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PREFACE

The present book is a revised version of material given by the authors in
two courses at the Moscow State University. A course in functional analy-
sis which included, on the one hand, basic information about the theory of
sets, measure and the Lebesgue integral and, on the other hand, examples
of the applications of the general methods of set theory, theory of funec-
tions of a real variable, and functional analysis to concrete problems in
classical analysis (e.g. the proof of existence theorems, the discussion of
integral equations as an example of a special case of the theory of operator
equations in linear spaces, etc.) was given by the first author, A. N. Kol-
mogorov, in the Department of Mathematics and Mechanics. A somewhat
less comprehensive course was given by the second author, S. V. Fomin,
for students specializing in mathematics and theoretical physics in the
Department of Physics. A. A. Petrov’s notes of A. N. Kolmogorov’s lec-
tures were used in a number of sections.

The material included in the first volume is clear from the table of con-
tents. The theory of measure and the Lebesgue integral, Hilbert space,
theory of integral equations with symmetric kernel and orthogonal sys-
tems of functions, the elements of nonlinear functional analysis, and some
applications of the methods of functional analysis to problems arising in
the mathematics of numerical methods will be considered in later volumes.

A. KoLMoGOROV
S. Fomin
February 1954
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TRANSLATOR’S NOTE

This volume is a translation of A. N. Kolmogorov and S. V. Fomin’s
Elementy Teoris Funkcii i Funkcional'nogo Analiza., 1. Metriceskie i Nor-
mirovannye Prostranstva. Chapter I is a brief introduction to set theory
and mappings. There is a clear presentation of the elements of the theory
of metric and complete metric spaces in Chapter I1. The latter chapter also
has a discussion of the principle of contraction mappings and its applica-
tions to the proof of existence theorems in the theory of differential and
integral equations. The material on continuous curves in metric spaces is
not usually found in textbook form. The elements of the theory of normed
linear spaces are taken up in Chapter III where the Hahn-Banach theorem
is proved for real separable normed linear spaces. The reader interested in
the extension of this theorem to complex linear spaces is referred to the
paper Extension of Functionals on Complex Linear Spaces, Bulletin AMS,
44 (1938), 91-93, by H. F. Bohnenblust and A. Sobczyk. Chapter III also
deals with weak sequential convergence of elements and linear functionals
and gives a discussion of adjoint operators. The addendum to Chapter III
discusses Sobolev’s work on generalized functions which was later gen-
eralized further by L. Schwartz. The main results here are that every
generalized function has derivatives of all orders and that every convergent
series of generalized functions can be differentiated term by term any
number of times. Chapter IV, on linear operator equations, discusses
spectra and resolvents for continuous linear operators in a complex Banach
space. Minor changes have been made, notably in the arrangement of the
proof of the Hahn-Banach theorem. A bibliography, listing basic books
covering the material in this volume, was added by the translator. Lists of
symbols, definitions and theorems have also been added at the end of the
volume for the convenience of the reader.

Milwaukee 1957 Leo F. Boron

ix






Chapter 1
FUNDAMENTAL CONCEPTS OF SET THEORY

§1. The concept of set. Operations on sets

In mathematics as in everyday life we encounter the concept of set. We
can speak of the set of faces of a polyhedron, students in an auditorium,
points on a straight line, the set of natural numbers, and so on. The con-
cept of a set is so general that it would be difficult to give it a definition
which would not reduce to simply replacing the word “set” by one of the
equivalent expressions: aggregate, collection, ete.

The concept of set plays an extraordinarily important role in modern
mathematics not only because the theory of sets itself has become at the
present time a very extensive and comprehensive discipline but mainly
because of the influence which the theory of sets, arising at the end of the
last century, exerted and still exerts on mathematics as a whole. Here we
shall briefly discuss only those very basic set-theoretic concepts which will
be used in the following chapters. The reader will find a significantly more
detailed exposition of the theory of sets in, for example, the books by P. S.
Aleksandrov: Introduction to the General Theory of Sels and Functions,
where he will also find a bibliography for further reading, E. Kamke:
Theory of Sets, F. Hausdorff: Mengenlehre, and A. Fraenkel: Abstract Set
Theory.

We shall denote sets by upper case letters A, B, - -- and their elements
by lower case letters a, b, - - - . The statement ‘‘the element a belongs to the
set A” will be written symbolically as @ € A4; the expression ¢ § A means
that the element a does not belong to the set A. If all the elements of which
the set A consists are also contained in the set B (where the case A = B is
not excluded), then A will be called a subset of B and we shall write A C B.
(The notation A C B denotes that A is a subset of the set B and A # B,
i. e. there exists at least one element in B which does not belong to A. A4 is
then said to be a proper subset of the set B.) For example, the integers form
a subset of the set of real numbers.

Sometimes, in speaking about an arbitrary set (for example, about the
set, of roots of a given equation) we do not know in advance whether or not
this set contains even one element. For this reason it is convenient to intro-
duce the concept of the so-called void set, that is, the set which does not
contain any elements. We shall denote this set by the symbol 6. Every set
contains 8 as a subset.

If A and B are arbitrary sets, then their sum or union is the set C =
A U B consisting of all elements which belong to at least one of the sets
A and B (Fig. 1).

1



2 FUNDAMENTALS OF SET THEORY [cH. 1

A B8 A B
C=AvB C=AnB
Fia. 1 Fia. 2

We define the sum of an arbitrary (finite or infinite) number of sets
analogously: if A, are arbitrary sets, then their sum A = U, 4, is the
totality of elements each of which belongs to at least one of the sets A, .

The intersection of two sets A and B is the set C = A N B which consists
of all the elements belonging to both A and B (Fig. 2). For example, the
intersection of the set of all even integers and the set of all integers which
are divisible by three is the same as the set of all integers which are divisible
by six. The intersection of an arbitrary (finite or infinite) number of sets
A.istheset A = N, A, of all elements which belong to all of the sets 4, .
If AN B = 6, we shall say that A and B are disjoint. The same term will
apply to any collection of sets {A .} for which AgN 4, = 6, 8 % ~.

The operations of union and intersection are connected by the following
relations:

¢)) @aupnec=@Anaoumsno,
2) @AanNnpuUc=@Auon®uo.

We shall verify the first of these two relations. Let the element 2 belong
to the set on the left side of equation (1). This means that z belongs to C
and moreover that it belongs to at least one of the sets A and B. But then
z belongs to at least one of the sets A N C and B N C, i.e. it belongs to
the right member of equation (1). To prove the converse, letz € (A NC)U
(BN C). Thenz € AN C and/orz € BN C. Consequently, z € C and,
moreover, z belongs to at least one of the sets A and B,i.e.z € (4 U B).
Thus we have shown that z € (4 U B) N C. Hence, equation (1) has been
verified. Equation (2) is verified analogously.

We define further the operation of subtraction for sets. The difference
of the sets A and B is the set C = A\_B of those elements in A which are
not contained in B (Fig. 3). In general it is not assumed here that A O B.

In some instances, for example in the theory of measure, it is convenient
to consider the so-called symmetric difference of two sets A and B; the sym-
metric difference is defined as the sum of the differences 4 \\ B and B\ 4
(Fig. 4). We shall denote the symmetric difference of the sets A and B by
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A 8 A B
CzA\B C=A4B
Fia. 3 Fia. 4

the symbol AAB. Its definition is written symbolically as follows:
AAB = (AN B)U (B \_4).

Exercist. Show that AAB = (4 U B) \_(4 N B).

In the sequel we shall frequently have occasion to consider various sets
all of which are subsets of some fundamental set S, such as for example
various point sets on the real line. In this case the difference S\ A4 is called
the complement of the set A with respect to S.

In the theory of sets and in its applications a very important role is
played by the so-called principle of duality which is based on the following
two relations.

1. The complement of a sum is equal to the intersection of the complements,

(3) S\Ua Aa = na (S\Aa).
2. The complement of an intersection ts equal to the sum of the complements,
4) SN Na 4o = U, (SN 4a).

By virtue of these relations, we can start with an arbitrary theorem con-
cerning a system of subsets of a fixed set S and automatically obtain the
dual theorem by replacing the sets under consideration by their comple-
ments, sums by intersections, and intersections by sums. Theorem 1,
Chapter II, §10, is an example of the application of this principle.

We shall now prove relation (3). Let 2 € S\ U, 4.. This means that z
does not belong to the sum U, 4, , i.e. z does not belong to any of the sets
A, . Consequently, z belongs to each of the complements S \ A, and
therefore z € N, (S\ A4.). Conversely, let x € N, (S\_4,), i.e. z belongs
to every S \_4.. Consequently, x does not belong to any of the sets 4,
i.e. it does not belong to their sum U, 4, . But then z € S\ U, 4, ; this
concludes the proof of (3). We prove relation (4) analogously.

§2. Finite and infinite sets. Denumerability

In considering various sets we note that for some of them we can indi-
cate the number of elements in the set, if not actually then at least in
theory. Such, for example, is the set of chairs in a given room, the set of
pencils in a box, the set of all automobiles in a given city, the set of all
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molecules of water on the earth, and so on. Each of these sets contains a
finite number of elements, although the number may not be known to us.
On the other hand, there exist sets consisting of an infinite number of
elements. Such, for example, are the sets of all natural numbers, all points
on the real line, all circles in the plane, all polynomials with rational co-
efficients, and so forth. In this connection, when we say that a set is infinite,
we have in mind that we can remove one element, two elements, and so on,
where after each step elements still remain in the set.

When we consider two finite sets it may occur that the number of ele-
ments in both of them is the same or it may occur that in one of these
sets the number of elements is greater than in the other, i.e. we can com-
pare finite sets by means of the number of elements they contain. The
question can be asked whether or not it is possible in a similar way to
compare infinite sets. In other words, does it make sense, for example, to
ask which of the following sets is the larger: the set of circles in the plane
or the set of rational points on the real line, the set of functions defined on
the segment [0, 1] or the set of straight lines in space, and so on?

Consider more carefully how we compare two finite sets. We can tackle
the problem in two ways. We can either count the number of elements iu
each of the two sets and thus compare the two sets or we can try to es-
tablish a correspondence between the elements of these sets by assigning
to each element of one of the sets one and only one element of the other
set, and conversely; such a correspondence is said to be one-to-one. Clearly,
a one-to-one correspondence between two finite sets can be established if
and only if the number of elements in both sets is the same. For instance,
in order to verify that the number of students in a group and the number
of seats in an auditorium are the same, rather than counting each of the
sets, one can seat each of the students in a definite seat. If there is a suffi-
cient number of seats and no seat remains vacant, i.e. if a one-to-one cor-
respondence is set up between these two sets, then this will mean that the
number of elements is the same in both.

But it is obvious that the first method (counting the number of ele-
ments) is suitable only for comparing finite sets, whereas the second method
(setting up a one-to-one correspondence) is suitable to the same degree for
infinite as well as for finite sets.

Among all possible infinite sets the simplest is the set of natural numbers.
We shall call every set whose elements can be put into one-to-one corre-
spondence with all the natural numbers a denumerable set. In other words,
a denumerable set is a set whose elements can be indexed in the form of an
infinite sequence: a1, as, ---, ., -+ . The following are examples of
denumerable sets.

1. The set of all integers. We can establish a one-to-one correspondence
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between the set of all integers and the set of all natural numbers in the
following way:

0 -1 1 -2 2
1 2 3 4 5 -,

where in general we set n<>2n + 1if n > 0Oandn— —2nif n < 0.

2. The set of all positive even integers. The correspondence is obviously
n <> 2n.

3. The set of numbers 2, 4, 8, ---, 2", --- . Assign to each number
2" the corresponding #; this correspondence is obviously one-to-one.

4. We now consider a slightly more complicated example: we shall
show that the set of all rational numbers is denumerable. Every rational
number can be written in the form of an irreducible fraction « = p/q,
g > 0. Call the sum n = | p | + q the height of the rational number «. It is
clear that the number of fractions having height » is finite. For instance,
the number 0/1 = 0 is the only number having height 1; the numbers 1/1
and —1/1 are the only numbers having height 2; the numbers 2/1, 1/2,
—2/1 and —1/2 have height 3; and so forth. We enumerate all the rational
numbers in the order of increasing heights, i.e. first the numbers with height
1, then the numbers with height 2, ete. This process assigns some index to
each rational number, i.e. we shall have set up a one-to-one correspondence
between the set of all natural numbers and the set of all rational numbers.

An infinite set which is not denumerable is said to be a nondenumerable
set.

We establish some general properties of denumerable sets.

1°. Every subset of a denumerable set is etther finite or denumerable.

Proof. Let A be a denumerable set and let B be a subset of A. If we
enumerate the elements of the set A: a1, @z, -+-, @, --- and let ny,
ng, -+ - be the natural numbers which correspond to the elements in B in
this enumeration, then if there is a largest one among these natural num-
bers, B is finite; in the other case B is denumerable.

2°, The sum of an arbitrary finite or denumerable set of denumerable sets
s again a finite or denumerable set.

Proof. Let Ay, A2, -+ - be denumerable sets. All their elements can be
written in the form of the following infinite table:

Qi1 Q12 (3 Qi
G21 Qg2 (23 Q24
G311 Q32 (3 QA3
Qg1 Qg2 Qg3 Qa4

where the elements of the set A; are listed in the first row, the elements
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of A, are listed in the second row, and so on. We now enumerate all these
elements by the ‘“‘diagonal method”, i.e. we take an for the first element,
a1 for the second, @y for the third, and so forth, taking the elements in
the order indicated by the arrows in the following table:

Q11 — Q12 Q13 — Q1g° " °

v % e
123} (127] Q23 Q24° * *
V- v
as1 a3z Q33 [LZYR
e

.....................

It is clear that in this enumeration every element of each of the sets
A ; receives a definite index, i.e. we shall have established a one-to-one cor-
respondence between all the elements of all the A;, A., --- and the set
of natural numbers. This completes the proof of our assertion.

ExEercises. 1. Prove that the set of all polynomials with rational coeffi-
cients is denumerable.

2. The number £ is said to be algebraic if it is a zero of some polynomial
with rational coefficients. Prove that the set of all algebraic numbers is
denumerable.

3. Prove that the set of all rational intervals (i.e. intervals with rational
endpoints) on the real line is denumerable.

4. Prove that the set of all points in the plane having rational coordi-
nates is denumerable. Hint: Use Theorem 2°.

3°. Every infinite set contains a denumerable subset.

Proof. Let M be an infinite set and consider an arbitrary element a; in M.
Since M is infinite, we can find an element a. in M which is distinct from
a1, then an element a; distinet from both a; and a , and so forth. Continuing
this process (which cannot terminate in a finite number of steps since M is
infinite), we obtain a denumerable subset A = {a1, a2, a3, - - -} of the set
M. This completes the proof of the theorem.

This theorem shows that denumerable sets are, so to speak, the ‘“smallest”
of the infinite sets. The question whether or not there exist nondenumerable
infinite sets will be considered in §4.

§3. Equivalence of sets

We arrived at the concept of denumerable set by establishing a one-
to-one correspondence between certain of infinite sets and the set of nat-
ural numbers; at the same time we gave a number of examples of de-
numerable sets and some of their general properties.
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It is clear that by setting up a one-to-one correspondence it is possible
not only to compare infinite sets with the set of natural numbers; it is
possible to compare any two sets by this method. We introduce the follow-
ing definition.

DeriniTiON. Two sets M and N are said to be equivalent (notation:
M ~ N) if a one-to-one correspondence can be set up between their ele-
ments.

The concept of equivalence is applicable to arbitrary sets, infinite as
well as finite. It is clear that two finite sets are equivalent if, and only if,
they consist of the same number of elements. The definition we introduced
above of a denumerable set can now be formulated in the following way:
a set 13 said to be denumerable if it s equivalent to the set of natural numbers.

ExampLes. 1. The sets of points on two arbitrary segments [a, b] and
[¢, d] are equivalent. A method for establishing a one-to-one correspondence
between them is shown in Fig. 5. Namely, the points p and ¢ correspond if
they lie on the same ray emanating from the point O in which the straight
lines ac and bd intersect.

2. The set of all points in the closed complex plane is equivalent to the
set of all points on the sphere. A one-to-one correspondence a <2 can be
established, for example, with the aid of stereographic projection (Fig. 6).

3. The set of all real numbers in the interval (0, 1) is equivalent to the
set of all points on the real line. The correspondence can be established, for
example, with the aid of the function

y = (1/x) arctan z + 3.

It is clear directly from the definition that two sets each equivalent to a
third set are equivalent.

Considering the examples introduced here and in §2 one can make the
following interesting deduction: in a number of cases an infinite set proves
to be equivalent to a proper subset of itself. For example, there are “as
many’’ natural numbers as there are integers or even as there are of all
rationals; there are ‘‘as many”’ points on the interval (0, 1) as there are on
the entire real line, and so on. It is not difficult to convince oneself of the
fact that this situation is characteristic of all infinite sets.

Fic. 6
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In fact, in §2 (Theorem 3°) we showed that every infinite set M has a
denumerable subset; let this set be

A={al,a2,""a","'}.
We partition A into two denumerable subsets
Aiv=la,a,as, ---} and A, = {as, a4, a4, - --}.

Since A and A; are denumerable, a one-to-one correspondence can be set
up between them. This correspondence can be extended to a one-to-one
correspondence between the sets

AUMN4) =M\ 4, and AUMNA) =M

which assigus to each elementin M \ A thiselement itself. The set M \ A4,
is a proper subset of the set M. We thus obtain the following result:

FKvery infinite set s equivalent to some proper subset of itself.

This property can be taken as the definition of an infinite set.

ExEercise. Prove that if M is an arbitrary infinite set and 4 is denumer-
able, then M ~ M U 4.

§4. Nondenumerability of the set of real numbers

In §2 we introduced a number of examples of denumerable sets. The
number of these examples could be significantly increased. Moreover, we
showed that if we take sums of denumerable sets in finite or infinite num-
ber we again obtain denumerable sets. The following question arises nat-
urally: do there exist in general nondenumerable infinite sets? The follow-
ing theorem gives an affirmative answer to this question.

TuareoreM. The set of real numbers in the closed interval [0,1] is nondenumer-
able.

Proof. We shall assume the contrary, i.e., that all the real numbers lying
on the segment [0, 1}, each of which can be written in the form of an-infinite
decimal, can be arranged in the form of a sequence

O.au Qi Qi3 ... Qin
0 Qo1 Q22 Q23 ... Q2p
(1) O.a:u Az Q33 ... Az,
0.an1 Qn2 Q3 Qnn
........................ ,
where each ai is one of the numbers 0, 1, --- | 9. We now construct the

decimal

(2) 0.b1bybg -+ by - -
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in the following manner: for b; we take an arbitrary digit which does not
coincide with ay , for b, an arbitrary digit which does not coincide with
as2 , and so on; in general, for b, we take an arbitrary digit not coinciding
with a,, . This decimal cannot coincide with any of the decimals appearing
in Table (1). In fact, it differs from the first decimal of Table (1) at least in
the first digit by construction, from the second decimal in the second digit
and so forth; in general, since b, ¥ a., for all n, decimal (2) cannot coincide
with any of the decimals appearing in Table (1). Thus, the assumption
that there is some way of enumerating all the real numbers lying on the
segment [0, 1] has led to a contradiction.

The above proof lacks precision. Namely, some real numbers can be
written in the form of a decimal in two ways: in one of them there is an
infinite number of zeros and in the other an infinite number of nines; for
example,

1 = 05000 - = 0.4999 - .

Thus, the noncoincidence of two decimals still does not mean that these
decimals represent distinct numbers.

However, if decimal (2) is constructed so that it contains neither zeros
nor nines, then setting, for example, b, = 2, if a,, = ltand b, = 1if @, = 1,
the above-mentioned objection is avoided.

So we have found an example of a nondenumerable infinite set. We shall
point out some cxamples of sets which are equivalent to the set of real
numbers in the closed interval [0, 1].

1. The set of all points on an arbitrary segment [a, b] or the points of the
open interval (a, b).

2. The set of all points on a straight line.

3. The set of all points in the plane, in space, on the surface of a sphere,
the points lying in the interior of a sphere, and so forth.

4. The set of all straight lines in the plane.

5. The set of all continuous functions of one or several variables.

In Examples 1 and 2 the proof offers no difficulty (see Examples 1 and
3, §3). In the other examples a direct proof is somewhat complicated.

ExEercise. Using the results of this section and Exercise 2, §2, prove the
existence of transcendental numbers, i.e., of real numbers which are not
algebraic.

§6. The concept of cardinal number

If two finite sets are equivaleut, they consist of the same number of
elements. If M and N are two arbitrary equivalent sets we say that M and
N have the same cardinal number (or the same power or the same potency).
Thus, cardinal number is what all equivalent sets have in common. For
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finite sets the concept of cardinal number coincides simply with the concept
of number of elements in the set. The cardinal number of the set of natural
numbers (i.e. of any denumerable set) is denoted by the symbol N, (read
“aleph zero’’). Sets which are equivalent to the set of real numbers between
0 and 1 are said to be sets having the power of the continum. This power
is denoted by the symbol c.

As a rule, all infinite sets which are encountered in analysis are either
denumerable or have cardinal number c.

If the set A4 is equivalent to some subset of the set B but is not equivalent
to the entire set B, then we say that the cardinal number of the set A4 is
less than the cardinal number of the set B.

Logically, besides the two possibilities indicated, namely: 1) A equiva-
lent to B and 2) A equivalent to a subset of B but not equivalent to all of
B, we shall allow two more: 3) A is equivalent to some subset of B and B
is equivalent to some subset of A; 4) A and B are not equivalent and in
neither of these sets is there a subset equivalent to the other set. It is pos-
sible to show that in Case 3 the sets A and B are themselves equivalent
(this is the Cantor-Bernstein theorem) but that Case 4 is in fact impossible
(Zermelo’s theorem); however, we shall not give the proof of these two
rather complicated theorems here (see, for example, P. S. Aleksandrov:
Introduction to the General Theory of Sets and Functions, Chapter I, §6 and
Chapter II, §6; E. Kamke: Theory of Sets; F. Hausdorff: Mengenlehre; and
A. Fraenkel: Abstract Set Theory).

As was pointed out at the end of §2 denumerable sets are the ‘‘smallest”
infinite sets. In §4 we showed that there exist infinite sets whose infinite-
ness is of a higher order; these were sets having the cardinal number of the
continuum. But do there exist infinite cardinal numbers exceeding the
cardinal number of the continuum? In general, does there exist some
“highest”” cardinal number or not? It turns out that the following theorem
is true.

THEOREM. Let M be a set of cardinal number m. Further, let IN be the set
whose elements are all possible subsets of the set M. Then IN has greater car-
dinal number than the cardinal number m of the initial set M.

Proof. 1t is easy to see that the cardinal number of the set I cannot be
less than the cardinal number m of the initial set; in fact, those subsets of M
each of which consists of only one element form a subset of % which is
equivalent to the set M. It remains to prove that these cardinal numbers
cannot coincide. Let us assume the contrary; then I and M are equivalent
and we can set up a one-to-one correspondence between them. Let a < 4,
b <> B, - -- be a one-to-one correspondence between the elements of the set
M and all of its subsets, i.e., the elements of the set 9. Now let X be the
set of elements in M which do not belong to those subsets to which they
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correspond (for example,ifa € A thena ¢ X,if b ¢ Bthend € X, andso
forth). X is a subset of M, i.e. it is some element in . By assumption X
must correspond to some element x € M. Let us see whether or not the
element x belongs to the subset X. Let us assume ¢ X. But by definition
X consists of all those elements which are not contained in the subset to
which they correspond and consequently the element x ought to be in-
cluded in X. Conversely, if we assume that z belongs to X, we may conclude
that « cannot belong to X since X contains only those elements which do
not belong to the subset to which they correspond. Thus the element cor-
responding to the subset X ought simultaneously to be contained in and not
contained in X. This implies that in general such an alement does not
exist, i.e. that it is impossible to establish a one-to-one correspondence
between the elements of the set M and all its subsets. This completes the
proof of the theorem.

Thus for an arbitrary cardinal number we can in reality construct a set
of greater cardinal number and then a still greater cardinal number, and so
on, obtaining in this way a hierarchy of cardinal numbers which is not
bounded in any way.

ExErcise. Prove that the set of all numerical functions defined on a set
M has a greater cardinal number than the cardinal number of the set M.
Hint: Use the fact that the set of all characteristic functions (i.e. functions
assuming only the values 0 and 1) defined on M is equivalent to the.set of
all subsets of M.

§6. Partition into classes

The reader can omit this section on a first reading and return to it in
the sequel for information as required.

In the most varied questions it occurs that we encounter partitions of a
set into disjoint subsets. For example, the plane (considered as a set of
points) can be partitioned into straight lines parallel to the y-axis, three-
dimensional space can be represented as the set of all concentric spheres of
different radii, the inhabitants of a given city can be partitioned into
groups according to their year of birth, and so forth.

If a set M is represented in some manner as a sum of disjoint subsets,
we speak of a partitioning of the set M into classes.

Ordinarily we encounter partitions which are obtained by means of
indicating some rule according to which the elements of the set M are com-
bined into classes. For example, the set of all triangles in the plane can be
partitioned into classes of triangles which are congruent to one another
or triangles which have the same area; all polynomials in z can be parti-
tioned into classes by collecting all polynomials having the same zeros into
one class, and so on.
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Rules according to which the elements of a set are partitioned into
classes can be of the most varied sort. But of course all these rules cannot
be entirely arbitrary. Let us assume, for example, that we should like to
partition all real numbers into classes by including the number b in the
same class as the number a if, and only if, b > a. It is clear that no partition
of the real numbers into classes can be obtained in this way because if
b > a,i.e. if b must be included in the same class as a, then a < b, i.e. the
number a must not belong to the same class as b. Moreover, since a is not
larger than a, then a ought not belong in the class which contains it! We
consider another example. We shall see whether or not it is possible to
partition all inhabitants of a given city into classes by putting two persons
into the same class if, and only if, they are acquaintances. It is clear that
such a partition cannot be realized because if A is an acquaintance of B
and B is an acquaintance of C, then this does not at all mean that A is an
acquaintance of C. Thus, if we put A into the same class as B and B into
the same class as C, it may follow that two persons A and C who are not
acquaintances are in the same class. We obtain an analogous result if we
attempt to partition the points of the plane into classes so that those and
only those points whose mutual distance does not exceed 1 are put into one
class.

The examples introduced above point out those conditions which must
be satisfied by any rule if it is to realize a partition of the elements of a set
into classes.

Let M be a set and let some pair (a, b) of elements of this set be “marked.”
[Here the elements a and b are taken in a definite order, i.e. (a, b) and
(b, a) are two distinct pairs.] If (a, b) is a ““marked” pair, we shall say that
the element a is related to b by the relation ¢ and we shall denote this
fact by means of the symbol a ¢ b. For example, if we wish to partition
triangles into classes of triangles having the samearea, thena ¢ b istomean:
“triangle a has the same area as triangle b.” We shall say that the given
relation is an equivalence relation if it possesses the following properties:

1. Reflexivity: a ¢ a for any element a € M;

2. Symmetry: if a ¢ b, then necessarily b ¢ a;

3. Transitivity: if a o b and b ¢ ¢, then a ¢ c.

Obviously every partition of a given set into classes defines some equiva-
lence relation among the elements of this set.

In fact, if a ¢ b means ‘“‘a belongs to the same class as b”, then thisrelation
will be reflexive, symmetric and transitive, as is easy to verify.

Conversely, if a ¢ bis an equivalence relation between the elements of
the set M, then putting into one class those and only those elements which
are equivalent we obtain a partition of the set M into classes.

In fact, let K, be the class of elements in M which are equivalent to a
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fixed element a. By virtue of the property of reflexivity the elemeut a
itself belongs to the class K, . We shall show that two classes K, and K,
either coincide or are disjoint. Let an element ¢ belong simultaneously to
K,and to K, ,ie.cpoaandcob.

Then by virtue of symmetry, a ¢ ¢, and by virtue of transitivity,

¢)) aeb.

Now if z is an arbitrary element in K, , i.e. x ¢ a, then by virtue of (1)
and the transitivity property, ¢ b, i.e. 2 € K, .

Conversely, if y is an arbitrary element in K, , i.e. if y ¢ b, then by virtue
of relation (1) which can be written in the form b ¢ @ (symmetry!) and the
transitivity property, y ¢ a,i.e. y € K, . Thus, two classes K, and K, having
at least one element in common coincide.

We have in fact obtained a partition of the set M into classes according
to the given equivalence relation.

§7. Mappings of sets. General concept of function

In analysis the concept of function is introduced in the following way.
Let X be a set on the real line. We say that a function f is defined on this
set if to each number x € X there is made to correspond a definite number
y = f(x). In this connection X is said to be the domain of the given fuuc-
tion and Y, the set of all values assumed by this function, is called its
range.

Now if instead of sets of numbers we consider sets of a completely arbi-
trary nature, we arrive at the most general concept of function, namely:
Let M and N be two arbitrary sets; then we say that a function f is defined
on M and assumes its values in N if to each element x € M there is made
to correspond one and only one element in N. In the case of sets of an
arbitrary nature instead of the term ‘“function’ we frequently use the
term “mapping’’ and speak of a mapping of one set into another.

If a is any element in M, the element b = f(a) in N which corresponds
to it is called the #mage of the element a (under the mapping f). The set of
all those elements in M whose image is a given element b € N is called the
inverse image (or more precisely the complete inverse tmage) of the element
b and is denoted by f7'(b).

If A is any set in M, the set of all elements of the form {f(a):a € A}'is
called the image of A and is denoted by f(A). In its turn, for every set
B in N there is defined its inverse image f~'(B), namely f'(B) is the set
of all those elements in M whose images belong to B.

In this section we shall limit ourselves to the consideration of the most
general properties of mappings.

We shall use the following terminology. We say that f is a mapping of
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the set M onto the set N if f(M) = N; in the general case, i.e.
when f(M) & N we say that f is a mapping of M into N.

We shall establish the following properties of mappings.

THEOREM 1. The tnverse tmage of the sum of two sets is equal to the sum of
their inverse tmages:

AU B) =) Uf(B).

