);

179 writeln('Record # Time (min.) Drawdown (m) Rate (m*m*m/d)');
180 GotoXY(1,19);

181 if 1>3 then

182 begin

183 write(I-3:3," ',VRP[1]'.T1meVec[I-3]:10:2,' !
184 ,VRP[1]“.DdVeC[I-3]:8:4);

185 write(" ' ,VRP[1]".RateVec[I-31:8:4);

186 end

187 else write(Spaceline);
188 GotoXY(1,20);
189 if I>2 then

190 begin

191 write(I-2:3," ',VRP[1]".TimeVec[I-2]:10:2," '
192 ,VRP[1]1".DdVec[I-21:8:4);

193 write(? ' VRP[1]".RateVec[I-2]:8:4);

194 end

195 else write(Spaceline);
196 GotoXY¥(1,21);
197 if I>1 then

198 Dbegin

199 write(I-1:3,"' ' VRP[1]".TimeVec[I-1]:10:2,"' '
200 ,VRP[1]1".DdVec[I-1]:8:4);

201 write(* ' ,VRP[1]”.RateVec[I-1]:8:4);

202 end

203 else write(Spaceline);

204 end; {Procedure DisplayRecentData}

205

206 {#----- Beginning of major procedure EnterTimeDate ----- #}

207 Procedure EnterTimeDate; {Entry of time and date and related operations}
208 var

209 Finished, SecondTime, GoOn, GoBack, Valid: boolean;

210 I, Min1, Min2, Hr1, Hr2, Day1, Day2, Mthi, Mth2, Yr1, Yr2: integer;
211 DefaultM, DefaultY: integer;

212 First, Second, Minutes: real;

213 const

214 SpaceStrings=

215 1 e
216

217 function ReadIntF {Read an integer, check for + sign}

218 : integer;

219 var

220 I, J, X, Y: byte;

221 Num, Result: integer;

222 begin

223 X:=WhereX; Y:=WhereY; Result:=1; GoOn:=false;

224 while Result<>0 do

225 begin

226 read (Short);

227 if pos{'+',Short)<>0 then

228 begin GoOn:=true; I:zpos('+',Short); delete(Short,I,1); end;
229 Val(Short ,Num,Result);

230 if Result<>0 then

231 begin

232 GotoXY(X,Y); write('Invalid'); Delay(1000);

9y

233
234
235
236
237
238
239
240
21
242
243
244
245
246
2u7
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

Data Handling

GotoXY(X,Y); write(' '); GotoXY(X,Y);
end;
end;
ReadIntF:=Num;
end; {sub function ReadIntF}

procedure Display {Display a Short string at current cursor position}
(Short: ShortString);
var
X, Y: integer;
begin
X:=WhereX; Y:=WhereY;
GotoXY(X,Y); write(Short); Delay(1000};
GotoXY(X,Y); write(® '); GotoXY(X,Y);
end; {sub procedure Display}

procedure EnterDate {Entry and checking of time and date}
(var Min, Hr, Day, Mth, Yr: integer);
var
MinValid: boolean;
begin
GotoXY(1,16);
writeln(SpaceString);
repeat
Goto¥Y(3,16); MinValid:=true; Min:=ReadInt(0);
if (Min=-1) and (I>1) then GoBack:=true else GoBack:=false;
if ((I=1) and ((Min=-1) or (Min<-2) or (Min>59))}) or
({(I>1) and ((Min<-2) or (Min>59))) then
begin
Display(‘*Invalid!'); MinValid:=false;
end;
until MinValid;
if Min<-1 then Finished:=true;
if (not Finished) and (not GoBack) then
begin
repeat
GotoX¥(13,16); Hr:=ReadInt(0);
if (Hr<0) or (Hr>23) then
begin
Display('Invalid!');
end;
until (Hr>-1) and (Hr<2h);
if SecondTime then
begin
GotoXY(1,7);
writeln('Suffix Day with ''+'' to go on to entry of Month.');
end;
GotoXY(23,16); Day:=ReadIntF;
GotoX¥(1,7);
writeln(SpaceString);
GotoXY(23,16);
if GoOn or not SecondTime then
begin
if SecondTime then
begin
GotoXY(1,7);
writeln('Suffix Month with ''+'' to go on to entry of Year.');
end;
GotoXY(33,16); Mth:=ReadIntF;

