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Preface

The construction of mathematical models is an essential scientific activity. Math-
ematics has long been associated with developments in the exact sciences and
engineering, but more recently mathematical modelling has been used to investi-
gate complex systems that arise in many other fields. Many chapters in this book
discuss research where mathematics and the biosciences interact, and there are also
chapters where mathematical modelling is applied elsewhere. The modern research
topics discussed include ecology and environmental science, theoretical chemistry,
medicine, phylogenetics and neural networks, economics and management.

This is an unusual book — not only because many of the authors are leaders in
their respective fields, but also because the application of mathematical modelling
and simulation is demonstrated in such an extensive array. The global reach of
modern mathematical activity is more evident than usual too, with a geographical
spread of contributions spanning four continents.

There are some invited reviews outlining current research directions in topics
such as pattern formation in the first chapter by Malchow et al., and in applications
to medicine in the chapters by Quatember & Mayr and Motta et al.. There are also
more targeted research papers on related topics, and in the various other disciplines
represented. All of these contributions provide a background that may well inspire
further research work on these subjects. The extensive relevant literature cited,
particularly in some of the survey expository articles, is an important feature.

We expect that many established mathematical scientists will therefore find
that this book provides useful information and further insights into interesting
topics in their particular fields of expertise, or that it stimulates new work in less
familiar areas. Moreover, we expect that many postgraduate students throughout
the world will find that this book provides exceptionally helpful points of departure
for their research endeavours.

September 2007 Roger J. Hosking
Ezio Venturino
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Mathematical Models of Pattern Formation
in Planktonic Predation-Diffusion Systems:
A Review

Horst Malchow, Frank M. Hilker, Ivo Siekmann,
Sergei V. Petrovskii and Alexander B. Medvinsky

Abstract. Plankton form the basis of aquatic food webs. The mathematical
modelling of plankton dynamics was initiated by fisheries in the early 20th
century. Today, the significant role of plankton in the global carbon cycle and,
hence, in climate control has been recognized. The main aim of modelling is to
improve understanding of the functioning of food chains and webs and their
dependence on internal and external conditions. Population-dynamical models
have not only to account for growth and interactions but also for spatial pro-
cesses like random or directed and joint or relative motion of species as well
as the variability of the environment. Early attempts began with exponen-
tial growth, Lotka—Volterra type interactions and physico-chemical diffusion.
These approaches have been continuously refined to more realistic descrip-
tions of the development of natural populations. The aim of this paper is
to give an introduction to the subject of equation-based modelling and the
corresponding bibliography, based on and extending previous reviews [1-5].
The fascinating variety of temporal, spatial and spatio-temporal patterns in
such systems and the governing mechanisms of their generation and further
evolution are described and related to plankton dynamics.

Mathematics Subject Classification (2000). 35K55, 35K57, 35Q80, 37N25,
92B99, 60H15.

Keywords. Reaction-diffusion, Systems, Plankton dynamics, Pattern
formation, Stability, Fronts, Waves, Epidemic spread, Bioinvasion.
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1. Introduction

Ecosystems are complex adaptive systems. The exploration of pattern formation
mechanisms in nonlinear complex systems is one of the central scientific problems.
The development of the theory of self-organized temporal, spatial or functional
structuring of nonlinear systems far from equilibrium has been one of the mile-
stones of structure research [6,7]. The occurrence of multiple steady states and
transitions from one to another after critical fluctuations, the phenomena of ex-
citability, oscillations, waves and, in general, the emergence of macroscopic order
from microscopic interactions in various nonlinear nonequilibrium systems in na-
ture and society has required and stimulated many theoretical and, where possi-
ble, experimental studies. Mathematical modelling has turned out to be one of the
most useful methods to improve the understanding of such structure-generating
mechanisms.

The aim of this paper is to give an introduction to and an overview of the
mathematical modelling of biologically controlled temporal, spatial and spatiotem-
poral pattern formation in nonequilibrium plankton dynamics with a certain focus
on conceptual models of prey-predator interactions of diffusing phytoplankton and
zooplankton. Only deterministic and stochastic ordinary and partial differential
equation-based models will be considered because they are the most appropriate
tools for practical modelling. At first, the trophic level and importance of plankton
in nature are briefly described. Then, the historical development of mathemati-
cal modelling of a growing number of properties of plankton dynamics in time
and space is summarized. The models will be upgraded step by step, from the
description of local processes like growth and interactions in uniform and vari-
able environments to the consideration of environmental noise, as well as spatial
processes like diffusion and advection.

2. Plankton and models of plankton dynamics

In the 17th century, the Dutch pioneer microscopist Anton van Leeuwenhoek was
probably the first to see minute creatures in pond water which he called animal-
cules [8]. The German Victor Hensen, who organized Germany’s first big oceano-
graphic expedition in 1889 [9, 10], introduced the term plankton (derived from the
Greek planktos = made to wander).

Phytoplankton are the plants in plankton. They drive all marine ecological
communities and the life within them. Due to their photosynthetic growth, the
world’s phytoplankton generates half of the oxygen that mankind needs for main-
taining life, and it absorbs half of the carbon dioxide that may be contributing
to global warming. It is not only oxygen and carbon dioxide but also other sub-
stances and gases that are recycled by phytoplankton, e.g., phosphorus, nitrogen
and sulphur compounds [11-14]. Hence, phytoplankton is one of the main factors
controlling the further development of the world’s climate, a claim for which there
is a vast supporting literature, cf. [15-17].



Pattern Formation in Planktonic Predation-Diffusion Systems 3

Zooplankton are the animals in plankton. In marine zooplankton both her-
bivores and predators occur; herbivores graze on phytoplankton and are eaten by
zooplankton predators. Recently, reports have been published on the indirect role
of zooplankton in climate control through grazing on the carbon dioxide absorb-
ing phytoplankton and its transport to the deeper layers of the sea by sinking to
depths where it can be deposited or distributed by higher predators [18,19].

Together, phyto- and zooplankton form the basis for all food chains and webs
in the sea. In turn, the abundance of plankton species is affected by a number
of environmental factors such as water temperature, salinity, sunlight intensity,
biogen availability etc. [20,21]. Temporal variability of the species composition may
be caused by seasonal changes and trophical prey-predator interactions between
phyto- and zooplankton.

Because of its apparent importance, the dynamics of plankton systems have
been under continuous investigation during more than a hundred years. It should
be noted that, practically from the very beginning, regular plankton studies have
combined field observations, laboratory experiments and mathematical modelling.
It was in the 19th century that fisheries stimulated the interest in plankton dy-
namics because strong positive correlations between zooplankton and fish abun-
dance were found. The already mentioned German plankton expedition of 1889
was mainly motivated by fishery’s interests. At the same time, fishery science
began to develop. In the beginning of the 20th century, the first mathematical
models were developed in order to understand and to predict fish stock dynamics
and its correlations with biological and physical factors and human interventions,
cf. [22-24] for details and further references.

2.1. Physical and biological scales

Many mechanisms of the spatio-temporal variability of natural plankton popu-
lations are not known yet. The distinct spatial heterogeneity of the horizontal
plankton distribution (patchiness) is found in many field observations [25-30]. This
phenomenon takes place on all scales, from centimeters to thousands of kilometers.
The field data show that, on a spatial scale of dozens of kilometers and more, the
plankton patchy spatial distribution is mainly controlled by the inhomogeneity
of underlying hydrophysical fields like temperature, nutrients etc. [31,32]. Pro-
nounced physical patterns like thermoclines, upwelling, fronts and eddies often set
the frame for biological processes. On a scale less than a hundred meters, plankton
patchiness is controlled by turbulence [33,34]. However, on an intermediate scale,
roughly, from a hundred meters to a dozen kilometers, the features of the plank-
ton heterogeneous spatial distribution have little correlation with the environment.
Phytoplankton behaves decreasingly like a simple passive quantity distributed by
turbulence [34-37]. Similarly, the spatial variability of zooplankton abundance dif-
fers essentially from the environmental variability on scales less than a few dozen
kilometers [32]. It has been observed that the direction of motion of plankton
patches does not always coincide with the direction of the water flow [38,39]. This
distinction is usually considered as evidence of the biology’s “prevailing” against
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hydrodynamics on this scale [40-42]. Sommer [21,43] has emphasized the impor-
tance of biological dynamics during phytoplankton blooms. Daly and Smith [44]
concluded “...that biological processes may be more important at smaller scales
where behaviour such as vertical migration and predation may control the plank-
ton production, whereas physical processes may be more important at larger scales
in structuring biological communities ...”.

Physical and biological processes may differ significantly not only on spatial
but also on temporal scales. Plankton pattern formation is essentially dependent
on the interference of various physical (light, temperature, hydrodynamics) and
biological factors (nutrient supply, predation), cf. [25,31,33]. O’Brien and Wrob-
lewski [45] introduced a dimensionless parameter, containing the characteristic
water speed and the maximum specific biological growth rate, to distinguish pa-
rameter regions of biological and physical dominance, cf. also [46,47].

Also under conditions of relative physical uniformity, the temporal and spatio-
temporal variability can be a consequence of the coupled nonlinear biological and
chemical dynamics [48,49].

2.2. Local models

2.2.1. Constant conditions in a uniform environment. The first mathematical
models of population growth were already known in the 17th and 18th century,
cf. Graunt [50], Euler [51], Malthus [52], Gompertz [53] and Verhulst [54]. Mathe-
matical models of population interactions were first introduced by Lotka [55] and
Volterra [56]. The contemporary mathematical modelling of phytoplankton pro-
ductivity has its roots in the work by Fleming [57], Ivlev [58], Riley [59], Odum [60]
and others. A review of the developments has been given by [61]. The most fre-
quently used models have been collected by Behrenfeldt and Falkowski [62]. Den-
man [63] has discussed the problem of increasing complexity and parametrizing of
planktonic ecosystem models.

The control of phytoplankton blooming by zooplankton grazing was first
modelled by Fleming [57], using a single ordinary differential equation for the
temporal dynamics of phytoplankton biomass. Other approaches have been the
construction of data fitted functions [59,64] and the application of standard Lotka—
Volterra equations to describe the prey-predator relation of phytoplankton and
zooplankton [48,65-68]. More realistic descriptions of zooplankton grazing with
functional responses to phytoplankton abundance have been introduced by Ivlev
[68] with a certain modification by Mayzaud and Poulet [69]. Holling-type response
terms [70] which are also known from Monod or Michaelis—-Menten saturation mod-
els of enzyme kinetics [71,72] are just as much in use, cf. [40,49,73-83]. Observed
temporal patterns are the well-known stable prey-predator oscillations, as well
as the oscillatory or monotonic relaxation to one of the possible multiple steady
states. Excitable models are of special interest because their long-lasting relaxation
to their stable resting state after an above-threshold external perturbation, such
as a sudden temperature increase or nutrient inflow, is suitable to model red or
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brown tides [77,78,84-86]. These models were first introduced in neurodynamics
to describe the firing of neurons after supercritical stimuli [87-89].

Concerning the temporal variability of plankton species abundance, the limits
of its predictability are of particular interest. At early stages, the development of
mathematical models of marine ecosystems was driven by the idea that the more
species were explicitly included into the model the higher would be its predictive
ability. As a result, a number of multi-species models appeared allowing for a
detailed structure of the food web of the community, cf. [90-92]. However, the
actual predictive ability of this class of models is not very high and rarely exceeds
a few weeks. Moreover, an increasing number of model agents may sometimes even
worsen the properties of the model. This apparent paradox can be explained in
terms of dynamical chaos [93]. It should be noted that there appear stronger and
stronger indications in favour of the existence of deterministic chaos in population
dynamics [94-98]. Chaotic population dynamics essentially changes the approach
to the system predictability, cf. [94], and makes conceptual few-species models of
as much use as multi-species ones. Moreover, few-species models can sometimes
be even more instructive since they take into account only the principal features
of the community functioning, cf. [76,99-103].

2.2.2. External forcing in a variable environment. Aquatic food chains, like all
natural systems, are subject to environmental variability. This ideally periodic
external forcing appears rather naturally due to daily, seasonal or annual cy-
cles of photosynthetically active radiation, temperature, nutrient availability etc.
[104-107]. A number of forced models for parts or the complete food chain from
nutrients, phytoplankton and zooplankton to planktivorous fish have been inves-
tigated and many different routes to chaotic dynamics have been demonstrated
[108-116].

The effect of external hydrodynamical forcing on the appearance and stability
of nonequilibrium spatio-temporal patterns has been studied [117], making use of
the separation of the different time scales of biological and physical processes.
A channel under tidal forcing served as a hydrodynamical model system with a
relatively high detention time of matter. Examples were provided on different time
scales: The simple physical transport and deformation of a spatially nonuniform
initial plankton distribution as well as the biologically determined formation of a
localized spatial maximum of phytoplankton biomass.

However, the environmental variability is not purely deterministic but also
subject to random perturbations. Therefore, the description by ordinary differ-
ential equations is always an approximation. One has to consider stochastic dif-
ferential equations to account for the noise [118,119]. Noise-induced regime shifts
between alternative stable states in ecosystems are as possible [120-125] as counter-
intuitive phenomena like quasi-deterministic oscillations [126-128], noise-enhanced
stability, noise-delayed extinction, stochastic resonance [129] or noise-induced spa-
tial pattern formation [130-133]. An introduction to stochastic processes with
applications to biology has been published by Allen [134].
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2.3. Spatially extended models

Mathematical models of plankton population dynamics have not only to account
for growth and interactions but also for spatial processes like random or directed
and joint or relative motion of species, as well as the variability of the environ-
ment. It is the interplay of phytoplankton and zooplankton growth, interactions
and transport that yields the whole variety of spatio-temporal population struc-
tures, in particular the phenomenon of plankton patchiness, cf. [25,135,136]. A
well-studied stripy plankton pattern is due to the trapping of populations of sink-
ing microorganisms in Langmuir circulation cells [137,138]. Other physically deter-
mined plankton distributions like steep density gradients due to local temperature
differences, nutrient upwelling, turbulent mixing or internal waves have also been
reported [139-145].