Proof. Let the element x belong to the set f (A U B). This means that
f(x) € AUB,ie. f(x) € A or f(x) € B. But then z belongs to at least one
of the sets f'(4) and f'(B), ie. z € f'(4) Uf(B). Conversely, if
x € f(4) U f(B), then z belongs to at least one of the sets f'(4) and
f'(B), i.e. f(x) belongs to at least one of the sets A and B and conse-
quently f(x) € A U B, whence it follows that z € (4 U B).

TueorREM 2. The tnverse image of the intersection of two sets is equal to the
intersection of their inverse images:

FFANB) =) NfB).

Proof. If x € (A N B), then f(x) € AN B, ie. f(x) € Aandf(x) € B;
consequently, x € f'(4) and x € f'(B),ie.z € f(4) Nf'(B).

Conversely, if x € f'(4) N f'(B),ie.z € f'(4) and z € f'(B), then
f(x) € A and f(x) € B, or in other words f(x) € A N B.

Consequently z € (4 N B).

Theorems 1 and 2 remain valid also for the sum and intersection of an
arbitrary finite or infinite number of sets.

Thus, if in N some system of sets closed with respect to the operations of
addition and taking intersections is selected, then their inverse images in
M form a system which is likewise closed with respect to these operations.

TuaEOREM 3. The image of the sum of two sets is equal to the sum of their
images:

f(A4U B) = f(4) U f(B).

Proof. It y € f(A U B), then y = f(x), where x belongs to at least one of
the sets A and B. Consequently, y = f(z) € f(4) U f(B). Conversely, if
y € f(A) Uf(B) then y = f(x), where z belongs to at least one of the sets
A and B,ie.z € A U B and consequently y = f(x) € f(4 U B).

We note that in general the image of the intersection of two sets does not
coincide with the intersection of their images. For example, let the mapping
considered be the projection of the plane onto the x-axis. Then the seg-
ments

1, y=0
1; y =1

do not intersect, but at the same time their images coincide.
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The concept of mapping of sets is closely related to the concept of par-
titioning considered in the preceding section.

Let f be a mapping of the set A4 into the set B. If we collect into one class
all those elements in A whose images in B coincide, we obviously obtain a
partition of the set A. Conversely, let us consider an arbitrary set A and
an arbitrary partitioning of A into classes. Let B be the totality of those
classes into which the set A is partitioned. If we correspond to each element
a € A that class (i.e. that element in B) to which a belongs, we obtain a
mapping of the set A into the set B.

ExampLes. 1. Consider the projection of the xy-plane onto the x-axis.
The inverse images of the points of the z-axis are vertical lines. Conse-
quently to this mapping there corresponds a partitioning of the plane into
parallel straight lines.

2. Subdivide all the points of three-dimensional space into classes by
combining into one class the points which are equidistant from the origin
of coordinates. Thus, every class can be represented by a sphere of some
radius. A realization of the totality of all these classes is the set of all
points lying on the ray (0, «). So, to the partitioning of three-dimensional
space into concentric spheres there corresponds the mapping of this space
onto a half-line.

3. Combine all real numbers having the same fractional part into one
class. The mapping corresponding to this partition is represented by the
mapping of the real line onto a circle.



Chapter 11
METRIC SPACES

§8. Definition and examples of metric spaces

Passage to the limit is one of the most important operations in analysis.
The basis of this operation is the fact that the distance between any two
points on the real line is defined. A number of fundamental facts from
analysis are not connected with the algebraic nature of the set of real num-
bers (i.e. with the fact that the operations of addition and multiplication,
which are subject to known laws, are defined for real numbers), but de-
pend only on those properties of real numbers which are related to the
concept of distance. This situation leads naturally to the concept of ‘“metric
space” which plays a fundamental role in modern mathematics. Further
on we shall discuss the basic facts of the theory of metric spaces. The re-
sults of this chapter will play an essential role in all the following discussion.

DEFINITION. A metric space is the pair of two things: a set X, whose
elements are called poiuts, and a distance, i.e. a single-valued, nonnegative,
real function p(x, y), defined for arbitrary x and y in X and satisfying the
following conditions:

1) p(z,y) = 0if and only if » = y,

2) (axiom of symmetry) p(z, ¥) = p(y, x),

3) (triangle axiom) p(z, y) + p(y, 2) = p(z, 2).

The metric space itself, i.e. the pair X and p, will usually be denoted by
R = (X, p).

In cases where no misunderstanding can arise we shall sometimes denote
the metric space by the same symbol X which is used for the set of points
itself.

We list a number of examples of metric spaces. Some of the spaces listed
below play a very important role in analysis.

1. If we set

(0,if 2 = ¥,
plx,y) =
1,ifx #y,

for elements of an arbitrary set, we obviously obtain a metric space.
2. The set D' of real numbers with the distance function
forms the metric space R'.

3. The set D" of ordered n-tuples of real numbers x = (x1, 22, + -+, x,)
with distance function

p(t, 1) = { i (e — )’}

16
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is called Euclidean n-space R". The validity of Axioms 1 and 2 for R” is
obvious. To prove that the triangle axiom is also verified in R™ we make
use of the Schwarz inequality

1) (i aby)’ < D al Do b
(The Schwarz inequality follows from the identity
(an:-l akbk)2 = (Zk';-l akz) (EI:LI b;f) - %E?-IZ}LI (ab; — biai)z,

which can be verified directly.) If
T=(@1,%2, %), ¥=@1,¥2, ,¥) and z=(z,2, " ,2),
then setting

Ye — Tk = @k, 2 — Y = bi,
we obtain

2 — @ = ar + bi;
by the Schwarz inequality
Sra(m 4+ )’ = il + 22t abe + Do b
< Yol +2{ ) bkz}i + Dby
= (T ad) + (X bd)T,
ie.
', 2) < {olz, y) + oy, 2)}*
or
p(x, 2) < p(x, y) + p(y, 2).

4. Consider the space R," in which the points are again ordered n-tuples
of numbers (x1, 22, - - - , x,), and for which the distance function is defined
by the formula

po(x, y) = max {{yr — 2 |;1 <k < n}.

The validity of Axioms 1-3 is obvious. In many questions of analysis
this space is no less suitable than Euclidean space R".

Examples 3 and 4 show that sometimes it is actually important to have
different notations for the set of points of a metric space and for the metric
space itself because the same point set can be metrized in various ways.

5. The set Cla, b] of all continuous real-valued functions defined on the
segment [a, b] with distance function

) o(f, 9) = sup {| g(®) — f(t) |; @ < t < b}
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likewise forms a metric space. Axioms 1-3 can be verified directly. This
space plays a very important role in analysis. We shall denote it by the
same symbol Cla, b] as the set of points of this space. The space of con-
tinuous functions defined on the segment [0, 1] with the metric given above
will be denoted simply by C.

6. We denote by I, the metric space in which the points are all possible
sequences * = (x1, ¥2, -+, T, ---) of real numbers which satisfy the
condition Y s z;° < = and for which the distance is defined by means
of the formula

®3) p(z, y) = { 208 (e — 2"},

We shall first prove that the function p(x, y) defined in this way always
has meaning, i.e. that the series D_re; (y+ — 21)° converges. We have

(4.) {Zl:;l (ye — 7«‘/«)2}; < (ZI.LI xk2)% + (Z;,Ll Uk2)%

for arbitrary natural number n (see Example 3).

Now let n — <. By hypothesis, the right member of this inequality has
a limit. Thus, the expression on the left is bounded and does not decrease
as n — o ; consequently, it tends to a limit, i.e. formula (3) has meaning.
Replacing * by —x in (4,) and passing to the limit as n — o, we obtain

4) {2 (e + 2™ < (e + (e v

but this is essentially the triangle axiom. In fact, let

a=(a1>a2;"'>any”')>
b=(b17b2"”)b"}“')’
C=(61,62, ...,cn,...)

be three points in I, . If we set

bk—ak=xk, Ck—bk=yk,
then
e — @ = Yi + Tk
and, by virtue of (4),
{Zlo;l (cr — ak)2}; < {Z;Ll (bk - ak)Q}% + {Z’:;l (e — bk)2};;
i.e.
p(a, ¢) < pla, b) + p(b, c).

7. Consider, as in Example 5, the totality of all continuous functions on
the segment [a, b], but now let the distance be defined by setting

(5) plx, y) = [fab {z(®) — y(t)}“‘dtT.
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This metric space is denoted by C?[a, b] and is called the space of con-
tinuous functions with quadratic metric. Here again Axioms 1 and 2 in the
definition of a metric space are obvious and the triangle axiom follows
immediately from the Schwarz inequality

{f: 2Oy dt}2 <[ o [ "0 @,

which can be obtained, for instance, from the following easily-verified
identity:

{f: 2(®)y(?) dt}2 = f: 2(0) dt fa" O dt

b b
_% f [2()y(t) — y()z(®)] ds dt.

8. Consider the set of all bounded sequences x = (X1, X2, - - , Tn, )
of real numbers. We obtain the metric space M~ if we set

(6) p(x,y) = sup | yr — x|

The validity of Axioms 1-3 is obvious.

9. The following principle enables us to write down an infinite number
of further examples: if R = (X, p) is a metric space and M is an arbitrary
subset of X, then M with the same function p(x, ¥), but now assumed to
be defined only for z and y in M, likewise forms a metric space; it is called
a subspace of the space R.

(1) In the definition of a metric space we could have limited ourselves to
two axioms for p(z, y), namely:

1y p(x, ?/) =0
if, and only if, z = y;
2) p(z, y) < plz, ) + p(2, 9)

for arbitrary z, y, 2.
It follows that

3) p(z,y) 2 0,
4) p@,y) = oy, )

and consequently Axiom 2 can be written in the form
2) p@,y) < oz, 2) + 0z, 9).

(2) The set D" of ordered n-tuples of real numbers with distance
@, ) = (ie [ye — @ D" (»21)
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also forms a metric space which we shall denote by R,”. Here the validity
of Axioms 1 and 2 is again obvious. We shall check Axiom 3. Let

r=(@,22, ,%), Y= Wi,¥2, " ,Ya) and z= (z1,2, " ,2)
be points in R,". If, as in Example 3, we set
Y — T = Gk, 2% — Y = by,
then the inequality
po(, 2) < pp(2, y) + pu(y, 2)
assumes the form
M (Cimla + b ) < (il D)+ (i | be D2

This is the so-called Minkowski inequality. Minkowski’s inequality is
obvious for p = 1 (since the absolute value of a sum is less than or equal
to the sum of the absolute values) and therefore we can restrict ourselves
to considering the case p > 1.

In order to prove inequality (7) for p > 1 we shall first establish Holder’s
inequality:

(8) Dore | Ty | < (k| an |p)”p(Zl:‘=l [ yx |Q)llq’
where the number ¢ is defined by the condition
9 1/p+1/g = 1.

We note that inequality (8) is homogeneous in the sense that if it is
satisfied for any two vectors

z= (21,2, ,%) and ¥y = (Y1, Y2, -, Yn),

then it is also satisfied for the vectors Az and uy where A and u are arbitrary
numbers. Therefore it is sufficient to prove inequality (8) for the case when

(10) el @ P = iyt = 1.
Thus, we must prove that if Condition (10) is satisfied, then
(I Do | mye | < 1

Consider in the (£, n)-plane the curve defined by the equation n = £,
or equivalently by the equation £ = »? (see Fig. 7). It is clear from the
figure that for an arbitrary choice of positive values for ¢ and b we have
Sy + S: > ab. If we calculate the areas S; and S, we obtain

a b
Si= [ etde=a/p S= [0 dn = b
0 0
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Fia. 7
Thus
ab < a’/p + b%/q.
Setting a = | x|, b = |y | and summing with respect to k from 1 to n,
we obtain

Db | <1,
if we take (9) and (10) into consideration.

Inequality (11) and consequently the more general inequality (8) are
thus proved. For p = 2 Hoélder’s inequality (8) becomes the Schwarz
inequality (1).

We now proceed to the proof of the Minkowski inequality. Consider the
identity

(lal+10)" = (al+ 10D al+ (al+[bD""|b]

Setting a = z , b = y; in the above identity and summing with respect to
k from 1 to n, we obtain

Sea(a] + 1w = i (ae] + Lo )" 2]
+ o] 4 [y D el

If we now apply Holder’s inequality to each of the two sums on the right
of the above equality and take into consideration the fact that (p — 1)g = p,
we obtain

2 (] + [y D
SUZE Q]+ Ly DI e DY 4+ (T e D7)
Dividing both sides of this inequality by
{200 (e | + [y DY
we obtain

{2om (ae] 4+ Ty DY < O Y 4+ (oia Lye Y2,



22 METRIC SPACES [cH. 11

whence inequality (7) follows immediately. This also establishes the triangle
axiom for the space R,".
(3) It is possible to show that the metric

po(x, y) = max {{yx — |31 <k < n

introduced in Example 4 can be defined in the following way:

1/p

po(@, y) = limpaes (Dimr |y — i [D)Y"
(4) From the inequality
ab < a®/p + b%/q (I/p + /g = 1)

established in Example (2) it is easy to deduce also the integral form of
Holder’s inequality

[ zovo a< ([ 1=01a)” ([ 1vo1a)”,

which is valid for arbitrary functions z(¢) and y(t) for which the integrals
on the right have meaning. From this in turn we obtain the integral form
of Minkowski’s inequality:

([120 +vora)” <([1eora)”+ ([ wora)”

(5) We shall point out still another interesting example of a metric
space. Its elements are all possible sequences of real numbers

r = (xl’x2’ ...’xn’...)

such that D s | 2 |” < , where p > 1 is any fixed number and the dis-
tance is defined by means of the formula

(12) p, y) = (i= |y — x|

We shall denote this metric space by [, .
By virtue of Minkowski’s inequality (7) we have

(Chalye = @) < (ko )7+ (X |9 DY
for arbitrary n. Since the series
2 lan” and 25yl
converge by assumption, passing to the limit as n — o« we obtain
13)  (Cialye — @ V" < (X la )Y 4+ i v (D',

and so the series on the left side also converges. This proves that formula
(12), which defines distance in [I,, actually has meaning for arbitrary



§9] CONVERGENCE OF SEQUENCES. LIMIT POINTS 23

x,y € l,. At the same time inequality (13) shows that the triangle axiom
is satisfied in I, . The remaining axioms are obvious.

§9. Convergence of sequences. Limit points

In §§9-11 we shall establish some fundamental concepts which we shall
frequently use in the sequel.

An open sphere S(zo, r) in the metric space R is the set of all points
2 € R which satisfy the condition p(x, 29) < 7. The fixed point 2, is called
the center and the number r is called the rad7us of this sphere.

A closed sphere Slz, , 1] is the set of all points x € R which satisfy the
condition p(z, o) < 7.

An eneighborhood of the point z, denoted by the symbol O(z, €), is an
open sphere of radius ¢ and center x, .

A point z is called a contact point of the set M if every neighborhood of z
contains at least one point of M. The set of all contact points of the set M
is denoted by [M] and is called the closure of M. Since every point belonging
to M is obviously a contact point of M (each point is contained in every
one of its neighborhoods), every set is contained in its closure: M < [M].

TuEOREM 1. The closure of the closure of M is equal to the closure of M :

([M)] = [M].

Proof. Let « € [[M]]. Then an arbitrary e-neighborhood O(z, €) of x
contains a point 2, € [M]. Setting e — p(z, 71) = ¢ , we consider the sphere
O(x:, &). This sphere lies entirely in the interior of O(z, ¢€). In fact, if
2z € O(z1, &), then p(z, 21) < & ; and since p(z, 1) = ¢ — &, then, by
the triangle axiom p(z, 2) < & + (¢ — @) = ¢ i.e. 2 € O(z, €. Since z; €
[M], O(z, &) contains a point xz € M. But then z; € O(x, ¢). Since O(z, ¢)
is an arbitrary neighborhood of the point z, we have € [M]. This com-
pletes the proof of the theorem.

The validity of the following assertion is obvious.

TuaEOREM 2. If M, C M, then [M,] C [M].

TareoREM 3. The closure of a sum s equal to the sum of the closures:

(M, U M) = (MU [M,).

Proof. Let * € [M; U My, i.e. let an arbitrary neighborhood O(z, €)
contain the point y € M, U M, . If it were true that x ¢ [M,] and x ¢ [M,],
we could find a neighborhood O(z, &) which does not contain points of M,
and a neighborhood O(x, ez) which does not contain points of M. But
then the neighborhood O(z, €), where ¢ = min (e, €), would not contain
points of M, U M, . From the contradiction thus obtained it follows that
z is contained in at least one of the sets [M,] and [M], i.e.

(MU M) < (M) U [M3).
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Since M, € M, U M, and M, € M, U M, , the converse inclusion follows
from Theorem 2.

The point x is called a limit point of the set M if an arbitrary neighbor-
hood of z contains an infinite number of points of M.

A limit point of the set M can either belong to M or not. I'or example, if
M is the set of rational numbers in the closed interval [0, 1], then every
point of this interval is a limit point of M.

A point 2 belonging to the set A/ is said to be an isolated point of this
set if x has a neighborhood O(z, €) which does not contain any points of M
different from z.

TureoreM 4. FEvery contact point of the set M is either a limit point of the
set M or an isolated point of M.

Proof. Let x be a contact point of the set 4/. This means that every
neighborhood O(x, €) of = contains at least one point belonging to M.
Two cases are possible:

1) Every neighborhood of the point x contains an infinite number of
points of the set M. In this case, x is a limit point of A.

2) We can find a neighborhood O(x, €) of x which contains only a finite
number of points of M. In this case,  will be an isolated point of the set M.
In fact, let @, a2, - - -, @ be the points of M which are distinct from z
and which are contained in the neighborhood O(z, €). Further, let ¢ be the
least of the positive numbers p(z, ©;), 7 = 1,2, - -+ , k. Then the neighbor-
hood O(z, &) obviously does not contain any point of M distinct from 2.
The point z itself in this case must necessarily belong to M since otherwise
O(z, &) in general would not contain a single point of M, i.e. 2 would not
be a contact point of the set M. This completes the proof of the theorem.

Thus, the set [M] consists in general of points of three types:

1) Isolated points of the set M ;

2) Limit points of the set M which belong to M ;

3) Limit points of the set M which do not belong to 1.

[M] is obtained by adding to M all its limit points.

Let a1, a2, - -+ be a sequence of points in the metric space R. We say
that this sequence converges to the point x if every neighborhood O(z, ¢)
contains all points z, starting with some one of them (i.e. if for every
e > 0 we can find a natural number N, such that O(z, €) contains all points
r, with n > N,). The point « is said to be the limit of the sequence {x,}.

This definition can obviously be formulated in the following form: the
sequence {a,} converges to z if lim,.. p(2, x,) = 0.

The following assertions follow divectly fromi the definition of limit: 1)
1o sequence can have two distinet limits; 2) if the sequence {x,} converges
to the point 2 then every subsequence of {x,} converges to the same point x.

The following theorem establishes the close connection between the
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concepts of contact point and limit point on the one hand and the concept
of limit on the other.

THEOREM 5. A necessary and sufficient condition that the point x be a con-
tact point of the set M 1is that there exist a sequence {x,} of points of the
set M which converges to x; a necessary and sufficient condition that the point x
be a limit point of M vs that there exist a sequence of distinct points of the set
M which converges to x.

Proof. Necessity. If z is a contact point of the set M, then every neighbor-
hood O(x, 1/n) contains at least one point z, of M. These points form a
sequence which converges to . If the point x is a limit point of M, every
neighborhood O(z, 1/n) contains a point z, € M which is distinet from all
the z:({ < n) (since the number of such points is finite). The points x, are
distinet and form a sequence which converges to .

Sufficiency is obvious.

Let A and B be two sets in the metric space R. The set A is said to be
dense in B if [A] 2 B. In particular, the set A is said to be everywhere dense
in R if its closure [4] coincides with the entire space R. For example, the
set of rational numbers is everywhere dense on the real line.

ExamMpLES OF SpacEs CONTAINING AN EVERYWHERE DENSE DENUMER-
ABLE SET. (They are sometimes called ““separable.” For another definition
of such spaces in terms of the concept of basis see §10, Theorem 4.) We
shall consider the very same examples which were pointed out in §8.

1. The space described in Example 1, §8, is separable if, and only if, it
consists of a denumerable number of points. This follows directly from
the fact that in this space [M] = M for an arbitrary set M.

All spaces enumerated in Examples 2-7, §8, are separable. We shall
indicate a denumerable everywhere dense set in each of them and leave the
details of the proof to the reader.

2. Rational points.

. The set of all vectors with rational coordinates.
. The set of all vectors with rational coordinates.
. The set of all polynomials with rational coefficients.

6. The set of all sequences in each of which all terms are rational and
only a finite (but arbitrary) number of terms is distinet from zero.

7. The set of all polynomials with rational coefficients.

The space of bounded sequences (Example 8, §8) is not separable. In
fact, let us consider all possible sequences consisting of zeros and ones. They
form a set with cardinal number that of the continuum (since each of them
can be put into correspondence with the dyadic development of some real
number which is contained in the interval [0, 1]). The distance between two
such distinct points defined by formula (6), §8, is 1. We surround each of
these points with a sphere of radius 1. These spheres do not intersect. If

Ot W
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some set is everywhere dense in the space under consideration, then each
of the indicated spheres should contain at least one point of this set and
consequently it cannot be denumerable.

(1) Let A be an arbitrary set in the metric space R and let x be a point
in R. The distance from the point x to the set A is defined by the number

p(4, z) = inf {p(a, x);a € A}.

If x € A, then p(4, x) = 0; but the fact that p(4, ) = 0 does not imply
that * € A. From the definition of contact point it follows immediately
that p(4, x) = 0if, and only if, z is a contact point of the set A.

Thus, the closure [4] of the set A can be defined as the totality of all
those points whose distance from the set A is zero.

(2) We can define the distance between two sets analogously. If A and B
are two sets in R, then

p(4, B) = inf {p(a, b);a € 4,b € B}.

If AN B > 6, then p(A, B) = 0; the converse is not true in general.

(3) If A is a set in the metric space R then the totality A’ of its limit
points is called its derived set.

Although the application to [M] once more of the operation of closure
always results again in [M], the equality (M’)’ = M’ does not hold in
general. In fact, if we take, for example, the set A of points of the form
1/n on the real line, then its derived set A’ consists of the single point 0,
but the set A” = (A’)’ will already be the void set. If we consider on the
real line the set B of all points of the form 1/n 4+ 1/(nm) (o, m = 1,2, ---),
then B’ = A U A’, B” is the point 0, and B" is the void set.

§10. Open and closed sets

In this section we shall consider the more important types of sets in a
metric space; these are the open and closed sets.

A set M in a metric space R is said to be closed if it coincides with its
closure: [M] = M. In other words, a set is said to be closed if it contains
all its limit points.

By Theorem 1, §9, the closure of an arbitrary set M is a closed set.
Theorem 2, §9, implies that [] is the smallest closed set which contains M.

ExampLes. 1. An arbitrary closed interval [a, b] on the real line is a
closed set.

2. The closed sphere is a closed set. In particular, in the space Cla, b]
the set of functions satisfying the condition | f| < K is closed.

3. The set of functions satisfying the condition | f| < K (open sphere)
is not closed; its closure is the set of functions satisfying the condition
I[fl <K
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4. Whatever the metric space R, the void set and the whole space R
are closed sets.

5. Every set consisting of a finite number of points is closed.

The fundamental properties of closed sets can be formulated in the form
of the following theorem.

TueOREM 1. The intersection of an arbitrary number and the sum of an
arbitrary finite number of closed sets are closed sets.

Proof. Let F = N,F,, where the F, are closed sets. Further, let x be a
limit point of the set F. This means that an arbitrary neighborhood O(z, €)
of z contains an infinite number of points of . But then O(z, €) contains
an infinite number of points of each F, and consequently, since all the F,
are closed, the point = belongs to each F, ; thus, 2 € F = N F,,ie. Fis
closed.

Now let F be the sum of a finite number of closed sets: F = Ui, F; ,
and let « be a point not belonging to F. We shall show that x cannot be a
limnit point of F. In fact, 2 does not belong to any of the closed sets F'; and
consequently it is not a limit point of any of them. Therefore for every ¢
we can find a neighborhood O(z, ¢;) of the point z which does not contain
more than a finite number of points of F';. If we take the smallest of the
neighborhoods O(z, &), - - -, O(z, ), we obtain a neighborhood O(z, €) of
the point x which does not contain more than a finite number of points
of F.

Thus, if the point z does not belong to F, it cannot be a limit point of
F,i.e. F is closed. This completes the proof of the theorem.

The point « is said to be an interior point of the set M if there exists a
neighborhood O(z, €) of the point x which is contained entirely in M.

A set all of whose points are interior points is said to be an open set.

ExampLEs. 6. The interval (a, b) of the real line D' is an open set; in fact,
if a < a < b, then O(e, €), where ¢ = min (@ — a, b — «), is contained
entirely in the interval (a, b).

7. The open sphere S(a, r) in an arbitrary metric space R is an open set.
In fact, if x € S(a, r), then p(a, ) < r. We set e = r — p(a, z). Then
S(z, ) < S(a, 7).

8. The set of continuous functions satisfying the condition | f | < K,
where K is an arbitrary number, is an open subset of the space Cla, b].

THEOREM 2. A necessary and sufficient condition that the set M be open is
that its complement R "\ M with respect to the whole space R be closed.

Proof. If M is open, then each point 2 € M has a neighborhood which
belongs entirely to M, i.e. which does not have a single point in common
with R \\ M. Thus, no point which does not belong to R \ M can be a
contact point of R \ M, i.e. R \_ M is closed. Conversely, if R \ M is
closed, an arbitrary point of M has a neighborhood which lies entirely in
M,i.e. M is open.
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Since the void set and the whole space R are closed and are at the same
time complements of each other, the theorem proved above implies the
following corollary.

Cororrary. The void set and whole space R are open sets.

The following important theorem which is the dual of Theorem 1 follows
from Theorem 1 and the principle of duality established in §1 (the inter-
section of complements equals the complement of the sums, the sum of the
complements equals the complement of the intersections).

TuroreM 1'. The sum of an arbitrary number and the intersection of an
arbitrary finite number of open sets are open sets.

A family {G.} of open sets in R is called a basis in R if every open set
in R can be represented as the sum of a (finite or infinite) nwumber of sets
belonging to this family.

To check whether or not a given family of open sets is a basis we find
the following criterion useful.

TaroreM 3. A necessary and sufficient condition that a system of open sets
{Ga} be a basis in R is that for every open set G and for every point x € @
a set G, can be found in this system such that x ¢ G, C G.

Proof. If {G,} is a basis, then every open set G is a sum of G,'s: G =
U, G., , and consequently every point 2 in G belongs to some G, contained
in G. Conversely, if the condition of the theorem is fulfilled, then {G.} is
a basis. In fact, let G be an arbitrary open set. For each point € G we
can find some G.(z) such that 2 € G, C @. The sum of these G,(r) over all
xr € G equals G.

With the aid of this criterion it is easy to establish that in every metric
space the family of all open spheres forms a basis. The family of all spheres
with rational radii also forms a basis. On the real line a basis is formed,
for example, by the family of all rational intervals (i.e. iutervals with
rational endpoints).

We shall say that a set is countable if it is either finite or denumerable.

R is said to be a space with countable basis or to satisfy the second axiom
of countability if there is at least pne basis in R consisting of a countable
number of elements.

TureorREM 4. A necessary and sufficitent condition that R be a space with
countable basis is that there exist in R an everywhere dense countable sef. (A
finite everywhere dense set occurs only in spates consisting of a finite set
of points.)

Proof. Necessity. Let R have a countable basis {G,}. Choose from each
@G,.an arbitrary point x, . The set {x,} obtained in this manner is every-
where dense in R. In fact, let  be an arbitrary point in R and let O(z, ¢)
be a neighborhood of x. According to Theorem 3, a set G, can be found
such that v € G, C O(z, ¢). Since G, contains at least one of the points of
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the set {x,}, any neighborhood O(x, €) of an arbitrary point & ¢ R contains
at least one point from {a,} and this means that {x,.} is everywhere dense
in R.

Sufficiency. If {x,} 1s a countable everywhere dense set in R, then the
family of spheres S(x, , 1/k) forms a countable basis in R. In fact, the set
of all these spheres is countable (being the sum of a countable family of
countable sets). I'urther, let G be an arbitrary open set and let a be any
point in G. By the definition of an open set an m > 0 can be found such
that the sphere S(x, 1/m) lies entirely in G. We now select a point x,,
from the set {x,} such that p(x, 1,,) < 1/3m. Then the sphere S(x,, ,1/2m)
contains the point » and is contained in S(x, 1/m) and consequently iu
G also. By virtue of Theorem 3 it follows from this that the spheres
S(x,, 1/k) form a basis in R.

By virtue of this theorem, the examples introduced above (§ 9) of
separable spaces are at the same time examples of spaces with countable
basis.

We say that a system of sets )/, is a covering of the space R if UM, = R.
A\ covering consisting of open (closed) sets will be called an open (closed)
covering.

TueoreMm 5. If R is a metric space with countable basis, then we can select
a countable covering from cach of its open coverings.

Proof. Let 10,} be an arbitrary open covering of R. Thus, every point
x € R is contained in some O, .

Let {G.} be a countable basis in R. Then for every « € R there exists a
G.(x) € {G,} and an « such that 2 € G,(x) € O,. The family of sets
G.(z) selected in this way is countable and covers R. If we choose for each
of the G,(x) one of the sets O, containing it, we obtain a countable sub-
covering of the covering {O,}.

It was already indicated above that the void set and the entire space R
are simultaneously open and closed. A space in which there are no other
sets which are simultaneously open and closed is said to be connected. The
real line R' is one of the simplest examples of a connected metric space.
But if we remove a finite set of points (for example, one point) from R',
the remaining space is no longer connected. The simplest example of a
space which is not connected is the space consisting of two points which
are at an arbitrary distance from one another.

(1) Let A7, be the set of all functions f in Ca, b] which satisfy a so-called
Lipschitz condition

[ft) —ft) | < K|ty — b2,

where K is a constant. The set M, is closed. It coincides with the closure
of the set of all differentiable functions which are such that | f'(f) | < K.
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(2) The set M = U,M, of all functions each of which satisfies a Lipschitz
condition for some K is not closed. Since M contains the set of all poly-
nomials, its closure is the entire space Cla, b].