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
321
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

Data Handling

GotoXY(1,7);
writeln(SpaceString);
GotoXY(33,16);
if GoOn or not SecondTime then
begin
GotoXY(43,16); Yr:=ReadInt(0);

end {second GoOn}
else Yr:=0;

end {first GoOn}

else begin Mth:=0; Yr:=0; end; {first GoOn}

end; {if not Finished}
end; {sub procedure EnterData}

function TestDate {Test that entered date is a valid date}
(Day, Mth, Yr: integer): boolean;
var
Valid: boolean;
begin
Valid:=true;
if Mth in [1,3,5,7,8,10,12] then
begin
if (Day>31) or (Day<1) then
begin Display('Day is invalid!'); Valid:=false end;
end;
if Mth in [4,6,9,11] then
begin
if (Day>30) or (Day<1) then
begin Display('Day is invalid!!'); Valid:=false end;
end;
if Mth=2 then
begin
if ((Yr div 4)%4<OYr) or
(((Yr div 100)#100=Yr) and not ((Yr div 400)%400=Yr)) then
begin
if (Day>28) or (Day<1) then
begin Display('Day is invalid!'); Valid:=false end;
end
else begin
if (Day>29) or (Day<1) then
begin Display('Day is invalid!'); Valid:=false end;
end; {if-then-else}
end; {Month of Feb.}
if (Mth<1) or (Mth>12) then
begin Display('Month is invalid!'); Valid:=false end;
if (¥r<1) or (¥r>3000) then
begin Display('Year is invalid!'); Valid:=false end;
TestDate:=Valid;
end; {sub function TestDate}

function GetMinutes {Convert time and date to minutes}
(Min, Hr, Day, Mth, Yr: integer): real;
var

TempReal: real;
const

Md=1440.;

CumDays: array[1..12] of real m

(0,31,59,90,120,151,181,212,243,273,304,334);

begin

95

96

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
o2
403
Loy
405
406
Yo7
uo8

Data Handling

TempReal : =Min+Hr#60.+CumDays[Mth]*¥Md+Yr¥525600.+
(Yr div b4)®*Md+Day®™Md+Md-(Yr div 100)#Md+(Yr div 400)%Md;
if ((Yr div 4)®4<OYr) or
(((Ir div 100)%#100=Yr) and not ((Yr div 400)%400=Yr))
then GetMinutes:=TempReal
else begin
if Mth<3
then GetMinutes:=TempReal-Md
else GetMinutes:=TempReal;
end; {if-then-else}
end; {function GetMinutes}

begin {# main part of EnterTimeDate}

I:=NumData[1]+1;
DisplayRecentData(I);
SecondTime:=false; TextColor(green); Finished:=false;
GotoXY(2,15);
writeln('Minute Hour Day Month Year !
,' Drawdown (m) Rate (m"3/d)');
GotoXY(1,10);
writeln('Enter the starting time.');
repeat
EnterDate(Min1, Hr1, Day1, Mth1, Yri1);
Valid:=TestDate(Day1, Mth1, Yr1);
until Valid;
DefaultM:=Mth1; DefaultY:=Yr1;
GotoXY(1,10);
writeln('Starting time: ',Min1:2,' min, ',Hr1:2,*' hrs., ',Day1l:2,
' day, ',Mth1:2,' month, ',Yri:4,' yr.');
GotoXY(1,13);
writeln('Enter the time of the next reading.');
First:=GetMinutes(Min1, Hr1, Day1, Mthi, Yr1);
SecondTime:=true;
repeat
repeat
repeat
EnterDate(Min2, Hr2, Day2, Mth2, Yr2);
if GoBack then I:=I-1;
if GoBack then DisplayRecentData(I);
until not GoBack;
if not Finished then
begin
if Mth2=0 then Mth2:=DefaultM;
if Yr2=0 then Yr2:=DefaultY;
DefaultM:=Mth2; DefaultY:=Yr2;
Valid:=TestDate(Day2, Mth2, Yr2);
end;
until Valid or Finished;
if not Finished then
begin
Second:=GetMinutes(Min2, Hr2, Day2, Mth2, Yr2);
VRP[1]".TimeVec[I]:=Second-First;
if I>1 then
begin
GotoXY(1,7);
writeln('Suffix Drawdown with ''+'! to enter a new rate.');
end;
GotoXY¥(53,16); ReadDrawdown; VRP[1]".DdVec[I]:=Num;
if NewRate or (I=1) then