On a small spatial scale of some tens of centimetres, or under relative physi-
cal uniformity, differences in the “diffusive” mobility of individuals and the ability
of locomotion might create finer spatial structures, e.g. due to bioconvection and
gyrotaxis. Bioconvection patterns of micro-organisms emerge through an interplay
of upswimming due to photo- or chemotaxis and sinking due to gravity. This phe-
nomenon has been known since the 19th century [146,147], but the theory was not
developed until 100 years later, cf. [148-153]. Gyrotaxis is an even more compli-
cated mechanism of pattern formation. It is a directed locomotion resulting from
the orientation of the cell’s axis by compensating gravitational and viscous torques
in a flow [154-157]. Till now not for plankton but for certain bacteria, the mecha-
nism of diffusion-limited aggregation [158] has been proposed and experimentally
proven for the spatial fingering of colonies [159,160].

The mathematical modelling of biologically controlled pattern formation re-
quires the use of reaction-diffusion and, if applicable, perhaps advection equations,
sometimes even of stochastic partial differential equations [86,161-164]

N
= fz (X) — 6 - |0 X — ZDijﬁXj + F; (X,F, t) s
§=0

0X;(7,t)
ot

i=0,1,2,...,N; (2.1

with appropriate initial and boundary conditions. X = {X; ; ¢ = 0,1,2,..., N}
is the density vector of the N species at time t and position 7 = {z,y,z}.
f={fi;1=0,1,2,...,N} is the vector of functions, describing the species
growth, death and interactions. ¥; = {viy,viy,viz} ; ¢ = 0,1,2,...,N; is the
velocity vector of the i-th species. It stands for both the common passive advec-
tion with a surrounding transport medium such as water or air and the potential
individual capacity of active locomotion. V = {8/8z,d/dy,d/0z} is the Nabla
operator. D = {D;; ; 4,j =0,1,2,..., N} is the matrix of self- and cross-diffusion
coefficients. The self-diffusion coefficients describe the species dispersal, usually
down their own gradient. Cross-diffusion is the dispersal of a species along the
gradient of the others. The latter coefficients allow the simple description of some
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behavioural strategies like neutrality, attraction or repulsion [135,165-169]. Cross-
diffusion is well-known from electrolyte solutions and from the theory of pattern
formation in electro-diffusion systems [170-172]. F = {F; ; i =0,1,2,...,N} is
the vector of density-dependent external stochastic forces with certain noise char-
acteristics in time and space, modelling environmental variability. Noise increases
with population densities and, usually, a linear density dependence is chosen as
an approximation. A good overview of the use of partial as well as stochastic par-
tial differential equations in ecological modelling has been provided for instance
by [130,135,136,173-176] and [177], respectively.

The spectrum of spatial and spatio-temporal patterns includes regular and
irregular oscillations, propagating fronts, target patterns and spiral waves, pulses
as well as stationary spatial patterns.

Diffusion-driven instabilities. Since the classic paper by Turing [178] on the role of
nonequilibrium reaction-diffusion patterns in biomorphogenesis, dissipative mech-
anisms of spontaneous spatial and spatio-temporal pattern formation in a homo-
geneous environment have been of continuous interest in theoretical biology and
ecology. Turing showed that the nonlinear interaction of at least two agents with
considerably different diffusion coefficients can give rise to spatial structure. A
spatially uniform population distribution which is stable against spatially uniform
perturbations (or in the local model without diffusion) can be driven to diffusive
instability against spatially heterogeneous perturbations, e.g., a population wave
or local outbreak, for sufficient differences of the diffusivities. Segel and Jack-
son [65] were the first to apply Turing’s idea to a problem in population dynamics:
the dissipative instability in the prey-predator interaction of phytoplankton and
herbivorous copepods with higher herbivore motility. Levin and Segel [48] sug-
gested this scenario of spatial pattern formation as a possible origin of planktonic
patchiness.

Local bistability, predator-prey limit-cycle oscillations, plankton front prop-
agation and the generation and drift of planktonic Turing patches were found in
a Rosenzweig—MacArthur model [179] for phytoplankton-zooplankton interactions
that was extended by Scheffer [73], accounting for the effects of nutrients and plank-
tivorous fish on alternative local equilibria of the plankton community [75,180].
Planktivorous fish may control also the spatial plankton dynamics. The latter
has been studied in detail, using a hybrid model of equation-based plankton and
rule-based fish school dynamics [161,181,182].

Differential-flow-induced instabilities. Conditions for the emergence of three-di-
mensional spatial and spatio-temporal patterns after differential-flow-induced in-
stabilities [183] of spatially uniform populations were derived [172,184,185] and
illustrated by patterns in Scheffer’s model [73]. Instabilities of the spatially uniform
distribution can appear if phytoplankton and zooplankton move with different ve-
locities but regardless of which one is faster. This mechanism of generating patchy
patterns is more general than the Turing mechanism which depends on the already
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mentioned strong conditions on the difference of the diffusion coeflicients. The lat-
ter does not exist for micro-organisms in meso- and large-scale aquatic systems
where the turbulent diffusion is relevant. Thus, one can expect a wider range of ap-
plications of the differential-flow mechanism in population dynamics [1,186-188].

Diffusive fronts and spatial critical sizes. Skellam [189] and Kierstead and Slobod-
kin [190] were perhaps the first to think of the critical size problem for plankton
patches, presenting their model nowadays called KISS (combining the initials of
their surnames) with the coupling of exponential growth and diffusion of a single
population. Of course, their patches are unstable because this coupling leads to an
explosive spatial spread of the initial patch of species with the same diffusive front
speed [191] as the asymptotic speed of a logistically growing population [192,193].
Recently, the KISS model has been additionally extended by advection and applied
to species distribution in streams [194].

Populations with a strong Allee effect [195-202], i.e., when the existence of
a minimum viable population size yields two stable population states — extinction
and survival at its carrying capacity, show a spatial critical size as well [203-210].
Population patches greater than the critical size will survive, while the others
will go extinct. However, bistability and the emergence of a critical spatial size
do not necessarily require an Allee effect, also logistically growing preys with a
parametrized predator of type II or III functional response can exibit two stable
steady states and the related hysteresis loops, cf. [211,212].

Spiral waves. Many of these structures were first known from oscillating chem-
ical reactions, cf. [213], but have never been observed as biologically controlled
structures in natural plankton populations. However, spirals have been seen in the
ocean as rotary motions of plankton patches on a kilometer scale [39]. Further-
more, they have been found important in models of parasitoid-host systems [214].
For other motile microorganisms, travelling waves like targets or spirals have been
found in the cellular slime mold Dictyostelium discoideum [215-226]. These amoe-
bae are chemotactic species, i.e., they move actively up the gradient of a chem-
ical attractant and aggregate. Chemotaxis is a kind of density-dependent cross-
diffusion [227,228] and it is an interesting open question whether there is preytaxis
in plankton or not. However, there is some evidence of chemotaxis in certain phyto-
plankton species [229]. Bacteria like Escherichia coli or Bacillus subtilis also show
a number of complex colony growth patterns [230,231], different from the already
mentioned diffusion-limited aggregation patterns. Their emergence requires as well
cooperativity and active motion of the species which has also been modelled as
density-dependent diffusion and predation [232,233].

New routes to spatiotemporal chaos. An important point is that the spatial di-
mensions of the plankton community functioning provide also new routes to chaotic
dynamics. The emergence of diffusion-induced spatio-temporal chaos has been
found along a linear nutrient gradient [76]. Chaotic oscillations behind propa-
gating diffusive fronts are found in a prey-predator model [234,235]. Recently, it
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has been shown that the appearance of chaotic spatio-temporal oscillations in a
prey-predator system is a somewhat more general phenomenon and need not be
attributed to front propagation or to an inhomogeneity of environmental parame-
ters [99,100,102,236,237].

Virus infections and invasions. Not so much is known about marine viruses and
their role in aquatic ecosystems and the species that they infect [238,239]. It is
said [240] that viruses may control the oceans and that “infection may be the spice
of planktonic life”. Suttle et al. [241] have experimentally shown that the viral
disease can infect bacteria and phytoplankton in coastal water. There is some
evidence that viral infection might accelerate the termination of phytoplankton
blooms [242,243]. However, despite the increasing number of reports, the role of
viral infection in the phytoplankton population is still far from understood.

Mathematical models of the dynamics of virally infected phytoplankton pop-
ulations are rare as well; the already classical publication is by [244]. More recent
work by the authors of this review can be found in [86,163,237,245,246]. They ob-
served regular and strange periodic oscillations as well as invading infection waves
in a phytoplankton-zooplankton system with Holling-type II and III grazing un-
der lysogenic viral infection and frequency-dependent transmission. The latter is
also called proportionate mixing or standard incidence [247-249]. Other authors
consider mass-action type transmission and lytic infections [250-252]. All these
models exist without explicit virus dynamics and have the generic dimensionless
growth and interaction functions

anpr-! X1 X
fi = r=m)(1= P)Xy = e XX = A o7 (2.2)
an P! X1 X
fo = (ba—m2)(1—P)Xy — T et )\% —miXs, (2.3)
a™ P" mem gka
_ Xea-mixd -2 -  x, I3 x| 2.4
fa Lonpr 2 TS T T gmpm 8 T T Tk xE (2.4)

P = X1+ X5 is the total phytoplankton density of susceptibles X; and infected X5,
X3 is the density of zooplankton, X4 that of a not explicitly modelled higher preda-
tor, e.g., planktivorous fish. (b, bs) are birth rates, (m1, ma, m3) mortality rates,
ms3 stands for the additional disease-induced mortality of the infected (virulence).
A is the transmission rate of the disease. a, b, p, s, g, h are parameters characterizing
the functional responses of predators X5 and X4, respectively. Different settings
of parameters and exponents describe various dynamics, e.g.,

b=0,n=1 Lotka—Volterra dynamics;

A>0,7=0,1 Mass-action type and frequency-dependent transmission
of infection, respectively;

by =0,1 lytic and lysogenic infections, respectively;

a>0,n=2 Excitability [77,78,85];
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1<qg<2
p>0,m=1,
g>0,k=12

1,2
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Intraspecific zooplankton competition [253];

Increased zooplankton mortality through toxin-producing
phytoplankton [254-256];

Feeding of fish on zooplankton [73,257].

Beretta and Kuang [258] introduced a local model with explicit viral dynam-
ics, lytic infections and mass-action type of transmission but only susceptible and
infected phytoplankton. It has been extended by Siekmann et al. [259] through
consideration of Holling-type II grazing zooplankton, diffusion and multiplicative
noise. The growth and interaction functions of the extended model read

fo
f

f2
fs

—AXoX1 —mpXo + BmeXo, (2.5)
—AXoX1 + (b1 —mq)(1 —P)X1 1+bP X1X3, (2.6)
FAXo Xy — mo Xy — 1—|—bP X2 X3, (2.7)
%Xg —m3Xs, (2.8)

where X is the virus density and B the burst factor that stands for the number of
virus particles that are set free during the lysis of an infected phytoplankton cell.
Cross-diffusion is neglected, D;; =0V i # j =0, 1,2, 3, and equal (eddy) diffusion
coefficients have been chosen, D;; = d Vi =0, 1,2, 3. The stochastic forces are

Fi(Xi,F, t) = infi(F, t) N 1= 0, 1,2,3;

(2.9)

(a) t=35

(b) 50

FIGURE 1. Spatiotemporal dynamics of zooplankton X3 in model (2.5-2.9)
and with above parametrisation. Upper row: w = 0.1, lower row: w = 0.2.
Spatially uniform initial conditions X (7,0) = 0.1, X1 (7,0) = 0.5, X5(7,0) =
0.6, X3(7,0) = 0.1. Neumann boundary conditions.
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where &;(7,t) is a spatiotemporal white Gaussian noise, i.e., a random Gaussian
field with zero mean and delta correlation. w is the constant noise intensity. The
density dependence reflects the increase of noise with growing species numbers.
In particular, such noise is originated by fluctuating mortalities. Furthermore, it
accounts for the postulate of parenthood [260].

It has been proven that, besides trivial and semi-trivial local stationary so-
lutions, all four populations may coexist only on a stable limit cycle [259]. For
illustration of spatiotemporal pattern formation, model (2.5-2.9) is simulated with
parameters that support coexistence:

A=1,B=35a=>b=5b =1,my=1.1,m; = 0,ms = 1.07, m3 = 0.2,d = 0.05.

The results are shown in Fig. 1. Without noise, stable spatially uniform oscillations
would appear. The noise generates the spatial heterogeneity, the stronger the faster
and the finer. Distinguished wavy structures appear in a uniform environment with
initial heterogeneities.

3. Concluding remarks

This paper gave an introduction to the equation-based mathematical modelling
of plankton dynamics in continuous time and space. The presented models pro-
duce a wide spectrum of real-world structures, such as steady-state multiplicity,
regular and irregular oscillations, propagating fronts, target patterns and spiral
waves, pulses as well as stationary spatial patterns, on various temporal as well
as spatial scales and provide insight into the underlying mechanisms that can
generate these patterns. Other modelling tools, such as integro-differential and
difference equations, metapopulation models, cellular automata, individual-based
models and further rule-based tools as well as combinations of different methods,
also show promising results and need attention and development.
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Toward a General Theory of Ecosystem
Stability: Plankton—Nutrient Interaction
as a Paradigm

Andrei Korobeinikov and Sergei V. Petrovskii

Abstract. Identification of conditions of ecosystem stability and stable popu-
lations coexistence is a problem of highest importance in mathematical ecol-
ogy. It is usually studied under specific assumptions made regarding the func-
tional form of nonlinear feedbacks. Apparently, such an approach is lack-
ing generality. In this paper, we consider a chemostat-type model of the
phytoplankton-nutrient interaction, which can be regarded as a simple ecosys-
tem model, in a general case. The plankton growth/nutrient uptake rate is
described by an unspecified function of two variables (i.e., of the nutrient con-
centration N and the plankton density P) and the plankton mortality is an
arbitrary function of P. We provide a rigorous mathematical consideration of
the global properties of this system and derive the conditions that ensure ex-
istence and uniqueness of a globally asymptotically stable equilibrium state.
Interestingly, these conditions correspond to much weaker constraints on the
plankton growth rate properties than monotonicity and non-convexity that
are usually assumed. We also identify a parameter that allows us to distinguish
between existence and non-existence of the steady stable plankton-abundant
state.