(3) Let distance be defined in the space X in two different ways, i.e. let
there be given two distinct metries pi(z, y) and p:(z, ¥). The metrics p; and
p2 are said to be equivalent if there exist two positive constants a and b such
that a < [p(x, ¥)/pe(z, y)] < bforallz # yin R. If anarbitraryset M € X
is closed (open) in the sense of the metric p; , then it is closed (open) in the
sense of an arbitrary metric p» which is equivalent to p; .

(4) A number of important definitions and assertions concerning metric
spaces (for example, the definition of connectedness) do not make use of
the concept of metric itself but only of the concept of open (closed) set, or,
what is essentially the same, the concept of neighborhood. In particular, in
many questions the metric introduced in a metric space can be replaced by
any other metric which is equivalent to the initial metric. This point of
view leads naturally to the concept of topological space, which is a gen-
eralization of metric space.

A topological space is a set T of elements of an arbitrary nature (called
points of this space) some subsets of which are labeled open sets. In this
connection we assume that the following axioms are fulfilled:

1. T and the void set are open;

2. The sum of an arbitrary (finite or infinite) number and the inter-
section of an arbitrary finite number of open sets are open.

The sets T \_G, the complements of the open sets G with respect to 7,
are said to be closed. Axioms 1 and 2 imply the following two assertions.

1’. The void set and T are closed;

2’. The intersection of an arbitrary (finite or infinite) number and the
sum of an arbitrary finite number of closed sets are closed.

A neighborhood of the point € T is any open set containing x.

In a natural manner we introduce the concepts of contact point, limit
point, and closure: x € T is said to be a contact point of the set M if every
neighborhood of the point z contains at least one point of M; x is said to
be a limit point of the set M if every neighborhood of the point x contains
an infinite number of points of M. The totality of all contact points of the
set M 1is called the closure [M] of the set M.

It can easily be shown that closed sets (defined as the complements of
open sets), and only closed sets, satisfy the condition [M] = M. As also
in the case of a metric space [M] is the smallest closed set containing M.

Similarly, as a metric space is the pair: set of points and a metric, so a
topological space is the pair: set of points and a topology defined in this
space. To introduce a topology into 7 means to indicate in T those subsets
which are to be considered open in 7.
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ExampLEs. (4-a) By virtue of Theorem 1’ open sets in a metric space
satisfy Conditions 1 and 2 in the definition of a topological space. Thus,
every metric space can be considered as a topological space.

(4-b) Let T consist of two points @ and b and let the open sets in T be T,
the void set, and the set consisting of the single point . Axioms 1 and 2 are
fulfilled. The closed sets are T, the void set, and the set consisting of the
single point a. The closure of the set consisting of the point b is all of T'.

(5) A topological space T is said to be metrizable if a metric can be intro-
duced into the set T so that the sets which are open in the sense of this
metric coincide with the open sets of the initial topological space. The
space (4-b) is an example of a topological space which cannot be metrized.

(6) Although many fundamental concepts carry over from metric
spaces to topological spaces defined in (4), this concept turns out to be too
general in a number of cases. An important class of topological spaces
consists of those spaces which satisfy, in addition to Axioms 1 and 2, the
Hausdorff separation axiom:

3. Any two distinct points z and y of the space T have disjoint neigh-
borhoods.

A topological space satisfying this axiom is called a Hausdorff space.
Clearly, every metric space is a Hausdorff space. The space pointed out in
Example (4-b) does not satisfy the Hausdorff axiom.

§11. Open and closed sets on the real line

The structure of open and closed sets in an arbitrary metric space can
be very complicated. We shall now consider the simplest special case,
namely that of open and closed sets on the real line. In this case their com-
plete description does not present much of a problem and is given by the
following theorem.

THEOREM 1. Every open set on the real line ts the sum of a countable number
of disjoint intervals.

Proof. [We shall also include sets of the form (— «, »), (a, ®), (— », 8)
as intervals.] Let G be an open set and let « € G. Then by the definition
of an open set we can find some interval I which contains the point  and
belongs entirely to the set G. This interval can always be chosen so that
its endpoints are rational. Having taken for every point « € @ a correspond-
ing interval I, we obtain a covering of the set G by means of a denumersable
system of intervals (this system is denumerable because the set of all
intervals with rational endpoints is denumerable). Furthermore, we shall
say that the intervals I’ and I” (from the same covering) belong to one
class if there exists a finite chain of intervals:

I'=Il,12,"',1n=1”
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(belonging to our covering) such that I; intersects Iy (1 < k < n — 1).
It is clear that there will be a countable number of such classes. Further,
the union of all the intervals which belong to the same class obviously
again forms an interval U of the same type, and intervals corresponding
to distinct classes do not intersect. This completes the proof of the theorem.

Since closed sets are the complements of open sets, it follows that every
closed set on the real line is obtained by removing a finite or denumerable
number of open intervals on the real line.

The simplest examples of closed sets are segments, individual points,
and the sum of a finite number of such sets. We shall now consider a more
complicated example of a closed set on the real line, the so-called Cantor
set.

Let Fy be the closed interval [0, 1]. We remove the open interval (3, %)
from F, and denote the remaining closed set by F,. Then we remove the
open intervals (3, §) and (, §) from F; and denote the remaining closed set
(consisting of four closed intervals) by F,. From each of these four inter-
vals we remove the middle interval of length (1};)3, and so forth. If we con-
tinue this process, we obtain a decreasing sequence of closed sets F, . We
set F = N5 F, ; F is a closed set (since it is the intersection of the closed
sets F,). It is obtained from the closed interval [0, 1] by removing a de-
numerable number of open intervals. Let us consider the structure of the
set F. The points

(1) 0) 1) %) %) %) %’7 %’7 %7 :

which are the endpoints of the deleted intervals obviously belong to F.
However, the set F is not exhausted by these points. In fact, those points
of the closed interval [0, 1] which belong to the set F can be characterized
in the following manner. We shall write each of the numbersz,0 < z < 1,
in the triadic system:

r=a/3+ a4+ Fa/3 e,

where the numbers a, can assume the values 0, 1, and 2. As in the case of
the ordinary decimal expansion, some numbers allow two different develop-
ments. For example,

=34+ @+ @+ =3+ @ @+ D

It is easily verified that the set F contains those, and only those, numbers
z, 0 < x < 1, which can be written in at least one way in the form of a
triadic fraction such that the number 1 does not appear in the sequence
1,02, , 0., . Thus, to each point € F we can assign the sequence

(2) A, 02,y COn, ",
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where a, is 0 or 2. The set of all such sequences forms a set having the
power of the continuum. We can convince ourselves of this by assigning
to each sequence (2) the sequence

(2I) blybza"')bn)"'y

where b, = 0 if @, = 0 and b, = 1 if a, = 2. The sequence (2’) can be
considered as the development of a real number y, 0 < y < 1, in the form
of a dyadic fraction. We thus obtain a mapping of the set ' onto the entire
closed interval [0, 1]. This implies that F has the cardinal number of the
continuum. [The correspondence established between F and the closed
interval [0, 1] is single-valued but it is not one-to-one (because of the fact
that the same number can sometimes be formed from distinct fractions).
This implies that F has cardinal number not less than the cardinal number
of the continuum. But F is a subset of the closed interval [0, 1] and conse-
quently its cardinal number cannot be greater than that of the continuum.
(See §5.)] Since the set of points (1) is denumerable, these points cannot
exhaust all of F.

ExEercise. Prove directly that the point 1 belongs to the set F although
it is not an endpoint of a single one of the intervals deleted. Hint: The
point 1 divides the closed interval [0, 1] in the ratio 1:3. The closed interval
[0, 3] which remains after the first deletion is also divided in the ratio 1:3
by the point %, and so on.

The points (1) are said to be points of the first type of the set F and the
remaining points are said to be points of the second type.

ExEercise. Prove that the points of the first type form an everywhere
dense set in F.

We have shown that the set F has the cardinal number of the con-
tinuum, i.e. that it contains as many points as the entire closed interval
[0, 11.

It is interesting to compare this fact with the following result: the sum
of the lengths of all the deleted intervalsis3 + § + % + - - - ,i.e. exactly 1!

§12. Continuous mappings. Homeomorphism. Isometry

Let R = (X, p) and R’ = (Y, p’) be two metric spaces. The mapping f
of the space R into R’ is said to be continuous at the point zo € R if for
arbitrary ¢ > 0 a & > 0 can be found such that

P'lf(@), f(x0)] < e
for all x such that

p(.’l', 3‘0) < 4.

In other words, the mapping f is continuous at the point x, if an arbitrary
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neighborhood O(f(x,), €) of the point f(x,) contains a neighborhood O(z, , 8)
of the point z, whose image is contained in the interior of O(f(x,), €).

A mapping f is said to be continuous if it is continuous at each point of
the space R.

If R’ is the real line, then a continuous mapping of R into R’ is called a
continuous function on R.

As in the case of the mapping of arbitrary sets we shall say that fis a
mapping of R onto R’ if every element y € R’ has at least one inverse
image.

In analysis, together with the definition of the continuity of a function
“in terms of neighborhoods”, the definition of continuity “in terms of
sequences”, which is equivalent to it, is widely used. The situation is
analogous also in the case of continuous mappings of arbitrary metric
spaces.

THEOREM 1. A necessary and sufficient condition that the mapping f be
continuous at the point x s that for every sequence {x,} which converges to
the corresponding sequence {f(x.)} convergetoy = f(x).

Proof. The necessity is obvious. We shall prove the sufficiency of this
condition. If the mapping f is not continuous at the point z, there exists a
neighborhood O(y, €) of the point y = f(x) such that an arbitrary O(z, §)
contains points whose images do not belong to O(y, €). Setting 5, = 1/n
(n=1,2 ---), we select in each sphere O(zx, 1/n) a point z, such that
f(x.) € O(y, €). Then x, — x but the sequence {f(x,)} does not converge to
f(x), i.e. the condition of the theorem is not satisfied, which was to be
proved.

THEOREM 2. A necessary and sufficient condition that the mapping f of the
space R onto R’ be continuous s that the inverse tmage of each closed set in R’
be closed.

Proof. Necessity. Let M C R be the complete inverse image of the closed
set M’ € R’. We shall prove that M is closed. If x € [M], there exists a
sequence {z,} of points in M which converges to z. But then, by Theorem 1,
the sequence {f(x,)} converges to f(x). Since f(x,) € M’ and M’ is closed,
we have f(x) € M’; consequently x € M, which was to be proved.

Sufficiency. Let = be an arbitrary point in B, y = f(z), and let O(y, )
be an arbitrary neighborhood of y. The set R’ \ O(y, ¢) is closed (since it
is the complement of an open set). By assumption, F = f (R’ \_0(y, ¢))
is closed, and moreover, z ¢ F. Thus, R \_F is open and ¢ € R \ F;
consequently, there is a neighborhood O(z, &) of the point  which is con-
tained in R \_F. If z € O(z, 9), then f(2) € O(y, ¢), i.e. f is continuous,
which was to be proved.

REeEMARK. The image of a closed set under a continuous mapping is not
necessarily closed as is shown by the following example: map the half-open
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interval [0, 1) anto a circle of the same length. The set [}, 1) which is closed
in [0, 1), goes over under this mapping into a set which is not closed (see
Fig. 8).

Since in the case of a mapping “onto” the inverse image of the comple-
ment equals the complement of the inverse image, the following theorem
which is the dual of Theorem 2 is valid.

THEOREM 2. A necessary and sufficient condition that the mapping f of the
space R onto R’ be continuous 1s that the inverse image of each open set in R’
be open.

The following theorem which is the analogue of the well-known theorem
from analysis on the continuity of a composite function is valid for con-
tinuous mappings.

TraEOREM 3. If R, R, R” are metric spaces and f and ¢ are continuous
mappings of R into R’ and R’ into R”, respectively, then the mapping z =
o(f(x)) of the space R into R” is continuous.

The proof is carried out exactly as for real-valued functions.

The mapping f is said to be a homeomorphism if it is one-to-one and
bicontinuous (i.e. both f and the inverse mapping f~* are continuous).

The spaces R and R’ are said to be homeomorphic if a homeomorphic
correspondence can be established between them.

It is easy to see that two arbitrary intervals are homeomorphie, that an
arbitrary open interval is homeomorphic to R', and so forth.

It follows from Theorems 2 and 2’ of this section that a necessary and
sufficient condition that a one-to-one mapping be a homeomorphism is that
the closed (open) sets correspond to closed (open) sets.

This implies that a necessary and sufficient condition that a one-to-one
mapping ¢ be a homeomorphism is that the equality

o((M]) = [o(a1))]

hold for arbitrary M. (This follows from the fact that [M] is the intersec-
tion of all closed sets which contain M, i.e. it is the minimal closed set
which contains M.)

ExampLE. Consider the spaces R = (D", p) and R," = (D", po) (see §8,
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Examples 3 and 4). The following inequalities hold for the mapping which
assigns to an element in R" with coordinates x;, z, ..., x» the element in
R,™ with the same coordinates:

po(fl:, ?/) < p(l’, y) < n%PO(x) y)

Consequently an arbitrary e-neighborhood of the point 2 of the space R”
contains a §-neighborhood of the same point x considered as an element of
the space R,", and conversely. It follows from this that our mapping of R"
onto R," is a homeomorphism.
An important special case of a homeomorphism is an isometric mapping.
We say that a one-to-one mapping y = f(x) of a metric space R onto a
metric space R’ is isometric if

p(x1, T2) = p'[f(x1), f(x2)]

for arbitrary x;, @2 € R. The spaces R and R’ themselves, between which
an isometric correspondence can be established, are said to be isometric.

The isometry of two spaces R and R’ means that the metric relations
between their elements are the same and that they can differ only in the
nature of their elements, which is unessential. In the sequel we shall con-
sider two isometric spaces simply as identical.

(1) The concept of continuity of a mapping can be defined not only for
metric but also for arbitrary topological spaces. The mapping f of the
topological space T into the topological space T” is said to be continuous
at the point a, if for arbitrary neighborhood O(y,) of the point y, = f(x)
there exists a neighborhood O(x,) of the point x, such that f(0(xy)) < O(yo).

Theorems 2 and 3 carry over automatically to continuous mappings of
topological spaces.

§13. Complete metric spaces

From the very beginning of our study of mathematical analysis we are
convinced of the important role in analysis that is played by the property
of completeness of the real line, i.e. the fact that every fundamental se-
quence of real numbers converges to some limit. The real line represents
the simplest example. of the so-called complete metric spaces whose basic
properties we shall consider in this section.

We shall call a sequence {z,} of points of a metric space R a fundamental
sequence if it satisfies the Cauchy criterion, i.e. if for arbitrary ¢ > 0 there
exists an N, such that p(x, , Xov) < efor alln’ > N.,n"” > N..

It follows directly from the triangle axiom that every convergent sequence
is fundamental. In fact, if {x,} converges to x, then for given ¢ > 0 it is
possible to find a natural number N, such that p(x,, ) < ¢/2 for all
n 2 N¢. Then p(x, , 2n) < p(@nr, 2) + plx,r, ) < € for arbitrary
n > Nc.andn” > N,.
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DeriniTioN 1. If every fundamental sequence in the space R converges
to an element in R, R is said to be complete.

Exampres. All the spaces considered in §8, with the exception of the
one given in Example 7, are complete. In fact:

1. In the space consisting of isolated points (Example 1, §8) only those
sequences in which there is a repetition of some point, beginning with some
index, are fundamental. Clearly, every such sequence converges, i.e. this
space is complete.

2. The completeness of the space R' of real numbers is known from
analysis.

3. The completeness of the Euclidean space R™ follows directly from the
completeness of R'. In fact, let {x;} be a fundamental sequence; this means
that for every ¢ > 0 an N = N, can be found such that

ZIZ‘-I (xp(k) _ .’Cq(k))2 < 62
for all p, g greater than N. Then foreachk = 1,2, -+, n
2 = 2| <o

for all p, ¢ > N, ie. {£,%} is a fundamental sequence of real numbers.
We set

2® = limp.e 2,

and

Then it is obvious that
liMpae T, = .

4. The completeness of the space R," is proved in an exactly analogous
manner.

5. We shall prove the completeness of the space Cla, b]. Let {z.(f)} be a
fundamental sequence in C[a, b]. This means that for each ¢ > 0 there
exists an N such that | z,(f) — 2.(f) | < eforn,m > Nandallt,a <t < b.
This implies that the sequence {z,(f)} converges uniformly and that its
limit is a continuous function x(t), where

| 2.(t) — 2(t) | < €

for all t and for all n larger than some N; this means that {z,(f)} converges
to z(f) in the sense of the metric of the space Cla, b].
6. The space I, . Let {z‘™}, where

(n) (n) (n) (n)
x =(a;1",x2 , e, X ’...)’

be a fundamental sequence in [, .
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For arbitrary ¢ > 0 an N can be found such that
1) ™, ™) = @™ - n™)? <e for n,m > N.
It follows from this that for arbitrary k&
@™ — ™) <

ie. for each k the sequence of real numbers {x;'”} converges. Set
lim,o 2:'” = 2 . Denote the sequence (z;, x2, -+, T, -+ ) by z. We
must show that

a) Doy < o b) limu.w p(x™, z) = 0.
To this end we shall write inequality (1) in the form
E;c.;l (ka - ka(m>)2
= TE @™ = m ™Y e @™ — 2 ™) < e

(M arbitrary). Since each of these two sums is nonnegative, each of them
is less than e. Consequently

P @™ — 2™ < e
If we fix m in this inequality and pass to the limit as n — «, we obtain
Zicu-l (@ — xk(m))2 <e

Since this inequality is valid for arbitrary M, we can pass to the limit as
M — «. We then obtain

S @ — a™) < e

The inequality thus obtained and the convergence of the series
> a2 ™% imply that the series Y r x° converges; consequently  is an
element in I, . Further, since ¢ is arbitrarily small, this inequality means
that

Mo p(@™, @) = 1M { 2ot (2 — ™)} = 0,
(n)

le.z’” — x.
7. It is easy to convince ourselves of the fact that the space C*[a, b] is
not complete. For example, the sequence of continuous functions

on(t) = arctan nit (-1<5t<1

is fundamental, but it does not converge to any continuous function (it
converges in the sense of mean square deviation to the discontinuous func-
tion which is equal to —#/2 fort < 0, »/2 for ¢ > 0, and O for ¢t = 0).

ExErciskE. Prove that the space cf all bounded sequences (Example 8,
§8) is complete.
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In analysis the so-called lemma on nested segments is widely used. In the
theory of metric spaces an analogous role is played by the following theorem
which is called the principle of nested spheres.

TaEOREM 1. A necessary and sufficient condition that the metric space R be
complete s that every sequence of closed nested spheres in R with radii tending
to zero have nonvoid intersection.

Proof. Necessity. Assume the space R is complete and let S;, Sz, S;, - -
be a sequence of closed nested spheres. Let d, be the diameter of the
sphere S, . By hypothesis 'm,.. d. = 0. Denote the center of the sphere
S, by z, . The sequence {z,} is fundamental. In fact, if m > n, then ob-
viously p(x, , 2») < d, . Since R is complete, lim,., x, exists. If we set

T = liMp.n s,

then x € N,S, . In fact, the sphere S, contains all the points of the given
sequence with the exception perhaps of the points x; , x2, - - -, @n—1 . Thus,
x is a limit point of each sphere S, . But since S, is a closed set, we have
that € S, for all n.

Sufficiency. To prove the sufficiency we shall show that if the space R is
not complete, i.e. if there exists a fundamental sequence in R which does
not have a limit, then it is possible to construct a sequeruce of closed nested
spheres in R whose diameters tend to zero and whose intersection is void.
Let {z,} be a fundamental sequence of points in R which does not have a
limit. We shall construct a sequence of closed spheres S, in the following
way. Let n; be such that p(x,, , z») < % for all m > n;. Denote by S, the
sphere of radius 1 and center at z,., . Further, let n, > n; be such that
p(Zny , Tm) < % for all m > ny. Denote by S, the sphere of radius 3 with
center z,, . Since by assumption p(x., , .,) < %, we have S; < S;. Now
let ng > ne be such that p(z.,, ©.) < % for all m > n; and let S; be a
sphere of radius  with center z.,, and so forth. If we continue this con-
struction we obtain a sequence of closed nested spheres {S,}, where S,
has radius (). This sequence of spheres has void intersection; in fact, if
r € NiS;, then z = lim,.. =, . As a matter of fact the sphere S, contains
all points x, beginning with x,, and consequently p(z, x.) < (3)* for all
n > ni . But by assumption the sequence {x,} does not have a limit. There-
fore NS, = 6.

If the space R is not complete, it is always possible to embed it in an
entirely definite manner in a complete space.

DeFiniTION 2. Let R be an arbitrary metric space. A complete metric
space R* is said to be the completion of the space R if: 1) R is a subspace
of the space R*; and 2) R is everywhere dense in R*, i.e. [R] = R*. (Here
[R] naturally denotes the closure of the space R in R*.)

For example, the space of all real numbers is the completion of the space
of rationals.
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TraroreM 2. Frery metric space has a completion and all of its completions
arc tsometric.

Proof. We begin by proving uniqueness. It is necessary to prove that if
I* and R** are two completions of the space R, then they are isometrice, i.e.
there is a one-to-one mapping ¢ of the space R* onto R** such that 1)
e(x) = xzforallx @ R;and 2) if 2* < a** and y* <> y**, then p(z*, y*) =
p(x**, y**).

Such a mapping ¢ is defined in the following way. Let 2* be an arbitrary
point of R*. Then, by the definition of completion, there exists a sequence
{x,} of points in B which converges to z*. But the sequence {x,} can be
assumed to belong also to R**. Since R** is complete, {z.} converges in B**
to some point 2**. We set p(¢*) = z**. It is clear that this correspondence
is one-to-one and does not depend on the choice of the sequence {z,} which
converges to the point a*. This is then the isometric mapping sought. In
fact, by construction we have ¢(x) = x for all x € R. Furthermore, if we
let

{x.} — 2* in R* and {x,} — o** in R**,
fy.} — y* in R* and {y.} — y** in R**,
then

p(a*, y*) = liMn.e p(2s , Yn)
and at the same time
p(x**, y**) = liMpaw p(Tn , Yn)-
Consequently
p(a*, y*) = p(@**, y**).

We shall now prove the existence of the completion. The idea involved in
the proof is the same as that in the so-called Cantor theory of real numbers.
The situation here is essentially even simpler than in the theory of real
numbers since there it is required further that one define all the arithmetic
operations for the newly introduced objeets—the irrational numbers.

Let R be an arbitrary metric space. We shall say that two fundamental
sequences {x,} and {z,’} in I are equivalent (denoting this by {x.} ~ {z.'})
if limyuae p(xn, ¥.) = 0. This equivalence relation is reflexive, symmetric
and transitive. It follows from this that all fundamental sequences which
can be constructed from points of the space R are partitioned into equiva-
lence classes of sequences. We shall now define the space R* in the following
manner. The points of R* will be all possible equivalence classes of funda-
mental sequences and the distance between points in R* will be defined in
the following way. Let a* and y* be two such classes. We choose one repre-
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sentative from each of these two classes, i.e. we select some fundamental
sequence {r,} and {y.} from each, respectively. We set

2 p(x*, y*) = limpse p(Tn , Yn).

We shall prove the correctness of this definition of distance, i.e. we shall
show that the limit (2) exists and does not depend on the choice of the
representatives {z,} € z* and {y.} € y*.

Since the sequemnces {x,} and {y.} are fundamental, with the aid of the
triangle axiom we have for all sufficiently large n’, n”:

| p(@ns 5 Ynr) = p(@nrr , Ynrr) |
= | p@nr , Yn) — @y Yurr) + p@nr s Yurr) — P@ner y Yurr) |
< | p@n s Yn) = p@ne s Ynr) |+ | p@nr 5 Ynrr) — P, Yore) |
L pWn , Ynr) + p(@nr , Tor) < €/2 + €/2 = e

Thus, the sequence of real numbers s, = p(z,, ¥.) satisfies the Cauchy
criterion and consequently it has a limit. It remains to prove that this
limit does not depend on the choice of {x,} € z* and {y.} € y*. Let

{za}, {2/} € @* and {ya}, {va'} € ¥*
Now
{2} ~ {z} and  {ya} ~ {ya'}

imply that
| p(xn , yn) — P4, ya')

= | p(Zay Y) — p(xa', Yu) + P&, Yn) — o4, Ya')]

< | p@n, yn) — p@d, ya)| + | p(@n’, ya) — p(@a’, yu')l

< p@n, 24") + p(Yn, yu') — 0,
ie.
liMpsw p(Tn , Yn) = liMasw p(x, ¥a').

We shall now show that the metric space axioms are fulfilled in R*.

Axiom 1 follows directly from the definition of equivalence of funda-
mental sequences.

Axiom 2 is obvious.

We shall now verify the triangle axiom. Since the triangle axiom is satis-
fied in the initial space R, we have

p(Zn, 2) < p(xn , yn) + P(yn ’ Zn).
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Passing to the limit as n — «, we obtain
liMsw p(Tn 5 22) < liMpsw p(Tn , Yn) + liMpsw p(Yn , 22),
ie.
p(x, 2) < oz, y) + oy, 2).
We shall now prove that R* is the completion of the space R. (We use the
keeping in mind that all completions of the space R are isometric.)

To each point £ € R there corresponds some equivalence class of funda-
mental sequences, namely the totality of all sequences which converge to
the point x.

We have:
if

T = liMysw T, and ¥ = limpsw Yn,
then
p(@, y) = liMnsw p(Tn , Yn)-

Consequently, letting the corresponding class of fundamental sequences
converging to x correspond to each point x we embed R isometrically in the
space R*.

In the sequel we shall not have to distinguish between the space R itself
and its image in R* (i.e. the totality of all equivalence classes of convergent
sequences) and we can consider R to be a subset of R*.

We shall now show that R is everywhere dense in R*. In fact, let z*
be a point in R* and let ¢ > 0 be arbitrary. We select a representative
in x*, i.e. we choose a fundamental sequence {x,}. Let N be such that
o(xy , Tm) < eforall n, m > N. Then we have

P(xn , x*) = limMmse P(xn ’ xm) < g

l.e. an arbitrary neighborhood of the point z* contains a point of B. Thus
we have [R] = R*.

It remains to be proved that the space R* is complete. We note, first of
all, that by the construction of R* an arbitrary fundamental sequence

(3) xl’xz’...’:vn,...

consisting of points belonging to R, converges in R* to some point, namely
to the point x* € R*, defined by the sequence (3). Further, since R is dense
in R*, then for an arbitrary fundamental sequence z,*, xo*, - - - , 2%, - -+ of
points in B* we can construct an equivalent sequence &1 , &2, «+* , &y, -
consisting of points belonging to R. To do this it is sufficient to take for
2, any point in R such that p(z, , z.*) < 1/n.
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The sequence {z,} thus constructed will be fundamental and by what was
proved above it will converge to some point z* € R*. But then the sequence
{x.*} also converges to x*. This proves the theorem completely.

§14. Principle of contraction mappings and its applications

As examples of the applications of the concept of completeness we shall
consider the so-called contraction mappings which form a useful technique
for the proof of various existence and uniqueness theorems (for example,
in the theory of differential equations).

Let R be an arbitrary metric space. A mapping 4 of the space R into
itself is said to be a contraction if there exists a number @ < 1 such that

@ p(Az, Ay) < ap(z, y)

for.any two points z, y € R. Every contraction mapping is continuous. In
fact, if z, — z, then, by virtue of (1), we also have 4z, — Az.

TuEOREM (PriNciPLE OF CONTRACTION MAapPINGS). Every contraction
mapping defined in a complete metric space R has one and only one fixved
point (i.e. the equation Ax = x has one and only one solution).

Proof. Let z, be an arbitrary point in R. Set x; = Ay, 2 = Az = A’
and in general let z, = Ax,_; = A"xv,. We shall show that the sequence
{z,} is fundamental. In fact,

p(@n , Tm) = p(A"T0, A™20) < &"p(20 , Tmen)
S a"{p(xo ) xl) + p(xl ) xﬁ) + -+ p(xm—n—l ) xm—n)}
<o, 2l +at o + 0+ " < atplw, 2){1/(1 - @)

Since @ < 1, this quantity is arbitrarily small for sufficiently large n. Since
R is complete, lim,.. z, exists. We set t = lim,.. 2, . Then by virtue of the
continuity of the mapping A, Az = 4 liMu,e & = liMase A%, = lim,.s
Tnt1 = X.

Thus, the existence of a fixed point is proved. We shall now prove its
uniqueness. If Ax = z, Ay = y, then p(z, y) < ap(z, y), where & < 1;
this implies that p(z, y) = 0,i.e.2 = y.

The principle of contraction mappings can be applied to the proof of the
existence and uniqueness of solutions obtained by the method of successive
approximations. We shall consider the following simple examples.

1. y = f(z), where f(z) is a function defined on the closed interval [a, b]
satisfying the Lipschitz condition

[f@2) — fx) | £ K |22 — w1,

with K < 1, and mapping the closed interval [a, b] into itself. Then f is a
contraction mapping and according to the theorem proved above the
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sequence Ty, 1 = f(xy), 2 = f(z1), - -+ converges to the single root of the
equation z = f(x).

In particular, the condition of contraction is fulfilled if | f'(z)] < K < 1
on the closed interval [a, b].

As an illustration, Figs. 9 and 10 indicate the course of the successive
approximations in the case 0 < f'(z) < 1 and in the case —1 < f'(z) < 0.

In the case where we are dealing with an equation of the form F(z) = 0,
where F(a) < 0, F(b) > 0and 0 < K; < F'(z) < K, on [a, b], a widely
used method for finding its root amounts to setting f(z) = © — AF(x)
and seeking a solution of the equation z = f(x), which is equivalent
to F(x) = 0. Infact, since f'(x) = 1 — AF'(z),1 —NK, < f'(z) <1 — \K;
and it is not difficult to choose A so that we can apply the method of suc-
cessive approximations.
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2. Let us consider the mapping y = Az of the space R” into itself given
by the system of linear equations

Y = Z?Ll Qa; ;% ; + b,‘ (z = ]., 2, crey, n)

If Az is a contraction mapping, we can apply the method of successive
approximations to the solution of the equation z = Ax.