409
410
411
412
113
By
515
416
417
418
519
420
121
422
423
y2l
125
126
u27
428
429
430
431
432
433
134
435
436
437
438
439
140
Y
nu2
143
uby
45
146
uu7
48
449
450
151
152
453
454
455
456
457
458
459
460
461
1462
163
464
465
466
467

Data Handling 97

begin
GotoXY(63,16); VRP[1]".RateVec[I]:=ReadReal(0);
end
else VRP[1]".RateVec[I]:=VRP[1]".RateVec[I-1];
GotoXY(1,11);
writeln('Previous entry: ',Min2:2,' min, ',Hr2:2,' hrs., ',Day2:2,
' day, ',Mth2:2,' month, ',¥Yr2:4,' yr.');
end;
If not Finished then I:=I+1;
DisplayRecentData(I);
until Finished;
NumData[1]:=I-1; DataSaved:=false;
end; {Procedure EnterTimeDate}
{#-== End of major procedure EnterTimeDate -~--- #}

Procedure EnterMinutes; {Enter a time in minutes}
var
I: integer;
begin
I:=NumData[1]+1;
repeat
if I<>1 then
begin
GotoXY(1,15);
write(' Suffix the drawdown figure with a ''+'' if you ');
writeln('want to enter a‘');
writeln('different discharge rate.');
end;
DisplayRecentData(I);
GotoXY(1,22); write(SpacelLine); GotoXY(1,22);
write(I:3); GotoXY(16,22); VRP[1]".TimeVec[I]:=ReadReal(0);
if (VRP[1]".TimeVec[I]<>~1) and (VRP[1]".TimeVec[I]<{>-2)
then begin
GotoXY(29,22); ReadDrawdown; VRP[1]”.DdVec[I]:=Num;
if NewRate or (I=1) then
begin
GotoXY(45,22); VRP[1]".RateVec[I]:=ReadReal(0);
end
else VRP[1]".RateVec[I]:=VRP[1]".RateVec[I-1];
end;
if VRP{1]".TimeVec[I]=-2 then Finished:=true;
if (VRP[1]".TimeVec[I]=-1) and (I>1) then I:=I-2;
if not Finished then I:=I+1;
until Finished;
NumData[1]:=I-1; DataSaved:=false;
end; {Procedure EnterMinutes}

Procedure EnterWtd; [Control of entry of discharge (or well) test datal
var
Answver: integer;
begin
ClrScr; Finished:=false;
if NumData[1]=0 then
begin
writeln({'Please enter data as indicated by the prompts below;');
writeln;
writeln('What type of test,');
TestType[1]:=Test(CapOptions('Discharge, Recovery, Simulation?')-1);
write('What type of well, ');

98

468
469
470
471
k72
473
L7l
475

476
a7
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
4oy
495
k96
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