Mathematics Subject Classification (2000). Primary 92D25, Secondary
34D23.

Keywords. Plankton dynamics, Global stability, Direct Lyapunov methods,
Nonlinear interaction, Lyapunov function.

1. Introduction

The issue of ecosystem stability has been a challenging problem for biologists and
mathematicians for nearly a century. It had long been observed that population
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size of ecological species can either remain approximately constant or experience
fluctuations of considerable amplitude [3,25]. While stable species coexistence ap-
parently corresponds to a self-sustained ecosystem functioning, theoretical consid-
erations proved that population fluctuations/oscillations typically arise as a result
of loss of stability of a corresponding steady state [12,23,28]. In the course of
the system dynamics, the negative changes that caused the stability loss tend to
increase the oscillation amplitude so that the oscillating species become prone to
extinction due to the impact of stochastic factors [19]. Therefore, to identify the
conditions of stable ecosystem functioning is a problem of highest theoretical and
practical importance.

Mathematical consideration of population stability and population oscilla-
tions resulted in the seminal works by Lotka [22] and Volterra [35], which also
marked appearance of mathematical ecology as a science. Further progress in un-
derstanding these issues has been made by May [24], Hofbauer and Sigmund [15],
Takeuchi [33] and Bazykin [2]. In particular, it was shown that, in order to make
a model biologically realistic, saturation in grazing/predation must be taken into
account. In its turn, the effect of saturation, which results in a non-convex shape of
the corresponding trophic function(s), increases the parameter range of the steady
state stability.

A certain drawback of the previous studies is that in most cases they were
essentially based on specific assumptions regarding the functional form of nonlinear
feedbacks (e.g., bilinear in the Volterra model); see [2] for a comprehensive review.
For a while this drawback has not been regarded as significant because of a widely
spread intuitive expectation that a particular choice of parameterization is not
important as far as the principal properties of the corresponding functions (such
as monotonicity, convexity /concavity, etc.) remain the same. However, in a recent
paper by Gross et al. [13], it was shown that this is not so and that a small
perturbation of functional responses (changing only a sign of higher derivatives)
can change the system stability dramatically. Therefore, of special value are the
mathematical studies of ecosystem stability which are not based on specific choice
of function(s).

In this paper, we address this issue using a conceptual model of marine ecosys-
tem with the functional responses in a general form. Our choice of marine ecosys-
tem as a paradigm is not accidental. Mathematical models of marine ecosystems
have been attracting considerable attention over the last three decades. Marine
ecosystems are among the most endangered in the world, especially in the coastal
regions where anthropogenic impact is usually very high. On the other hand, math-
ematical modelling provides a convenient and effective research tool, especially for
marine ecology where regular experimental study is usually very expensive and
replicated experiments are often not possible at all.

In particular, phytoplankton plays a very important role in the dynamics of
marine ecosystems. Apparently, it lies at the basis of the whole trophic chain and
thus determines the ocean primary production. Also, phytoplankton can greatly
affect water quality through “blooms” of certain toxic species [14]. Finally, there
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are indications that phytoplankton may contribute to climate changes at a global
scale [7].

In its turn, phytoplankton abundance essentially depends on availability of
nutrients. For that reason, a lot of attention has been paid to the properties
of plankton-nutrient system. A generic mathematical model that describes the
phytoplankton-nutrient interaction is given by the following equations:

=.

=

=
I

n— h(N)P — bN, (1.1)
P(t) = eh(N)P —(u+c)P, (1.2)

where N (t) and P(t) are the densities of nutrient and phytoplankton, respectively,
at time ¢, 1 is the nutrient input rate (e.g., due to upwelling or river discharge), b
and c are the washout rates for nutrient and phytoplankton respectively, u is the
phytoplankton mortality and e is the nutrient consumption efficiency. Function
h(N) takes into account nonlinear effects in the nutrient uptake, e.g., saturation;
an example is given by the Michaelis—Menten kinetics.

The system (1.1-1.2) as well as some of its generalizations have been studied
in much detail [5,6,27,29]. Surprisingly, however, practically all the work has been
restricted to the case when the right-hand side of Eq. (1.2) is linear with respect
to the phytoplankton density P (but see [10]). Meanwhile, over the last years
there has been growing understanding that the phytoplankton growth rate should
not be necessarily proportional to its density but can be affected by a variety of
density-dependent processes; in particular, it can arise as a result of phytoplankton
self-shading [4]. Thus, in a more general and biologically relevant case, nutrient
consumption should be described as h(N)g(P), rather than h(N)P, where g(P)
is a certain nonlinear function. In a still more general case, nutrient consumption
may be given by a non-factorable function of N and P.

Also, the assumption that the plankton mortality rate is linear with respect
to the plankton density P, cf. the last term in the right-hand side of Eq. (1.2), is
rather restrictive and, in fact, does not always agree with experimental data. An
increase in the population density normally leads to a decrease in the population
multiplication rate due to effects of direct and indirect competition so that for a
sufficiently large density (usually referred to as the population carrying capacity)
the rate turns to zero [26]. Another reason for changing the linear term —(u+c) P to
a certain nonlinear function, say ¢(P), is that, to be ecologically relevant, Eq. (1.2)
should take into account the plankton grazing by its consumers that are not present
in the model explicitly. The corresponding term in the equation is called a closure
term and is essentially nonlinear [9,32].

It should also be mentioned here that, mathematically, the model of phyto-
plankton-nutrient interaction is equivalent to a chemostat model which has been
considered in much detail by several authors [11,16,21,30,31]. In particular, incapa-
bility of the models with density-independent feeding rate to adequately describe
data on phytoplankton growth has been recognized [20]. However, models with
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nonlinear (density-dependent) feeding rate has not yet been considered and, cor-
respondingly, the question of what can be the system’s global properties in this
case remains largely open.

In our paper, we provide a rigorous mathematical consideration of this prob-
lem. Specifically, we consider the global stability of the system and existence/stabi-
lity of the steady states for a model of phytoplankton-nutrient interaction which is
similar to (1.1-1.2) but where the nutrient uptake rate and the plankton mortality
rate are described by unspecified functions, i.e., w(N, P) and ¢(P), respectively.
For this rather general case, by means of constructing the Lyapunov function we
derive sufficient conditions ensuring existence of a unique nontrivial steady state.

2. Model
We consider the following model of phytoplankton-nutrient interaction:
N(t) = n—w(N,P)—bN,  P(t) = ew(N,P)—c(P) (2.1)

where all variables and parameters are defined above.

In order to be biologically realistic, the nutrient uptake rate w(N, P) and the
mortality /washout rate ¢(P) must be nonnegative for all values of their arguments
and vanish if either NV or P vanishes, i.e.,

w(N,P) >0, ¢(P)>0foral PN >0, w(0,P)=w(N,0)=0,c0)=0. (2.2)

The hypotheses that are often made at this stage are that of monotonicity
and convexity/concavity of functions w(N, P) and ¢(P). On the contrary, in order
to keep the model as general as possible, in our analysis we do not impose that kind
of restriction on w(N, P) and ¢(P). However, we do assume that functions w(N, P)
and ¢(P) are continuous and differentiable for all N, P > 0. It is also natural to
require that d¢(0)/OP > 0 holds; otherwise for a very low phytoplankton density
the phytoplankton life span tends to infinity. This later condition rules out such
functions as ¢ = uP".

It is readily seen that the non-negative quadrant of the NP plane is an
invariant set of the system, and that, provided that w(NV,0) = 0, the system (2.1)
has a plankton-free equilibrium state Q¢ = (No, Py) where Ny = n/b and Py = 0.
Apart from this plankton-free state, the system can have other positive “plankton-
abundant” equilibrium states; the coordinate of these equilibrium states, if they
exist, satisfy the equalities

w(N,P)+bN =, w(N, P) = Be(P) (2.3)
where the notation B = 1/¢ is introduced for convenience.
An issue of primary importance, which we are going to address with all math-

ematical rigor, is the conditions of existence and stability of the steady state(s) of
the system. In particular, the question is how a change in these global properties
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can be quantified for unspecified functions w(N, P) and ¢(P). As we will show
below, the properties of the system (2.1) depend crucially on the following value:

Ro=e 8“’(;‘3’0) /8;?) . (2.4)

In the simplest case of bilinear nutrient uptake rate w = aPN and linear
function ¢(P) = pP, Eq. (2.4) turns to Ry = ean/bu, which coincides with the
standard definition of the basic reproduction number in epidemiology [8, 34].

Now, we proceed to analysis of the global properties of the model (2.1).

3. Properties of the model

The following theorems address global properties of the system (2.1) such as exis-
tence and stability of equilibrium states.

3.1. Existence of positive equilibrium states

Theorem 3.1. Let (i) the function c(P) grow monotonically and (i) w(N, P) be
monotonically growing with respect to N for all P > 0, and let

. CU(N(),P)
(i41) gl_r%m >1 for all N € (0, Np).

Then, if Ry > 1, there exist positive equilibrium states.

Proof. At a stationary state of the system, the equalities bN = n — Be(P) and

Be(P) = w(N, P) hold. These equalities define, respectively, a negatively sloped

line ¢; and a curve g2 on the NP plane (Fig. 1). The equality Be(P) = w(N, P)

defines also a function N = f(P). If w(N, P) is monotonically growing with respect

to N, then the function f(P) is defined and continuous for all P > 0. It is obvious

(see Fig. 1) that if N, = f(0) < No = n/b, then there is at least one point

of intersection of the lines ¢; and ¢2. The function w(N, P) grows monotonically
with respect to both N, and hence Ny/N, > 1 if

1 < lim w(No, P) — lim w(Ny, P) _ 68@)(]\[0,0) /80(0)

P—0 w(N,,P) P—0 Be(P) oP oP

Thus, under assumptions (i-iii) of the theorem, Ry > 1 is a sufficient condi-

tion to ensure existence of a steady plankton-abundant state. O

=Ry .

3.2. Stability and uniqueness of the positive equilibrium state

We assume now that the system has a positive equilibrium state Q* = (N*, P*)
such that the equalities (2.3) hold. The properties of this equilibrium state are
given by the following theorem.

Theorem 3.2. Let



32 A. Korobeinikov and S.V. Petrovskii

P
(a) (b)

FIGURE 1. The lines q; and g2 where the line (a) is for a function c(P)
with the rate of growth faster than linear, and the line (b) is for ¢(P) = pP.
Note that, while the line q; always has a negative slope, the line g2 can be
ascending or descending. Importantly, however, even in the latter case, the
line g2 cannot cross the horizontal axis.

and let
c¢(P)/c(P*) <w(N,P)/w(N,P*) <1 for P<P* and
1 <w(N,P)/w(N,P*) < c(P)/c(P*) for P> P* (3.2)

hold for all N > 0. Then, if the system (2.1) has a positive equilibrium state
Q* = (N*, P*), this positive equilibrium state is unique and globally asymptotically
stable.

Proof. In order to address the issue of stability, we consider a function

vy - [ s (p- [ Ba).

P*) c(x)

where a is a small unspecified parameter which is introduced here to avoid dealing
with an improper integral; further we will direct a to zero.
This function is defined and continuous for all IV, P > a. The function satisfies
8_V_1 w(N*, P*) 8_V_B 1 c(P*)
ON w(N, P*)’ o°P c(P) )’
and hence, by the theorem’s hypotheses, Q* = (N*, P*) is the only stationary
point of the function. Furthermore, since, by the theorem’s hypotheses, w(N, P)

and c¢(P) increase at Q*, the point Q* is the global minimum. Consequently, the
function V(N, P) is a Lyapunov function.

(3.4)
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In the case of the system (2.1), using (2.3), the Lyapunov function (3.3)
satisfies

L(Z’ P, w(N, P) — bN — n“ﬁj\;ﬁ? CL((NJ\;}Z*))”(N’ P)
oINS P N P) - Be(P)

w(N, P*)
_C(P*)w o(P*
P (N, P) + Be(P¥)
. N  w(N*,P*) N w(N*, P%
bN (1 ~ N*  w(N,P*) ' N* w(N,P¥) )

+ w(N*, P¥) (1 _ WV, PY) | w(N,P) )

w(N,P*) " (N, P*)

e poy (1 €P) _ ePT) w(N,P)
+w(N*, P*) (1_ o(P*) h c(P) w(N*,P*)>

o (12) (- )

y (3— w(N*, P*)  ¢(P") w(N,P)  c(P) w(N,P*))
w(N, P*) c¢(P) w(N*,P*) ¢(P*) w(N,P)

e, o (5L SOEP)Y (WP Y

¢(P*)  w(N,P*)) \ w(N,P)
It is easy to see that dV/dt < 0 for all N, P > 0. Indeed,

(5050 (8

hold by the theorem’s hypotheses. Furthermore,
w(N*, P*)  ¢(P*) w(N,P) ¢(P) w(N, P¥) >3
w(N,P*) — ¢(P) w(N*,P*) = c(P*) w(N,P) ~

and

for N, P > 0, because the arithmetic mean is greater than or equal to the geometric
mean (which is equal to 1 in this case).

We assume now that apart from the equilibrium @*, the system has another
positive equilibrium state @1 = (N1, P1). Then w(Ny, P1)+bN; = 5 and Be(Py) =
w(Ny, P1) hold. The derivative of a Lyapunov function is equal to zero at any
equilibrium state, and therefore % =0 at Q1. Thus, N; and P; must satisfy the
equalities
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)) = 0, (3.6)

<C(P1)) B w(Nl,P1)> (w((fz\\f[ Pl)) 1) — 0. 37

By (3.1), the equality (3.5) holds only when Ny = N*. Then ¢(Py) = ¢(P*)
is necessary to satisfy (3.6). By (3.2), this means P, = P*, and therefore Q* is
the only positive fixed point of the system, and % =0 holds at the point Q*
only. Thus, by virtue of the Lyapunov—La Salle principle [1, 18], the point Q* is
asymptotically stable for all P, N > a. The parameter a may be made as small
as required, and therefore the endemic equilibrium @Q* is globally asymptotically
stable in the positive quadrant Ri. O

3.3. Stability of the plankton-free equilibrium state for Ry <1

We have already mentioned that the plankton-free equilibrium Qg = (n/b, 0) exists
provided by w(N, 0) = 0. It follows from theorems 3.1 and 3.2 that this equilibrium
state is unstable (in fact, it is a saddle) when hypotheses of these theorems hold.
The following theorem addresses the case when the hypothesis of Theorem 3.1
does not hold, namely when Ry < 1.