Under what conditions then is the mapping A a contraction? The answer
to this question depends on the choice of the metric in B". (It is easy to see
that with the metric (b) R is a metric space.)

a) p(x,y) = max {|z; — y:|; 1 < 7 < n};
p(, ¥") = max; |y — y | = max:| 2; aif(z/ — =)
< max; 3 ;| a2/ — 2 | < max; 3| ai;| max; |z/ — z;” |

= max; z:j l a;j l p(x', x”)‘

This yields
2 2imlai| La<1
as the condition of contraction.

b) p@,y) = iz —yil;

oy, y") = 2ilyd —yl | = 2| 25 aiixi — =)
< 2 2ilasllsf — | < max; 2oi | aii| o(@, 2”).

This yields the following condition of contraction:

3) Z;Iafjl§a<l.
c) p(z, y) = {20 (@i — y)'}.
Here

P,y = i {Xiau(l — 3 < i X5 e, 2)
on the basis of the Schwarz inequality.
Then

4) Zz‘ Zi e <a<l1

is the contraction condition.
Thus, in the case where one of the Conditions (2)—(4) is fulfilled there
exists one and only one point & = (21, 22, - - -, 2,) such that

zi = Z;;x a:x; + bi,
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where the successive approximations to this solution have the form:

x(O) = (xloy x20’ T, xno);
2 = (@i, 2y -, @);
x(k) = (xlk’ x2k’ ) xnk))

where
r* = E;;l aix ™+ b
(Consequently any one of the Conditions (2)-(4) implies that

an — 1 ap e O
az azx — 1 Gz #0.)
Qn1 Qn2 Qnn — 1 |

Each of the Conditions (2)-(4) is sufficient in order that the mapping
y = Ax be a contraction. As concerns Condition (2) it could have been
proved that it is also necessary in order that the mapping y = Ax be a
contraction (in the sense of the metric a)).

None of the Conditions (2)-(4) is necessary for the application of the
method of successive approximations. Examples can be constructed in
which any one of these conditions is fulfilled but the other two are not.

If | a;;| < 1/n (in this case all three conditions are fulfilled), then the
method of successive approximations is applicable.

If |a;j| = 1/n (in this case all three sums equal 1), it is easy to see
that the method of successive approximations is not applicable.

§15. Applications of the principle of contraction mappings in analysis

In the preceding section there were given some of the simplest examples
of the application of the principle of contraction mappings in one- and
n-dimensional spaces. However, the most essential applications for analysis
of the principle of contraction mappings are in infinite-dimensional func-
tion spaces. Further on we shall show how with the aid of this principle
we can obtain theorems on the existence and uniqueness of solutions for
some types of differential and integral equations.

I. Let

1 dy/dz = f(z, y)

be a given differential equation with the initial condition

2 y(xo) = Yo,
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where f(z, y) is defined and continuous in some plane region G which con-
tains the point (x, , 70) and satisfies a Lipschitz condition with respect to y:

if,y) — fQ, y)| S M|y =yl

We shall prove that then ou some closed interval |2 — x| < d there
exists a unique solution y = ¢(x) of the equation (1) satisfying the initial
condition (2) (Picard’s theorem).

Equation (1) together with the initial condition (2) is equivalent to the
integral equation

®) o(@) = o+ f "5 o)) .

Since the function f(z, y) is continuous, we have | f(z, y)|] < k in some
region G’ C @ which contains the point (zo, y). Now we select a d > 0
such that the following conditions are fulfilled:

1) (z,y9) € Gif |[x — 2| <d, |y — yo| < kd;
2) Md < 1.

Denote by C* the space of continuous functions ¢* which are defined
on the closed interval | 2 — x| < d and are such that | ¢*(x) — yo | < kd
with the metric p(o; , 02) = max, | ¢i(z) — e2(@)].

It is easy to see that C* is a complete space. (This follows, for instance,
from the fact that a closed subset of a complete space is a complete space.)
Let us consider the mapping ¢ = A¢ defined by the formula

V@) = vt [ 16 00) a

where | x — ;| < d. This is a contraction mapping of the complete space
C* into itself. In fact,let ¢ € C*, |2 — a9 | < d. Then

[ 10,00 at

[y@) — yo| = < Id

and consequently A (C*) C C*. Moreover, we have

@) = 0a@) | < [ 15 ex®) — 5, a0 |

< Md max; | g1(x) — o2(2) |.

Since Md < 1, the mapping A4 is a contraction.

From this it follows that the operator equation ¢ = A¢ (and consequently
equation (3) also) has one and only one solution.

II. Let
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(4) ¢il(x) = fi(xO ) §01(x), T ¢n(‘r)); 1= L2, -,
be a given system of differential equations with initial conditions

(5) @i(re) = Yoi ; i=1,2 -, n;
where the functions fi:(a, 1, ---, y.) are defined and continuous in some
region G of the space R"*" such that G contains the point (o, %o1, = * - , Yon)
and satisfy a Lipschitz condition

|fi(x’ yl(l)’ T yn(l)) - .fi(x’ .1/1(2), T y"(2))|

< M max{|y" — y® ;1 <4 < n}.

We shall prove that then on some closed interval |2 — x| < d there
exists one and only one system of solutions y; = ¢.(x) satisfying system (4)
and the initial conditions (5).

System (4) together with the initial conditions (5) is equivalent to the
system of integral equations

(6) ei(®) = yoi + fx Jilt, @), -, ea®) dt; i=1, -+ n

Since the function f; is continuous in some region @’ € G containing the
point (o, Yo, - - - , You), the inequalities | fi(x, 1, -~ -, y2)| < K, where
K is a constant, are fulfilled.

We now choose d > 0 to satisfy the following conditions:

1) (’C,Z‘/l»,?/n) EGlfllc_,vO! dellh"‘ym' < Kd,
2) Md < 1.

We now consider the space C,* whose elements are ordered systems
@ = (pi(x), -+, ea(x)) consisting of n functions which are defined and
continuous for all  for which | 2 — 2 | < d and such that | p;(x) — yo: | <
Kd, with the metric

p(@, ¥) = max., :|ei(x) — i) |.

The mapping ¢ = Ap, given by the system of integral equations

W@ = ot [ @), o) d

is a contraction mapping of the complete space C,* into itself. In fact,
V0@ — @ = [ Gt a® e ~ f6a®, e d
o

and consequently

max,, ; [¢:" (@) — ¢:? @) < Md max,, ; | ¢." @) — o (2)|.
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Since Md < 1, A is a contraction mapping.

It follows that the operator equation @ = A@ has one and only one solu-
tion.

III. We shall now apply the method of contraction mappings to the proof
of the existence and uniqueness of the solution of the Fredholm nonhomo-
geneous linear integral equation of the second kind:

b
@) @) = f K(z, 9)i@) dy + (),

where K(z, y) (the so-called kernel) and o(x) are given functions, f(z) is
the function sought, and X is an arbitrary parameter.

We shall see that our method is applicable only in the case of sufficiently
small values of the parameter A.

We shall assume that K(z, y) and ¢(x) are continuous for ¢ < x < b;
a < y < b and consequently that | K(z, y)| < M. Consider the mapping
g = Af, ie. g&) = M[2 Kz, )f(y) dy + o(x), of the complete space
Cla, b] into itself. We obtain

p(g1, g2) = max | gi(x) — go() | < [N | M® — a) max | fi — f2].

Consequently, the mapping 4 is a contraction for [A | < 1/M(b — a).

From this, on the basis of the principle of contraction mappings, we can
conclude that the Fredholm equation has a unique continuous solution for
every |A| < 1/M(b — a). The successive approximations to this solution:
fol@), fix), « -+ , falz), - - - have the form

fu@) = [ K@, fas®) dy + o).

IV. This method is applicable also in the case of nonlinear equations of
the form

b
® 1@ = [ K@y, f6) &y + 0@,
where K and ¢ are continuous. Furthermore K satisfies the condition
| K(.”L, Y, 21) - K(x’ Y, 22)[ S M [ 2 — zZI

for |A| < 1/M(b — a) since here again for the mapping ¢ = Af of the
complete space C[a, b] into itself given by the formula

b
gle) = A f K, y, f(y) dy + olx)

the inequality



50 METRIC SPACES [cH. 1

max | gi() — go(x) | < [N | M (b — @) max | fi — f2|

holds.
V. Consider the Volterra type integral equation

© 1@ = [ K@ ) i6) dy + o)

which differs from an equation of Fredholm type in that the upper limit
in the integral is the variable quantity z. This equation can be considered
as a particular case of the Fredholm equation if we complete the definition
of the function K(z, y) for y > z by means of the equation K(z, y) = 0
(fory > x).

In contrast to the Fredholm integral equation for which we were required
to limit ourselves to small values of the parameter A the principle of con-
traction mappings (and the method of successive approximations based
on it) is applicable to Volterra equations for all values of the parameter
\. We note first of all that the principle of contraction mappings can be
generalized in the following manner: #f A is a conttnuous mapping of a
complete metric space R into itself such that the mapping A" is a contraction
for some n, then the equation

Az =z

has one and only one solution.

In fact, if we take an arbitrary point # € R and consider the sequence
A*x (k = 0,1, 2, ---), a repetition of the argument introduced in §14
yields the convergence of this sequence. Let 2 = limx_., A*"2z. Then
Azy = . Infact, Azy = lime_. A*"Az. Since the mapping A" is a contrac-
tion, we have

p(A" Az, A¥z) < ap(A* "4z, A® V) < --- < ofp(dz, 7).
Consequently,
limgo p(A*"Az, A*"2) = 0,

ie. Axy = xo.
Now consider the mapping

1@ = [ K@ 910 dy + @) = 47,

If f; and f. are two continuous functions defined on the closed interval
[a, b], then

| 450 — 4@ | = |x [ K pli6) ~ 50 dy| <2 MmGa = o),
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(M = max | K(z, y)|, m = max (| fi — f21)),
| A%fi(z) — A%(2) | < N Mm(z — @)*/2, -+,
| A%i(x) — A7) < Mm@z — a)"/n! < MMm(b — a)*/n!
For an arbitrary value of A the number » can be chosen so large that
NG —a)"/nl <1,

i.e. the mapping A" will be a contraction. Consequently, the Volterra
equation (9) has a solution for arbitrary A and this solution is unique.

§16. Compact sets in metric spaces

A set M in the metric space R is said to be compact if every sequence of
elements in M contains a subsequence which converges to some x € R.

Thus, for example, by virtue of the Bolzano-Weierstrass theorem every
bounded set on the real line is compact. Other examples of compact sets
will be given below. It is clear that an arbitrary subset of a compact set is
compact.

The concept of total boundedness which we shall now introduce is
closely related to the concept of compactness.

Let M be any set in the metric space R and let e be a positive number.
The set 4 in R is said to be an e-net with respect to M if for an arbitrary
point x € M at least one point @ € A can be found such that

ola, ) < e

For example, the lattice points form a 2! net in the plane. A subset M of
R is said to be totally bounded if R contains a finite e-net with respect to M
for every € > 0. It is clear that a totally bounded set is bounded since if an
e-net A can be found for M consisting of a finite number of points, then A is
bounded and since the diameter of M does not exceed diameter A + 2¢, M
is also bounded; as Example 2 below will show, the converse is not true in
general.

The following obvious remark is often useful: if the set M is totally
bounded, then its closure [M] is totally bounded.

It follows at once from the definition of total boundedness that every
totally bounded metric space R with an infinite number of points is sepa-
rable. In fact, construct a finite (1/n)-net in R for every n. Their sum over
all n is a denumerable set which is everywhere dense in R.

ExampLEs. 1. For subsets of Euclidean n-space total boundedness coin-
cides with ordinary boundedness, i.e. with the possibility of enclosing a
given set in the interior of some sufficiently large cube. In fact, if such a
cube is subdivided into cubicles with diagonal of length e/n?, then the ver-
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tices of these cubicles will form a finite e-net in the initial cube and there-
fore also in an arbitrary set which lies in the interior of this cube.

2. The unit sphere S in the space I; is an example of a bounded set which
is not totally bounded. In fact, consider in S points of the form

¢ = (]) 0; Oy ))
Cy = (O) 1) 0: )y

The distance between any two such points ¢, and e,, (m = n) is 2%, From
this it is clear that in S there can be no finite e-net for any ¢ < 27°.

3. Consider in I, the set T of points + = (a1, 23, -+, Z,, ---) which
satisfy the following conditions:
,‘Tll—<—]) ,xZIS%y”') |x"|_<..(%)n)”"

This set is called the fundamental parallelopiped in the space I, . It is an
cxample of an infinite-dimensional totally bounded set. To prove that
this set is totally bounded we proceed as follows.

Let € > 0 he given. Choose n so that (3)" < ¢/2. Associate with each
point

(1) .Tr=(."l71,.772,"',.7?,,,"')
in II the point
(2) 33*=(3'1,372,"‘,3',,,0,0, )

from the same set. Then we have
p(x, %) = (L ) < (D 1/49 < 3" < ¢/2.

The subset, 11* of points of the form (2) of II is totally bounded (since it is
a bounded set in n-dimensional space). We choose a finite (¢/2)-net in IT*.
It is clear that it will be at the same time an e-net for I1.

The following theorem establishes the interrelation among the concepts
of compactness, completeness, and total boundedness.

THrorEM 1. A necessary and sufficient condition that a subset M of a com-
plete metric space R be compact vs that M be totally bounded.

Proof. Necessity. We shall assume that M is not totally bounded, i.e.
we shall assume that for some ¢ > 0 a finite e-net cannot he found in M.
We take an arbitrary point a; in A7, Sinee, by assumption, there is no finite
e-net in A, a point x» ¢ A can be found such that p(x; , 22) > e Further,
thereexistsa pointay € A such that p(ay, r3) > eand p(as, 23) > € (otherwise
the points 2y and a2 would form an e-net in M), and so on; continuing this
process we construet a sequence &y, xy, -+, X, , -+ of points in R which
satisfy the condition p(v, , x.) 2> e for m 5 n. It is clear that it is impos-

sible to seleet any convergent subsequence from such a sequence.
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Sufficiency. Let R be complete and let 4 be totally bounded. We shall
prove that in M we can select a convergent subsecquence from every se-
quence. Let {z.} be a sequence of points in 3. Set

a=1e=23% - e=1/k -

L

and construct for every e a corresponding finite ¢-net in M :
k (k) (k)
a®, a®, ) a,
Describe about each of the points which form a l-net in M a sphere of
radius 1. Since these spheres cover all of M and are finite in number, at

least one of them, let us call it S, contains an infinite subsequence 2,

220, -+ 2,0, -+ of the sequence {z,}. Further, about each of the points
which form a }-net in R we describe a sphere of radius 4. Since the number

of these spheres is again finite, at least one of them, let us call it S, , con-

: . . 2 2 2
tains an infinite subsequence %, 2.®, -~ , ,®, --- of the sequence
{z,}. Further, we find a sphere S; of radius } coutaining an infinite
8 3 3 2 3
subsequence x;”, 2,% -+ ,?, -+ of the sequence {r,®}, and so forth.
Now we choose from the sequences
W w
T 5 %2, y Tn 7y )
@ o @
Ty ) T2, »y Tn ’
the ‘““diagonal’’ subsequence
(1 2) (n)
o™ e® e,

this subsequence is fundamental because all its terms begiuning with
2. lie in the interior of the sphere S, of radius 1/n. Since the space R is
complete, this subsequence has a limit. This completes the proof of the
theorem.

The following generalization of Theorem 1 is often useful.

THEOREM 2. A necessary and sufficient condition that a subset M of a
complete metric space R be compact is that for every ¢ > 0 there exist in R a
compact e-net for M.

Proof. The necessity is trivial; we shall prove the sufficiency. Let ¢ > 0
be given and let -1 be a compact (¢/2)-net for /. We choose a finite (e/2)-
net in A. It is clear that it will be a finite e-net for 1/; consequently, by
virtue of the preceding theorem, the set 3/ is compact.

§17. Arzela’s theorem and its applications

The application of Theorems 1 and 2 of the preceding section, which
vield necessary and sufficient conditions for compactness to individual spe-
cial cases, is not always simple. For sets, siluated in some given special
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space, special criteria for compactness can be given which are more suitable
for practical application.

In analysis one of the more important metric spaces is the space C[a, b].

For subsets of this space the most important and frequently employed
criterion of compactness is given by Arzeld’s theorem.

In order to formulate this theorem it is necessary to first introduce the
following concepts.

A family {o(x)} of functions defined on a closed interval is said to be
uniformly bounded if there exists a number M such that | ¢(z) | < M for
all z and for all ¢ belonging to the given family.

A family of functions is said to be equicontinuous if for every ¢ > 0
there is a 6 > 0 such that

[o(x) — o(a2)] < e

for all z; , z» such that | 2, — 2| < § and for all ¢ in the given family.

ArzELA’s THEOREM. A necessary and suffictent condition that a family of
continuous functions defined on the closed interval [a, b] be compact in Cla, b]
18 that this family be uniformly bounded and equicontinuous.

Proof. Necessity. Let the set ® be compact in Cla, b]. Then, by Theorem 1,
§16, for each positive e there exists a finite (¢/3)-net ¢1, @2, - -+, ¢ in .
Each of the functions ¢; , being a continuous function on a closed interval
is bounded: | ¢; | < M, .

Set M = max M; + ¢/3. By the definition of an (¢/3)-net, for every
¢ € ® we have for at least one ¢; ,

oo, ¢i) = max | p(2) — ei(x)| < €/3.
Consequently
lo| <|ei| + ¢/3 <M+ ¢/3 <M.

Thus, ® is uniformly bounded.
Further, since each of the functions ¢; is continuous and consequently
uniformly continuous on [a, b], for a given ¢/3 there exists a §; such that

[pi(z)) — pi(ze) | < €/3
1f|x1 —w2| <6i~
Set 6 = min §; . Then for |z; — 22| < & and for any ¢ € ®, taking ¢;
so that p(p, ¢;) < €/3, we have:

| p(21) — o(x2) |
= [o@) — o) + i) — @i(r2) + i(r2) — o(22) |
< l¢($1) - soi(xl) ' + l%(xl) - (01'(-”02) l + ’%‘(562) - go(xg) [
< €¢/3 4+ ¢/3+ €¢/3 = e

The equicontinuity of & is thus proved.
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Sufficiency. Let ® be a uniformly bounded and equicontinuous family of
functions. In accordance with Theorem 1, §16, in order to prove its compact-
ness in Cla, b] it is sufficient to show that for arbitrary ¢ > 0 there exists
for it in Cla, b] a finite e-net. Let

le| K Miorally €
and let 8 > 0 be chosen so that
[o(@) — o(x2) | < €/5 for |z — 2| <8 x1,2: € [a,b];

and for all ¢ € &. Subdivide the segment [a, b] on the z-axis by means of
the points o = @, 21, 22, - -+, €. = b into intervals of length less than &
and construct vertical lines at these points of subdivision. We subdivide
the segment [—M, M] on the y-axis by means of the points yo = —M,
Y1,Y2, ***, Yym = M into intervals of length ¢/5 and construct horizontal
lines at these points of subdivision. Thus we subdivide the rectangle
a <z b —M <L y £ M into cells with horizontal sides of length less
than & and vertical sides of length ¢/5. We now assign to every function
¢ € @ a polygonal arc ¥(z) with vertices at the points (z: , ), i.e. at ver-
tices of the constructed net and deviating at the points x; from the func-
tion ¢ by less than ¢/5 (the existence of such a polygonal arc is obvious).
Since, by construction,

[oxr) — ¢(zx) | < /5,

| o(@r) — Yl@rn) | < €/5,
and

[ o) — (i) | < /5,
we have

[ (k) — Y(arn) | < 3e/5.
Since the function y(x) is linear between the points z; and z;,, , we have

[¢(zr) — ¢(x) | < 3¢/5 forall x, 2 < 2 < Tpqa.

Now let 2 be an arbitrary point of the closed interval [a, b] and let x;
be the subdivision point chosen which is closest to x from the left. Then

lo@) —¥(@) | < le@) — e@) | + [ e(z) — (@) | + [¥(@m) —¢(@) | < e

Consequently the polygonal arcs ¢(z) form an enet with respect to .
Their number is finite (since only a finite number of polygonal arcs can be
drawn through a finite number of points); thus, @ is totally bounded. This
proves the theorem completely.

Arzeld’s theorem has many applications. We shall demonstrate its
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application in the example of the following existence theorem for ordinary
differential equations with continuous right member.
TaeEOREM 2 (PEANO). Let

dy/dx = f(x, y)

be a given differential equation. If the function f(x, y) ts continuous in a
closed region G, then at least one integral curve of the given equation passes
through each interior point (xo , yo) of this region.

Proof. Since f(z, y) is continuous in the closed region, it is bounded:

[flz,9) | < M.

We draw straight lines with slopes M and — M through the point (zo , o).
Further, we draw vertical lines x = a and £ = b so that the two triangles
cut off by them with the common vertex (o , 7o) lie entirely in the interior
of the region G.

‘We now construct a so-called Euler polygonal arc for the given equation
in the following way: we draw from the point (zo, 7o) a straight line with
the slope f(zo , ¥o). On this straight line we take a point (2, y1) and draw
through it a straight line with the slope f(z:, y1). On this straight line
we take a point (z:, ¥2) and so forth. We now consider a sequence of Euler
polygonal ares Ly, Ly, --+, Ly, -, passing through the point (x,, y0)
such that the length of the greatest of the links of the polygonal arc L,
tends to zero as k — . Let ¢x(z) be the function whose graph is the po-
lygonal arc L, . The functions ¢, ¢2, *++, ¢, -+ possess the following
properties: they are 1) defined on the same segment [a, b], 2) all bounded,
and 3) equicontinuous.

On the basis of Arzeld’s theorem, we can choose a uniformly convergent
subsequence from the sequence {pi(zx)}. Let this sequence be

¢(1)(x); (0(2)(37); ttty ¢(k)(x)’ e

We set o(z) = limp.e ¢ (2). It is clear that o(xs) = o . It remains to
verify that o(z) satisfies the given differential equation on the closed inter-
val [a, b]. To do this it is necessary to show that for arbitrary ¢ > 0

o@) =) _ o oy | <

" -z

provided the quantity |z” — 2’| is sufficiently small. To prove this it
is sufficient in turn to establish that for sufficiently large k&

e (") — so(" (=)
" — 2

f(x,so(x))l <e

if only the difference | z” — 2’ | is sufficiently small.
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Since f(x, v) is continuous in the region G, for arbitrary ¢ > 0any > 0
can be found such that

@, y) — e <flz,y) <f&,y) +e¢ @ =),

le —2'| <29 and |y —¥'| < 4M+.

The set of points (z, y) € G which satisfy both these inequalities form
some rectangle Q. Now let K be so large that for all £ > K

le@@) — ™ () | < My

and all links of the polygonal arc L, have length less than #. Then if
|2’ — x| < 29, all the Euler polygons y = o®(z) for which k¥ > K lie
entirely in the interior of Q.

Further, let (ao, bo), (a1, b1), ***, (@41, buy1) be vertices of the po-
lygonal arc y = o™ (x), where

Wl <am<ae< <<z L tn

(we assume z” > z’ for definiteness; we can consider the case 2”7 < z’
analogously). Then

P(@) — P @) = fla, bo)(a — 2);
P (@) — ¢ (@) = flas, b)) (i1 — a2), t=1,2+-,0n—1;
e®@") — % (an) = f(an, ba)@" — an).
From this it follows that for | 2" — 2’| < 1,
@, y) — dla — &) < o®@) — o @) < [f@, ) + el — 2°);
1@, y") — @ — a) < P (@) — ¢ (a)
<[f@,y) + dlap —a), 1=12,---,n—1;
@, y) — d@” — a) < eP@") — ¢® (@) < (@, y) + @ — an).
Summing these inequalities, we obtain
@', ¥) — d@” — 2') < o®@") — ¥ @) < [f@, v) + 4G — 2),

which was to be proved.
The solution ¢(x) thus obtained will in general not be the unique solution
of the equation 4’ = f(z, y) which passes through the point (zo, o).

§18. Compacta

In §16 we said that a subset M of a metric space R is compact if every
sequence of elements in M has a subsequence which converges to some z € R.
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In this connection the limit point x might belong but it also might not
belong to the set M. If from every sequence of elements in M it is possible
to select a subsequence which converges to some x belonging to M, then the
set M is said to be compact in itself. For the space R itself (as moreover
also for all its closed subsets) the concepts of compactness and compactness
in itself coincide. A compact metric space is called a compactum for brevity.

Inasmuch as compactness in itself of a set is an intrinsic property of
this set which does not depend on the metric space in which it is embedded,
it is natural to limit oneself to the study of compacta, i.e. to consider each
such set simply as a separate metric space.

TaEOREM 1. A necessary and sufficient condition that a set M compact in a
metric space R be a compactum is that M be closed in R.

Proof. Necessity. Suppose M is not closed; then we can find in M a se-
quence {x,} which converges to a point x ¢ M. But then this sequence
cannot contain a subsequence which converges to some point y € M, i.e.
M cannot be a compactum.

Sufficiency. Since M is compact, every sequence {x,} C M contains a
subsequence which converges to some x € R. If M is closed, z € M,ie. M
is compact in itself.

The next corollary follows from this and Theorem 1, §16.

CoROLLARY. Every closed bounded subset of Euclidean space ts a compactum.

THEOREM 2. A necessary and sufficient condition that a metric space be a
compactum s that it be: 1) complete and 2) totally bounded.

The proof of this theorem is made by a verbatim repetition of the proof
of Theorem 1, §16.

TueoreMm 3. Every compactum K contains a countable everywhere dense set.

Proof. Since a compactum is a totally bounded space, K contains a finite

(1/n)-net: a1, @z, -+, am, for every n. The union of all these e-nets is a
finite or denumerable set. This and Theorem 4, §10, imply the following
corollary.

CoOROLLARY. Every compactum has a countable basis.

TuEOREM 4. A necessary and sufficient condition that the metric space R be
a compactum is that either of the following two conditions holds:

1) An arbitrary open covering {O.} of the space R contains a finite sub-
covering,;

2) An arbitrary system {F.} of closed sets in R with the finite intersection
property has a nonvoid intersection. (A system of sets is said to have the finite
intersection property if an arbitrary finite number of these sets has nonvoid
intersection.)

Proof. We note first of all that the equivalence of the two conditions
formulated above follows directly from the principle of duality (§1). In
fact, if {O,} is an open covering of the space R, then {R \ O,} is a system
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of closed sets satisfying the condition
NER\ 0.) = 6.

The condition that we can select a finite subcovering from {0,} is equiva-
lent to the fact that the system of closed sets {R \ 0.} cannot have the
finite intersection property if it has a void intersection.

We shall now prove that Condition 1 is necessary and sufficient that R
be a compactum.

Necessity. Let R be a compactum and let {O.} be an open covering of R.
We choose in R for each n = 1, 2, .- a finite (1/n)-net consisting of the
points a,'™ and we enclose each of these points with the sphere

S(a™, 1/n)
of radius 1/n. It is clear that for arbitrary n
R = UkS(Ak<n), l/n)

We shall assume that it is impossible to choose a finite system of sets
covering K from {O,}. Then for each » we can find at least one sphere
S(arm'™, 1/n) which cannot be covered by a finite number of the sets O, .
We choose such a sphere for each n and consider the sequence of their
centers {axm ™ }. Since R is a compactum, there exists a point £ € R which
is the limit of a subsequence of this sequence. Let O be a set of {O,} which
contains &. Since Og is open, we can find an e > 0 such that S{¢, ¢} < 0;.
We now choose an index n and a point ax ™ so that p(¢, axm)'™) < ¢/2,
1/n < ¢/2. Then, obviously, S(ax )™, 1/n) < Og, i.e. the sphere S(ax )™,
1/n) is covered by a single set Og . The contradiction thus obtained proves
our assertion.

Sufliciency. We assume that the space R is such that from each of its
open coverings it is possible to select a finite subcovering. We shall prove
that R is a compactum. To do this it is sufficient to prove that R is complete
and totally bounded. Let ¢ > 0. Take a neighborhood O(z, €) about each
of the points # € R; we then obtain an open covering of R. We choose from
this covering a finite subcovering O(z: , ¢€), - -+ ,0(x, , €). It is clear that the
centers x, , --- , 2, of these neighborhoods form a finite e-net in R. Since
¢ > 0 is arbitrary, it follows that R is totally bounded. Now let {S.,} be a
sequence of nested closed spheres whose radii tend to zero. If their inter-
section is void, then the sets R \ S, form an open covering of R from which
it is impossible to select a finite subcovering. Thus, from Condition 1 it
follows that R is complete and totally bounded, i.e. that R is compact.

TrEOREM 5. The continuous image of a compactum s a compactum.

Proof. Let Y be a compactum and let ¥ = ¢(X) be its continuous image.
Further, let {O,} be an open covering of the space Y. Set U, = ¢ '(0,).



60 METRIC SPACES [cu. 11

Since the inverse image of an open set under a continuous mapping is open,
it follows that {U.} is an open covering of the space X. Since X is a com-
pactum, we can select a finite subcovering U,, U, ---, U, from the
covering {U,}. Then the corresponding sets Oy, Oz, --- , O, form a finite
subcovering of the covering {O,}.

THROREM 6. A one-to-one mapping of a compactum which is continuous in
one direction is a homeomorphism.

Proof. Let ¢ be a one-to-one continuous mapping of the compactum X
onto the compactum Y. Since, according to the preceding theorem, the
continuous image of a compactum is a compactum, the set (M) is a com-
pactum for an arbitrary closed M C X and consequently ¢(M) is closed in
Y. It follows that the inverse image under the mapping ¢ of an arbitrary
closed set M C X is closed; i.e. the mapping ¢ is continuous.

REMARK. The following result follows from Theorem 6: if the equation

(3) dy/dx = f(z, y),

where the function f(z, y) is continuous in a closed bounded region G
which contains the point (zy, yo) for every y, belonging to some closed
interval [a, b], has a unique solution satisfying the initial condition y(z,) =
7o , then this solution is a continuous function of the initial value y, .

In fact, since the function f(z, y) is continuous in a closed bounded
region, it is bounded and consequently the set P of solutions of equation
(38) corresponding to initial values belonging to the closed interval [a, b]
is uniformly bounded and equicontinuous. Moreover, the set P is closed.
In fact, if {¢,(x)} is a sequence of solutions of equation (3) which con-
verges uniformly to a function ¢(x), then o(z) is also a solution of
equation (3) since, if

en = f(@, eu(2)),
then passing to the limit as n — «, we obtain
¢ = fx, o(z)).
We have
¢(0) = lim ¢n(z0) € [a, b].