Data Handling

WellType[1]:=Well(CapOptions('Pumped or Observation')-1);
if WellType[1]=Observation then
write('Distance from pumped well to observation well? ')
else write('Effective radius of discharge well? ');
Distance[1]:=ReadReal(1);
ClrSer;
end; {if NumDatal1]=0}
writeln(® Data entry. Enter a time of -1 to back up to the last

entry');
writeln('if you made a mistake and wish to correct it.');
writeln('Enter minutes = -2 to end data entry.');

write('Do you want to enter times as ');
Answer:=CapOptions('Minutes or Time and date?');
if Answer=1 then EnterMinutes else EnterTimeDate;

end; {Procedure EnterWtd}

{#-=--- End of section for data entry via keyboard ----- #}

Procedure SaveFile; {Control of disk save of discharge test data}
begin
if NumData[1]<>0
then begin
ClrScr;
FirstLast;
SaveData(VRP[1]".TimeVec,VRP{1]".DdVec,
VRP[1]".RateVec,TestType[1],WellType[1],Distance[1],First,Last);
if (first=1) and (last=NumData[1]) then DataSaved:=true;
end
else begin
writeln('No data to savel');
delay(2000);
end; {if-then-else}
end; {Procedure SaveFile}

Procedure ReadFile; {Control of disk read of discharge test data}l
var
Answver: integer;
begin
Answer:=0;
if NumDatal[1]<>0 then
begin
write(' Proceeding will destroy the data in memory. '});
Answer:=CapOptions('Continue or Exit? ');
end;
if (NumData[1]=0) or (Answer=1) then
ReadTestDataFile(VRP[1]".TimeVec,VRP[1]".DdVec,
VRP[1]".RateVec,TestType[1],WellType[1],
Distance[1],NumData[1]);
DataSaved:=true;
end; {Procedure ReadFile}

Procedure DispMenu; {Display main menu of program DTDHA}
begin
ClrSer; TextColor(Green);
writeln(! DTDHA Version 2.0: Main Menu');
writeln;
if NumData[1]=0
then writeln('There are no data at present in memory.')
else begin
writeln('Currently ',NumData[1]:3,' readings in memory.');

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

Data Handling

if FileName<>*'!
then writeln('Last file name used was ',FileName)
else writeln('There is no current file name.');
case TestType[1] of
Discharge: write('Discharge test: ');
Recovery: write('Recovery test: ');
Simulation: write('Simulated test data: ');
end; {of cases}
if WellTypel1]lzPumped then write('Data from the pumped well:
else write('Data from a piezometer: ');
writeln('R = ',Distance[1]:6:2);
end; {if-then-else}
if not DataSaved then

99

writeln('Data have not been saved to disk file since alteration.');

writeln;

writeln(' Which option?');

writeln('Press the indicated number or letter key.');

writeln;

writeln('1: Enter discharge test data via the key board;');

writeln('2: Edit the data in memory (Menu Number 2);');

writeln('3: Solve the well equation (Menu Number 3);');

writeln('R: Read a file from disk;');

writeln('S: Save the data in memory to a disk file;');

writeln('V: View the data in memory;');

writeln{'P: Print the data in memory;');

writeln;

writeln('E: End DTDHA and return to primary menu.');
end; {Procedure DispMenu}

begin {# Controlling part of program DTDHA}
new(VRP[1]); new(VRP[2]);
NumPata[1]:=0; FileName:=''; DataSaved:=true;
DispMenu;
repeat
repeat
Ch:='x'; repeat read(kbd,Ch) until Ch<>'x'; Ch:=UpCase(Ch);
until Ch in ValidResponse;
case UpCase(Ch) of
'1': EnterWtd;
'2': MenuTwo;
'3': MenuThree;
'R': ReadFile;
'S': SaveFile;
'V': begin
if NumData[1]1<>0
then begin
ClrSer;
ViewReadings(VRP[1]".TimeVec, VRP[1]".DdVeec,
VRP[1]”.RateVec,NumData[1]);
end
else begin
writeln('No data in memory.');
delay(2000);
end; {if-then-else}
end;
'P': begin
if NumData[1]<>0 then PrintData
else begin
writeln('No data in memory.');

100 Data Handling

585 delay(2000);
586 end; {else}
587 end;