Theorem 3.3. Let

w(No, P) w(No, P)

Pl_I{b m >1 fO?” N < Ny, and hm (N P) <1 fO?” N > Ny, (38)
and
w(N,P) _ Ow(N,0) /0c(0)
< . .
«P) = op 5P for all N,P >0 (3.9)

Then, if Ry < 1, there is no positive equilibrium state, and the plankton-free equi-
librium state Qq is globally asymptotically stable.

Proof. We consider a Lyapunov function

U(N,P)=N — / lim & )d + BP.
P50 w(z P)

For a function w(N, P) which is continuous with respect to both arguments the
limit limp_,q “:)((NA?;PP)) is a well-defined and finite function of N, and hence this
Lyapunov function is defined for all N > a, P > 0.

It is easy to verify that the point @ is the global minimum of this func-
tion, and that this function is a Lyapunov function indeed. In the case of the

system (2.1), the Lyapunov function satisfies
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dU(N, P) . w(No,Po) . w(No,Po)
_— = —w(N,P) —bN — nlim ———= N, P) lim ———=
o n—w(N,P)—bN —n lim o(N. Po) +w(N, P) lim o(N. By)
. w(No, Py)
_— N, P) — Bce(P
+bN lim o(N. Po) +w(N, P) c(P)
N (N, Ry)
K nNO K (N7P0)
N Ny, P
+w(N,P) li w(No, o) +n— 1 w(No, Py) — Be(P)

(where we denote lim % = limp_,o “:)((JJ\G)’PP))). By the theorem’s hypothesis,

(1-%) (l—limM> <0 forall N >0,

0 w(N, Py)
and
LRI - B (RO /)
[ ],

Therefore, Ry < 1 ensures that dU(N, P)/dt < 0 for all N,0 > 0, and hence
by the asymptotic stability theorem [1,18] the equilibrium state Qg is globally
asymptotically stable in this case. O

Note that, if the hypothesis (3.2) does not hold for all P > 0 but holds for
N = N* on some interval (Py, P2) such that P € (Py, P), then Theorem 3.2 cannot
ensure global stability of the system. However, in this case, by the Lyapunov—
La Salle principle, the equilibrium state is locally asymptotically stable. It also
follows from Theorem 3.2 that violation of the hypothesis in the vicinity of the
equilibrium state is necessary for loss of stability.

It is readily seen that the theorem hypotheses hold if w(:, P) is a concave
function and ¢(P) is a convex function, see Fig. 2. However, these properties are
not necessary: for instance, the functions shown in Fig. 3 satisfy Theorem 3.2
hypotheses and hence ensure the global stability of the positive equilibrium state.
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c(P)
c(P¥)

®(N,P)
O(N,P*)

P

P P

FIGURE 2. A function w(N, P) non-convex with respect to P.

c(P)
c(P*)

[ ®(N,P)

! o(N,P*)
|
|

P¥— - - .

p* P

FIGURE 3. Concave/convex non-monotonic function w(N, P) satisfying the condition (3.2).
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4. Concluding remarks

In this paper, we considered a general two-species model of phytoplankton-nutrient
interaction where the nutrient uptake rate is described by a function of two vari-
ables, w(N, P), and the phytoplankton mortality /washout rate is given by an un-
specified function ¢(P); both these functions can be nonlinear with respect to
their arguments. We showed that the global properties of the system depend on
the properties of w(N, P) and ¢(P) through parameter Ry, cf. (2.4), so that a
plankton-abundant steady state does not exist if Ry < 1. In case Ry > 1, for exis-
tence and stability of a unique plankton-abundant steady state it is only necessary
that the nutrient uptake rate and the mortality /washout rate are described by
functions that are increasing “in average”, cf. conditions (3.1) and (3.2) and also
see Fig. 3. Therefore, relations (3.1-3.2) along with Ry > 1 describe the conditions
of safe self-sustainable functioning of the plankton system.

In order to prove the above properties, we used the approach based on the
direct Lyapunov method (3.3) which made the proof rather simple and elegant. It
should be mentioned here that this approach has been proved to be an effective
mathematical tool for studying various problems of mathematical biology [16,17,
21]. In particular, the choice of the Lyapunov function is not a bottleneck: it is
readily seen that, apart from (3.3), we could use either

N * * Pw * *
vy == [ (- [M )

or

N * *
V(N,P):N—/ WINPT e s B(P— PP p),
a w($7 P*)

with essentially the same outcome.

Note that Theorems 3.1 to 3.3 are proved under somewhat different hypothe-
ses regarding the properties of functions w(N, P) and ¢(P). That was done in
order to keep these hypotheses as non-restrictive as possible. However, it seems
interesting and also useful for potential applications to understand whether the
theorem assumptions can be somehow unified. It is not difficult to see that for a
monotonically growing and convex function ¢(P), and for a non-decreasing with re-
spect to both arguments function w(N, P), which is concave with respect to P, the
hypotheses of all theorems hold automatically. Therefore, the following corollary
takes place:

Corollary 4.1. Let the nutrient uptake rate w(N, P) be a non-decreasing function
with respect to both arguments and non-convezr with respect to P, and let the mor-
tality/washout rate ¢(P) be a monotonically growing and non-concave function.
Then the system properties depend on the parameter Ry:

(i) if Ry > 1, then there is a unique and globally asymptotically stable positive
(plankton-abundant) equilibrium state Q*;

(i) if Ry < 1, then there is no positive equilibrium state Q*, and the plankton-
free equilibrium state Qg is globally asymptotically stable.
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Note that concavity of ¢(P) and convexity of w(N, P), as well as monotonic-
ity of both of these functions, are the properties that have immediate biological
interpretation [26]. However, we want to emphasize that the actual conditions of
the system stability are much weaker. In terms of ecological applications, it means
that the limits of ecosystem stability may be significantly wider than they are
usually thought to be.

Surprisingly, the global properties of the model do not depend on the details of
the function w(N, -), e.g., whether it is concave or convex; monotonicity of w(N, -)
is sufficient to ensure the global stability and the uniqueness of the equilibrium.
This is a rather counter-intuitive result because different stability of equilibrium
states in a resource-consumer system is often associated with a different shape of
the function describing the consumer response, cf. Holling type II and type III .
Furthermore, the monotonicity in a strict sense is not necessary either: in fact, for
global stability it is only necessary that w(N,:) > w(N*,-) for all N > N* and
w(N,:) <w(N*, ) for all N < N*.

Our mathematical results seem to have important biological implications.
It has long been a controversial issue how the system properties depend on a
given parameterization of functional responses. It is indeed an important problem
because, in a more applied study, population dynamics models are often used
by means of numerical simulations and that, of course, implies a specific choice of
functions. In particular, it has been shown recently [13] that, in some cases, systems
with only small distinctions in the shape of the growth/uptake function exhibit
essentially different stability. In contrast, we have shown that, in the chemostat-
type model of the phytoplankton-nutrient interaction, existence and stability of
the steady state is robust to the details of the uptake rate dependence on N and
P, provided biologically reasonable properties of monotonicity and non-convexity
are held.

An important inference can also be made regarding the type of mathematical
model which is appropriate for studying the properties of plankton systems. In
some recent studies, there has been a tendency to consider models which take into
account the density-dependent higher order plankton mortality but neglect the
linear one [9,32]. That was partially based on a heuristic argument that nonlinear
terms are likely to be more important to determine the properties of the system
dynamics. However, it is immediately seen that the parameter Ry, which value
is crucial for stability of the plankton-nutrient system (which is at the basis of
any marine trophic chain), turns to infinity when the linear mortality vanishes,
c.f. the lines below Egs. (2.2). It indicates that the linear mortality is an important
factor and can hardly be neglected without changing the system global properties
significantly.
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Abstract. In this paper we propose a mathematical model for the interaction
of nutrient, non-toxic phytoplankton, toxic phytoplankton and their predator
zooplankton population in an open marine system. For a realistic represen-
tation of the open marine plankton ecosystem, we have incorporated various
natural phenomena such as spatial flow, nutrient recycling, toxin effects, inter-
species competition and grazing at a higher level. Nutrient—phytoplankton—
zooplankton interactions are observed to be very complex and situation spe-
cific. Different exciting results, ranging from stable situation to cyclic blooms
or monospecies bloom, may occur under different favourable conditions, which
may give some insights for predictive management.

Mathematics Subject Classification (2000). 92D25, 92D40.
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1. Introduction

Phytoplankton are very small, usually single-celled organisms, chiefly diatoms, that
photosynthesize and occupy the first trophic level in the marine food chain. Phy-
toplankton do a huge service for our Earth. Apart from food for marine life, they
produce oxygen and also absorb half of the carbon dioxide that may contribute to
global warming [10]. An algal bloom is characterized by a dramatic sharp increase
in algae population numbers, up to several orders of magnitude [3]. Some blooms
appear regularly every year (e.g., the classic Spring blooms), while others occur in
an erratic fashion and may be sporadic both in time and space [18]. The dynamics
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of the rapid increase or decrease of plankton populations is therefore an important
subject for marine plankton ecology.

Several studies have shown that a number of phytoplankton species have
the ability to produce toxic substances that stun, kill or repel potential graz-
ers [6,9,16,17,19-21,37]. There has been a global increase in toxic or other-
wise harmful plankton blooms in the last two decades [1,15,33], and consider-
able scientific attention has been paid to harmful algal blooms (HABs) in recent
years [4,35]. HABs are sometimes called red tides; they have adverse effects on
human health, commercial fisheries, subsistence fisheries, recreational fisheries,
tourism and coastal recreation, ecosystem and environment [2]. A broad classifi-
cation of HAB species distinguishes two groups — viz. the toxin producers, which
can contaminate seafood or kill fish, and high-biomass producers, which can cause
anoxia and indiscriminate mortalities of marine life after reaching dense concen-
trations. Some HAB species have characteristics of both groups. Researchers have
attempted to explain bloom phenomena in different ways. One group of researchers
favours a “bottom-up” approach where, in recognition of the importance of nutri-
ent to the growth of algae, the availability of nutrient is supposed to be one of the
main regulatory factors for algal growth [8,13,36]. Another group of researchers
believes that bloom is controlled by its grazers rather than nutrient [11,27,39,40]
in a “top-down” approach, and others [3,31] have associated blooms with virus
abundance. However, Chattopadhyay et al. [7] and Pal et al. [26] observed that
toxin-producing phytoplankton may be responsible.

Harmful phytoplankton certainly play an important role. Reduction of the
grazing pressure of the zooplankton due to the release of toxic substances by phy-
toplankton is evidently an important factor in this context [22]. Herbivore (zoo-
plankton) grazing plays a crucial role in the initial stages of a red tide outbreak [41]
and it has been shown that toxicity may be a strong mediator of the zooplankton
feeding rate in both field [24] and laboratory studies [20,25]. Thus toxic substances
have a significant influence on the phytoplankton—zooplankton interactions, and
play a most important role in the growth of the zooplankton population. In most
previous modelling work, the non-toxic phytoplankton (NTP) and toxin producing
phytoplankton (TPP) were considered as a single population. However, the TPP
should be treated separately due to their distinctly different effects on their grazer,
for a better appreciation of the phytoplankton—zooplankton interaction.

Nutrient is supposed to be one of most important factors that triggers bloom
phenomena, and has been studied extensively by many researchers [5,12,14, 18,
28-30, 37,42]. However, most of these nutrient-phytoplankton (NP) models that
succeeded in modelling algae blooms assumed a closed system. Spatial flows of
nutrients and organisms in an ecosystem are very important from an ecological
point of view, so such flows should be considered in the model, to investigate their
consequences for the community and population ecology.

In order to understand the ecosystem functioning better, we need to un-
derstand which factors are responsible for the initiation and rapid multiplication
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of algal numbers, what determines phytoplankton species composition and succes-
sion during blooms, how toxic substances released by the TPP influence the bloom
dynamics, how spatial flows and recycling processes influence the ecosystem dy-
namics, and the interplay between them. With all that in mind, in this paper
we propose a suitable mathematical model (involving the nutrient, NTP, TPP
and their predator zooplankton) to investigate how the nutrient, spatial flows and
toxin affect the functioning of the marine ecosystems. The organization of the pa-
per is as follows: section 2 deals with the model formulation; our mathematical
and numerical work is presented in sections 3 and 4, respectively; and a brief final
discussion is presented in section 5.