In virtue of Arzeld’s theorem and Theorem 1 of this section it follows
from this that P is a compactum.

We set the point ¢(xzo) of the closed interval [a, b] into correspondence
with each solution ¢(x) of equation (3). By assumption this correspondence
is one-to-one. Moreover, since

max | ¢® (@) — ¢®(@) | 2 | 6% @) — P (o) |,
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tlie mapping ¢(z) — ¢(2,) is continuous. By virtue of Theorem 6 the inverse
mapping is also continuous and this then signifies the coutinuous de-
pendence of the solutions on the initial conditions.

Now let Cxy be the set of all continuous mappings y = f(z) of a com-
pactum X into a compactum Y. We introduce distance into Cxy by means
of the formula

p(f, 9) = sup {p[f(z), g@)]; = € X}.

It is easy to verify that in this way Cxy is transformed into a metric
space.

THEOREM 7 (G1NERALIZED THEOREM OF ARZELA). 4 necessary and suffi-
cient condition that a set D C Cxy be compact in Cxy 1s that in D the func-
tions y = f(x) be equicontinuous, i.e. that for arbitrary ¢ > 0 there exist a
6 > 0 such that

1 o(a’,2") < &
wmplies
(2) plf(@"), f(z")] < e

Jor arbitrary f in D and 2/, 2" in X.
Proof. We embed Cxy in the space M xy of all mappings of the compactum
X into the compactuin Y with the same metric

o(f, 9) = sup {p[f(z), g(@)]; =z € X}

which was introduced in Cxy and prove the compactness of the set D in
Mxy . Since Cxy is closed in My, the compactuess of the set D in Mxy
will imply its compactness in Cxy . (That Cxy is closed in M xy follows from
the fact that the limit of a uniformly convergent sequence of continuous
mappings is also a continuous mapping. The indicated assertion is a direct
gencralization of the known theorem in analysis and is proved in exactly
the same way.)

Let € > 0 be arbitrary and choose § such that (1) implies (2) for all f in
D and all 2/, ” in X. Let the points 2, , 2, - - - , 2, form a (§/2)-net in X.
It is easy to see that X can be represented as the sum of nonintersecting
sets e; such that 2, y € ¢ implies that p(z, y) < 8. In fact, it is sufficient
to set, for example,

e = Sz, 8/2) \ Uj<: S(x;, 8/2).

We now consider in the compactum Y a finite e-net y1, y2, -+ , ym ; We
denote the totality of functions g(x) which assume the values y; on the
sets ¢; by L. The number of such functions is clearly finite. We shall show
that they form a 2e-net in M xy with respect to D. In fact, let f € D. For
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every point z;in z, -+ - , z, we can find a point y;iny1, - - - , ym such that
plf(@:), yil < e
Let the function g(z) € L be chosen so that g(z;) = y;. Then
plf@), 9(@)] < plf(z), fl@)] + olf(x), g(x)] + plg(2), g(xs)] < 2e

if 4 is chosen so that x € ;.
From this it follows that o(f, g) < 2e and thus the compactness of D in
Mxy and consequently in Cxy also is proved.
§19. Real functions in metric spaces

A real function on a space R is a mapping of R into the space R' (the
real line).

Thus, for example, a mapping of R” into R' is an ordinary real-valued
funetion of n variables.

In the case when the space R itself consists of functions, the functions of
the elements of R are usually called functionals. We introduce several
examples of functionals of functions f(zx) defined on the closed interval
[0, 1]:

Fi(f) = sup f(z);

Fy(f) = inf f(z);

Fi(f) = f(x) where z, € [0, 1];

Fi(f) = olf(o), f(@1), - - -, f(xn)] where z; € [0, 1]

and the function ¢(y1, - - , y») is defined for all real y; ;

1
Fu(f) = [ ols, @) dz,
0
where o(z, y) is defined and continuous for all 0 < z < 1 and all real y;
Fo(f) = f'(x0);
! 2
Fif) = [ 1+ 1@ ds;
0

Fy(f) = fo 1 | f'(x) | d.

Functionals can be defined on all of R or on a subset of R. For example,
in the space C the functionals 7, , Fo, F5, F,, Fs are defined on the entire
space, Fys(f) is defined only for functions which are differentiable at the
point x, , Fz(f) for functions for which [1 + @) is integrable, and Fs(f)
for functions for which | f’(z) | is integrable.
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The definition of continuity for real functions and functionals remains
the same as for mappings 1n general (see §12).
For example, F(f) is a continuous functional in C since

p(f,9) =sup |f —g| and |[supf —supg|<sup|f—g]|;

Fy, F3, F5 are also continuous functionals in C; F, is continuous in the
space C if the function ¢ is continuous for all arguments; Fi is discontinuous
at every point in the space C for which it is defined. In fact, let g(x) be
such that ¢’(zo) = 1,| g(x) | < eand f = fo + ¢. Then f'(x0) = fo'(xo) + 1
and o(f, fo) < e This same functional is continuous in the space C® of
functions having a continuous derivative with the metric

o(f,g) =sup[|f—gl+|f =791

F; is also a discontinuous functional in the space C. In fact, let fo(x) = 0
and f,(z) = (1/n) sin 2zxnz. Then o(f., fo) = 1/n — 0. However, F:(f,)
is a constant (it does not depend on n) which is greater than (17)* and
F 7(fo) = l

Consequently, F(f) is discontinuous at the point f, .

By virtue of this same example Fs(f) is also discontinuous in the space
C. Both functionals F; and F are continuous in the space C®.

The following theorems which are the generalizations of well-known
theorems of elementary analysis are valid for real functions defined on
compacta.

THEOREM 1. A continuous real function defined on a compactum is uni-
formly continuous.

Proof. Assume f is continuous but not uniformly continuous, i.e. assume
there exist z, and 2, such that

|zn — 2/ | < 1/n and |f(z.) — f(@) | > e

From the sequence {z,} we can choose a subsequence {z,,} which con-
verges to x. Then also {z,,’} — z and either |f(z) — f(x.))| = ¢/2 or
| f(@) — f(xz.) | > ¢/2, which contradicts the continuity of f(x).

THEOREM 2. If the function f(x) is continuous on the compactum K, then
f vs bounded on K.

Proof. If f were not bounded on K, then there would exist a sequence
{x.} such that f(z.) — . We choose from {z,} a subsequence which
converges to z: {Z,,} — 2. Then in an arbitrarily small neighborhood of z
the function f(z) will assume arbitrarily large values which contradicts the
continuity of f.

TrEOREM 3. A function f which is continuous on a compactum K attains
its least upper and greatest lower bounds on K.

Proof. Let A = sup f(z). Then there exists a sequence {z,} such that

A > fl@.) > A — 1/n.
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We choose a convergent subsequence from {z,}:{z,,} — . By continuity,
f(x) = A. The proof for inf f(x) is entirely analogous.

Theorems 2 and 3 allow generalizations to an even more extensive class
of functions (the so-called semicontinuous functions).

A function f(z) is said to be lower (upper) semicontinuous at the point
@ if for arbitrary ¢ > 0 there exists a 6-neighborhood of 2, in which f(x) >
f@o) — ¢ (f(2) < fxo) + o).

For example, the function ‘““‘integral part of a”, f(x) = E(x), is upper
semicontinuous. If we increase (decrease) the valuc of f(x) of a continuous
function at a single point z, , we obtain a function which is upper (lower)
semicontinuous. If f(x) is upper semicontinuous, then —f(x) is lower semi-
continuous. These two remarks at once permit us to construct a large
number of examples of semicontinuous functions.

We shall also consider functions which assume the values =+ oc. If f(x)) =
— o, then f(x) will be assumed to be lower semicontinuous at a, and upper
semicontinuous at x, if for arbitrary h > 0 there is a neighborhood of the
point x, in which f(z) < —h.

If f(xy) = + 0, then f(x) will be assumed to be upper semicontinuous at
zo and lower semicontinuous at x, if for arbitrary h > 0 there is a neighbor-
hood of the point z, in which f(z) > h.

The upper limit f(zo) of the function f(z) at the point z, is the lim..o
{sup [f(x); x € S(xo, ¢)]}. The lower limit f(x,) is the lim.., {inf [f(z);
z € S(xo, €)]}. The difference wf(z) = f(®) — f(xo) is the oscillation of
the function f(z) at the point x,. It is easy to see that a necessary and
sufficient condition that the function f(x) be continuous at the point x, is
that wf(z,) = 0, i.e. that f(zo) = Jf(o).

For arbitrary f (x) the function f(xr) is upper semicontinuous and the
function f(z) is lower semicontinuous. This follows easily from the defini-
tion of the upper and lower limits.

We now consider several important examples of semicontinuous func-
tionals.

Let f(x) be a real function of a real variable. For arbitrary real a and b
such that f(z) is defined on the closed interval [a, b] we define the fofal
variation of the function f(x) on [a, b] to be the functional

V2(f) = sup 2oie | flx) — fl@i) |

where @ = 2 < 21 < 22 < -+ < z, = b and the least upper bound is
taken over all possible subdivisions of the closed interval [a, b].

For a monotone function V,2(f) = | f(b) — f(a) |. For a piecewise mono-
tone function V,2(f) is the sum of the absolute values of the increments on
the segments of monotonicity. For such functions
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sup D 7w | f(z) — f(mina) |

is attained for some subdivision.

We shall prove that the functional V2 (f) is lower semicontinuous in the
space M of all bounded functions of a real variable with metric p(f, g) = sup
| f(x) — g(x) | (it is clear that C is a subspace of the space M), i.e. that
for arbitrary f and € > O there exists a & such that V,’(g) > V.2(f) — e for

P(f ) g) <.
We choose a subdivision of the closed interval [a, b] such that

2l f@) = flee) | > VW) — e/2.
Tet & = ¢/4n. Then if p(g, f) < 4, we have
S f@) — f@im) | — Dkl g(x) — g@en) | < /2
and consequently
Va(g) = 2l g) — g(wn) | > V() — e

In the case V.'(f) = « the theorem remains valid since then for arbi-
trary H there exists a subdivision of the closed interval [a, b] such that

2ot () — f@en) > H
and & can be chosen such that
Yl f@) = f@ia) | — il gz) — glea) | < e

Then V.2(g) > H — ¢ ie. V2(g) > H, so that V,'(g) = o.

The functional V.2(f) is not continuous as is easily seen from the follow-
ing example. Let f(z) = 0, g.(x) = (1/n) sin nz. Then 0(g., ) = 1/n, but
Vo (gs) = 2 and Vo'(f) = 0.

Functions for which V.2(f) < « are said to be functions of bounded (or
finite) variation. The reader can find more information about the properties
of such functions in the books by Aleksandrov and Kolmogorov: Introduc-
tion to the Theory of Functions of a Real Variable, Chapter 7, §7; Natanson:
Theory of Functions of a Real Variable, Chapter 8; and Jeffery: The Theory
of Functions of a Real Variable, Chapter 5.

We shall define the length of the curve y = f(z) (¢ < = < b) as the
functional

L) = sup i {(x: — ze)’ + ) — fz)P,
where the least upper bound is taken over all possible subdivisions of the

closed interval [a, b]. This functional is defined on the entire space M. For
continuous functions it coincides with the value of the limit

lim D e (@@ — zi)® + [f2) — f@e)P}? as max; |z — x| — O.



66 METRIC SPACES [eh. 11

Finally, for functions with continuous derivative it can be written in the
form

b
f,. 1+ /@ de.

The functional L,(f) is lower semicontinuous in M. This is proved
exactly as in the case of the functional V,’(f).

Theorems 2 and 3 established above generalize to semicontinuous func-
tions.

TuroOREM 2a. A finite function which is lower (upper) semicontinuous on a
compactum K is bounded below (above) on K.

In fact, let f be finite and lower semicontinuous and let inf f(z) = — .
Then there exists a sequence {z,} such that f(z,) < —n. We choose a
subsequence {x.,} — %, . Then, by virtue of the lower semicontinuity of f,
f(xo) = — o, which contradicts the assumption that f(x) is finite.

In the case of an upper semicontinuous function the theorem is proved
analogously.

THEOREM 3a. A finite lower (upper) semicontinuous function defined on a
compactum K attains its greatest lower (least upper) bound on K.

Assume the function f is lower semicontinuous. Then by Theorem 2 it
has a finite greatest lower bound and there exists a sequence {z,} such
that f(z,) < inf f(z) + 1/n. We choose a subsequence {z.,} — . Then
f(xo) = inf f(z) since the supposition that f(zo) > inf f(x) contradicts the
lower semicontinuity of f.

The theorem is proved analogously for the case of an upper semicon-
tinuous function.

Let K be a compact metric space and let Cx be the space of continuous
real functions defined on K with distance function p(f, g) = sup |f — ¢ |-
Then the following theorem is valid.

TuroreM 4. A necessary and sufficient condition that the set D C Ck be
compact s that the functions belonging to D be uniformly bounded and equi-
continuous (Arzeld’s theorem for continuous functions defined on an
arbitrary compactum).

The sufficiency follows from the general Theorem 7, §18. The necessity
is proved exactly as in the proof of Arzeld’s theorem (see §17).

§20. Continuous curves in metric spaces

Let P = f(f) be a given continuous mapping of the closed interval
a < t < b into a metric space R. When ¢ runs through the segment from
a to b, the corresponding image point P runs through some ‘“‘continuous
curve” in the space R. We propose to give rigorous definitions connected
with the above ideas which were stated rather crudely just now. We shall
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Fic. 11 Fic. 12 Fig. 13

|
|
|
|

- - ——— . ——— 1 —

Fig. 14 Fic. 15

consider the order in which the point traverses the curve an essential
property of the curve itself. The set shown in Fig. 11, traversed in the
directions indicated in Figs. 12 and 13, will be considered as distinet curves.
As another example let us consider the real function defined on the closed
interval [0, 1] which is shown in Fig. 14. It defines a “curve” situated on
the segment [0, 1] of the y-axis, distinct from this segment, traversed once
from the point 0 to the point 1, since the segment [4, B] is traversed three
times (twice upward and once downward).

However, for the same order of traversing the points of the space we
shall consider the choice of the ‘“parameter” ¢ unessential. For example,
the functions given in Figs. 14 and 15 define the same ‘‘curve’ over the
y-axis although the values of the parameter ¢ corresponding to an arbitrary
point of the curve can be distinct in Figs. 14 and 15. For example, in Fig. 14
to the point A there correspond two isolated points on the ¢-axis, whereas
in Fig. 15 to the point A there correspond on the ¢-axis one isolated point
and the segment lying to the right (when ¢ traverses this segment the point
A on the curve remains fixed). [Allowing such intervals of constancy of the
point P = f(f) is further convenient in the proof of the compactness of
systems of curves.]

We pass over to formal definitions. Two continuous functions

P = f1(t/) and P = fz(t”)
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defined, respectively, on the closed intervals
o LYY and o "LV

are said to be equivalent if there exist two continuous nondecreasing func-
tions

' =) and ¢ = gt)
defined on a closed interval ¢ < ¢ < b and possessing the properties
ei(a) = a', @) =V,
p@) = a”, @) =",
Flex®)] = felea(®)]

for allt € [a, b].

It is easy to see that the equivalence property is reflexive (f is equivalent
to f), symmetric (if f; is equivalent to f2, then f; is equivalent to f;), and
transitive (the equivalence of f; and f. together with the equivalence of
f» and f; implies the equivalence of f; and f3). Therefore all continuous func-
tions of the type considered are partitioned into classes of equivalent func-
tions. Every such class also defines a continuous curve in the space E.

It is easy to see that for an arbitrary function P = f;(¢") defined on a
closed interval [a’, b’] we can find a function which is equivalent to it and
which is defined on the closed interval [a”, b”] = [0, 1]. To this end, it is
sufficient to set

' =@) =0 —ad)Xt+a, '=gel-=_¢t

(We always assume that @ < b. However we do not exclude “‘curves”
consisting of a single solitary point which is obtained when the function
{(t) is constant on [a, b]. This assumption is also convenient in the sequel.)
Thus, we can assume that all curves are given parametrically by means of
functions defined on the closed interval [0, 1].

Therefore it is expedient to consider the space Crg of continuous mappings
of the closed interval I = [0, 1] into the space R with the metric o(f, g) =
sup: o[f(t), g(8)].

We shall assume that the sequence of curves Ly, Lz, ..., L,, ... con-
verges to the curve L if the curves L, can be represented parametrically in
the form

P = f,(), 0<t<1,

and the curve L in the form

so that o(f,f,) > 0asn— .
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We obtain Theorem 1 if we apply the generalized Arzeld theorem (Theo-
rem 7, §18) to the space Ciz.

TaeoreM 1. If the sequence of curves Ly, Ly, <+, Lp, -+ lying in the
compactum K can be represented parametrically by means of equicontinuous
functions defined on the closed interval [0, 1], then this sequence contains a
convergent subsequence.

We shall now define the length of a curve given parametrically by means
of the function P = f(¢), a < t < b, as the least upper bound of sums of
the form

in-l PU(ti—l)) f(tt)])
where the points ¢; are subject only to the following conditions:
alto<th < - <t < Zta=0

It is easy to see that the length of a curve does not depend on the choice
of its parametric representation. If we limit ourselves to parametric repre-
sentations by functions defined on the closed interval [0, 1], then it is
easy to prove by considerations similar to those of the preceding section
that the length of a curve is a lower semicontinuous functional of f (in the
space C'rz). In geometric language this result can be expressed in the form
of such a theorem on semicontinuity.

TuaEOREM 2. If the sequence of curves L, converges to the curve L, then the
length of L is nmot greater than the greatest lower bound of the lengths of the
curves L, .

We shall now consider specially curves of finite length or rectifiable curves.
Let the curve be defined parametrically by means of the function P = f(z),
a < t < b. The function f, considered only on the closed interval [a, T,
where ¢ < T < b, defines an “initial segment” of the curve from the point

. = f(a) to the point Pr = f(T). Let s = o(T) be its length. It is easily
established that

P = g(s) = fle”'(s)]

is a new parametric representation of the same curve. In this connection s
runs through the closed interval 0 < s < S, where S is the length of the
entire curve under consideration. This representation satisfies the require-
ment

plg(s1), g(s2)] < I 82 — 81]

(the length of the curve is not less than the length of the chord).
Going over to the closed interval [0, 1] we obtain the parametric repre-
sentation

P=F(r) =g(6), +=s/8
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which satisfies the following Lipschitz condition:
pll (1), F(r2)] < 8|7 — 7.

We thus see that for all curves of length S such that S < M, where M
is a constant, a parametric representation on the closed interval [0, 1] by
means of equicontinuous functions is possible. Consequently, Theorem 1 is
applicable to such curves.

We shall show the power of the general results obtained above by apply-
ing them to the proof of the following important proposition.

TrEOREM 3. If two points A and B in the compactum K can be connected
by a continuous curve of finite length, then among all such curves there exists
one of mintmal length.

In fact, let Y be the greatest lower bound of the lengths of curves which
connect A and B in the compactum K. Let the lengths of the curves L;,
Ly, --+, L,, - connecting A with B tend to Y. From the sequence L,
it is possible, by Theorem 1, to select a convergent subsequence. By
Theorem 2 the limit curve of this subsequence cannot have length greater
than Y.

We note that even when K is a closed smooth (i.e. differentiable a suffi-
cient number of times) surface in three-dimensional Euclidean space, this
theorem does not follow directly from the results established in usual
differential geometry courses where we restrict ourselves ordinarily to the
case of sufficiently proximate points A and B.

All the arguments above would take on great clarity if we formed of the
set of all curves of a given metric space R a metric space. This can be done
by introducing the distance between two curves L; and L. by means of the
formula

p(Ly, Le) = inf p(fi, fo),

where the greatest lower bound is taken over all possible pairs of parametric
representations

P=fi{), P=/f@ 0<t<1

of the curves L, and L., respectively.

The proof of the fact that this distance satisfies the axioms of a metric
space is very straightforward with the exception of one point: there is some
difficulty in proving that o(L;, L) = 0 implies that the curves L; and L.
are identical. This fact is an immediate consequence of the fact that the
greatest lower bound in the formula which we used in the definition of the
distance p(L; , Ls) is attained for a suitable choice of the parametric repre-
sentations f; and f» . But the proof of this last assertion is also not very
straightforward.
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NORMED LINEAR SPACES

§21. Definition and examples of normed linear spaces

DeriNiTION 1. A set R of elements z, y, 2, --- is said to be a linear
space if the following conditions are satisfied:

I. For any two elements z, y € R there is uniquely defined a third ele-
ment 2 = z 4 y, called their sum, such that

Dz+y=y+s,

2)z+@y+2)=0@+y +2

3) there exists an element 0 having the property that z + 0 = z for all
x € R, and

4) for every z € R there exists an element —z such that =z + (—z) = 0.

II. For an arbitrary number o and element € R there is defined an ele-
ment az (the product of the element x and the number «) such that

1) a(Bz) = (aB)z, and

2) 1.z = x.

II1. The operations of addition and multiplication are related in the
following way:

1) (e + B)z = ax + Bz, and

2) alz+y) = az + ay.

Depending on the numbers admitted (all complex numbers or only the
reals), we distinguish between complex and real linear spaces. Unless other-
wise stated we shall consider real linear spaces. In a linear space, besides
the operations of addition and multiplication by scalars, usually there is
introduced in one way or another the operation of passage to the limit.
It is most convenient to do this by introducing a norm into the linear space.

A linear space R is said to be normed if to each element © € R there is
made to correspond a nonnegative number || z || which is called the norm
of x and such that:

1) ||z || = 0if, and only if, z = 0,

2) ez | =lallzl,

Hlet+yl <lzl+lyll
It is easy to see that every normed space is also a metric space; it is sufficient
to set p(z, ¥) = || x — y ||. The validity of the metric space axioms follows
directly from Properties 1-3 of the norm.

A complete normed space is said to be a Banach space, a space of Banach
type, or, more briefly, a B-space.

ExampLES oF NORMED SpacEs. 1. The real line with the usual arith-
metic definitions is the simplest example of a normed space. In this case
the norm is simply the absolute value of the real number.

71
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2. Euclidean n-space, i. e. the space consisting of all n-tuples of real
numbers: £ = (x1, 22, - - - , ,) in which the norm (i. e. the length) of the
vector is defined to be the square root of its scalar square,

loll = (Xiaad),
is also a normed linear space.

In an n-dimensional linear space the norm of the vector x = (21, 2,
-, &,) can also be defined by means of the formula

Fzll = (i | )", (@21.

We also obtain a normed space if we set the norm of the vector z =
(@1, %2, -+, T.) equal to the max {|zx |; 1 < k < n}.

3. The space Cla, b] of continuous functions with the operations of addi-
tion and multiplication by a scalar which are usual for functions, in which

/@) 1| = max{|f#) |; a < ¢ L b,

is a normed linear space.
4. Let C’[a, b] consist of all functions continuous on [a, b] and let the
norm be given by the formula

1ol = ([ o a).

All the norm axioms are satisfied.
5. The space I, is a normed linear space if we define the sum of two

elements z = (El,&, "';En, )andy = (771’ N2, " M, ) inl?
to be

tty=(E+m, bt m, bt m, ),
and let
ax = (af1, ake, "+, akn, ),
and
Izl = (ol &

6. The space ¢ consisting of all sequences z = (21, T2, -+, Zn, --+) of
real numbers which satisfy the condition lim,.. z, = 0.

Addition and multiplication are defined as in Example 5 and the norm
is set equal to

lz] = max{|z,];1 <n < «}.

7. The space m of bounded sequences with the same definitions of sum,
product, and norm as in the preceding example.
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In each of these examples the linear space axioms are verified without
difficulty. The fact that the norm Axioms 1-3 are fulfilled in Examples
1-5 is proved exactly as was the validity of the metric space axioms in the
corresponding examples in §8, Chapter II.

All the spaces enumerated in the examples, except the space (“[a, D],
are Banach spaces.

DEFINITION 2. A linear manifold L in a normed linear space R is any set
of elements in R satisfying the following condition: if z, y € L, then ax +
By € L, where a and 8 are arbitrary numbers. A subspace of the space R
is a closed linear manifold in R.

ReMark 1. In Euclidean n-space R" the concepts of linear manifold
and subspace coincide because every linear manifoldin R" is automatically
closed. (Prove this!) On the other hand, linear manifolds which are not
closed exist in-an infinite-dimensional space. For example, in /; the set L
of points of the form

(1) x=(-1'1,1'2,“‘,il'rk,0,0,"‘),

i.e. of points which have only a finite (but arbitrary) number of nonzero
coordinates, forms a linear manifold which is not closed. In fact, a linear
combination of points of form (1) is a point of the same form, i.e. L is a
linear manifold. But L is not closed since, for instance, the sequence of
points

(]) 0) 0) 0) o '))

(1) %’ 0’ 0; T ');
(1’ %) %) 0’ o ')’

belonging to L, converges to the point (1, %, %, ---, 1/2", --+), which does
not belong to L.

REMARK 2. Let 21, 22, -+, Za, + -+ be elements of a Banach space R
and let M be the totality of elements in R which are of the form > cix;
for arbitrary finite n. It is obvious that M is a linear manifold in R. We shall
show that [M] is a linear subspace. In view of the fact that [A]] is closed it
is sufficient to prove that it is a linear manifold.

Let @ € [M], y € [M]. Then in an arbitrary e-neighborhood of 2 we can
find an z. € M and in an arbitrary e-neighborhood of y we can find a y. € M.
We form the element ax + By and estimate || ax + 8y — az. — By. ||:

”ax+6y’_aa«_6ye”
Slallle —acl + 181y =yl < (Jal +18])e
from which it is clear that ax + By € [M].
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The subspace L = [M] is said to be the subspace generated by the elements
xl’x2’ e ’xn’ “ e

§22. Convex sets in normed linear spaces

Let = and y be two points in the linear space R. Then the segment con-
necting the points x and y is the totality of all points of the form ax + By,
wherea > 0,8 2> 0,and a + 8 = 1.

DEFINITION. A set M in the linear space R is said to be convex if, given
two arbitrary points x and y belonging to M, the segment connecting them
also belongs to M. A convex set is called a convex body if it contains at least
one interior point, i.e. if it contains some sphere completely.

ExampLES. 1. In three-dimensional Euclidean space, the cube, sphere,
tetrahedron, and halfspace are convex bodies; but a triangle, plane, and
segment are convex sets although they are not convex bodies.

2. A sphere in a normed linear space is always a convex set (and also a
convex body). In fact, consider the unit sphere S: || z || < 1.

If zy, yo are two arbitrary points belonging to this sphere: || z, || < 1,
%ol <1, then

laxo + Byo |l < llazoll + |Byo |l = all@ |l +Blyoll L+ 8 =1,

ie.
axo + Byo € S (@a20,820,a+8=1).

3. Let R be the totality of vectors + = ({1, £ ) in the plane. Introduce
the following distinct norms in R:

2o = & + &) 2 lle = max (| &, ]|&]);
lzli=1&l+ & lzll,= (&P + 10" @>D.

Let us see what the unit sphere will be for each of these norms (see Fig. 16).

FiG. 16
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In the case || z ||z it is a circle of radius 1, in the case || z || it is a square
with vertices (=1, 1), in the case ||z ||; it is a square with vertices
0, 1), (1,0), (—1,0), (0, —1). If we consider the unit sphere corresponding
to the norm || z ||, , and let p increase from 1 to =, then this “sphere”
deforms in a continuous manner from the square corresponding to || z ||; to
the square corresponding to || = ||, . Had we set

(1) Tzl = (lal”+ &M

for p < 1, then the set || z ||, < 1 would not have been convex (for example,
for p = 2/3 it would be the interior of an astroid). This is another expres-
sion of the fact that for p < 1 the “norm” (1) does not satisfy Condition 3
in the definition of a norm.

4. Let us consider a somewhat more complicated example. Let & be the
set of points x = (&1, &, -+, &, ---) in I which satisfy the condition

e tan’ <1

This is a convex set in I, which is not a convex body. In fact, if z, y € &
and 2 = ax + By, where o, 8 2> 0 and a + 8 = 1, then by virtue of the
Schwarz inequality (Chapter II),

D (ks + Brn)’ = & D e "+ 208 D1 WEatn + B0 D v
< o X2 nit? 4 208 (X nE DN e D)t + 82 2% nn
= [a(X 7't + B ') < (a4 ) = 1.

We shall show that ® contains no sphere. ® is symmetric with respect
to the origin of coordinates; hence, if  contained some sphere §’, it would
also contain the sphere S” which is symmetric to S’ with respect to the
origin. Then ®, being convex, would contain all segments connecting
points of the spheres S’ and S”, and consequently it would also contain
a sphere S of the same radius as that of S’, with the center of S at the ori-
gin. But if & contained some sphere of radius r with center at the origin,
then on every ray emanating from zero there would lie a segment belonging
entirely to ®. However, on the ray defined by the vector (1, 1/2,1/3, -- -,
1/n, - - -) there obviously is no point except zero which belongs to ®.

ExErcisEs. 1. Prove that the set ® is compact. Prove that no compact
convex set in I can be a convex body.

2. Prove that ® is not contained in any subspace distinct from all of I, .

3. Prove that the fundamental parallelopiped in I, (see Example 3, §16)
is a convex set but not a convex body.

We shall now establish the following simple properties of convex sets.

THEOREM 1. The closure of a convex set is a convex set.

Proof. Let M be a convex set, [M] its closure and let z, y be two arbitrary
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points in [M]. Further, let e be an arbitrary positive number. Points a, b
can be found in A such that p(a, r) < € and p(b, y) < e. Then p(ax + By,
aa + Bb) < e for arbitrary nonnegative o and 8 such that o + 8 = 1,
and the point aa + 8b belongs to M since M is convex. Since ¢ > 0 is ar-
bitrary, it follows that ax + By € [M], i. e. [M] is convex also.

TueoreM 2. The intersection of an arbitrary number of convex sets is a
convex set.

Proof. Let M = N, M, , where all M, are convex sets. Further, let x and
y be two arbitrary points in A1. These points x and y belong to all M, .
Then the segment connecting the points x and y belongs to each M, and
consequently it also belongs to M. Thus, M is in fact convex.