588 end; {of cases}

589 if Ch<>'E' then DispMenu;
590 if (Ch='E') and (not DataSaved) then

591 begin

592 write('You want to exit DTDHA without saving the data? ');
593 if Response('YN')='N' then Ch:='x";

594 end;

595 until Ch='E';
596 dispose(VRP[1]); dispose(VRP[2]);

597 {The code below should only be used when this program is used as a
598 chain file.}

599 ChainTo ('GWMENU.CHN',IO0Code);

600 if I0Code<>0 then

601 writeln('Unable to chain to program GWMENU.CHN!');

602 end.

8.2. Include file DTDHMENZ2.SEG, listing
1 {Include file DTDHMEN2.SEG}
2 {#} OVERLAY PROCEDURE MENUTWO;

3 const

4 validResponse:

5 set of char=[|1l,'2"'3l,Iul,ls',lsl,ﬂzv,lAl’lB',lc',th,'Sl,lRl];
6

7 Procedure CorrectForBackground; {Correct drawdowns for 'noise'}

8 var

9 OutOfSeq, EndData: boolean;

10 CorFac, 0ldTime: real;

12 function CalcCorrection {for a given reading time}
13 (Elapmin: real): real;

14 var

15 I: integer;

16 Slope, Correction, Drawdn: real;

17 begin

18 I:=1;

19 repeat

20 I:=I+1 {I points at second background reading to use for
correction}

21 until (VRP[2]".TimeVec[I]>ElapMin) or (I=NumData[2]);

22 if (I=NumData[2]) and (VRP[2]".TimeVec[I]<ElapMin) then EndData:=true

23 else begin

24 Slope:=(VRP[2]".DdVec[I]-VRP[2]".DdVec[I-1])/

25 (VRP[2]".TimeVec[I]-VRP[2]".TimeVec[I-1]);

26 Correction:=CorFac®(VRP[2]".DdVec[I-1]+Slope#

27 (ElapMin-VRP[2]".TimeVec[I-1]));

28 end;

29 if not EndData then CalcCorrection:=-Correction;

30 end; {sub function CalcCorrection}

31

32 begin {# main part of procedure CorrectForBackground}

33 EndData:=false;

34 ClrScr;

35 writeln(' This option corrects discharge test data for '

36 , Tbackground ''noise'' as');

37 writeln('recorded in an observation well in the same aquifer at a‘'
38 ,! great distance from');

89
90
91

93
94
95
96
97

Data Handling 101

writeln('the discharging well.');
writeln{' The data to be corrected are expected to be in memory, and'
,' the background');
writeln('data must be loaded from another file.');
writeln;
write('Do you want to ');
if CapOptions('Continue or Exit? ')=1 then
begin
writeln('The file holding the background data must be specified.');
ReadTestDataFile(VRP[2]".TimeVec, VRP[2]".DdVec, VRP[2]".RateVec,
TestType[2], WellType[2], Distance[2], NumData[2]1);
writeln('NumData 1, 2, =',NumData[1]:4, NumData[2]:4);
write('What correction factor (eg. 1, if both wells have equal bar.'
,' susept.) ');
readln(CorFac);
01dTime:=VRP[1]".TimeVec[1]; OutOfSeq:=false;
for I:=2 to NumData[1] do
begin
if 01dTime>=VRP[1]".TimeVec[I] then OutOfSeq:=true;
0ldTime:=VRP[1]".TimeVec[I];
end;
if OutOfSeq then
writeln('Data in file to be corrected is out of sequence.'};
if not OutOfSeq then
begin
01dTime:=VRP[2]".TimeVec{1]; OutOfSeq:=false;
for I:=2 to NumData[2] do
begin
if 0ldTime>=VRP[2]".TimeVec[I] then OutOfSeq:=true;
01dTime:=VRP[2]".TimeVec[I];
end;
if OutOfSeq then
writeln('Data in background file is out of sequence.');
end;
if not OutOfSeq then
begin
I:=0;
while (I<NumData[1]) and not EndData do
begin
I:=I+1;
VRP[1]”.DdVeec[I]:=
VRP[1]".DdVec[I]J+CaleCorrection(VRP[1]".TimeVec[I]);
end;
if EndData then writeln('Can''t finish; end of background datal');
if EndData then NumData[1]:=I-1 else NumData[1]:=I;
end; {if not OutOfSeq}
if EndData or OutOfSeq then
begin
writeln('Press any key to continue.');
Ch:='x'; repeat read(kbd, Ch) until Ch<>'x';
end; {if error}
end; {if CapOptions}
end; {Procedure CorrectForBackground}