2. The mathematical model

Let N(t), P1(t), P2(t) and Z(t) be the respective concentrations of nutrient, non-
toxic phytoplankton (NTP), toxic phytoplankton (TPP) and zooplankton popu-
lation at time t. Let N° be the constant input of nutrient concentration and D
the constant dilution rate (its inverse 1/D has the physical dimension of a time
and represents the average time that nutrient spends in the system [34]) and let
Dy, Dy and D3 be the washout rates of the NTP, TPP and zooplankton pop-
ulation, respectively. Let a; and as denote the respective nutrient uptake rates
for the NTP and TPP, and 60; (< 1) and 02(< asg) the corresponding conversion
rates. The Michaelis-Menten uptake dynamics in general may provide a realistic
modelling of the nutrient uptake dynamics, but here we simply assume that the
nutrient uptake dynamics follow a linear mass action law. Let p; and uo be the
respective mortality rates of the NTP and TPP, and let u3 be a parameter defining
the total death rate of the zooplankton population — i.e., natural mortality plus
possible grazing by higher trophic levels. Let 71, e and 03 (n; < p,4 = 1,2,3) be
the nutrient recycle rates after the death of NTP, TPP and zooplankton popula-
tion, respectively. For simplicity, we deliberately ignore the detailed dynamics of
organic matter decomposition and nutrient recycling, which are encapsulated in a
single parameter. The two phytoplankton populations compete for the same lim-
iting resources, including nutrient and light. Let e; and ey represent the strength
of the interspecies competition (e.g., e; is the amount by which one unit of species
P, decreases the per capita growth rates of species P;). Finally, let 31 and (32 be
the respective maximal zooplankton ingestion rates of the NTP and TPP, and
~1(< 1) the maximal zooplankton conversion rate. Liberation of toxic substances
by the TPP causes substantial zooplankton mortality, and therefore reduces the
growth rate of the zooplankton, and we let 7, denote the consequent rate at which
growth rate of the zooplankton is reduced by the toxin substances.
We consequently formulate the following mathematical model:

X = F(X), (2.1)

where X = (N, Pl, PQ, Z)T c R4 and F(X) = [Fl(X),FQ(X),Fg(X),F4(X)]T,
with F: C1 — R* and F € C*(R*"); or in component form



44 N. Bairagi, S. Pal, S. Chatterjee and J. Chattopadhyay

dN
il D(N° = N) —a1PAN — o P, N +m Py +noPe + 132
= Fl(Ny P17 P27 Z)7

dP;

E = 91P1N—51P12—€1P1P2—,U,1P1—D1P15F2(N, Pl, PQ, Z),

dP,

E = GQPQN—62P22—62P1P2—'LLQPQ—DQPQEFg(N7 Pl, PQ, Z),

dzZ

% = ’ylplz—72P22—M3Z—D325F4(N, Pl, PQ, Z) (22)

This system of ordinary differential equations is subject to the initial conditions

N(0) >0, P(0) >0, P»(0) >0, Z(0) > 0. (2.3)

3. Mathematical results

3.1. Positive invariance

From the initial conditions X (0) = X, € R%, it is easy to check that F;(z) |x,—0>
0. By Nagumo’s lemma, any solution of equation (2.1) with X, € R% is such that
X(t) € R, * for all t > 0 [23].

3.2. Boundedness of the system
All the solutions of (2.2) are ultimately bounded (cf. Appendix).

3.3. Equilibrium points and their stability properties
The system (2.2) possesses the following equilibrium points:
e The plankton free equilibrium Ey = (N°,0,0,0), which always exists. In
addition, if
w1+ D1 pe+ Do )
61 7 0 ’
then the plankton free steady state Eg is asymptotically stable; otherwise it
is unstable.
e The TPP and zooplankton free equilibrium E; = (N, Pl(l), 0,0) with
N _ M + D and P1(1) _ D[61N° — (1 + Dl)]'
th ai(pr + D1) — 0im
Since vy > 61 and py > n; so that (a3(u1 + D1) — 6171) is always positive,
Pl(l) exists if NY > (uy + D;)/601 and hence E; exists if N° > (u; + D1)/6;.
If

NY < min{

w1+ Dy
01

o + Do

max{Ry, } < N° < min{R;, 2 1,
2
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where
(arpr + @1 D1 — 01m1)[02(p1 + D1) — 01 (2 + D2)]  p1 + Dy
Ry = 5 + ,
€2D91 91
R, — (D3 + ps)(ar1pr + 1Dy — 6171) n D1+
2 Y161 D 6,

then E;, is asymptotically stable, but unstable otherwise.
e The NTP and zooplankton free equilibrium Ey(N (3,0, P2(2)7 0) with
D D[#;N° — D
o + Do and P2(2) _ (02 (p2 + 2)]
62 az(p2 + Dz) — 022
Therefore Ey exists if NO > (ug + D) /0. If

N®@ —

D D
max{Ry, 22y o yo o AT
92 91
where
R — (aapia + ag Do — 0212)[01 (2 + D2) — O2(u1 + D1)) n o + Do
3 = )

€1D922 92
then E, is asymptotically stable, but unstable otherwise.

e The zooplankton free equilibrium E3(N(®), P1(3)7 P2(3), 0) with

pB _ 0o NG — (ug + D3) pB _ 01N — (1 + Dy)
1 - es ) 2 - e1

and N®) given by A(N(?’))2 + BN®) 4+ C = 0 where

A = ajeibs 4+ agesfy >0,
B = eieaD — (u2 + Da)arer — (p1 + Di)ages — mie1bly — naeabl,
C = —e1eaDN° +mier(pa + D2) + maea(pn + Dy),

which exists if

w1+ D1 pe+ Do )
0 6 '

Note that if C' < 0 the above quadratic in N®) has a unique positive real

root. If

NG > max{

D D
Ry — mei(p2 + Da) + n2ea(p + D1) < N,
ereaD

then E3 is always an unstable saddle point.
e The toxic phytoplankton free equilibrium E; = (N®), P1(4), 0, ZW) with

DN°B1v1 — 031 (p1 + D1) + mpBi(us + Ds) p@ _ #3+ Ds
Biv1D + a1 (u3 + D3) — n3y16h Pt o0

N& —
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and

DN%y101 4+ 101 (3 + D3) — (u1 4+ D1)v1 D — (p1 + Di)as(us + Ds)

Z(4) = )
Biv1D + a1B1(ps + D3) — n3y16h

which exists if

DN°Biyi = n3mi(pa + D1) + mpBr(us + D3) >0
171D + a1Bi(ps + D3) —n3yith >0
and
DN01741 + 0161 (3 + D3) — v1D(p1 + D1) — (p1 + D1)ay(us + D3) > 0.

The steady state E, is an unstable saddle point if
Ry=—>1 or Rg=— <1,

where
As
Bs

0271 [DN°B1v1 — n3y1(pa + D1) + miBi(ps + Ds)],
Boy1[DN°y101 4+ 1161 (us + D3) — (u1 + D1)y1 D
(11 + Dr)ai(ps + Ds)]
e2(p3 + D3)[DB1y1 + a1 B1(ps + D3) — nzy161]
Y1 (p2 + D2)[DBim + a1 1 (ps + D3) — n3y164],
[Dyi + ar(ps + D3)](a1Bt DN® + minz61)
[DN%y161 + m61 (3 + Ds)lnsyy - and
Bs = [Dv +ai(ps + Ds)l(eins(ur + D1) +mpiD)

+ maml(p1 + D1)mD + ax(p1 + D1)(ps + D).

+ o+

Ag

_l_

e The positive interior equilibrium E* = (N*, P,*, P,*, Z*) with

P — D Ci1+P*D
_mh (ps + 3)72*: 1+ Dy . N* = As/Bs,
V2 Y2(0152 — 021)

where A, =A; 4+ P,*"By and

Py

Ay = DN%(0182 — 021) — n2(ps + D3) (0182 — 0231)
+  m37202(p1 + D1) — 037201 (12 + D2) — nze102(ps + D3),
By = (0182 — 0201)[P1" (a1y2 + aam1) — az(ps + D3) + D2,
By = m2(0182 — 0201) +n2vi (6182 — 0261) + n3(fayier — Oreay2),
C1 = eba(pu1 + D1) — 201 (p2 + D2) — 62e1(pu3 + Ds),

Dy = 0ie1m1 —Oreaye;
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and P,* is given by G1P,**> + GoP,* + G5 =0 where
Gi1 = —B2Ds(ary2 + a2m) — ea2(01 82 — 6281)(a1y2 + az2m),
G2 = 0272By — B2C1(a1y2 + aom1) + a2f2Da(ps + D3) — Baye DDy
4+ e27202(01 82 — 0251) (13 + Ds) — ea Dy (612 — 6231)
—  y2(p2 + D2) (0102 — O281)(1y2 + aam1),
Gs = bayA1 + B202C (3 + D3) — fay2C1D
+ ay2(pe + D2)(ps + D3)(0182 — 0251)
—  Dy1%2*(p2 + D2) (6182 — 6231).

This positive interior equilibrium E* is feasible if N*, Pi*, P,*, Z* > 0 and
we have the following conditions:

0
max{Ly, Lo} < Pi* < min{L3z, L4} and & < X< am ,
52 62 €272
where
D -C Ds3)—D —A
L1:M3+ 37 Ly — 17 L3:a2(M3+ 3) ’727 L= 1;
" Dy o172 + asm By

and if E* exists, it is asymptotically stable if

e1v1fB2 —e2fBiy2 > 0 (3.1)
S O1miag + O1maes + Oamaaq + Oamier — Orainz — B2com

N Orazes + Orareq (3.2)
and
Ds = [-Ti(Bey2P2"Z" +e1eaP\*"Py* — By PL"Z7)

Py Py Z* (e17182 — e2f172)

— 1P (0eaN*Py* — maea Py + 1371 Z%)

+ P (—aieaN*Pi* +me1r Pi™ + 1372 27))

x  [01P1*[ar(DN® +noPy* +n3Z*) — Dy — mazPy* + aseas N* Py

— ey + 3y 2]

+  02Py [aa(DN® + i Py* +13Z*) — Dy — meay Py + aje N*Py*

— merP1" —m3Z*|+ Py Py Z" (e111 82 — e2B172)]

— TVPPy Z*[Ti(—e1Bom1 + e2B172)

+  Oi(—a1fe2N™ +mBeye — a2fBey i N* + m2fami — n3€272)

+ O2(a1B172N™ — mpPBiye + azfimiN™ —m2fim +nzein)] > 0, (3.3)
where

Ti=D+a1Pi" +aP" > 0.

Proof of the stability of the various equilibria is contained in the Appendix.
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TABLE 1. Fixed set of Parameter Values

Parameter Definition Default value Unit
NO Constant input of nutrient 1.58 ht
D Dilution rate of nutrient 0.3 Rt
ay Nutrient uptake rate of NTP 0.03 ml. h™1
Qs Nutrient uptake rate of TPP 0.022 mil. h~!
01 Conversion rate of NTP 0.02 ml. h=!
0> Conversion rate of TPP 0.02 ml. h~!
1 Death rate of NTP 0.006 ht
o Death rate of TPP 0.006 h=t
3 Death rate of zooplankton 0.005 ht
m Nutrient recycling rate of NTP 0.004 mg. h~1
N2 Nutrient recycling rate of TPP 0.004 mg. h~1
N3 Nutrient recycling rate of zoopl. 0.0035 mg. h~1
e1 Competition coefficient 0.02 mil. h=!
e Competition coefficient 0.02 mil. h=!
51 Predation rate of NTP 0.02 mil. h=!
0o Predation rate of TPP 0.01 mil. h=!
" Conversion rate for NTP 0.01 mi. h~1
Yo Death rate due to consumption of TPP 0.008 mi. h~1
D, Dilution rate of NTP 0.0004 At
Dy Dilution rate of TPP 0.0004 At
D3 Dilution rate of zooplankton 0.0003 ht

4. Numerical simulations

In this section, we numerically investigate the effect of the various parameters on
the qualitative behaviour of the system using the parameter values given in Table
1 throughout, unless otherwise stated.

We first observe that the system (2.2) exhibits periodic behaviour, represent-
ing a recurring planktonic bloom (cf. Figure 1).

4.1. Effects of nutrient

If the constant input rate N is varied but all other parameter values are unal-
tered, there are various effects on the plankton dynamics. If the nutrient input
rate is decreased from 1.58 to 1.5, the system becomes stable around its interior
equilibrium point, following oscillatory behaviour (cf. Figure 2a). If we further de-
crease the nutrient to 1.4, the system stabilizes to the equilibrium point E4 where
the TPP is absent (cf. Figure 2b).

However, when the nutrient input is very low, the TPP and zooplankton
free equilibrium E; persists in a stable state (cf. Figure 3a). Further decrease in
the nutrient input forces all plankton populations to extinction, and Eg becomes
stable (cf. Figure 3b).
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FIGURE 2. Time series solutions of the system (2.2). (a) For N? = 1.5, the
system is stable around E*. (b) For N° = 1.4, the system is stable around Ey.
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FIGURE 5. Time series solutions of the system (2.2) for N° = 1.6. (a) The
stable interior equilibrium E* when ps = 0.007. (b) The stable TPP free
equilibrium when py = 0.008.

Now, if we increase the nutrient input from 1.58 to 1.6, then Es becomes
stable with a high TPP biomass (cf. Figure 4). At this stage, if we increase the
death rate of TPP from pus = 0.006 to ue = 0.007, we see that the system stabilizes
to E* from Ey (cf. Figure 5a), and any further increase in the death rate of TPP
(2 = 0.008) forces the system to stabilize at E4 (cf. Figure 5b). However, if we
increase u1, the death rate of NTP, from 0.006 to 0.008 keeping other parameters
unchanged, the system reaches Eo with a high TPP biomass in a shorter time (cf.
Figure 6).

4.2. Effects of interspecies competition

Suppose that the NTP is a stronger competitor than the TPP — ie. e; > e3.
Assigning e; = 0.0215 (and the other parameters as in Table 1), E* becomes
stable from an oscillatory condition (cf. Figure 7a). If we further increase ey to
0.025, the stable equilibrium switches to E4 from E* (cf. Figure 7b). However, if
the TPP is a stronger competitor than the NTP (i.e., e; > es), the oscillatory
coexistence of all the species is replaced by the stable state Eo with a high TPP
biomass (cf. Figure 8).

4.3. Combined effects of nutrient and interspecies competition

We have already noted that the system stabilizes to Es with a high TPP biomass
when the nutrient input is high (viz. for N = 1.6). If the value of ez is increased
to 0.0215, then the system again stabilizes to E* (cf. Figure 9a). For even higher
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FIGURE 6. Locally asymptotically stable equilibrium point E5 with high
TPP biomass, for N0 = 1.6 and p; = 0.008.
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FIGURE 7. Solutions of the system (2.2) for e3 = 0.0215 (cf. Figure a) and
ez = 0.025 (cf. Figure b), with other parameters as given in Table 1.
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FIGURE 8. Time series solution of the system (2.2) for e; = 0.022, with
other parameters as in Table 1.

ez (= 0.025), the system stabilizes at the equilibrium E4 (cf. Figure 9b). However,
if we increase e; instead of e; from 0.02 to 0.025, then the system rapidly stabilizes
at Eo with a high TPP biomass (cf. Figure 8).