Since the intersection of closed sets is always closed, it follows that
the intersection of an arbitrary number of closed convex sets is a closed convex
sel.

Let A be an arbitrary subset of a normed linear space. We define the
convex closure of the set A to be the smallest closed convex set containing 4.

The convex closure of any set can obviously be obtained as the intersec-
tion of all closed convex sets which contain the given set.

Consider the following important example of convex closure. Let
X1, Xz, * -, Tapa be points in a normed linear space. We shall say that
these n + 1 points are in general position if no three of them lie on one
straight line, no four of them lie in one plane, and so forth; in general, no
k + 1 of these points lie in a subspace of dimension less than k. The convex
closure of the points z1 , 22, - -+ , Zs41 Which are in general position is called
an n-dimensional simplex and the points z;, zs, - -+, ¥,41 themselves are
called the vertices of the simplex. A zero-dimensional simplex consists of a
single point. One-, two-, and three-dimensional simplexes are, respectively,
a segment, triangle, tetrahedron.

If the points 2, , 23, -+, Z,41 are in general position, then any &£ + 1
of them (k < m) also are in general position and consequently they generate
a k-dimensional simplex, called a k-dimensional face of the given n-dimen-
sional simplex. For example, the tetrahedron with the vertices ¢;, e, e,
e, has four two-dimensional faces defined respectively by the triples of
vertices (e, €3, €4), (e1, €3, €s), (1, €2, €4), (€1, €2, €3); six one-dimensional
faces; and four zero-dimensional faces.

THEOREM 3. A simplex with the vertices Ty, Tz, - - - , Tny1 18 the totality of
all points which can be represented in the form
(2) T = Z]::ll [ 77" Qay 2 0, Z::ll ar = 1.

Proof. In fact, it is easy to verify that the totality of points of the form
(2) represents a closed convex set which contains the points z;, zo, -« ,
Za41 . On the other hand, every convex set which contains the points z; , x, ,
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-+, Zny1 must also contain points of the form (2), and consequently these
points form the smallest closed convex set containing the points z;, z:,
sy, Ty H1 .

§23. Linear functionals

DErFiNITION 1. A numerical function f(z) defined on a normed linear
space R will be called a functional. A functional f(x) is said to be linear if

flaz + By) = of (@) + 6/(),

where z, y € R and «, 8 are arbitrary numbers.
A functional f(z) is said to be continuous if for arbitrary ¢ > 0a é > 0
can be found such that the inequality

[ @) — fl@a) | < e

holds whenever
21 — 2| <.

In the sequel we shall consider only continuous functionals (in particular
continuous linear functionals) and for brevity we shall omit the word
““continuous”.

We shall establish some properties of linear functionals which follow
almost directly from the definition.

TuaroreM 1. If the linear functional f(x) is continuous at some point xy € R,
then it is continuous everywhere in R.

Proof. In fact, let the linear functional f(z) be continuous at the point
x = & . This is equivalent to the fact that f(z,) — f(xo) when 2, — o .

Further, let y, — y. Then
fWa) =f@Wn —y + 20+ y — ) = flyn — y + x0) + @) — fzo).

But y», — y + @ — @z . Consequently, by assumption, f(y, — y + 20) —
f(xo). Thus,

fn) = f(@o) + fy) — flxo) = f(¥)-

A functional f(x) is said to be bounded if there exists a constant N such
that

1) /@ | <N [=]

forallz € R.

TuaeoreM 2. For linear functionals the conditions of continuity and bounded-
ness are equivalent.

Proof. We assume that the linear functional f(z) is not bounded. Then for
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arbitrary natural number n we can find an element x, € R such that
| f@a) | > n |l 2. We shall set y, = x./(n ] 2, ]]). Then ||y, || = 1/n,
i.e. ¥y, — 0. But at the same time

@) | = [f@a/nlia )| = /L2 ) [5Ga) | > 1.

Consequently, the functional f(x) is not coutinuous at the point x = 0.
Now let N be a number which satisfies Condition (1). Then for an arbi-
trary sequence 2, — 0 we have:

|f@@a) | < N flza |l =0,

i.e. f(x) is continuous at the point 2 = 0 and consequently at all the re-
maining points also. This completes the proof of the theorem.
DeriniTION 2. The quantity

[ 71 = sup {|7@) /]l ||; « = 0}

is called the norm of the linear functional f(x).

ExampLEs oF LiNEaR FuNctioNaLs oN VARious Spaces. 1. Let R™ be
Euclidean n-space and let a be a fixed nonzero vector in R”. For arbitrary
xr € R" weset f(x) = (z, a), where (z, a) is the scalar product of the vectors
x and a. It is clear that f(x) is a linear functional. In fact,

flex + By) = (aw + By, @) = alz, @) + By, @) = af () + B().
Further, by virtue of Schwarz’s inequality
2) @) [ =1@al < llzllal.

Consequently, the functional f(z) is bounded and is therefore continuous.
From (2) we find

@ /= < flall.

Since the right member of this inequality does not depend on 2, we have

sup [ f(@) |/l =]l < llal,

ie. [|[f]l £ |l al. But, setting = a we obtain:

[f@) | = (a,0) = |lal’, ie (f@/lal)=1al.

Therefore || f|| = || a ||.

If a is zero, then f is the zero linear functional. Hence || f || = || a | in
this case also.

2. The integral

[=fbx(t)dt

a
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(z(¢) is a continuous function on [a, b]) represents a linear functional on the
space Cla, b]. Its norm equals b — a. In fact,

[ 1| = lfob.v(t)dtl < max |[2() | b — a),

where equality holds when & = constant.
3. Now let us consider a more general example. Let yo(¢) be a fixed con-
tinuous function on [a, b]. We set, for arbitrary function x(f) € Cla, b],

b
fz) = / 2(O)yolt) dt.

This expression represents a linear functional on C[a, b] because

b
fow + 80) = [ (aa® + By®)ua(d

b b
-« f 2(@yolt) dt + B f YOy dt = of(@) + ().

This functional is bounded. In fact,

b b
1@ 1 =| [ 0wt de| < 21 [ 130 |

a a
Thus, the functional f(z) is linear and bounded and consequently it is
continuous also. It is possible to show that its norm is exactly equal to

b
[ w0 a

4. We now consider on the same space Cla, b] a linear functional of
another type, namely, we set

6tox(t) = x(to),

i.e. the value of the functional 8, for the function x(¢) is equal to the value
of this function at the fixed point & . This functional is frequently en-
countered, for example, in quantum mechanics where it is usually written
in the form

b
suz()) = f (08t — o) dt,
where 8(¢) is the “function” equal to zero everywhere except at the point
t = 0 and such that its integral equals unity (the Dirac é-function). The
é-function can be thought of as the limit, in some sense, of a sequence of
functions ¢, (¢) each of which assumes the value zero vutside some e,-neigh-
borhood (e, — 0 as n — «) of the point { = 0 and such that the integral
of the limiting function equals 1.
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5. In the space I, we can define a linear functional as in B" by choosing

in [, some fixed element @ = (a1, a2, -+ , @s, -+ -) and setting
®3) f@) = 21 Taln.
Series (3) converges for arbitrary @ € I, and
4) | Xt @t | < (T (Xraad) = [z [all
Inequality (4) transforms into the identity Y o1, = Y ow1a, for
z = a and consequently || f| = || a|.

Geomelric interpretation of a linear functional. Let f(z) be a linear func-
tional on the space B. We shall assume f(z) is not identically zero. The set
Ly of those elements = in R which satisfy the condition f(z) = 0 form a
subspace. In fact, if , y € L;, then

flaz + By) = of () + Bf(y) = 0O,

i.e. ar + By € L, . Further, if 2, — z and z, € L;, then by virtue of the
continuity of the functional f,

f(@) = lim,,o f(z,) = 0.

DeriniTiON 3. We say that the subspace L of the Banach space R has
index (or deficiency) s if: 1) R contains s linearly independent elements
X1, X2, * -, & which do not belong to L with the property that every
element x € R can be represented in the form

r =T + are + -0+ axs + v, y € L;
and 2) it is impossible to find a smaller number of elements z; which possess
the indicated properties.
In the case of a finite-dimensional space R the index plus the dimension
of the subspace L is equal to the dimension of the whole space.

TueoreM 3. Let f(x) # 0 be a given functional. The subspace L; has index
equal to unity, i.e. an arbitrary element y € R can be represented in the form

5) ¥y = Nrp + «a,
where x € Ly, xo § Ly .
Proof. Since xy ¢ Ly, we have f(z,) 5= 0. If we set A = f(y)/f(xo) and
=y — {fy)/f(xo)}xo, then y = Axo + z, where
f@@) = f@) — (f@)/f(x0))f(zo) = 0.
If the element x, is fixed, then the element y can be represented in the

form (5) uniquely. This is easily proved by assuming the contrary. In fact,
let

y = N2y + z,
y = Nz + 23
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then
N =Nz = (&' — 2).

If A — N = 0, then obviously, x — 2’ = 0. But if A — X’ ¢ 0, then
xo = (&' — z)/(A — N') € L;, which contradicts the condition that z, ¢ L;.

Conversely, given a subspace L of R of index 1, L defines a continuous
linear functional f which vanishes precisely on L. Indeed, let 2y ¢ L. Then
foranyx € R,x = y + Axo, withy € L,z ¢ L. Let f(x) = \. It is easily
seen that f satisfies the above requirements. If f, ¢ are two such linear
functionals defined by L, then f(z) = ag(z) for all z € R, a a scalar. This
follows because the index of L in R is 1.

We shall now consider the totality M, of elements in R which satisfy
the condition f(x) = 1. M/, can be represented in the form M; = L; + x,,
where z, is a fixed element such that f(z;) = 1 and L, is the totality of
elements which satisfy the condition f(x) = 0. In analogy with the finite-
dimensional case it is natural to call M, a hyperplane in the space R. It is
easy to verify that the hyperplanes f(x) = 1 and ¢(x) = 1 coincide if, and
only if, the functionals f and ¢ coincide. Thus, it is possible to establish a
one-to-one correspondence between all functionals defined on R and all
hyperplanes in B which do not pass through the origin of coordinates.

We shall now find the distance from the hyperplane f(x) = 1 to the
origin. It is equal to

d = inf {|| = |[; f(x) = 1}.
For all x such that f(z) = 1 we have

L<fll=ll,  dellall 2 1/05 15

therefore d > 1/|| f||. Further, since for arbitrary ¢ > 0 an element z
satisfying the condition f(z) = 1 can be found such that

1> (Ifll =9l
it follows that
d=inf {2z <1/(f] — &;f@x) =1}
Consequently,
a=1/lfl,

i.e. the norm of the linear functional f(x) equals the reciprocal of the magnitude
of the distance of the hyperplane f(x) = 1 from the origin of coordinates.
§24.' The conjugate space

It is possible to define the operations of addition and multiplication by a
scalar for linear functionals. Let fi and f, be two linear functionals on a
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normed linear space R. Their sum is a linear functional f = f; 4+ f. such
that f(x) = fi(x) + fo(x) for arbitrary z € R.

The product of a linear functional f; by a number « is a functional f = of;
such that

f@) = afi(x)
for arbitrary x € R.
It is easy to verify that the operations of addition and multiplication by
a scalar of functionals so defined satisfy all the axioms of a linear space.
Moreover, the definition we gave above of the norm of a linear functional
satisfies all the requirements found in the definition of a normed linear
space. In fact,

1) || £l > O for arbitrary f # 0,
2) lafll =lalllfl
3) Ifi+ foll = sup {| (@) + fo(2) |/] = [}
< sup {(| A=) | + | folx) D/l 2 I}
< sup { @) [/l = I} + sup {] fo(@) [/]] = I}
Il + 11 fe ]

Thus, the totality of all linear functionals on a normed space R itself
represents a normed linear space; it is called the conjugate space of R and
is denoted by R.

TuroreM 1. The conjugate space is always complete.

Proof. Let {f.} be a fundamental sequence of linear functionals. By the
definition of a fundamental sequence, for every ¢ > 0 there exists an N
such that || f» — fm || < eforalln, m > N. Then for arbitrary z € R,

[fa@) = fu@ | S o —fullllz] <ell=],

i.e. for arbitrary # € R the numerical sequence f,(x) converges.
If we set

f@) = lima,e fa(®),
then f(x) represents a linear functional. In fact,
D) flaz + By) = liMp.w falax + By)
limpw [ofa(@) + Bf2(¥)] = of(z) + Bf ().
2) Choose N so that || fa — favs || < 1 for all w > N. Then
[ frsn I < ISl + 1
for all p. Consequently, | fat,@) | < (I1fall + 1) [ .
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Passing to the limit as p — <, we obtain

g | farn(@) | = [f@) | < (ISl + D2,

i.e. the functional f(x) is bounded. We shall now prove that the functional
f is the limit of the sequence fy, fo, -+, fa, -+ . By the definition of the
norm, for every ¢ > 0 there exists an element z. such that

”fn - f” < {(falx) — f(zo) D/” Le ”} + ¢/2
= [fa@/| 2z ) = fle/l 2 1) | + €/2;

since

f(xe/“ Te ”) = limnawfn(xe/” Te ”),
it is possible to find an ny(e) such that for n > ng

| fa/l 2 ) = fe/ll 2 ) | < €/2,
so that for n > n, the inequality

[ fo = Fll <
is fulfilled.
This completes the proof of the theorem.
Let us emphasize once more that this theorem is valid independently of
whether the initial space R is complete or not.
ExampLES. 1. Let the space E be finite-dimensional with basise; , ez, - - -,
e, . Then the functional f(x) is expressible in the form

(1) f@) = 2iw fai,

where z = D i1 x; and fi = f(e,).

Thus, the functional is defined by the n numbers fi, - -, f, which are
the values of f on the basis vectors. The space which is the conjugate of the
finite-dimensional space is also finite-dimensional and has the same dimen-
sion.

The explicit form assumed by the norm in the conjugate space depends
on the choice of norm in E.

a) Let ||z | = (& z)!. We have already shown that then

IFl = G,
i.e. the conjugate of an Euclidean space is itself Euclidean.
b) Let ||z || = sup; | z: |. Then
[f@) | = | 2 fas] < Q2 fi) sups || = G fi) =]
From this it follows that

170 < 21051
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The norm || f || cannot be less than Y, | f; | since if we set
+1if fi > 0,
z=<—1iff; <O,
| 0iffi =0,
then the following equality is valid:
@) =21l = 1D l= ]
OIf 2 = Clal)' p > 1, then |[fl = (X |£:[9", where
1/p + 1/q = 1. This follows from the Hélder inequality
| 2 fas | < 2 [ VPG | i |9

and from the fact that the equality sign is attained [for f; = (sgn ) (z:)""].

2. Let us consider the space ¢ consisting of sequences z = (x1, 22, -,

&, , - --) which are such that z, — 0 as n — «, where || 2 || = sup. z. .
If a functional in the space ¢ is expressible by means of the formula
(2) f(l) = Z:'o=1fﬂf, Zznl |f; | < o,

then it has norm

”f” = Zz=1|f1 .

The inequality ||f| < 2 i=1|f:| is obvious. On the other hand, if
2,=1 |fi| = a, then for every ¢ > 0 it is possible to find an N such that
z=i If % | > a — e

We now set
+1iff, >0
—1iffa <0pn < N.
"7 oitfa=o0
0ifn > N
Then
[f@)| = 20=tlfal > a — ¢

whence it follows that || f|| =
We shall prove that all functionals in the space ¢ have the form (2).
We shall set

en = (0)0)"';1)07"')>

i.e. e, denotes the sequence in which the n-th entry is unity and the re-
maining are zeros.
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Let the functional f(z) be given; we denote f(e,) by f, . If
(3) T = (X, %2, ", 2,0, ),
then
T =Tie1 + Toea + - + 706, and f(x) = Z{;lfixi.

The sum D 5. |fa| is <» for every bounded linear functional. If
> %<1 |fa| were = x, then for every H it would be possible to find an N
such that

et |fa] > H.
We construct the element x in the following way:
1iff, > 0
—1iff, <0pn < N.
"7 ot f =
0Oifn >N
The norm of such an element is equal to unity, and
|f@) | = 28 fai = 2alfil > H = Hllz],

which contradicts the assumption concerning the boundedness of the func-
tional.

The set of elements of the form (3) is everywhere dense in the space c.
Therefore the continuous linear functional is uniquely defined by its values
on this set. Thus, for every x

fl@) = 2% fai.
The space which is conjugate to the space c¢ consists of sequences
(fr,fa, -*+, fa, - ) satisfying the condition D oui|fn| < .
3. Let the space consist of sequences
T= (@1, X, o, Tn,y ), S| mi| < w

with norm ||z || = D % | 2. .
It can be proved that the space conjugate to this space is the space of
bounded sequences

f= (fl:fz} "'7fn) "')

with norm || f || = sup. | fx |-
In all the examples of finite-dimensional spaces introduced above, the
space which is conjugate to the conjugate space coincides with the initial
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space. This is always so in the finite-dimensional case. However, as Exam-
ples 2 and 3 show, iu the infinite-dimensional case the space conjugate to
the conjugate space may not coincide with the initial space.

We consider cases when this coincidence holds also in infinite-dimensional
space.

4. The space [» consists of sequences

r o= (xl’xz’ e T, ...))
with > %2 < w andnorm ||z || = Q% 2% All functionals in the
space [ have the form
flx) = Z:‘o—lfixi-

We shall prove this assertion.

To each functional there is set into correspondence the sequence f1, f;,
<o+ fa, +-- of its values on the elements e;, ez, ---, €,, - defined
exactly as in Example 2, above.

If the functional is bounded, then Y i f < «. We shall assume the
contrary, i.e. we shall assume that for every H there exists an N such that

?=1. l=U > H.
1f we apply the functional under consideration to the element

'v=(f17f2)”';.fNy0y"')) ”‘T'”:[’ﬁ;
we obtain
f@) = Xafl=U2H |z,

contrary to the assumption that the functional is bounded.

Since the functional f is linear, its values on the elements of the form
x = (x1, %2, ", Tn, 0, ---) are easily found; on all other elements of
the space the values of f are found from continuity considerations and we
always have

fx) = Z:‘;lfﬂi.

The norm of the functional f equals (3 7 f 3} This is established with
the aid of the Schwarz inequality.
5. The space [, is the space of all sequences of the form

ro= (T, X2y, Xa, ), (Z?-d -Tfp)l/” < w, o] = (Z:';l a ).
The conjugate space of I, is the space I, , where 1/p 4+ 1/¢ = 1. The proof
is analogous to the preceding proof. Hint: Use Holder’s inequality.
§26. Extension of linear functionals

TureoreM (Hann-BanNacu). Every linear functional f(x) defined on a
linear subspace G of a normed linear space E can be extended to the entire
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space with preservation of norm, i.e. it is possible to construct a linear func-
tional F(x) such that

1) F() = fx), =2¢€G@G,
2) [ Flle=1lflle-

Proof. The theorem will be proved for a separable space E, although in
actuality it is valid also in spaces which are not separable.

First, we shall extend the functional to the linear subspace G obtained
by adding to G some element x, ¢ G. An arbitrary element of this subspace
is uniquely representable in the form

Yy = txo + , x € G.
If the functional sought exists, then

F(y) = tF(x) + f(x)

or, if we set —F(xy) = ¢, then F(y) = f(z) — ct.
In order that the norm of the functional be not increased when it is
continued it is necessary to find a ¢ such that the inequality

M [f@) —et] SN fI N+ tao |

be fulfilled for all x € G.
If we denote the element z/f by z (z € @), the inequality (1) can be re-
written

[f@ —cl <N flHz+ .

This inequality is equivalent to the following inequalities:
—fllle + 2l <f@ —c<Ifllllz+al,

or, what amounts to the same thing,

fO+1fllletallze=i@ —Ifl11z+l

for all z € G. We shall prove that such a number ¢ always exists. To do
this we shall show that for arbitrary elements 2/, 2” € G we always have

) &) + IFIT2" + 2l = f@) =[£I + 2|l
But this follows directly from the obvious inequality
&) = @) < fIZ —=2" 1= IfI 112 + 20 — @ + ) |
SHANIE + ol + 0F 012" + 2.
We introduce the notation:
inf {f@) + (| fl[ 2+ ;2 € G},
¢ =sup {f() — | fllllz+a0l;2 € G}

cl
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It follows from inequality (2) that ¢” < ¢'.

We take an arbitrary ¢ such that ¢” < ¢ < ¢’. We set
Fi(x) = f(x) — ct
for the elements of the subspace G1 = {G U xz,}. We obtain the linear

functional F; , where || Fi || = |||
The separable space E contains a denumerable everywhere dense set
Zv, Xa, ***, &u, + -+ . We shall construct the linear subspaces
Gl = {G U xO})

................

and define the functional F on them as follows: we construct functionals
F, which coincide with F,_; on G,—; and which have norm equal to || f].
Thus, we obtain the functional F defined on a set which is everywhere
dense in E. At the remaining points of E the functional is defined by con-
tinuity: if £ = lim,.o ., then F(z) = limu.. F(z,). The inequality
|F@) | < ||| |l = is valid since

| F@@) | = limpsw | F(2) | < limpwo [ £ [2a [l = W1 N2 ]I

This completes the proof of the theorem on the extension of a functional.

CoROLLARY. Let x, be an arbitrary nonzero element in R and let M be an
arbitrary positive number. Then there exists a linear functional f(z) in R
such that

IFll =M and flo) = [fll =]

In fact, if we set f(txo) = ¢tM || xo ||, we obtain a linear functional with
norm equal to M which is defined on the one-dimensional subspace of ele-
ments of the form ¢z, and then, by the Hahn-Banach theorem, we can extend
it to all of R without increasing the norm. The geometric interpretation of
this fact is the following: in a Banach space through every point x, there
can be drawn a hyperplane which is tangent to the sphere ||z || = || 20 ||.

§26. The second conjugate space

Inasmuch as the totality R of linear functionals on a normed linear
space R itself represents a normed linear space it is possible to speak of the
space R of linear functionals on R, i.e. of the second conjugate space with
respect to R, and so forth. We note first of all that every element in R
defines a linear functional in R. In fact, let

¥ao(f) = f(@o),
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where ; is a fixed element in B and f runs through all of R. Thus, to each
f € R there is set into correspondence some number ¥,,(f). In this connec-
tion we have

Vao(afi + Bf2) = afi(@o) + Bfa(x0) = ofee(f1) + Bz, (f2)
and
[P | < AF N 2o ] (boundedness),

i.e. ¥z, (f) is a bounded linear functional on R.
Besides the notation f(x) we shall also use the more symmetric notation:

1) (f, z)

which is analogous to the symbol used for the scalar product. For fixed
f € R we can consider this expression as a functional on R and for fixed
x € R as a functional on R.

From this it follows that the norm of every € R is defined in two ways:
firstly, its norm is defined as an element in R, and secondly, as the norm
of a linear functional on R, i.e. as an element in R. Let || z || denote the
norm of = taken as an element in B and let || z |2 be the norm of z taken

as an element in &. We shall show that in fact | z || = ||z [lz. Let f be an
arbitrary nonzero element in R. Then
[Gal<fl=l, Nzl 21¢ED /000

since the left member of the last inequality does not depend on f, we have

Izl =sup {| (£, 2)I/IfI;f € Bf =0} =]

But, according to the corollary to the Hahn-Banach theorem, for every
2 € R a linear functional f; can be found such that

[ Gos o) | =Sl ll=].
Consequently,

sup {| (o) I/IfII; f € R} = ||,

ie. |z ]la=[l=].

This proves the following theorem.

THEOREM. R s isometric to some linear manifold in R.

Inasmuch as we agreed not to distinguish between isometric spaces this
theorem can be formulated as follows: R C R.

The space R is said to be reflexive in case R=R IR R, then R is
said to be drreflexive.

Finite-dimensional space R" and the space I, are examples of reflexive
spaces (we even have R = R for these spaces).

The space ¢ of all sequences which converge to zero is an example of a
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complete irreflexive space. In fact, above (§24, Examples 2 and 3) we
proved that the conjugate space of the space ¢ is the space [ of numerical
sequences (X1, Tz, -+ , Ta, - - -) which satisfy the condition Y 5 | 2. | <
0, to which in turn the space m of all bounded sequences is conjugate.
The spaces ¢ and m are not isometric. This follows from the fact that ¢
is separable and m is not. Thus, ¢ is irreflexive.

The space Cla, b] of continuous functions on a closed interval [a, b] is
also irreflexive. However, we shall not stop to prove this assertion. (The
following stronger assertion can also be proved: No normed linear space
exists for which C[a, b] is the conjugate space.)

A. 1. Plessner established that for an arbitrary normed space R there
exist only two possibilities: either the space R is reflexive, ie. R = R =

R=--;R=R=--;orthespaces R, B, R, -- - are all distinct.
The space L(p > ) is an example of a reﬂexwe space (since [, = I,
where 1/p + 1/g = 1, we have [, = [, = I,).

§27. Weak convergence

The concept of so-called weak convergence of elements in a normed linear
space plays an important role in many questions of analysis.

DeriNiTiON. A sequence {x,} of elements in a normed linear space R
converges weakly to the element x if

1) The norms of the elements x, are uniformly bounded: ||z, || < M,
and

2) f(z.) — f(x) for every f € R.

(It can be shown that Condition 1 follows from 2; we shall not carry out
this proof.)

Condition 2 can be weakened slightly; namely, the following theorem is
true.

TueorEM 1. The sequence {x,} converges weakly to the element x if

1) [z.|| <M, and

2) f(x,) — f(x) for every f € A, where A is a set whose linear hull s
everywhere dense in R.

Proof. It follows from the conditions of the theorem and the definition
of a linear functional that if ¢ is a linear combination of elements in A
then ¢(x,) — ¢(z).

Now let ¢ be an arbitrary linear functional on R and let {¢:} be a sequence
of functionals which converges to ¢, each of which is a linear combination
of elements in A. We shall show that ¢(z,) — ¢(x). Let M be such that
2. <M (n=1,2 ---)and | z] < M.

Let us evaluate the difference | ¢(z.) — ¢(x) |. Since pr — ¢, given an
arbitrary ¢ > 0 a K can be found such that for all k > K,

le —ell <e
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it follows from this that
le(@a) — (@) | < |o@n) — er(@n) | + | er(®a) — er(@) |
+ o) — o) | < eM + eM + | oi(xn) — e(x) |

But by assumption | gi(z.) — @x(x) | — 0 as n — «. Consequently,
| o@s) — (@) | —0asn — w.

If the sequence {z.} converges in norm to 2, that is, if ||z, — z | — 0
as n — o, then such convergence is frequently called strong convergence
to distinguish it from weak convergence.

If a sequence {z.} converges strongly to z, it also converges weakly to
the same limit. In fact, if ||z, — x || — 0, then

|f@n) —f@ | < I fl e — 2] —0
for an arbitrary linear functional f. The converse is not true in general:
strong convergence does not follow from weak convergence. For example,
in [, the sequence of vectors
e = (1’ 0’ 07 "')’
62 = (0, 1’ 0’ "')7
€ = (07 0,1, "')’

................

converges weakly to zero. In fact, every linear functional f in I, can be
represented as the scalar product with some fixed vector

a'=(a1’a2"”,an"”)’ f(x)=(xya);
hence,
fle) = (en, @) = an.

Since a, — 0 asn — o« for every a € I, we have lim f(e,) = 0 for every
linear functional in I, .

But at the same time the sequence {e,} does not converge in the strong
sense to any limit.

We shall investigate what weak convergence amounts to in several
concrete spaces.

ExawmpLEs. 1. In fintte-dimensional space R™ weak and strong convergence
coincide. In fact, consider functionals corresponding to multiplication by
the elements

e = (1’070’ te ,O)’
€ = (0, 15,0 --- 70)’

-------------------
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If {zx} converges weakly to x, then
(xk ) ei) = xk(i) - x(i) (7' = 17 2) Tty ’ﬂ),

i.e. the first coordinates of the vectors x; tend to the first coordinate of the
vector x, their second coordinates tend to the second coordinate of the
vector z, and so forth. But then

p(te, @) = {2 i @ — 2 >0,

i.e. {x:} converges strongly to z. Since strong convergence always implies
weak convergence, our assertion is proved.

2. Weak convergence in l, . Here we can take for the set A, linear com-
binations of whose elements are everywhere dense in I, the totality of
vectors

€ = (1,0, 0) "'))
€ = (0’ 1,0, "')’
€3 = (0’ 0,1, "'))

................

Ifx = (&4, &, -+, &, -+ ) is an arbitrary vector in I, then the values
assumed at x by the corresponding linear functionals are equal to (z, e,) =
£, , 1.e. to the coordinates of the vector . Consequently, weak convergence
of the sequence {z,} in I, means that the numerical sequence of the k-th
coordinates of these vectors (k = 1, 2, - - -) converges. We saw above that
this convergence does not coincide with strong convergence in I, .

3. Weak convergence in the space of continuous functions. Let Cla, b] be
the space of continuous functions defined on the closed interval [a, b]. It
can be shown that the totality A of all linear functionals &,, , each of which
is defined as the value of the function at some fixed point ¢, (see Example 4,
§23) satisfies the conditions of Theorem 1, i.e. linear combinations of
these functionals are everywhere dense in Cla, b]. For each such functional
81, , the condition 8, 2.(t) — 8,2 (t) is equivalent to the condition x,(ty) —
x(to).

Thus, weak convergence of a sequence of continuous functions means
that this sequence is a) uniformly bounded and b) convergent at every
point.

It is clear that this convergence does not coincide with convergence in
norm in Cla, b}, i.e. it does not coincide with uniform convergence of con-
tinuous functions. (Give a suitable example!)

§28. Weak convergence of linear functionals

We can introduce the concept of weak convergence of linear functionals
as analogous to the concept of weak convergence of elements of a normed
linear space R.
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DEeFINITION. A sequence {f.} of linear functionals converges weakly to
the linear functional f if

1) || f» || are uniformly bounded; i.e. || fn || < M, and

2) fa(x) — f(x) for every element x € E.

(This is usually called weak* convergence.—Trans.)

Weak convergence of linear functionals possesses properties which are
analogous to properties stated above of weak convergence of elements,
namely strong convergence (i.e. convergence in norm) of linear functionals
implies their weak convergence, and it is sufficient to require the fulfillment
of the condition f,(x) — f(x) not of all z € R, but only for a set of elements
linear combinations of which are everywhere dense in E.