Function CheckForStepData {Count steps, mark beginning and end of each}
(var NumOfSteps: integer): boolean;
var

Valid: boolean;

I, J: integer;

102

98

99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
1Y
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
143
145
146
117
148
149
150
151
152
153
154
155

Data Handling

begin
Valid:=true;
writeln('Checking that data is valid...... ')
I:=1; FirstDatum[1]:=1; LastDatum[1]:=1; J:=1;
if VRP[1]".RateVec[1]=0 then
begin J:=2; FirstDatum[1]:=2; LastDatum[1]:=2; end;
repeat
while (VRP[1]".RateVec[J]=VRP[1] .RateVec[FirstDatum{I]])
and (J<=NumDatal1]) do
begin J:=J+1; LastDatum[I]:=J-1; end;
if J<NumData[1] then
begin
if LastDatum[I]-FirstDatum[I]<2 then
begin
Valid:=false;
writeln('Too few data in step ',I:3);
I:=I+1; Delay(2000);
end; {if}
if Valid then
begin I:=I+1; FirstDatum{I]:=J; LastDatum[I]:=J; end;
end; {if J<=NumData}
until (J>=NumData[1]) or (not Valid);
if (I=1) and Valid then
begin
writeln('Single step onlyl!'); Valid:=false; Delay(2000);
end;
if Valid then
begin
writeln('Step # First rec. Last rec.');
NumOfSteps:=I;
for I:=1 to NumOfSteps do
begin
writeln(I:4," ' ,FirstDatum[I]:3," ',
LastDatum{I1:3);
TimeStartStep[I]:=VRP[1]".TimeVec[FirstDatum[I]];
TimeEndStep{I]:=VRP{1]".TimeVec[LastDatum{I]];
end;
end; {if valid}
CheckForStepData:=Valid;
end; {Function CheckForStepData}

Procedure AddConst; {Option to add a constant to readings}
var
ParNum, I: integer;
Constant: real;
begin
ClrSecr;
writeln(!' Add a constant to all, or some readings');
write('If you want to leave the data as it is, then add zero ');
writeln('to all readings.');
writeln;
FirstlLast; {Get the first and last reading numbers}
writeln;
write('Do you want to change ');
ParNum:=CapOptions('Times, Drawdowns, or discharge Rates?');
case ParNum of
1: begin
write('Enter constant to add to specified times ');
Constant :=ReadReal(2);

156
157
158
159
160
161
162

163
164
165
166
167
168
169
170
17
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

205
206
207
208
209

210

Data Handling 103

for I:=First to Last do VRP[1]".TimeVec[I]:=
VRP[1]".TimeVec[I]+Constant;
end;
2: begin
write('Enter constant to add to specified drawdowns ');
Constant :=ReadReal(2);
for I:=First to Last do VRP[1]".DdVec[I]:=
VRP[1]".DdVec[I]+Constant;
end;
3: begin
write('Enter constant to add to specified discharge rates ');
Constant :=ReadReal(2);
for I:=First to Last do VRP[1]".RateVec[I]:=
VRP[1]".RateVec[I]+Constant;
end;
end; {of cases}
end; {Procedure AddConst}