4.4. Effects of dilution

Increased dilution rates of NTP, TPP and zooplankton dampen the oscillation and
stabilise the system to E* (cf. Figure 10a). If the nutrient input is increased from
N = 1.58 to N° = 1.6 with high dilution rates, the system still remains stable
(cf. Figure 10b), so the system can tolerate more nutrient when the dilution rates
are high. However, if we further increase N° from 1.6 to 1.7, then E, becomes
stable with a TPP high biomass (not shown), so the dilution rate can regulate
monospecies bloom phenomena.

4.5. Effects of zooplankton death rate

Variation in the death rate of the zooplankton may have multiple effects. When
u3 is increased from 0.005 to 0.0053, then E* becomes asymptotically stable (cf.
Figure 11a), but a further increase in us (say to pug = 0.006) forces the system to
stabilize at Ey (cf. Figure 11b). However, under favourable conditions grazers at
a higher level may increase the zooplankton mortality drastically, and this may
cause an NTP monospecies bloom (cf. Figure 12). On the other hand, a TPP
monospecies bloom may occur if the death rate of the zooplankton is decreased
for some reason, and the qualitative behaviour of the system resembles that of
Figure 6.
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FIGURE 9. Time series solutions of the system (2.2) for NO = 1.6. (a) The
interior equilibrium E* is stable for e = 0.0215. (b) The TPP free equilibrium
E, is stable for ez = 0.025. (The other parameters are as given in Table 1).
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FIGURE 10. Time series solutions of the system (2.2) for d; = 0.0007 = da,
d3 = 0.0006. The interior equilibrium E* is stable for NO = 1.58 as shown in
(a), and remains stable for N° = 1.6 as shown in (b). (The other parameters
are as given in Table 1).
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5. Discussion

In this paper, we have considered a mathematical model for nutrient, phytoplank-
ton and zooplankton populations in an open marine system. Since toxin producing
phytoplankton plays an important role in the marine plankton dynamics, we have
included growth equations of NTP and TPP explicitly. We have also incorporated
the effects of toxin, nutrient recycling and spatial flows of nutrient and organisms
in the model equations. Qur analytical studies and simulations show that vary-
ing the parameters (viz. nutrient input concentration, dilution rates, interspecies
competition etc.) can produce different outcomes, ranging from stable equilibria
to cyclic or monospecies blooms.

Additional complications may arise from the effects of organisms at higher
trophic levels — e.g., the zooplankton grazer. Grazers at higher trophic levels may
increase the death rate of the zooplankton, and this intensified grazing may affect
the qualitative and quantitative behaviour of the planktonic ecosystem. For exam-
ple, Smayda and Villarea [32] concluded that the 1985 brown tide in Narragansett
Bay may have been triggered during a period of reduced grazing. The monitor-
ing and study of zooplankton grazing and food-web interactions should therefore
be coupled with a phytoplankton-zooplankton monitoring programme focused on
planktonic blooms.

Interspecies competition between the NTP and TPP may be an important
factor in plankton ecosystem dynamics. The behaviour of the system may be dif-
ferent when the TPP becomes a stronger competitor than the NTP. The dynamics
become more complicated when the nutrient effects interact with the effects of the
interspecies competition.

Our analysis indicates that the nutrient-phytoplankton-zooplankton inter-
actions are very complex and situation-specific. The nutrient controlled bloom
may occur in certain favourable conditions. Top-down effects such as predation
by higher trophic levels may also trigger blooms under other suitable conditions.
Other mechanisms considered in this model for better biological realism (such as
dilution rate, interspecies competition etc.) may also change planktonic dynamics
significantly. Mathematical models may be used as a guide for predictive man-
agement, and to reach an improved understanding of bloom dynamics we have to
devote more effort to define the individual as well as the combined role of nutrient,
toxin, diffusion, grazer at higher trophic levels etc. To achieve this goal, collabora-
tion between phytoplanktologists, zooplanktologists and mathematical biologists
is to be encouraged.
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APPENDIX

Proof of boundedness of the system (2.2)

Let us define w = N + P; + P> + Z. Taking its time derivative along the solutions
of (2.2) we have

d
%%&DMN+H+&+@+DNQ
with Do = min{D, Dy, Dy, D3} — i.e., we can find a constant m > 0 such that
d
-£+Dw§m. (A.1)

Gronwall’s inequality then gives

w(N(t), P(t), Pa(t), Z(t)) < Dﬂo(l — e %) 4 w(N(0), P1(0), P2(0), Z(0))e 2",

whence for ¢t > 0
(N+H+%+@@§mm(M®+H@+%@+Z@L%W

and for t — oo

w+a+&+m@§%n
0

Hence all of the biologically meaningful solutions of (2.2) are eventually confined
in the region

B:«MHJameRﬁ:N+a+&+2=%?+QW>@.
0
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Stability analysis of the system (2.2) at boundary equilibria

Let E = (N, E, P,,Z) be an arbitrary equilibrium. Then the variational matrix
V =V(E) at E is given by

-D — 011?_1* asPy _*Oélﬁ_Jr m *CVQNiﬁz N3
0. P, ON — B Z —e1 P —e1 Py 6P
—(p1 + D)
V= 92ﬁ2 *62ﬁ2 92N - ﬂ27 - 62ﬁ1 *ﬁzﬁz
—(p2 + D2)
0 "z - Z 71 P1 — 7Py
—(us + D3)
The four eigenvalues of the variational matrix Vy = V(Ep) are Ay = —D < 0,

Aoy = 91N0 — (Dl —I—,ul), A3 = 92N0 — (DQ —|—,u2) and \y = —(,u?, +D3) < 0. Clearly
this steady state is asymptotically stable if and only if
w1+ D1 pe+ Do

NO i
< min{ o %

}.

However, if

w1+ D1 pe+ Do )
61 0 ’

the plankton free steady state becomes unstable, a saddle, and there exists a TPP

and zooplankton free steady state Ep if

D + 1

NO > min{

D
< Ny < 2012 (A.2)
61 6o
or a NTP and zooplankton free steady state Ey if
D D
Detpr o o Dith (A.3)
6o 61

The eigenvalues of the variational matrix V; are )\1(1), )\2(1), which are the roots
of the equation A2 + A(D + a;P1) + D(N°); — puy — D) = 0, together with
)\3(1) = 'Ylpl — (Dg + ,ug) and )\4(1) = 92N — €2P1 — (D2 + 'LLQ). Clearly )\1(1)
and )\2(1) have negative real parts, since N°0; — u; — D1 > 0 for the existence of
Ey. Now A3 < 0 if

N° < Ry (A.4)
where
R, — (D3 + p3)(aipn + 1Dy — 6171) | Dy +
2 = + )
Y161 D 01
and )\4(1) < 0if
Ry < NO (A5)

where
(a1p1 + a1 D1 — 01m1)[02(p1 + D1) — 01 (u2 + D2)) n w1+ Dy
€2D912 91 '

R, =
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Combining (A.2), (A.4) & (A.5) we observe that F; is asymptotically stable if

w1+ Dy
601

o + Do

} < N° < min{R,, }
62

(A.6)

max{ Ry,

where Ry, R are as above.
Further, the eigenvalues of the variational matrix V5 around the equilibrium
Es5 of the system (2.2) are the roots )\1(2), )\2(2) of the equation

N + XD + asP>) + D(N°0; — pis — D) = 0,

A3 = —oPy — (D3 + p3) < 0 and \y® = 6, N — e; P, — (D1 + p1). Clearly A;?
and )\2(2) have negative real parts, since N°0y — ug — Dy > 0 for the existence of
Es. Now if Ay® < 0if

Ry < N° (A.7)
where

(apia + ag Do — 021m2)[01 (2 + D2) — O2(u1 + D1)) n o + Do

R =
8 €1 D922 92

Combining (A.3) and (A.7), we conclude that F5 is asymptotically stable if

D
max{Rs, w} <N°<

w1+ D1
0> '

. (A.8)

One eigenvalue of the variational matrix Vs is A3 = v1 Py —v2 Py —(u3+Ds),
and the other eigenvalues are given by A% 4 Ql(?’))\Q + Q2(3))\ + Qg(?’) = (0 where

Q® = D+a1P 4 ayPs,
Q2® = —e1eaP Py + a1 N0 Py — 1161 Py + aaNOy Py — 156, Py,
Q% = PiPs[nie1by + naezbi — (D 4+ a1 Pr + aaPy)eres — ey Nepfa — asNeobs].

Now Q3 = P P,[C — AN@]/N < 0 since C < 0 — i.e., N° > Ry so Es is an
unstable saddle point.

The eigenvalues of V; are M@ = g,N — B2Z — ea Py — (pu2 + D3), and the
roots of A3 + Q1(4))\2 + Q2(4))\ + Q3(4) = 0 where

W = D+aP,
Q2(4) = ﬁl’)/lplz + a1N91P1 - 77191P17
QW = (D+a1P)BinPiZ — 36111 P 2.

Now )\1(4) <0if R4 <1 and Q3(4) = [Dﬁl’)/l + a1 (,ug + Dg) — 773’)/191]P12 >0
since N > 0. Also Q1(4)Q2(4) — Q3(4) = 91P1[(D + qul)(ole — 771) +773’ylZ] >0
if R5 > 1. Thus all the conditions of the Routh—Hurwitz criterion on the roots are
satisfied, and the system is stable at the equilibrium F,. On the other hand, if
R4 > 1 and Rs < 1, then E4 is an unstable saddle point.
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Stability analysis of the interior equilibrium of (2.2)
The variational matrix of system (2.2) around the positive equilibrium E* =
(N*, P*, Py, Z*) is

—D —a P —asPy —aaN*+m —aaN*+1n n3

V= 01 Pf 0 —e1 P —B1 Py
92P2* —€2P2* 0 —ﬁgPQ*
0 Wz w7 0

The characteristic equation of the Jacobian at E* is
MATN TN+ TN +T, =0,

where the coefficients are

T\ = D+a P +oP",

Ty = —Boy2P"Z" —erPieaPy” + i Pi"mZ" — 01 Py (—a1N™ +m)
+02 P (g N* — 12),

T3 = —Ti(Gev2P"Z" +e1eaPy"Py* — B PL"Z7)

—(e1m1P2 — e2f172)PL* Py Z* — 01 Py" (2o N* Po™ — maea Py +n31 Z7)
+02 P (mer P* — et N*Pr* + 3y Z7),

Ty = PP Z"[Ti(—e1fom + e2f172) + 01(—a1Beya N 4+ n1B2ye — a2y N*
+n2B21 — M3eay2) + Oa(a1B1ve N —mBiye + azfini N*
—n2b171 + nzei)]

If (3.1) and (3.2) are satisfied, it follows that 73 > 0 and 717> — 75 > 0; while
if (3.3) is satisfied then D5 = T3(T1 Ty — T3) — T1>Ty > 0. Thus by the Routh—
Hurwitz criterion, E* is locally asymptotically stable.
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Stability and Optimal Harvesting in a Stage
Structure Predator-Prey Switching Strategy
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Abstract. A predator-prey interaction is considered, where the prey has a
stage structure — i.e., two life stages, immature and mature. The predator
consumes both the immature and mature prey, and the prey is more prone
to the predator at higher prey population densities. Both local and global
stability of the system equilibria are discussed. With harvesting of the mature
prey, there are threshold conditions for a sustainable yield.

Mathematics Subject Classification (2000). 90B05.

Keywords. Stage structure, Local stability, Global stability, Optimal
harvesting, Switching.

1. Introduction

It is now recognised that a predator may prefer to eat prey species according to
age, size, weight, number, etc. For a prey species of small size, with little or no
defence capability against its predator, the predator catches a member of that
species proportional to its abundance. The predator feeds preferentially on the
most numerous species, which is consequently over-represented in the predator’s
diet. It is also likely that a predator will consume other species more when a
given prey species becomes relatively less abundant, a behaviour known as preda-
tor switching. Many examples may be cited where a predator prefers to prey on
species that are most abundant at any particular time, and switching is a normal
feature of predator behaviour [1-3]. Mathematical models involving one predator
and two prey species have generally been studied, in which the predator feeds more
intensively on the more abundant species [4-13].

Results in this paper were presented at the International Conference on Mathematical Modelling
and Computation held at the University of Brunei Darussalam during 5-8 June 2006, in
conjunction with the 20th anniversary celebration of the foundation of the university.

This work was supported by SQU Grant IG/SCI/DOMS/03/05.
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Almost all animals have an immature and mature age structure, and in par-
ticular mammals and some amphibians. There are two types of stage-dependent
predation in predator-prey models — viz., where the predators eat only adults
(e.g., where insects are preyed upon only in the adult stage [14]), and well docu-
mented cases where the predators consume only immature prey [15, 16].

Several mathematical models have been proposed to account for immature
and mature stage structure [17-22]. In this paper, we consider the case where a
second species is a predator of both the mature and immature stages — where,
instead of choosing individuals at random, the predator catches a member of the
immature or mature prey populations proportional to their abundance. Thus the
predator feeds preferentially on the most numerous stage, implying a switch from
the immature to the mature population or vice versa. As in reference [21], we also
consider harvesting of the mature prey population, which is appropriate from both
an economic and biological viewpoint for renewable resource management [23-26].
We obtain conditions for the local and global stability of the system equilibria,
and a threshold for harvesting at a sustainable yield.

The mathematical model is presented in Section 2. Section 3 is concerned
with equilibrium and stability, Section 4 with asymptotic stability, and optimal
harvesting is discussed in Section 5. A summary of our numerical results is given
in Section 6, together with a final discussion.