We shall consider one important example of weak convergence of linear
functionals. Above (§23, Example 4), we spoke of the fact that the “s-func-
tion”, i.e. the functional on Cl[a, b], which assigns to every continuous func-
tion its value at the point zero, can “in some sense” be considered as the
limit of “ordinary” functions, each of which assumes the value zero outside
some small neighborhood of zero and has an integral equal to 1. [We assume
that the point ¢ = 0 belongs to the interval (a, b). Of course, one can take
any other point instead of { = 0.] Now we can state this assertion pre-
cisely. Let {o.(t)} be a sequence of continuous functions satisfying the
following conditions:

1) 1) @) =0 for |t]| > 1/n, ea(t) >0,
2 [ " onld) dt = 1.

Then for an arbitrary continuous function z(f) defined on the closed
interval [a, b], we have
1/n

f en(Dz(t) dt = f on(D)2(t) dt — x(0) as n — .

~1/n
In fact, by the mean-value theorem,

1/n 1/n
[ ettn at = o) [ dt = o),  —1/n <& <1/

=1/

when n — «, ¢ — 0 and z(¢,) — z(0).
The expression

[ o020 a

represents a linear functional on the space of continuous functions. Thus,
the result we obtained can be formulated as follows: the é-function is the

limit of the sequence (1) in the sense of weak convergence of linear func-
tionals.
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The following theorem plays an important role in various applications of
the concept of weak convergence of linear functionals.

TuEOREM 1. If the normed linear space R is separable, then an arbitrary
bounded sequence of linear funclionals on R contains a weakly convergent
subsequence.

Proof. Choose in R a denumerable everywhere dense set

{xl,xQ’.'.’xn".'}ﬁ
If {f.} is a bounded (in norm) sequence of linear functionals on R, then

fi(@), folzy), - -+, faly), - - -

is a bounded numerical sequence. Therefore we can select from {f,} a
subsequence

fll, f2/’ e )f'n,y e
such that the numerical sequence
@), ff (@), -

converges. Furthermore, from the subsequence {f,’} we can select a sub-
sequence

O X R
such that
(@), fo (xe), - -
converges, and so forth. Thus, we obtain a system of sequences
2 TN A

” " ”
1’f2’ yJn oy ’

..................

each of which is a subsequence of the one preceding. Then taking the “di-

agonal” subsequence f//, fo”/, fy’”’, - - - , we obtain a sequence of linear func-
tionals such that fi’(z,), f2"(x.), --- converges for all n. But then fi’(z),
fo” (x), - - - also converges for arbitrary 2 € R. This completes the proof of

the theorem.

The last theorem suggests the following question. Is it possible in the
space R, conjugate to a separable space, to introduce a metric so that the
bounded subsets of the space R become compact with respect to this new
metric? In other words, is it possible to introduce a metric in R so that
convergence in the sense of this metric in R coincides with weak con-
vergence of elements in R considered as linear functionals. Such a metric
can in fact be introduced in R.

Let {z.} be a denumerable everywhere dense set in R. Set

2) p(fi, fo) = 2% | filga) — falxn) /2" || 2n ||
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for any two elements fi , f» € R. This series converges since its n-th term
does not exceed (||fi]l + [ f21)/2". The quantity (2) possesses all the
properties of a distance. In fact, the first two axioms are obviously satisfied.
We shall verify the triangle axiom.

Since

[ fi@a) = fa(@n) | = | fi(@a) — fo(®a) + foln) — fa(zn) !
< lfl(xn) — fa(xn) I + |f2(xn) — fa(xn) l’

we have

o(fi, fs) < p(f1, fo) + p(f2, fo).

Direct verification shows that convergence in the sense of this metric is
in fact equivalent to weak convergence in R.

Now Theorem 1 can be formulated in the following manner.

TuroreM 1. In a space R, which is the conjugate of a separable space,
with metric (2), every bounded subset is compact.

§29. Linear operators

1. Definition of a linear operator. Boundedness and continuity.

Let R and R’ be two Banach spaces whose elements are denoted respec-
tively by « and y. Let a rule be given according to which to each x in some
set X C R there is assigned some element y in the space R’. Then we say
that an operator y = Ax with range of values in R’ has been defined on the
set X.

DerFiniTION 1. An operator A is said to be linear if the equality

Aoy + aexe) = 1dx; + ol

is satisfied for any two elements z;, 22 € X and arbitrary real numbers
ap, ag .

DEerFiNITION 2. An operator A is said to be bounded if there exists a con-
stant M such that

Az ] < M| x|
forallz € X.
DEeriniToN 3. An operator A is said to be continuous if for arbitrary
e > 0 there exists a number § > 0 such that the inequality
o' — 2"l <8 @, 2" € X)
implies that
| A’ — Az” ||z < e

Only linear operators will be considered in the sequel. If the space R’
is the real line, the operator y = A(x) is a functional, and the formulated
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definitions of linearity, continuity and boundedness go over into the
corresponding definitions introduced in §23 for functionals.

The following theorem is a generalization of Theorem 1, §23.

TueoreM 1. Continuity is equivalent to boundedness for a linear operator.

Proof. 1. Assume the operator A is bounded. The inequality || 2’ — z” || <
8 implies that

1) | Az’ — Az” | = | A@ — 2”) || S M ||2' — z" | < M3,

where M is the constant occurring in the definition of boundedness. If we
take § < ¢/M, inequality (1) yields || Az’ — Az” || < ¢, i.e. the operator A
is continuous.

2. Assume now that the operator 4 is continuous. We shall prove that 4
is bounded by contradiction. We assume that A is not bounded. Then there
exists a sequence

(2) $1,$2,"',$n,"‘
such that
[ Aza | > n |l za .

Set z, = z,/n || 2. ||; it is obvious that ||z, || = 1/n, ie. 2, — 0 as
n — . Consider the sequence

Az, = Azo/n | z. ||

which is the map of the sequence {z,} under A. The norm of each element
Az, is not less than 1:

| Azall = | Azall/n ]| 20|l 2 7 || 2o [I/ 2l za || = 1.

Since for every linear operator, 4(0) = 0, and lim,.» 2, = 0, we obtain a
contradiction of our hypothesis that the operator is continuous. Conse-
quently, the operator A must be bounded.

ExampLE. The general form of a linear operator mapping a finite-dimen-
stonal space into a finite-dimensional space. Given an n-dimensional space
R" with basis 1, ez, -- - , e, , every point of this space can be represented
in the form z = Y i xie; .

A linear operator A maps R" into the finite-dimensional space R™ with
the basis e/, ey, - -+ , en/.

Let us consider the representation with respect to this basis of the images
of the basis vectors of the space R":

Ae; = Z?—l a,-,e,".
Now let y = Az,

y = Az = 2?—1 zAe; = 2?"‘1 Ti Z?-l a;ei = 2?-1 def,
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where
(3) d,~ = Z?—l ;%5 .

It is clear from formula (3) that to determine the operator A it is suffi-
cient to give the coefficient matrix with entries a;; .

A linear operator cannot map a finite-dimensional space into a space of
greater dimension since all linear relations among the elements are preserved
for their images.

2. Norm of an operator. Sum and product of operators. Product of an
operator by a scalar.

DermNrTioN 4. Let A be a bounded linear operator. This means that
there exist numbers M such that

@) [Az || <M ||

for all x € X. The norm || A || of the operator A is the greatest lower

bound of the numbers M which satisfy condition (4). It follows from the

definition of the norm of an operator that || Az || < || A || | = ||. But if

M < || A ||, then there exists an element x such that || Az || > M ||z ||.
THEOREM 2. If A s an arbitrary linear operator, then

[Al = sup {|Az|; [|z]| = 1} = sup {[|A=|/llzl; [|=]l = 0}.
Proof. Introduce the notation
a=sup {[|Az|; [z ]| = 1} = sup {[ Az |/llz|; =] = 0}.

We shall first prove that || A | > a. Sincea = sup{ || Az ||/||z |; ||z || # 0},
for arbitrary ¢ > 0 there exists an element z; not zero such that
Az ||/l z1]] > @ — eor || Az || > (e — ¢) | 21 ]|, which implies that
a — ¢ < || A || and hence that || A || > « because ¢ is arbitrary.

The inequality cannot hold. In fact, if welet | A || — @ = ¢, then a <
| A || — €/2. But this implies that the following inequalities hold for an
arbitrary point z:

ldz|/llzl]l Sa <Al - ¢2,
or
Az || < (JAl = e/2) [ 2 I,

ie. || A || is not the greatest lower bound of those M for which || Az || <
M || z ||. 1t is clear from this contradiction that || 4 | = e.
In the sequel we shall make use of the above expression for the norm of
an operator as equivalent to the original definition of the norm.
DEermNiTION 5. Let A7 and A be two given continuous linear operators
which transform the Banach space E into the Banach space E;. The sum
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of these two operators is the operator A which puts the element y € E,
defined by the formula 4y = Az 4+ A,z into correspondence with the ele-
ment x € E. It is easy to verify that A = 4, 4+ A,is also a linear operator.

TureoreM 3. The following relation holds for the morms of the operators
Al,AQandA = Al +A22

(5) NA] <AL+ || 421l
Proof. It is clear that
Azl = | Aw + Adsx || < [[Aw ] + A | £ ([ Aul] + 14D (2],

whence inequality (5) follows.

DEerinIiTION 6. Let A; and A, be continuous linear operators where A4,
transforms the Banach space E into the Banach space E; and 4, transforms
the Banach space E; into the Banach space E, . The product of the operators
A; and A; (denoted by A = A,A,) is the operator which sets the element
z € E,into correspondence with the element € E, where

z = Ay(Ax).
TarorEM 4. If A = A2A;, then
(6) lAl <Al Adll
Proof. || Az | = || Ax(Aw) | < [[A:]l [ A | < Aol | Ad]l I ],

whence the assertion of the theorem follows.

The sum and product of three or more operators are defined by iteration.
Both operations are associative.

The product of the operator A and the real number & (denoted by kA4)
is defined in the following manner: the operator kA puts the element k(Ax)
of the space E; into correspondence with the element z € E.

It is easy to verify that with respect to the operations of addition and
multiplication by a scalar introduced above the bounded linear operators
form a linear space. If we introduce the norm of the operator in the way
indicated above we can form a normed linear space.

ExEercisk. Prove that the space of bounded linear operators which trans-
form the space E; into a complete space E, is complete.

3. The wnverse operator.

Let us consider the operator 7' which transforms the Banach space F
into the Banach space E; :

Tx =y, r EE, y € E;.

DeriniTioN 7. The operator T' is said to have an tnverse if for every
y € E; the equation

(M) Trx =y

has a unique solution.
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To each y € E; we can put into correspondence the solution of equation
(7). The operator which realizes this correspondence is said to be the inverse
of T and is denoted by 7.

TuEOREM 5. The operator T~ which is the inverse of the linear operator T
is also linear.

Proof. To prove the linearity of 7" it is sufficient to verify that the
equality

T (o + aaye) = T yr + T 'y,
is valid. Denote 7'z; by y: and Tz by y» . Since 7 is linear, we have
(€)) Ty + dos) = awys + s .
By the definition of the inverse operator,
Ty = 1, T Yy = 25 ;

whence, multiplying these equations by a; and a; respectively, and adding,
we obtain:

Ty + azT_lyz = ai®; + o .
On the other hand, from (8) and from the definition of the inverse operator
it follows that
oty + agty = T (a1 Y1 + azye)
which together with the preceding equalities yields
T aw: + ae) = anT gy + T 'y, .

TuroreM 6. If T is a bounded linear operator whose inverse T exists,
then T~ is bounded.

We shall need the following two lemmas in the proof of this theorem.

LemMma 1. Let M be an everywhere dense set in the Banach space E.
Then an arbitrary element y € E, y # 0, can be developed in the series

y=pn+y+ -ty + -,

where v, € M and ||y || < 3|y /2"
Proof. We construct the sequence of elements y; in the following way:
we choose y; so that

©)) ly — ol < llyll/2.

This is possible because inequality (9) defines a sphere of radius ||y ||/2
with center at the point y, whose interior must contain an element of M
(since M is everywhere dense in E). We choose y» € M such that
ly —wm—y [l <y ll/4,yssuchthat |y —yu—pa—ws | < [y I/8,
and in general, y, such that |y — y1 — -+ —wya || < ||y [|/2™
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Such a choice is always possible because M is everywhere dense in L.
By construction of the elements y; ,
ly — 2k 9e] >0 as n— =,

i.e. the series D_r.1 ¥: converges to y.
To evaluate the norms of the elements y, we proceed as follows:

lyill =llos—y+yll <M=yl +lyll=31yl/?2
Nyl =Nle+i—y—wm+vyll
Sly=—wn—wl+lly—unl <3lyl/4

Finally, we obtain
fyall =llyntynat - +on-y+y -y — - =yl
Slly—wpi— =l +lly—v— - =yl =3y /2"

This proves Lemma 1.
Lemma 2. If the Banach space E is the sum of a denumerable number of
sets: E = Us_, M, , then at least one of these sets is dense in some sphere.
Proof. Without loss of generality, we can assume that

MicM,CM;sC -

We shall assume that all the sets M; are nowhere dense, i.e. that in the
interior of every sphere there exists another sphere which does not con-
tain a single point of M: , k = 1,2, --- .

Take an arbitrary sphere S, ; in it there exists a sphere S; which does not
contain a single point of M, ; in S; there exists a sphere S; which does not
contain a single point of M ; and so forth. We obtain a sequence of nested
spheres which can be chosen so that the radius of the sphere S, converges
to zero as n — <. In a Banach space such spheres have a common point.
This point is an element of E but it does not belong to any of the sets M, .
This contradicts the hypothesis of the lemma and proves Lemma 2.

Proof of Theorem 6. In the space E; let us consider the sets M} , where
M, is the set of all y for which the inequality | 77"y || < % || v || holds.

Every element of E; is contained in some M, ie. E; = Uz_, M,. By
Lemma 2, at least one of the 3, is dense in some sphere S, . In the interior
of the sphere Sy let us consider the spherical shell P consisting of the points
z for which

B<llz=wi<ea
where

0<B<a, ‘I/OEA'[::‘
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If we translate the spherical shell P so that its center coincides with the
origin of coordinates, we obtain the spherical shell P, .

We shall show that some set M, is dense in P, . Consider z € P; then
2z — yo € P, . Furthermore, let z € M, . By virtue of the choice of z and ¥,
we obtain:

T —w | SN T 2]+ 1 T 7wl
Sallzll+lwl) <nllz=wo ll +20 %l

=nllz—yll+2lwl/llz-vlll<nlz—yll @ +2]yll/8)

The quantity n(1 + 2 || o ||/8) does not depend on z. Denote n(l +
2 || 4o ||/B) by N. Then by definition z — yo € My and My is dense in Py
because My is obtained from M, , as was P, from P, by means of a trans-
lation by y, and M, is dense in P. Consider an arbitrary element y in E; .
It is always possible to choose A so that 8 < || Ay | < . For Ay we can con-
struct a sequence yr € My which converges to Ay. Then the sequence
(1/\)yx converges toy. (It is obvious that if yx € My, then (1/N)yx € My
for arbitrary real 1/X.)

We have proved that for arbitrary y € E; a sequence of elements of M y
can be found which converges to y, i.e. that My is everywhere dense in E; .

Consider y € E; ; by Lemma 1, y can be developed in a series of elements
in M N :

y=nty+ - F Y+,

where || ya || < 3|y [I/2".
Consider in the space E the series formed from the inverse images of the
yi, Le. fromxzy = T 'y

Zl?clxk=x1+(l?2+ a1 R

This series converges to some element x since the following inequality
holds: || 2. ]| = || T %]l < N|y.]l < 3N | y|/2" and consequently,
2]l < 2 llze ] <3Nyl 2252 @) =3[y N

By virtue of the convergence of the series ) 9. %, and the continuity of
T we can apply T to the series. We obtain:

Tx =T+ Tee+ - =pn+y2+ - =y,
whence z = T '. We have
Tall =177yl <3Nyl

and since this estimate is valid for arbitrary y, it follows that 7" is bounded.
TureorEM 7. An operator which closely approximates an operator whose
inwverse exists has an inverse, ti.e. if Ty is a linear operator which has an in-
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verse and which maps the space E into the space E1, and AT is an operator
which also maps E into Ey, where || AT || < 1/| To ' ||, then the operator
T = Ty + AT has an inverse.

Proof. Lety € E; . We wish to find a unique z, ¢ E such that

y = Ty = Toxy + AT .
If we apply the operator Ty " to this equation, we obtain
(10) To_ly = Xo + TO—IAT.'L‘() ;

if we denote T, 'y by z € E and Ty 'AT by A, then equation (10) can be
written in the form

2=$0+Ax0,

where A is an operator which maps the Banach space E into itself and
41 <1.

The mapping ' = z — Az is a contraction mapping of the space E into
itself; consequently, it has a unique fixed point which is the unique solution
of equation (10) and this means that the operator 7 has an inverse.

TueoreM 8. The operator which is the inverse of the operator T = I — A,
where I 1s the identity operator and the operator A (of E into E) has norm less
than 1 (|| A || < 1), can be written in the form

(11 (I —A)7" =2 A
Proof. Consider the following transformation of the space E into itself:
y = Tz, x € E, y € E.

The mapping 2’ = y + Ax is a contraction mapping of the space E into
itself by virtue of the condition that || 4 || < 1.

We solve the equation 2 = y 4+ Ax by means of the iterations: 2,41 =
y+ Az, . If wesetay = 0, weobtainz; = y;a, =y + Ay;25 = y + Ay +
A% s =y + Ay + A% 4+ - + Ay,

Asn — o, x, tends to the unique solution of the equation + = y + Aux,
ie.x = X mo Ay, whence

I — A7y = X2, Ay,

which yields equation (11).

4. Adjoint operators.

Consider the linear operator y = Az which maps the Banach space E
into the Banach space E, ..Let g(y) be a linear functional defined on £,
i.e. g(y) € E,. Apply the functional g to the element y = Ax; g(Azx), as is
easily verified, is a linear functional defined on E; denote it by f(z). The
functional f(x) is thus an element of the space E. We have assigned to each



§29] LINEAR OPERATORS 103

functional ¢ € E; a functional f € E, i.e. we have obtained an operator
which maps E, into E. This operator is called the adjoint operator of the
operator 4 and is denoted by A* or by f = A*g.

If we use the notation (f, «) for the functional f(x), we obtain (g, Azx) =
(f, x), or (g, Az) = (4%*g, x). This relation can be taken for the definition
of the adjoint operator.

ExampLE. The expression for the adjoint operator in finite-dimensional
space. Euclidean n-space E” is mapped by the operator A into Euclidean
m-space E™. The operator 4 is given by the matrix (a;;).

The mapping y = Az can be written in the form of the system

yi:z;;laii"vj) 7:=1)2)"'y7n'
The operator f(x) can be written in the form

f@) = 2 fiws.

The equalities
f@) = gAz) = 20 gs = 2ot Dofm1 0ii%; = i X5 D i githi,

imply that f; = D% g.a.; . Since f = A*g, it follows that the operator 4*
is given by the transpose of the matrix for the operator 4.

We shall now list the basic properties of adjoint operators.

1. The adjoint operator of the sum of two linear operators is equal to the
sum of the adjoint operators:

(4 4+ B)* = A* + B*.

Let fy = A*g, fo» = B*g, or fi(x) = g(Ax), fo(x) = g(Bx); then (fi + fo)(z)
= g(Axz 4+ Bz) = g[(4 4+ B)z], whence (A + B)* = A* 4 B*.

2. The adjoint operator of the operator kA, where £ is a scalar multi-
plier, is equal to the adjoint operator of 4, multiplied by k:

(kAY* = RA*.

The verification of this property is elementary and is left to the reader.

3. I* = I, i.e. the adjoint of the identity operator on E is the identity
operator on E.

TuEOREM 9. The operator A*, the adjoint of a linear operator A which
maps the Banach space E into the Banach space E,, is also linear and
| A* ]| =14

Proof. The linearity of the operator A* is obvious. We shall prove the
equality of the norms. By virtue of the properties of the norm of an operator
we have:

7@ | = lga) | < gl Az ) < ol 4] )],
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whence || f[| < [ Al lgllor]l A% || < || A ] g || and consequently,
(12) A < 1Al

Let x € E and form yo = Az/|| Az || € Ei; it is clear that ||y || = 1.
From the corollary to the Hahn-Banach theorem, there exists a func-
tional g such that || g || = 1 and g(yo) = 1, i.e. g(Adz) = || Az |-

From the inequalities || Az || = | (g, Az) | = | (A*g,2) | < | A*¢ || |z || <
lA* N lglill=ll = {1A* |||« |l we obtain || A || < || A* || which, com-
bined with inequality (12), yields || A || = || A* ||



ADDENDUM TO CHAPTER III
Generalized Functions

In a number of cases in analysis and in its various applications, for ex-
ample in theoretical physics, the need arises to introduce various ‘‘general-
ized” functions in addition to the “ordinary” functions. A typical example
of this is the well-known é-function which we have already mentioned
above (§23, Example 4).

We wish to emphasize, however, that these concepts, which are
discussed briefly in this addendum, did not in any sense originate in an at-
tempt to generalize the concepts of analysis merely for the sake of general-
izing. Rather, they were suggested by perfectly concrete problems. More-
over, essentially the same concepts were used by physicists for quite
some time before they attracted the attention of mathematicians.

The method of introducing generalized functions which we shall use
below originated in the work of S. L. Sobolev, published in 1935-36. Later,
these ideas were developed in a somewhat extended form by L. Schwartz.

Consider on the real line the set D of functions ¢(r) each of which
vanishes outside some interval (where for each ¢ there is a corresponding
interval) and has derivatives of all orders. The elements of D can be added
and multiplied by a scalar in the usual way. Thus, D is a linear space.
We shall not introduce a norm into this space; however, in D one can de-
fine in a natural way the convergence of a sequence of elements. We shall
say that ¢, — ¢ if: 1) there exists an interval in the exterior of which all
@, and ¢ are equal to zero and 2) the sequence of derivatives ¢,* of order
k(k =0,1,2, ---) (where the derivative of order zero is understood to be
as usual the function itself) converges uniformly to ¢* on this interval.
The fact that this concept of convergence is not connected with any norm
does not give rise to any inconveniences.

We now introduce the concept of generalized function.

DeriNiTION 1. A generalized function (with values on the real line
—x < t < =) is any linear functional 7'(¢) defined on the space D. Thus,
T'(p) satisfies the following conditions:

L. T(apr + Bee) = aT(e1) + BT(¢2);

2. If ¢, — ¢ (in the sense indicated above), then T'(¢,) — T(g).

We now consider several examples.

1. Let f(f) be an arbitrary continuous function of ¢{. Then, since every
function ¢(t) € D vanishes outside some finite interval, the integral

) T() = [ 10l d

exists for all ¢ € D. The expression (1) represents a linear functional on
105
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D (it is left to the reader to verify that Conditions 1 and 2 of Definition 1 are
actually fulfilled), i.e. (1) represents a generalized function. Thus, every
“ordinary” continuous function is at the same time a generalized function
also.

In this connection, two distinct continuous functions will define distinet
functionals on D, ie. they will represent distinct generalized functions.
Obviously, it is sufficient to show that every continuous function f(¢) which
is not identically zero defines a linear functional which is not equal to zero,
i.e. to show that there is a function ¢(¢) € D for which

[ : FDo() dt 5 0,

Since f(¢) # 0, an interval (e, 8) can be found on which f(¢) is different
from zero and consequently keeps the same sign (for instance, positive).
Let us consider the function

— —_ 2 — —8)2
PG L VG

This function is positive on the interval («, 8); it assumes the value zero
at ¢ = a, B8 and this is true of its derivatives of all orders. Conse-
quently, the function ¢ g /(f) which is equal to ¢/ (= =B o the
interval (@, 8) and is zero outside this interval, has continuous derivatives
of all orders, i.e. it belongs to D. Furthermore,

o 8
[ 10ean® dt = [ fOoan® dt >0,

since the function under the integral sign is positive.

2. We now set
) T(e) = ¢(0).

Formula (2) defines a linear functional on D, i.e. a generalized function.
This is none other than the é-function which we have already mentioned
above. (In §23 we considered the é-function as a functional defined on the
space of all continuous functions. The advantages of the point of view
adopted here will be manifest in the sequel.)

3. Set

T(p) = —¢'(0).
This generalized function is called the derivative of the é-function and is
denoted by &’. (A more general definition of the derivative of a generalized
function will be given below.)

It is sometimes convenient to denote the generalized function, as in the
case of an ordinary function, by the symbol f({) and say that the linear
functional T is “defined” by some generalized function f(¢). The value T'(¢)
of a linear functional 7T for each function ¢ € D in this context is more
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conveniently written in the form of a “sealar product” (f, ). If f(¢) is a
“proper” function,

(f, o) = f_ : f(®e(?) dt.

Frequently, especially in physics books, such an integral notation is
used also for generalized functions, for example, we find:

[ et dt = p(0);

however, it is necessary to remember here that such an integral is only a
symbolic representation of the value of the corresponding functional and
that it has no other meaning.

We shall now introduce the concept of the limit of a sequence of general-
lized functions.

DeriniTioN 2. The sequence {T',} is said to converge to the generalized
function T if T,(¢) — T(p) uniformly on every “bounded” set in D. In this
connection, the set {¢} C D is said to be bounded if: 1) there exists a finite
interval outside of which all the ¢ of this set equal zero and 2) it is possible
to choose constants M, , M, , M,, - -- such that

le| < My l¢'| < My; le” | < Mz ---

for all ¢ € {e}.
It is easily verified that in the sense of this definition the é-function is the
limit, for example, of such a sequence of “proper’” functions:
0 n/2 for —1/n <t < 1/n,
() =
0 for all other values of ¢.

In exactly the same way it is easy to construct a sequence of “proper’
functions converging in the indicated sense to the generalized function &’
In general, it can be proved that every generalized function is the limit of
some sequence of linear functionals defined by “proper” functions.

We shall now formulate the definition of the derivative of a generalized
function.

We consider first of all the linear functional T defined by means of a dif-
ferentiable function:

T(0) = [ 1000 .
It is natural to call the functional defined by means of the formula
) =) = [ 10p a
the derivative T” of T'.
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Making use of the formula for integration by parts and taking into con-
sideration the fact that every function ¢(¢) is differentiable and equal to zero
in the exterior of some finite interval, we can rewrite the last expression
in the form

) = ~ [ 050 a

in which the derivative f’(¢) is no longer present in any way.

This discussion brings us to the following definition.

DermNiTION 3. Let T be a generalized function. Its derivative T” is a
functional defined by the formula

T'(p) = — T().

It is clear that 7" has meaning for all ¢ € D and represents a generalized
function.

Derivatives of the second, third and higher orders are defined analo-
gously.

The validity of the following assertions follows directly from the defi-
nition.

THEOREM 1. Every generalized function has derivatives of all orders.

TuEOREM 2. If the sequence {T.} converges to the generalized function T
(in the sense of Definition 2), then the sequence of dertvatives {T,’'} converges
to T'. In other words: every convergent series of generalized functions can be
differentiated term by term any number of times.

It is now clear that the functional &’ (see Example 3) which we called
the derivative of the §-function is in reality the derivative of 6(¢) in the sense
of Definition 3.

ReMARK. The concept of the derivative of a generalized function can be
introduced in a somewhat different way. Namely, we define the translation
T}, of the functional T (where h is an arbitrary number) by setting

Tu(e(®)) = T(e(t — h))

(for example, dx(¢) = ¢(—h), &/'(¢) = —¢'(—h), and so forth). Then it is
not difficult to verify that the limit

limp.o [((Th — T)/R]

exists and is equal to the derivative 7’ of the functional 7.

4. TIf the functional T'(p) is defined by means of a differentiable function
f(@t), then the functional 7" is defined by the function f’(f), i.e. the genera-
lized derivative of a function coincides with its ordinary derivative if the
latter exists.

5. Let T be defined by the function



ADDENDUM GENERALIZED FUNCTIONS 109

o — {lfort >0,
Ju) = Ofort < 0.
Then
Tlo) = [ 50 di = [ o(0)a
and

) = — [ o)t = 40),

ie. T' is the é-function.

6. If f(t) is a piecewise continuous function having a derivative at all
points of continuity, its generalized derivative at points of continuity
coincides with its ordinary derivative and at each point of discontinuity
t = & it is equal to the é-function 5(f — %) multiplied by the magnitude of
the jump of the function at this point.

7. I
6)) f@) = 2% (sin nt)/n,
then the generalized derivative of f(¢) equals

Y aacosnt = — 3+ 7y, 8t — 2kn).

We emphasize that the series on the left in the last equation converges in the
sense of convergence for generalized functions (Definition 2). Series (3)
can be differentiated term by term any number of times.

The last example shows that the concept of generalized function allows us
to assign a perfectly definite meaning to the sum of a series which diverges
in the ordinary sense. The same remark applies also to many divergent
integrals. This situation is frequently encountered in theoretical physies
where in each individual case special methods are used to give a definite
meaning to a divergent series or to a divergent integral.

In an analogous way, we can introduce generalized functions of several
independent variables. To do this, it is merely necessary to take as the
initial space D the space of all functions of n variables which are differen-
tiable an infinite number of times and each of which vanishes outside some
sphere. All the concepts introduced above carry over automatically to this
case. It is easy to verify that every generalized function of several inde-
pendent variables has partial derivatives of all orders and that the result
of differentiating with respect to several variables does not depend on the
order of differentiation.



Chapter IV
LINEAR OPERATOR EQUATIONS

§30. Spectrum of an operator. Resolvents

Throughout this entire chapter we shall consider bounded linear operators
which map a (generally speaking complex) Banach space E into itself. An
operator adjoint to an operator of the type indicated will, obviously, map
the conjugate space E into itself.

In the study of linear operators in finite-dimensional space an important
role is played by the concepts of characteristic vector and characteristic
value. In the case of n-dimensional space the concept of the characteristic
value of an operator can be introduced by means of the following equivalent
methods:

1) The number A is said to be a characteristic value of the operator A
if there exists a nonzero vector x (characteristic vector) such that Az = A\x.

2) The number X is said to be a characteristic value of the operator A
if it is a root of the characteristic equation

Det|A — N | =0.