Procedure MultByConst; {Option to multiply readings by a constant}
var
ParNum, I: integer;
Constant: real;
begin
ClrScr;
writeln("* Multiply all or some readings by a constant.');
write('If you want to leave the data as it is, then multiply all ');
writeln('readings by 1.');
writeln;
FirstLast; {Get the first and last reading numbers}
writeln;
write('Do you want to change ');
ParNum:=CapOptions('Times, Drawdowns, or discharge Rates?');
case ParNum of
1: begin
writeln;
writeln(' Some conversion factors');
writeln('Min. to days, multiply by 0.0006944; inverse 1440');
writeln('Min. to hours, by 0.01666');
writeln;
write('Enter constant to multiply specified times by ');
Constant:=ReadReal(2);
for I:=First to Last do
VRP[1]".TimeVec[I]:=VRP[1]".TimeVec[I]#*Constant;
end;
2: begin
writeln;
writeln(! Some conversion factors');
writeln('Feet to metres, multiply by 0.3048; inverse 3.281');
writeln('kPa to metres head water, mult. by 0.102; inverse 9.8');
writeln('For angle hole conversion, multiply readings by
Sin(angle)');
writeln('where angle is measured from the horizontal.');
writeln;
write('Enter constant to multiply specified drawdowns by ');
Constant :=ReadReal(2);
for I:=First to Last do VRP[1]".DdVec[I]:=
VRP{1]".DdVec[I]*Constant;
end;

104

211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
2ho
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

Data Handling

3: begin
writeln;
writeln(' Some conversion factors');
writeln('Imp. gall/hr to m"3/day, multiply by 0.1091; inverse
9.166');
writeln('US gall/hour to m"3/day, by 0.09084; inverse 11.008');
writeln('l/sec. to m"3/day, by 86.4; inverse 0.01157');
writeln;
write('Enter constant to multiply specified discharge rates by ');
Constant :=ReadReal(2);’
for I:=First to Last do VRP[1]".RateVec[I]:=
VRP[1]".RateVec[I]*Constant;
end;
end; {of cases}
end; {Procedure MultByConst}

Procedure DeleteReading; {Option to delete a given reading}
var

Valid: boolean;
TempInt, I: integer;
begin
ClrSer;
writeln(' Delete a specified reading');
writeln;
write('You must specify the reading to be deleted by it''s reading ');
writeln('number.');
TempInt:=CapOptions('Continue or Exit?');
if TempInt=1 then
begin
write('Enter the reading (record) number '); TempInt:=ReadInt(2);
if (TempInt<1) or (TempInt>NumData[1]) then Valid:=false
else Valid:=true;
if Valid
then begin
for I:=TempInt to NumData[1]-1 do
begin
VRP[1]".TimeVee[I]:=VRP[1]".TimeVec[I+1];
VRP[1]".DdVec[I]:=VRP[1]".DdVec[I+1];
VRP[1]".RateVec[I]:=VRP[1]".RateVec[I+1];
end; {for}
write('The record has been deleted, ');
writeln('higher numbered records have been renumbered.');
NumDatal1]:=NumData[1]-1; delay(1500)
end {then}
else begin
writeln('The entered record number is invalid!');
delay(2000);
end; {if then else}
end; {if TempInt}
end; {Procedure DeleteReading}
Procedure DeleteReadings; {Option to delete a given group of readings}
var
I, TempInt: integer;
begin
ClrSer;
writeln(! Delete a specified group of readings');
writeln;
write('You must specify the readings to be deleted ');

Data Handling 105

269 writeln{'by their reading numbers.'};
270 TempInt:=CapOptions('Continue or Exit?');
271 if TempInt=1 then

272 begin

273 FirstLast;

274 for I:=First to First+NumData[1]-Last-1 do

275 begin

276 VRP[1]".TimeVec[I]:=VRP[1]".TimeVec[I+Last-First+1];
277 VRP[1]".DdVec[I]:=VRP{1]".DdVec[I+Last-First+1];

278 VRP[1]".RateVec[I]:=VRP[1]".RateVec[I+Last-First+1];

279 end; {for}

280 NumData[1]:=NumData[1]-(Last~First)-1;

281 write('The records have been deleted, ');