2. The mathematical model

The prey-predator model with a simple multiplicative effect, where the prey species
has an immature and mature stage structure, is of the form:

dz, 9 b2y
— = axe — kz1 — Br1 — Ny — ——,
dat 2 1 5 1 — NTy 71 + 23
dzo bm%y
it —kpy — —272 2.1
g = e ke — o= — qeny, (2.1)
d bx? b2
_y = ! + 2 —d Y,
dt T1+T2 T+ T2
where
x; is the population of the immature and mature prey species of stage ¢,

is the population of the predator species,

is the per capita birth rate of the mature prey species,

is the maturation rate from the immature to the mature stage,

is the per capita death rate of both prey species,

is the proportionality of self-interaction of the immature population,
is the per capita death rate of the predator, and

is the prey-predator response rate towards each prey species.

STAI Twow

We assume all the parameters in the models are positive, and that z; (0) > 0,
i=1,2, y(0)>0.
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Let h = gexs be the harvesting yield, where ¢ is the catchability coefficient
and e is the harvesting effort, and let us consider optimal harvesting of the mature
population. In order to reduce the number of parameters, we introduce 7 = bt and
write

@ n k h I6] d e

—_ = 5 —_— = 5 —_— = k 5 —_— = H7 —_ = 7— = d 5 d —_— = 5

b Qg b m b 1 b b b1 b 1,an b €1

so the system of equations (2.1) becomes

dx 2y
bty _ —k _ _ 2 1
ar Q1T2 171 — (171 — mey r NP
d$2 2
et —k — — 2.2
dr Brr1 122 71 + 72 qei1rz, (2.2)
d x2 x2
LA ( L+ 2 d1> Y.
dr 1+ T2 X1+ X2

It is also convenient to write H = gejxs, for our discussion later.

3. Steady states and stability analysis

The steady states of the system (2.2) of course correspond to equating the deriva-
tives on the left-hand sides to zero, and solving the resulting algebraic equations
we identify three possible steady states as follows:

(1) Ey = (0,0,0), where all populations are extinct, which always exists;
_ — (k T — (k T
(i) By = (frin,0) = (Ozl ( s 51)337 a1 — ( 17-2|- ﬁl)m70> 7
mx mx
k‘ ~2
where x—ﬂz 1+ge and Jfl_‘_% <dj,
T2 B Ty + T2

in which the prey populations have reached equilibrium levels but the predator
population has died out; and
(iif) Ey = (&1, &2,7)

(i@ +1)T di(1+7) (1+2) o

1+z2) " (1+2?)° = z

or equivalently
_ di(z+ 1)z di(z+1)
E2 = — ) —
1+ 2 1+ 2

1 +3)(BiF—hn — qeo) RNEED

where both prey and predator exist. Here & = ZL is a real positive root of the
T2
equation

612 + 7 (— (k1 + qer)) + Z3((k1 + B1) + By +m1dy)
+ 22 (—ky —qer +mdy —ay) +Z (ky + B1) — a3 = 0. (3.2)
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For equilibrium values (%1, &2, §) to be positive, a positive real root of (3.2) must
be bounded as
k1 + gey _ o1

:I: —/\'
b1 ki+ 681 +ma
Lemma 1. Polynomial (8.2) has only one positive root if —ki; —qe1 +mdi —aq > 0.

(3.3)

For the proof see Appendix A.

3.1. Stability

3.1.1. Stability analysis of the equilibrium E¢ = (0,0,0). We proceed in the usual
manner, by considering small disturbances from the steady state and linearising
the resulting equations. The stability matrix and characteristic equation are found
to be

—(k1+B1) — A o 0
B —(k1+01) — A 0 ,
0 0 —d; — A

and
(A +d1) [N+ X((k1 + B1) + (k1 + ger)) + (k1 + B1) (k1 + ger) — a1 B1] = 0.
The eigenvalues for the equilibrium point Ey = (0,0,0) are \; = —d; and

1
A2,3= = [—(2k1 + 61 +ger) £ VAL,

2

where A; = (2ky + 81 + qge1)? — 4 ((k1 + B1) (k1 + ge1) — a1 B1). It can also be
shown that all these eigenvalues are negative if

k1 +ge1r > ay.

Theorem 2. If k1 4+ ge; > aq, the equilibrium Ey is locally asymptotically stable if
and only if k1 + ge1 > 0, and otherwise it is unstable.

Next we proceed to global stability analysis of all equilibria mentioned above,
by applying the Lyapunov indirect method to the system of differential equations
(2.2). Consider the Lyapunov function

L=z +z2+vy,

. dL dxy dzs d
which leads to E = d—Tl d—:_‘_% = 1?2(0[1 —qer —k‘l)—(k‘lml +77115%+d1y),

so that

dL
e < 0 for all z1,z9,y > 0if a1 < k1 + ges.
-

The next theorem is then immediate.

Theorem 3. The zero solution of (2.2) is globally asymptotic stable (GAS) if and
only if o1 < k1+q e;.
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3.1.2. Stability analysis of equilibrium E; = (2, 22,0). The stability matrix of
the equilibrium E; is
-2

. —T
—k1 —B1 —2mE1 — A o b
T+ T2
—32 3.4
B1 R T p—— (34)
1+ T2
0 0 E— X
22 | A2
where &= Jfl +%2 —dj.
T+ T2

The characteristic equation is
A=9 ()\2 + A(2k1 + ger + B1 4+ 2m31) + (k1 + gex) (k1 + B + 2m1) — Otlﬁl) =0.
The three eigenvalues of the stability matrix (3.4) are Ay = & and

1
A2,3= 3 [—(Qk‘l +ger + B+ 2mi) £ \/AQ} ,

where Ay = (2ky + qey + 51 + 2n@1)? — 4((k1 + ge1) (k1 + By + 2md1) — a1B1).

When k1 + ger > aq, this produces two real negative eigenvalues — and conse-
quently all three eigenvalues are negative, so the equilibrium F; is asymptotically
stable:

Theorem 4. If ki + ge1 > a1, then E; is asymptotically stable, but otherwise it is
unstable.

3.1.3. Stability analysis of equilibrium E; = (#1,42,y). The stability matrix of
the equilibrium Ej is

L-x B —hZ
1+Z
A SYFID T (3.5)
1+7
C+Dz1 CH+D zo —A
where o
(21 + Z2)
B
L = ———mzy,
A B+ 9 3.6
= 1 ) .
(1 + #2)° (36)
o 9 (@t+ad)
(Z1 + Z2) 7
9
D = L
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The characteristic equation associated with the positive equilibrium F5 is

SN (AZ—L) AL Az— 22 D iy)+ AB — 1% D
AN+ N (Az — L) — A z 1+£(C+ Za) + 1_|_j;(0+ 1)
L o R B 29 R AC 1% AC £1j2
— C+D C+D
(1+£)( + m2)+1+j( +D &)+ Tz Tz
A D 3%
e — +”;1"3 (& + 17) = 0.
The above equation can be written in the form
A3 + (11)\2 +asA+a3 =0, (37)
where
ap = Az - 1L,
i:Q ~ i:lj: N —
= D D — LAz — AB
as 1+£(C+ x2)+1+j(0+ Z1) T ,
B R ADiT . _ ACzq1x
= C+D
as 1+53( + Diq) + Tz (T2 + 217) + 1z
L &9 ACz %>
— C+ Dz .
(1+aj~)( + D) + 1+z

The Routh—Hurwitz stability criteria for this third-order system are:
(a) a1 >0, a3 >0 and (b) aiaz > as.

Hence, the equilibrium Ey = (41, Z2, §) will be locally stable to small perturbations
provided Z > 1 and unstable for £ < 0 . The details of the analysis are given in
Appendix B. We summarise these results in the following theorem.

Theorem 5. If & > 1, then Ey = (£1,%2,9) is locally asymptotically stable.

4. Asymptotic stability of interior equilibrium

Theorem 6. A positive interior equilibrium point of system (2.2) is asymptotically
stable provided the ratio of the young and adult prey species at any time has the
same value as the positive root of equation (3.2).

Proof. We make use of the general Lyapunov function

v (21, 2,y) = Z [(xi ~ &) —#1n (i-)] T (y—9) —gln (%) N VRY

=1 i
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On calculating the time derivative of equation (4.1) along the solutions of equation
(2.2), we have

dv T2 1Y
v _ 4 22 B —ky — _
dr (331 131) [alxl 51 1— 71 71 + 23
o x1 T2y
_ 2 k- _
+ (z2 — &2) [ﬁlx2 1 Z1 + 73 q 61]
2 2 ) )
. Ty P T P
+(y - + L= (42
v=9) [1314-132 1+ T2 X1+ X2 l‘1+£2] (42)
At equilibrium
a1l . 179
k4B = — 2—771351—#7
T T+ T2
(4.3)
gieits = P — k%2 — - =~
T+ T2
so that
e o ) LU G2 k. L) R PR SV S )
dr (xl + 122) (ﬁl + iIQ)

+ oy (z1 — 31) <M> — B (x2 — i2) (M) C(4.4)

181 ToZo

If A—l =1 (i.e., the ratio of young and adult prey species is constant and the

T2 T2

same as the ratio at equilibrium value), then
dv a N2
— =-—n(x1 —21)" <0.
dr

= oA . . T1 T
Hence Fy = (%1,%2,7) is a basin of attraction for — = —, for all 7 > 0. O

o o

5. Optimal harvesting

From both an economic and biological point of view for renewable resource man-
agement, it is more appropriate for the mature prey species to be consumed. It
is also desirable to have a unique positive stable equilibrium. If the ratio of the
mature and the immature populations is constant and the immature population
is higher than the mature, then the unique positive equilibrium of system (2.2) is
asymptotically stable. In this section, we consider harvesting the mature popula-
tion and study the maximum sustainable yield under the system (2.2).

System (2.2) has a positive equilibrium Es if and only if inequality (3.3)
holds, hence
< LIQ_ il (5.1)

€1
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Thus the maximum value of the harvesting effort is given by equation (5.2),
BT — k1

viz.,, e3 =€} = ——, that is e1 €10, e7).
q
Letting xo = &9, the harvesting yield of the system (2.2) is
. e1(1+7)
H = = _— . 2
(e1) = gera = dig [ @+ 1) ] (5.2)
Finding the derivative of H (e1), we get
dz dz
1+7x —_— 724+1)—-2z(z+1 —_—
deq 19 (72 + 1)2 ’
dH 1+z)(z2+1
such that — >0 if e< ( ) ) , (5.3)

des 2o 1)
d€1

where T > 1.
Consequently, we have the following:
(i) if e; > e} and the inequality in (5.4) holds, then the maximum sustainable

yield is
di (617 —k)(1+7)

sl =g eite = (z2 1 1) ; and (5.4)
dH 1 + s ~=2 + 1
(ii) the solution of o = 0is e; =&, = ((153 z) (z ) 7
" — (72427 - 1)

d€1

giving the point of maximum effort.

The maximum yield depends on the values of €; and e* such that:

(a) if &1 > e} and dH/de; > 0, the maximum yield is given by equation (5.5);
and

(b) if &, € [0, e}) and inequality (5.4) is not satisfied. the corresponding maximum
yield is

14 3)2
max H = qé &9 = djqdl (1+2) ) (5.5)
Zor (2 +2z —1)
1
Theorem 7. )
14+7) (2% +1
(i) If e; < ((153 7 (@ ) , and €& > e}, then the mazimum sustainable yield
— (z2 42z - 1)
d€1

for system (2.2) is given by (5.5).
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(1+2) (22 +1)

1) Ife > and ey € [0,e}), then the mazimum sustainable
1

L (z2+2z —1)
d€1

yield for system (2.2) is given by (5.6).

6. Numerical results and discussion

The numerical solution of system (2.1) using a fourth-order Runge-Kutta algo-
rithm for different sets of parameter values yielded an interior equilibrium point.
Figure 1 presents the phase plane y vs. x3 when a =1, k = 0.25, 3 =0.3,d = 0.15,
n=1,b= 04, q=0.02 and e = 1. Three equilibrium points Ey = (0,0, 0),
E; = (0.561111,0.623456, 0), and E, = (0.380488, 0.369346, 0.198195) were found.
We observe that Fy and E; are unstable and Ej is asymptotically stable. The
results are in accordance with the theoretical results presented in section 3.

Lasnl ;

0171842 1 1
0280765 130824
x2

FIGURE 1. The phase plane y vs. x5 of system (2.1) for the values of o = 1,
n=1,k=0.2506=0.3,d=0.15b=0.4,q =0.02 and e = 1.
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FIGURE 2. A degenerate Hopf-bifurcation at n = —0.01236, a = 1, k =
0.25,8=10.3,d =0.15,b=0.4,¢ = 0.02 and e = 1 . a) The equilibrium point
E5 is asymptotically stable at protectn = 0; (b) Es is stable at n = —0.01236;
(c) Es is unstable at n = —0.03.

Varying the value of i from 1 to 0, the equilibrium point Es is still asymp-
totically stable, with a very slow convergence rate (the real parts of the complex
eigenvalues are still in the left half-plane) . Decreasing the value of 7 further, a
Hopf-bifurcation occurs at n = —0.01236 (the complex eigenvalues cross the imag-
inary axis where the real parts of the complex eigenvalues become zero). For 7 less
than a critical value, the real parts of the complex eigenvalues become positive —
i.e., the asymptotically stable fixed point becomes unstable at values of 7 less than
—0.01236 (Figure 2). This type of Hopf-bifurcation is called degenerate. (We re-
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mark that negative 7 values have no physical meaning in the current context, but
in passing we wished to illustrate the presence of the Hopf-bifurcation.)

The mathematical model we have proposed consists of three nonlinear ordi-
nary differential equations, corresponding to an immature population, a mature
population, and their predator. The predator can feed on either stage of the prey,
but instead of choosing individuals at random the predator catches a member
of the immature or mature prey population proportional to their abundance —
i.e., the predator feeds preferentially on the most numerous stage species. This
behaviour is termed predator switching.