The first of these definitions carries over without any changes to the
case of infinite-dimensional space, i.e. it can be considered as the definition
of characteristic values of an operator in infinite-dimensional space.

The second of the definitions formulated above does not carry over di-
rectly to the infinite-dimensional case since the concept of determinant
does not have meaning in infinite-dimensional space. However, this second
definition can be changed in form in the following manner. The fact that
the determinant of the matrix A — AI is zero is equivalent to the fact that
this matrix has no inverse, i.e. we can say that the characteristic values A
are those numbers for which the inverse of the operator A — A does not
exist. Taking this as our point of departure we introduce the following
definition.

The totality of those values A for which the inverse of the operator A — AI
does not exist is called the spectrum of the operator A. The values of A for
which the operator A — AT has an inverse are said to be regular; thus, the
spectrum consists of all nonregular points. In this connection, the operator
Ry = (A — N)7"itself is called the resolvent of the operator A. In n-dimen-
sional space the concepts of characteristic value and nonregular, or singular,
point coincide. In the general case, as the example to be introduced below
will show, this is no longer the situation. The spectrum necessarily contains
all the characteristic values but it may contain, besides these, other num-

110
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bers also. The set of characteristic values is called the point spectrum of the
operator A. The remaining part of the spectrum is called the continuous
spectrum. (This is not the usual terminology. The remaining part of the
spectrum consists of two parts: 1) Those values of N\ for which 4 — N\
has an unbounded inverse with domain dense in £ form the confinuous
spectrum. 2) The remainder of the spectrum, consisting of those values of A
for which A — A has an inverse whose domain is not dense in E, is called
the residual spectrum.—Trans.)

If the point X is regular, i.e. if the inverse of the operator A — A exists,
then for sufficiently small 6 the operator A — (A 4+ 68)I also has an inverse
(Theorem 7, §29), i.e. the point A + & is regular also. Thus, the regular
points form an open set. Consequently the spectrum, which is its comple-
ment, is a closed set.

TaEOREM 1. The inverse of the operator A — N exists for arbitrary N for
which |N| > || 4 ||

Proof. Since we obviously have

A=\ = — x(l —%A),
then
Rx=(—N)"'= (/NI - A4/2)7" = —(1/\) 20 A*/\N

This series converges for || A/A|| < 1 (see Theorem 8, §29), i.e. the
operator A — A has an inverse. In other words, the spectrum of the
operator A is contained in a circle of radius || A || with center at zero.

ExampLE. Let us consider in the space C the operator A defined by the
formula

A(0) = w®)z(),
where u(¢) is a fixed continuous function. We have
(A = \Dz(@) = () — N=z(),
whence
(A = D72 = {1/[k(®) — N}z

The spectrum of the operator 4 under consideration consists of all A
for which u(f) — X is zero for some ¢ lying between 0 and 1, i.e. the spectrum
is the totality of all values of the function u(f). For example, if u(f) = ¢,
then the spectrum is the closed interval [0, 1]; in this case characteristic
values are absent, i.e. the operator defined as multiplication by ¢ is an
example of an operator with a purely continuous spectrum.

(1) Every linear operator, defined in a Banach space which has at least
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one nonzero element, has a nonvoid spectrum. Operators exist for which
the spectrum consists of a single point (for example, the operator defined
as multiplication by a scalar).

(2) Theorem 1 can be sharpened in the following way. Let r =
inf || A" ||''"; then the spectrum of the operator A lies entirely in a circle
with radius r and center at zero.

(3) The resolvent operators R, and R, corresponding to the points u
and A are commutative and satisfy the relation

R. — Ry = (u — NR,Ry

which is easily verified by multiplying both sides of this equality by
(A — M) (A — pl). From this it follows that the derivative of R\ with
respect to A, i.e.

limax,o (Ratan — Ra)/AN,
exists and is equal to Ry’

§31. Completely continuous operators

DEFINTTION. An operator A which maps a Banach space E into itself is
said to be completely continuous if it maps an arbitrary bounded set into a
compact set.

In finite-dimensional space every bounded linear operator is completely
continuous since it maps an arbitrary bounded set into a bounded set and
in finite-dimensional space every bounded set is compact.

But in the case of infinite-dimensional space there always exist operators
which are bounded (i.e. continuous) but which are not completely con-
tinuous; such, for example, is the identity operator in infinite-dimensional
space.

An extensive class of completely continuous operators y = Ax in the
space C[a, b] can be written in the form

b
1) v@ = [ K, 020 .

TaeoreM 1. Formula (1) defines a completely continuous operator in the
space Cla, b] if the function K(s, t) is bounded on the square a < s < b,
a <t < b and all points of discontinuity of the function K(s, t) lie on a finite
number of curves

t=¢k(8), k=1.2..~,n,
where the ¢i, are continuous functions.

Remark. The distribution of points of discontinuity on the straight
lines s = constant is essential here. For example, for a = 0, b = 1, the
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kernel

(1fors < 3,
K(s, t) =
Ofors > 1%

has for points of discontinuity all the points of the square with s = }. In
this case transformation (1) maps the function z(f) = 1 into a discontinuous
function.

Proof of Theorem 1. We note that under the conditions of the theorem,
integral (1) exists for arbitrary s in the closed intervala < s < b. Let M =
sup | K(s, t) | on the square a < s < b, a <t < b. Denote by @ the set
of points (s, t) for which | — ¢ir(s) | < ¢/12Mn holds for arbitrary k =
1,2, ---, n; denote by F the complement of G with respect to the square
a <s<ba<t<b Since F is closed and K(s, t) is continuous on F,
there exists a 6 such that for points (', ¢), (s”,¢) in F for which | & — 8" | < &
the inequality

|K(s',t) — K(s",8) | < ¢/3(b — a)
holds.
Now let s’ and s” be such that | s’ — s” | < &. Then
b
196) = o6 | < [ 1K, 0 - K6, 01120 |

can be evaluated by integrating over the sum of the intervals

[t — eu(s') | < ¢/12Mn,

[t — ee(s”) | < ¢/12Mn
(denote this sum by A) and over the complement B of A with respect to
the closed interval [a, b]. The length of A does not exceed e¢/3M. Therefore

f |K(,8) — K", 0) | | =) | dt < @¢/3) || 2 |-
A

The integral over B, obviously, may be estimated by

fB |K(, 0 — K&, ) | |2@) | dt < &/3) | =]
Therefore,

ly(s) — y@") | < ellz|.

We have proved the continuity of y(s) and the equicontinuity of the
functions y(s) corresponding to the functions z(¢) with bounded norm. The
uniform boundedness of y(s) corresponding to the x(f) with bounded norm
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follows from the inequalities
b
1@ 1 < [ 160120 [ dt < MG = a) [[=].

The Volterra Operator. If we assume that K (s, t) = 0 for ¢ > s, then the
operator (1) takes on the form

2) y(s) = fos K(s, O)x(¢) dt.

We shall assume the function K (s, t) to be continuous for ¢ < s. The validity
of the hypothesis of Theorem 1 is easily verified for such a kernel. Conse-
quently this operator is completely continuous.

We shall now establish several properties of completely continuous
operators.

TueoreM 2. If {A.} is a sequence of completely continuous operators on a
Banach space E which converges in norm to an operator A, then the operator
A 1s completely continuous.

Proof. Let us consider an arbitrary bounded sequence of elements in E:
T1,%2, *  , &, - ;|| Za || < c. It is necessary to prove that the sequence
{Ax,} contains a convergent subsequence.

The operator A; is completely continuous and therefore we can select a
convergent subsequence from the sequence {4,2.}. Let

W W %
(3) a”- ’x2 "",xn ’..'

be the inverse images of the members of this convergent subsequence. We
apply the operator A; to each member of the subsequence (3). Since 4 is
completely continuous, we can again select such a convergent subsequence
from the sequence {A4,z,"}, the inverse images of whose terms are, say,
® @ ®

1

X ’x2’...’a’n,. .
We apply the operator A; to this sequence {,?} and then in an analo-
gous manner select a subsequence xl(s), 2132(3), RN , and so on.
We now form the diagonal sequence
xl(l)’ xg(z), DY y xn(n), RIS
Each of the operators 4,, As, -+, A., -+ transforms this sequence

into a convergent sequence. If we show that the operator A also transforms
this sequence into a convergent sequence, then this will also establish the
complete continuity of the operator A. Let us evaluate the norm of the
difference Az, — Az,

| Az, — Azn™ || < || Aza™ — Asen™ ||
+ | Adza™ — 4™ || + || Asen™ — Aza™ ||
<A = Al Q™I+ 2™ ) + I ™ = Aizn™ .
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We choose k so that || A — Ai || < ¢/(2c) and N such that the relation
” Ak:l‘n(n) - Akxm(m) ” < 6/2

holds for arbitrary n > N and m > N. (This is possible because the se-
quence {A;z,™} converges.) Then || Az, — Az,"™ || < ¢ ie. the se-
quence || Az,™ | is fundamental.

Since the space E is complete, this sequence converges; this proves the
theorem.

TaeoREM 3. The adjoint operator of a completely continuous operator is
completely continuous.

Proof. Let the operator A map the Banach space E into itself. Then the
operator A*, adjoint to 4, maps the space E into itself. Inasmuch as an
arbitrary bounded set can be enclosed in a sphere, the theorem will be
proved if we prove that the image of the sphere S belonging to the space E
(i.e. the set A*8) is compact. It is obviously sufficient to carry out the proof
for the case of the unit sphere.

We introduce into the space E the auxiliary metric obtained by setting
for any two functionals ¢’, ¢” in E,

4) o(g’, 9") = sup {| ¢’(y) — ¢"(W) |; y € AS}.

Since the operator A is completely continuous by hypothesis, the image AS

of the unit sphere S is compact in the space E. If y € AS, then ||y || <

|| A ||. Consequently if g € S, then [g(y) | < gl lly ]l < [[ 4], ie. the

functionals g(y) € S are uniformly bounded in the sense of metric (4).
Further, we have

lg@) —g@) I < llglllly =y I <y —y" |,

i.e. the functionals g(y) € S are equicontinuous. In accordance with Arzeld’s
theorem, §17, this means that the set S is compact in the sense of metric
(4). But since

| A*g" — A%g" || < sup {| g'(Az) — ¢"(A2) |; © € 8},

the compactness of the set S in the sense of metric (4) implies the compact-
ness of the set A*S in the sense of the original metric of the space E.

THEOREM 4. If A is a completely continuous operator and B is a bounded
operator, then the operators AB and BA are also completely continuous.

Proof. If M is a bounded set in E, then the set BM is also bounded.
Consequently, the set ABM is compact and this means that the operator
AB is completely continuous. Further, if M is bounded, then AM is com-
pact; but then in virtue of the continuity of B, the set BAM is also com-
pact. This completes the proof of the theorem.

CoroLLARY. A completely continuous operator 4 cannot have a bounded
inverse in an infinite-dimensional space E.
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In fact, in the contrary case the identity operator I = AA™ would be
completely continuous in E, which is impossible.

We shall now study the spectrum of a completely continuous operator.

TuroREM 5. Every completely continuous operator A in the Banach space E
has for arbitrary p > 0 only a finite number of linearly independent charac-
teristic vectors which correspond to the characteristic values whose absolute
values are greater than p.

Proof. Let us assume that this is not the situation, i.e. let us assume that
there exists an infinite number of linearly independent characteristic vec-
tors x, (n = 1, 2, --.), satisfying the condition

(5) Az, = N, |xnl>P>O’ (n=12---).
Consider in E the subspace E; generated by the vectors z,. In this

subspace the operator A has a bounded inverse. In fact, vectors of the
form

(6) T = a1 + ot + -0+ aTs
are everywhere dense in E; . For these vectors,

Az = aah@1 + ooz + - -0+ i
and consequently,

(7 A7 = (/N2 + (@/N\)2s + -+ + (on/M)ar
and
A7z < @/o) |l 2]

Consequently the operator A7, defined for vectors of the form (6) by
means of formula (7), can be extended by continuity (and consequently
with preservation of norm) to all of E; . The operator 4, being completely
continuous in E, is completely continuous in E; also. But according to the
corollary to the preceding theorem a completely continuous operator cannot
have a bounded inverse in infinite-dimensional space. The contradiction
thus obtained proves the theorem. It follows from this theorem that every
nonzero characteristic value of a completely continuous operator has only
finite multiplicity and these characteristic values form a bounded set which
cannot have a single limit point distinet from the origin of coordinates.
We have thus obtained a characterization of the point spectrum of a
completely continuous operator. It will follow from the results of the next
section that a completely continuous operator cannot have a continuous
spectrum.

§32. Linear operator equations. The Fredholm theorems
In this section we shall consider equations of the form
)] y ==z — Az,
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where 4 is a completely continuous operator which maps a Banach space E
into itself. We shall show that for such equations a number of theorems are
valid which are analogous to the known theorems for systems of linear
algebraic equations. First of all the corresponding theory was developed
by Fredholm for integral equations of the form

b
@) o) = ft) + f K(s, Do(s) ds,

where f(f) and K(s, t) are given continuous functions.
It was established in the preceding section that the Fredholm operator

v = [ KGs, 0206 ds

is completely continuous; thus, equation (1) actually is a generalization of
the Fredholm integral equation (2).

THEOREM 1. Let A be a completely continuous operator which maps the
Banach space E into itself. If the equation y = x — Azx is solvable for arbi-
trary y, then the equation x — Ax = 0 has no solutions distinct from the zero
solution.

Proof. Let us assume the contrary: suppose there exists an element z; = 0
such that z; — Az, = Tx; = 0. Those elements x for which Tz = 0 form
a linear subspace E; of the space E. Let us denote by E, the subspace
consisting of the elements which satisfy the condition T"x = 0.

It is clear that the subspaces E, form a nondecreasing subsequence

E,.CcE,Cc---CE, C--.

We shall show that the equality sign cannot hold at any point of this
chain of inclusion relations. In fact, since by assumption x, 0 and the
equation y = Tz is solvable for arbitrary y, we can find a sequence of ele-

ments distinet from zero z;, 23, +-+, Z», ---, such that
T.’l?z = T
T.’Es = X2
Tx,. = Tp—1

.........

The element x., belongs to the subspace E., for each n but it does not belong
to the subspace E,_; . In fact,

T'% = T" %oy = +++ = Ty = 0,
but

T" %y = T" py = -+ = Txs = 23 % 0.



118 LINEAR OPERATOR EQUATIONS [cH. 1v

All the subspaces E, are linear and closed; therefore for arbitrary =
there exists an element y,+1 € E,41 such that

| anall =1 and  p(yns1, Ex) 2 3,
where p(yn41, E.) denotes the distance from y.4; to the space E, , i.e.
pWYni1, En) = inf {|| yaps — 2 ||; € En}.

[In fact, if we let p(xn41, En) = a, then we can find an element Z € E,
such that || 2,41 — % | < 2a; at the same time we clearly have p(zn41 —
% E,) = p(Tas1, E.) = a. We can then set yui1 = @ngr — )/ Taa — Z ||.]
Consider the sequence {Ay:}. We have (assuming p > ¢):

” Ay, — Ay, ” = ” Yo — Yo + Ty, — Tya) ” 23,

since y, + Ty, — Ty, € E,—1. It is clear from this that the sequence {Ay:}
cannot contain any convergent subsequence, which contradicts the com-
plete continuity of the operator A. The contradiction thus obtained proves
the theorem.

CoroLLARY 1. If the equation y = x — Az is solvable for arbitrary y,
then it has a unique solution for each y, i.e. the operator I — A has an
inverse in this case.

In fact, if the equation y = x — Az had two distinct solutions for some y,
say x1 and 22 , then the equation ¢ — Az = 0 would have a nonzero solution
2 — 2, which contradicts Theorem 1.

In the sequel it is convenient to consider together with the equation
y = x — Az the equation b = f — A*f which is adjoint to it, where A*
is the adjoint of A and h, f are elements of the Banach space E, the conju-
gate of E.

For the adjoint equation we can formulate the following result.

CoroLLARY 2. If the equation h = f — A*f is solvable for all h, then the
equation f — A* = 0 has only the zero solution.

This assertion is obtained from Theorem 1 if we recall that the operator
adjoint to a completely continuous operator is completely continuous
(Theorem 2, §31) and a space conjugate to a Banach space is itself a Banach
space.

THEOREM 2. A necessary and sufficient condition that the equation
y = x — Az be solvable is that the following condition be fulfilled: f(y) = 0
for all f for which f — A*f = 0.

Proof. 1. If we assume the equation y = x — Az is solvable, then
fly) = f(x) — f(Az) = f(x) — A*f(x), i.e. f(y) = O for all f which satisfy
the condition f — A*f = 0.

2. Now let f(y) equal zero for all f which satisfy the equation f — A*f = 0.
For each of these functionals f we shall consider the set L, of elements for
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which f takes on the value zero. Then our assertion is equivalent to the
fact that the set ML, consists only of the elements of the form x — Ax, i.e.
it is necessary for us to prove that an element ; which cannot be repre-
sented in the form © — Az cannot be contained in NL,. To do this we
shall show that for such an element 7; we can construct a functional f,
which satisfies the conditions

fily) #0,  fi— A% =0
These conditions are equivalent to the following:
filyr) = 0, filx — Ax) = 0 for all .
In fact,

(fl - A*fl) (13) = fl(x) - A*fl(x) = f1(x) — fl(A’U) = fl(.’l»' — A’L‘)

Let G, be the subspace consisting of all elements of the form + — Ax.
Consider the subspace {Gy, 11}, i.e. the set of elements of the form z 4+ oy,
z € Gy, and define the linear functional f; on this subspace by setting

iz + ay) =

Extending this functional to the whole space £ (which is possible by
virtue of the Hahn-Banach theorem) we do obtain a linear functional
satisfying the required conditions. This completes the proof of the theorem.

CororrARY. If the equation f — A*f = 0 does not have nonzero solu-
tions, then the equation x — Ax = y is solvable for all .

We shall now establish the analogue of Theorem 2 for the adjoint equa-
tion.

THEOREM 3. A necessary and sufficient condition that the equation

®@) h=f— A%

be solvable s that h(x) = 0 for all x for which x — Ax = 0.
Proof. 1. If the equation h = f — A*f is solvable, then

h(x) = f(x) — A*f(x) = fx — Ax),

ie. h(x) = 0if x — Az = 0.

2. Now let h(z) = O for all x which satisfy the equation x — Az = 0.
We shall show that equation (3) is solvable. We shall construct the func-
tional f on the set F of all elements of the form y = a — Az by setting

4 f(Tz) = h(x).

This equation in fact defines a linear functional. First of all we note that
the value of the functional f is defined uniquely for each y because if
Tz, = Txs, then h(z:) = h(z.). It is easy to verify the linearity of the func-
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tional (4). This functional can be extended to the whole space E. We obtain
f(Tz) = T*(x) = h(x),

1.e. this functional is a solution of equation (3).

CoroLrARy. If the equation ¥ — Az = 0 has no nonzero solutions, then
the equation f — A*f = h is solvable for all h.

The following theorem is the converse of Theorem 1.

THEOREM 4. If the equation x — Ax = 0 has x = 0 for its only solution,
then the equation x — Ax = y has a solution for all y.

Proof. If the equation x — Az = 0 has only one solution, then by virtue
of the corollary to the preceding theorem the equation f — A*f = h is
solvable for all h. Then, by Theorem 1, Corollary 2, the equation f — A*f =
0 has only the zero solution. Hence the Corollary to Theorem 2 implies
the solvability of the equation y = x — Ax for arbitrary y.

Theorems 1 and 4 show that for the equation

1 y=ux — Ax

only the following two cases are possible:

1) Equation (1) has a unique solution for each y, i.e. the operator I — A
has an inverse.

2) The equation x — Ax = 0 has a nonzero solution, i.e. the number
A = 1 is a characteristic value for the operator A.

It is clear that all the results obtained above for the equationy = 2 — Az
carry over automatically also to the equation y = x — Nz, where \ is an
arbitrary number. (For such an equation the adjoint equation will be
h = f — AA*f.) It follows that either the operator I — A4 has an inverse or
that the number 1/X is a characteristic value of the operator A. In other
words, in the case of a completely continuous operator, an arbitrary number
is either a regular point or a characteristic value, i.e. a completely con-
tinuous operator has only a point spectrum. The point spectrum of a com-
pletely continuous operator was studied in the preceding section (Theo-
rem 5).

TaroreM 5. The dimension n of the space N whose elements are the solu-
tions of the equation x — Aa = 0 is equal to the dimension of the subspace N*
whose elements are the solutions of the equation f — A*f = 0.

Proof. We note first that in virtue of the complete continuity of the
operators A and A*, the subspaces N and N* are finite-dimensional. Let
{x1, 22, -+, s} be a basis for the subspace N and let {f1, fo, --- , f.} be
a basis for the subspace N*. According to the Hahn-Banach theorem on the
extension of a linear functional, n functionals ¢y, @2, - - - , ¢» can be con-
structed which satisfy the conditions

1 forz = j,
pix:) = L
0 for ¢ 5 j.
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We now consider the functionals fi, f2, -+, f, and coustruct for each
of them the corresponding subspace L, , defined by the condition f:(x) = 0.
Since the functionals f; are linearly independent, the corresponding sets L;
are distinct; and since each of the subspaces L; has index 1, a relation of
the form L; C L; is likewise impossible.

Let us consider the sets

LNL:N - - NL\NLNLN---NL = M =0.

The set M; consists of those elements which beloug to all L;, except L;.
It is clear that the sets M, are disjoint. Since all the functionals f1, fa,
-+, f», except f: , assume the value zero on M ; and since M ; is a linear mani-
fold, it is possible to choose a point z; in each M; to satisfy the following
conditions:

5) 1 1fors = j,
\&:) =
’ 0 for i = j.

After these auxiliary constructions we pass directly to the proof of the
assertion of the theorem.

We assume first that » > n.

We construct the operator

R(@) = Az + 2 i ei(2)z; -

This operator is completely continuous since it is the sum of a finite number
of completely continuous operators. Further, let us consider the operator

Wk) =2 — R@@) = v — Az — D 1o 0i(®)z; .

We shall show that if W(z,) = 0, then z, = 0.
Let us apply the functional f; to W(x,):

(6) FiW (@) = fi(Twm) — D i1 0i@a)fi(es) = fi(Two) — @i(®@o).

Since, by hypothesis, f; satisfies the equation T*f; = 0, f:(Tz) = 0 for all
x(i=1,2, ---, ). Besides, f:(W(xo)) = 0 since, by assumption, Wz, = 0.
Therefore from (6) it follows that

(") ei(xo) = 0 z=1,2, -, n).

But then the equation Wx, = 0 implies that 7'xy = 0, i.e. 0 € N; since
the elements x,, 22, - -+, 2, form a basis in N, we have

To = a1 + o2 + -+ on¥a .
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If we apply the functional ¢; to this equation and make use of equations
(7), we see that a; = ¢;(x9). This and (7) imply that zo = 0. We have shown
that the equation Wz = 0 has only the zero solution. From this it follows
(Theorem 4) that the equation Wz = y is solvable for all y and, in particu-
lar, for y = 2441 .

Let z be a solution of the equation Wz = z,,; . Then, on the one hand,
it follows from the fact that T*f,41 = 0 and from (5) that

Faorx(Wa) = fopa(T2) — fanDo i 05(@)25] = 0;
on the other hand, according to (5), that

Jat1(zags) = 1.

The contradiction thus ebtained proves that » < n.
Let us now assume that n > ». We construct the operator W* by setting

(8) W*f = T*f - Z:=1f (zi)¢i .
We shall prove that if W*f = 0, then f = 0. We have
(T*f)x‘ = (i = 1’ 2’ e ’n)

for all f since z; € N. Therefore, if W*f = 0, applying both sides of (8) to
x;, we obtain:

9) 2iafEe@) = fe) =0 G=1,2--,),

Thus, the equation W*f = 0 reduces to T*f = 0, i.e. f € N*. Conse-
quently, f can be written in the form

=81+ Bfot+ - + B

If we apply both sides of this equation to the element z; we see that
B: = f(z:). From this and (9) it follows that f = 0. This implies that the
equation W*f = g¢ is solvable for all g.

Let f be such that W*f = ¢,,; . Then, on the one hand,

(WH) @41) = (T%) @41) — 2ia f@)eu@srn) = 0,
and on the other,
er1(@vgr) = 1.

We have thus arrived at a contradiction, which proves that n < ». So
finally, n = ». This completes the proof of the theorem.
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Adjoint

— operator 103

— equation 118
Arzeld’s theorem 54

Banach space 71

Basis 28

Bounded

— functional 77

— linear operator 95

— variation 65

B-space, see Banach space

Cantor set 32

Cardinal number 9

— — of a denumerable set 10
— — of the continuum 10
Center of a sphere 23
Characteristic value of an operator 10
Closed

— interval 26

— set 26

— sphere 23

Closure of a set 23

Compact 51

— in itself 58

— metric space, see Compactum
— sets in a metric space 51
Compactum 58

Complement of a set 3
Complete

— inverse image 13

— metric space 37

Completely continuous operator 112
Completion of a space 39
Conjugate space 82

Connected space 29

Contact point 23

Continuous

— curve in a metric space 67

— functional 63, 77

— linear operator 95

— mapping 33, 34, 36

— spectrum of an operator 111
Contraction mapping 43
Convergence

— of a sequence of points 24

— of a sequence of linear functionals 93
—, weak 90

Convex

-- body 74

-— closure 76

— set in a normed linear space 74
Countable set 28

Covering 29

—, closed 29

—, open 29

Curves 68

-— of finite length 69

Deficiency, see Index

Denumerability 6

Denumerable set 4, 7

Derivative of a generalized function
106, 108

Diagonal method 6

Difference of sets 2

Dirac function 79, 106

Distance

— between sets 26

— function 16

— to a set 26

Domain of definition of a function 13

Element of a set 1
e-neighborhood 23

e-net 51

Equicontinuity 54
Iquivalence

- of sets 7

— relation 12
Equivalent

— functions 68

-— metrics 30

— sequences 40

-— sets 7

Lluclidean n-space 17
Kuler polygonal arc 56
Lverywhere dense set 25
Iixtension of a linear functional 86 ff.

Face, see k-dimensional face
Finite

— intersection property 58
— set 4

Fredholm

— integral equation 49

— theorems 117 ff.
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Function 13

—, general concept of 13
Functional 62, 77

—, bounded 77

-—, continuous 63, 77

—, geometrie interpretation of a 80
—, linear 77

Functions 13

—, continuous 34

—, equivalent 68

—, generalized 105 ff.

— of bounded variation 65
—, real 62

—, semicontinuous 64
Fundamental sequence 36

General position of points 76
Generalized function 105
Greatest lower bound 66

Hahn-Banach theorem 86
Hausdorff

— separation axiom 31

— space 31

Height of a rational number 5
Hoélder’s inequality 20, 22
Homeomorphic spaces 35
Homeomorphism 35
Hyperplane 81

Image 13

Index 80

Infinite set 4, 8
Interior point 27
Intersection of sets 2
Inverse 99

— image 13

— operator 98
Irreflexive space 89
Isolated point 24
Isometric spaces 36

k-dimensional face 76
Kernel 49

Least upper bound 66
Length of a curve 65, 69
Limit

—, lower 64

— of a sequence 24

— point 24

—. upper 64

INDEX

Linear

— functional 77

— manifold 73

— operator 95

— operator equation 116 fI.
— space 71

Lipschitz condition 29, 43
Lower limit 64

Mapping 13

—, continuous 33, 34, 36
—, contraction 43

—, homeomorphic 35
— into 14

—, isometric 36

— of sets 13

— onto 14

Metric

— space 16

Metrizable space 31
Minkowski’s inequality 20, 22

n-dimensional simplex 76
Nondenumerable set 5
Norm 71

— of a functional 78

— of an operator 97
Normed linear space 71, 98

One-to-one correspondence 4
Open

— set 27

— sphere 23
Operations on sets 1 ff.
Operator 95

—, adjoint 103

—, bounded 95

—, continuous 95

—, inverse 98

—, linear 95
Oscillation 64

Partition into classes 11

Peano’s theorem 56

Picard’s theorem 47

Plessner 90

Point spectrum of an operator 111
Polygonal arc 56

Potency, see Cardinal number
Power, see Cardinal number



Product of operators 98
Proper subset 1

Quadratic metric 19

Radius of a sphere 23

Range of variation of a function 13
Real functions in metric spaces 62 ff.
Rectifiable curves 69

Reflexive space 89

Reflexivity 12

Regular point 110

Residual spectrum 111

Resolvent 110

Schwartz 105

Schwarz inequality 17, 19
Second

— conjugate space 88

— countability axiom 28
Segment 74
Semicontinuous function 64
Set 1

—, Cantor 32

—, closed 26

—, compact 51

—, compact in itself 58
—, convex 74

—, dense 25

—, denumerable 4, 7

—, derived 26

—, everywhere dense 25
—, finite 4

—, infinite 4, 8

—, open 27

—, nondenumerable 5
—, totally bounded 51
—, void 1

Simplex 76

Space

—, complete 37

—, conjugate 82

—, connected 29

—, Hausdorff 31

—, linear 71

—, metric 16

—-, n-dimensional R" (Euclidean) 17
—, n-dimensional R," 17
—, n-dimensional R," 20
—, normed 71

INDEX 129

— of continuous functions C' 18

— of continuous functions Cla, b] 17, 72

— of continuous functions Ca[a, b] 19, 72

-— of continuous functions with quad-
ratic metric 19

— of real numbers R' 16, 72

— of sequences ¢ 72

— of sequences I, 18, 72

— of sequences [, 22

— of sequences m 72

—, reflexive 89

—, separable 25

—, topological 30

— with countable basis 28

Spectrum

—, continuous 111

— of an operator 110

—, point 111

—, residual 111

Subset 1

—, proper 1

Subspace 73

Sum

— of operators 97

— of sets 1,2

Symmetric difference of sets 2

Symmetry 12

System of sets with finite intersection
property 58

Theorem on nested spheres 39
Topological space 30

Total

— boundedness 51

— variation 64

Totally bounded set 51
Transitivity 12

Uniform boundedness of a family of
functions 54

Union 1

Upper limit 64

Variation, see Total variation
Vertices of a simplex 76
Volterra

-— integral equation 50

--- operator 114

Weak convergence 90, 93
Weak* convergence 93
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