282 writeln('higher numbered records have been renumbered.');
283 delay(1500)

284 end; {if TempInt}

285 end; {Procedure DeleteReadings}

286

287 Procedure SimulateRec {Simulate recovery for each discharge stage}
288 (NumData: integer);

289 {Version 3}

290 var

291 StepData: boolean;

292 Ch: char;

293 I, J, K, K1, L, Pointer1, Pointer2, NumOfSteps: integer;

294 Real1, Real2, Real3, ConvTime, AdditDd: real;

295 TempDd: real; {Drawdown due to previous rate at current time}
296 TempVec1, TempVec2, SlopeOfStep, YIntOfStep: SmallVec;

297 TestDdExt, TestTimeExt, SlopeOfStepExt, YIntOfStepExt: SmallVec;
298

299 procedure LinRegCall; {Linear regression call}

300 begin

301 K1:=0;

302 for K:=Pointer1 to Pointer2 do

303 begin

304 K1:=K1+1;

305 TempVec1[K1]:=Log(VRP[1]".TimeVec[K]);
306 TempVec2[K1]:=VRP[1]".DdVec[K];

307 end;

308 LinReg(TempVec1, TempVec2, K1);

309 end; {procedure LinRegCall}

310

311 begin

312 ClrSer;

313 StepData:=CheckForStepData(NumOfSteps);
314 if StepData then

315 begin {Calculate trend of first stage}

316 writeln('Data appears to be valid.');

317 writeln("' Note that this 1s an approximate procedure only.');
318 Pointer1:=FirstDatum[1]; Pointer2:=LastDatum[1]; X:=1;

319 writeln('Step 2');

320 if Pointer2-Pointer1>6

321 then Pointer1:=Pointer2-(Pointer2-Pointer1) div 3;

322 LinRegCall;

323 SlopeOfStep[1]:=Slope; YIntOfStep[1]:=YIntercept;

324 {Convert data of step 2}

325 for J:=FirstDatum[2] to LastDatum[2] do {All of step 2}

106

326
327
328
329
330
331
332

333
334
335
336
337
338

339
340
341
342
343
34}
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

365
366
367
368
369
370
37
372

373
374
375
376
377
378
379
380

Data Handling

begin

AdditDd:=VRP[1]".DdVec[J]-(SlopeOfStep[1]#Log(VRP[1]".TimeVec[J])
+YIntOfStep[1]); {Additional drawdown due to increased rate}

ConvTime:=VRP[1]".TimeVec[J]-TimeEndStep[1];

{Time for the corrected time/drawdown data}

TempDd : =SlopeOfStep[1]#Log(ConvTime)+YIntOfStep[1];

VRP[1]".DdVec[J]:=AdditDd+TempDd ; {Calculation of new

drawdown}

VRP[1]".TimeVec[J]:=ConvTime;
writeln('Time ',VRP[1]".TimeVec[J]:10:3,' Drawdown '
4VRP[1]”.DdVec[J]:10:3);

end; {for J. Conversion for step 2 data completed.}
for I:=2 to NumOfSteps-1 do

data}

I+1}

drawd

begin {Extend line of currents steps test

writeln('Step *',I+1:4);
Pointert:=FirstDatum[I]; Pointer2:=LastDatum[I];
LinRegCall; SlopeOfStep[I]:=Slope; YIntOfStep[I]:=YIntercept;
{Slope and Y int. of the last corrected step is now recorded}
L:=1;
for J:=FirstDatum{I] to LastDatum[I] do
begin
TestTimeExt[L]:=VRP[1]".TimeVec[J]+TimeEndStep[I];
Real1:=SlopeOfStep[I-1]*Log(TestTimeExt[L])+YIntOfStep[I-1];
Real2:=SlopeOfStep[I]*Log(TimeEndStep[I-1])-TimeStartStep[I-1]
+VRP[1]".TimeVec[J])+YIntO