We have found conditions for the stability of the equilibria. The dynamical
behaviour shows that the system is locally stable in some region of parametric
space around a positive interior equilibrium, and unstable in some other region
of parametric space. It was also observed that the system is asymptotically stable
around the positive equilibrium if the ratio of the young and adult prey species
at any time has the same value as at the equilibrium point. We studied the max-
imum sustainable yield of the system. The economic and biological viewpoint for
renewable resource management led us to study exploitation of the mature popu-
lation, when it is desirable to have a unique stable positive equilibrium in order to
plan harvesting strategies and maintain sustainable development of the ecosystem.
We obtained threshold harvesting conditions for the mature population, and also
considered its optimal harvesting.
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Appendix A

Let
P(z) = bsz® + byx? + b3x® + box® 4 byx + by,
then
P’(x) = Bbszt + 4bsa® + 3bsz? + 2byz + by,
P"(z) = 20bsa> + 12byx” + 6bsx + 2by,
P"(z) = 6(10bsz? + 4byx + b3),
where
bo = -—ai,
bi = ki+p,
by = —ki—qe1+mdi—a,
bs = ki+ 201+ mds,
by = —(k1+qe1),
bs = b

Assume that by > 0. The polynomial P(z) is strictly positive for large x and
negative for x = 0. Therefore P(x) has at least one positive zero and consequently
the system (2.2) has at least one positive equilibrium. By Descarte’s Rule P(x)
has either three positive zeros or one positive zero. Suppose that P(x) has three
positive zeros and note that P’(x) > 0 for large « and = = 0. Again by Descarte’s
rule P’(x) will have two positive zeros. This leads after some simple algebra for
P"(z) to have one positive root. But close examination of P”(z) using Descarte’s
Rule shows that this cannot happen as P”(z) has either two zeros or no zero.
Therefore P(x) must have a single positive zero. This completes the proof.

Appendix B

To show that the non-zero equilibrium is locally stable to small perturbations, we
need to show the Routh—Hurwitz conditions are satisfied:

(a) a1 > 0, az > 0;
(b) aras > as.

Clearly
- - 23y a Gt .
@ =A7 -L=pT+ ———5+—+————m+tmi >0 (Bl
(Z1 + Z2) T Z (&1 + £2)

To show az > 0. Write
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Cz D#2
P =222 1 222 4 Oy + Diyi,
X X
Q = Ci1T + Diq&oT + Ci1%% + D172,

S = Ci#1&9 + D297 + C#17° + D372,

so that
az = BP + AQ +nS].
We have
p_ 9 (@45 a5 2gaf g (& +d)
(&1 + &2)% &1 (&1 +22) 1 (&1 + #2)°
24 g (22 +13) 2
+ym1{32:yA( 1A 22 2>07
L1+ 2o 1 (21 + Z2)

§ &122 (23 + 28182 — 23)

(21 + &2)°

S =C #129 + D123 =

Now, from (B.3), (B.4), (B.5) and (B.6),

Q To a1Zo (JAI% =+ JAI%)
az = ) {

(21 + #2)°

3 (21 + 2)°
12 . A .
(;711 +1m22) (33 + 20102 — 34) }.

Recall that

N 142 (a R
y:[ - (—1—/€1—51—771$1)]>0-
z z

So
a1Z9 — 771@% > 0.

Thus, as > 0. This completes the proof of (a).

(B.4)

(B.5)

(B.6)
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(b) We must show that ajas > as. It follows from (3.8) that

3.
Ta . zC Dz i?
D AB
17 Do)~ +3 1—|—33 Tz

L3 LDz2 BiZ AC # A
_L8C LD B gy pyyy ACDT
1+7Z 1+7Z 1+ 1

(Az — L) |-LAz +

2T

Hl

S]] H>

i
_|_
— D 2

A Y (B.9)

D
1
Z1 A

+z 1+z

_|_
| AC
1

After some simplifications (B.9) can be expressed as
_AC'D_:(DAS1—£2)+BC (f1—f2)_ADf325 : .
1+%2 1+2z 1+2z

C
(1 — Z2)+m A1$1$ + 7]13311433 + —

but

= — [(#1 — 22) (&1 + &2) + 221d2] > 0. (B.11)

If 21 > 29, then
AC T (&1 — @2) n BC (&1 — Z2) _ AD p% (Z1 — &)
1+2Z 1+z 1+
BD %1 (%1 — %2)
1+ 2

_ (@) a1do — Bid 122 (a1 —
_(£1+£2)[C(12 B121) + D Z132 (a1 — 1))

53150259 (331 —3562)2 [C+D (31 + ). (B.12)
(Z1 + &2)
Let
U=C (&2 — p1d1) + D #182 (a1 — B1),
V=C+D (21 + ). (B.13)

V > 0 because C+D %7 > 0 from (B.11). To show that U > 0 where ay&s— 121 <
139 — 1 &2, since we are assuming &1 > 2 and D &1 > C from (B.11). So, U > 0.
Hence, ajas > a3 if £ > 1. This completes the proof.
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Abstract. There is growing public concern that pests may develop resistance
to Bt toxins produced by genetically modified Bt plants. We develop and
analyse a conceptual reaction-diffusion model of the agricultural ecosystem,
to simulate the Bt-resistant insect massive invasion when the insect fecundity
rate is limited by the number of females rather than by the mating frequency.
We show by computer simulations that reproduction of Bt-resistant pests is
a factor that significantly affects the Bt plant biomass under the Bt-resistant
pest invasion. We demonstrate that periodical Bt plant sowing can lead to
both regular and irregular oscillations in Bt plant and Bt-resistant insect
biomass. The character of the oscillations (regular or irregular) is shown to
be dependent on local insect fluxes, which are characterised by the diffusion
number =. The oscillations are irregular if Z > 0.02, but otherwise the oscil-
lations of the plant and insect biomass are regular.

Mathematics Subject Classification (2000). Primary 92D40.

Keywords. Invasion, Transgenic plants, Bt-resistant pests, Mathematical
modelling.

1. Introduction

Genetically modified plants, which express genes encoding insecticidal toxins from
the bacterium Bacillus thuringiensis (Bt plants), have become an important com-
ponent of modern agricultural practice in many countries [2, 12, 23, 6]. Whenever
pests are exposed to pesticides, selection occurs for alleles that confer resistance

This work was partially supported by ISTC, DFG, RFBR, NSF Biocomplexity Program, and by
the University of California Agricultural Experiment Station. We are thankful to the anonymous
referees for helpful suggestions.
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to those pesticides. The increase in resistance to Bt sprays in the field, as well as
the greenhouse and laboratory selection of resistant strains of several major pests,
demonstrate that the probability of appearance and expansion of Bt resistant in-
sects can build up [27, 25, 1, 7, 5, 28, 9, 26].

Computer simulations have been used to reveal key factors and relationships,
to evaluate the environmental impact of Bt-resistant pest invasions. In particular,
we have developed a conceptual reaction-diffusion model that describes the main
features of the interaction between genetically modified Bt crops and pests resis-
tant to Bt toxins [18, 17, 16]. This model is based on the assumption that the
effective fecundity rate of the recessive Bt-resistant pests essentially depends on
the insect mating frequency. Such an interrelation between the mating frequency
and the fecundity rate is typical for populations that are characterised by modest
mating frequency [4], when the dependence between the insect fecundity rate and
the density of the insect population is quadratic [8, 4].

In this paper, we consider the spatio-temporal dynamics of an agricultural
ecosystem consisting of transgenic Bt plants, insects susceptible to Bt toxins, and
adapted Bt-resistant insects carrying a recessive mutation enabling them to grow
on Bt plants, with the assumption of massive Bt-resistant pest invasion. Under
massive pest invasion, the insect fecundity rate is limited by the number of fe-
males rather then by the mating frequency. Consequently, under the assumption
of constant 50/50 sex ratio, the insect fecundity rate is directly proportional to
the density of the insect population [4]. We show that reproduction of the Bt-
resistant pests is a factor that significantly affects the Bt plant biomass under the
Bt-resistant pest invasion.

2. Model

Conceptual minimal models have been shown to be an appropriate tool for search-
ing and understanding basic mechanisms underlying population dynamics [13, 30,
10, 11, 14, 20, 19, 4, 21]. We follow this approach to develop a mathematical model
of the Bt plant — pest population dynamics. Let

I=1,+ 1+ Is$7 (1)

where I is the total insect biomass, while I,.., Iss, and I.; respectively denote
the biomass of Bt-resistant (rr), Bt-susceptible (ss), and heterozygote (rs) in-
sects. We assume a constant 50/50 male-female ratio for all the genotypes: 77,
rs, and ss. Table 1 lists all the possible outcomes of matings between different
genotypes. The probability of mating between males of genotype ¢ and females
of genotype j (i,j = rr, rs, ss) is I;I;/I%. Similarly, the probability of mating
between males of genotype j and females of genotype i is I;1;/I?. We also as-
sume that the effective insect fecundity 7;; depends on the plant biomass P. The
total increase in the ss-insect biomass (cf. Table 1) can then be represented as

2 (nss(P)/I) (Lss + %L«s)2 where the insect biomass I is defined in equation (1).
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Similarly, the total increase in the rr-insect biomass is %(Uw (P)/I) (IM + %ITS)Q.
The total increase in the rs-insect biomass resulting from the insect reproduction
is given by (n.s(P)/I) (Iss + %Irs) (IM + %Irs)-

TABLE 1

FEMALE MALE OUTCOME
SS Ss Ss
IT IT IT
SS T s
T Ss s
ss rs los+ Lrs

2 2

1 1
TS sS 585+ 3Ts

1 1
s rr 518+ 5T

1 1
T rs 5TS + 57T

1 1 1
TS TS 158+ 3rr 4+ 37s

Taking into account all the foregoing results, we simulate the dynamics of Bt
plant and insect biomass at any point X and time 7 in the following mathematical
model:

oP P C.P
= —,pl1-=) =
" ( ) Cy+ P

or K
1 2 1 1
nss(P) Lss + 517“5 + QUTS(P) Iss + §Irs I + §Irs

1 2
nrr(P) <Irr + §Irs>

X[nT,nT+€T] (T)
21

X[nT,nT+€T] (T)

+ 21

: (2)

8Iss . kssclp [nT,nT+eT) (T) 62155

I - ,U«ssIss + X

1 2
6ssnss(P) |:Iss + §Irs:| + D

or  Co+P°™ 21 0x2’
(3)
Ol krsC1P
= Irs - rsIrs
or Co+ P H
X[nT,nT+eT] (T) 1 1 82]1“5
- 1 Orsllrs P Iss _Irs Irr _Irs D—7 4
+ T 577()[( *3 *3 5%z ()

0?1,
0x2’
(5)

617'/" k/"/"c P n n €
e T e 7(7)

or o Co+ P "

2
1
6rr77rr(P) |:Irr + §Irs:| + D
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where the characteristic function of the interval [nT,nT + €T is denoted and
defined by

1, t € [nT,nT + €T
X[nT,nT+eT](t) = { 0, t ¢ [nT, nT + GT].

Equations (2) — (5) describe the spatio-temporal dynamics of the plant P(X, 7),
Bt-resistant insect I..(X, ), Bt-susceptible insect I;s(X,7) and heterozygote in-
sect I.s(X, ) biomass, respectively. The parameters r and K denote the intrinsic
growth rate and the carrying capacity of the plant population; p,,, puss and p,s are
the combined mortality rates per unit mass of the rr-, ss- and rs-insects. The con-
stants C7 and C5 parametrise the saturating functional responses. D is the insect
diffusion coefficient. The terms in the square brackets operate only throughout
the reproduction period of length €T'. The functions 7,..(P), nss(P) and n,s(P) are
the effective fecundity rates of the rr-, ss- and rs-insects, respectively. Thus the
terms involving these functions of the plant biomass P account for both the insect
reproduction and maturation of the insect offspring. We allow for the fact that Bt
plants selectively affect larvae [22], embodied in the form of the functions 7,,(P)
and 7,s(P). Thus we suppose that the ss- and rs-insects are both liable to the
action of Bt toxins, although not to the same extent. Consequently, their effective
fecundity rates fall as soon as the Bt plant biomass P is more than a critical value
P.., so that

e(P) = zPeap (~37 ). ©)

me(P) =P (en (<50 )+t ) )

where 1?2, n2, and A > 1 are constants and P., = K/A. In contrast, the effective
fecundity rate n,..(P) of Bt-resistant insects does not tend to decrease with an
increase in the Bt plant biomass, so we suppose that

UTT(P) = n2P7 (8)

where 72 is a constant. The parameters kss, krs and k- in equations (3), (4) and
(5) are the respective yield coefficients of the ss-, rs- and rr-insects to the plants;
and dsg, 05 and d,,. are the respective yield coefficients of larvae of the ss-, rs- and
rr-insects. Our model also accounts for Bt plants being periodically sown, implying
that

P =Pyat T=nT, wheren=20,1,2,.... (9)

We set T' = 150 days, which roughly corresponds to the length of a normal growing
season [24].
For later convenience, we introduce the dimensionless variables

P . Iss . I . Iy ¢ A X A
= == = == S ™ T3 rr ™ T = =T, T = T~
P=F s T T ! K T \ DT

to render our mathematical model (1) — (9) in dimensionless form:
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Bp
Y+D

XinAnA+ea)(t) . 1)? . 1. . 1.
_% [wss(p) ('Lss + §er> +wrs(p) | dss + §er L + §er

nAnAte (t 1.\’
y XlnAinAteA]T) ‘;* A(®) [wm«(p) (m + 5@«3)

1

a:ap(l—p)—

: (10)

Diss o kssﬁpz. X[nA,nA+eA] (t)

_ 11 0%
or N+ p ss — Vsslss + 5sswss(p) |:Zss + §er:| + Ws;y (11)
Oirs _ krsﬁpz- v
ot Y +p rs rslrs
2X[nA,nAtea)(t) ) 1. . 1. 0%,
+%5rswrs (p) 1ss + §'Lrs Ly + §'Lrs + 81:28 ) (12)
8irr krrﬁp . . X[nA,nA+eA] (t) . 1, 2 82irr
ot = ~ T pzss — Upplpr + %&“rwrr(p) lpr + 511“3 + 022 5 (13)
1= iss + irs + irr: (14)
wss(p) = wypezp(—Ap), (15)
wrs (p) = wpyp (exp(=Ap) +wy,) (16)
wrr(p) = wyp, (17)
p=1po at t =nA, where n=0,1,2,.... (18)

Here we have set a = 1T /A, 3= C1T/A,v=Co/K,vss = pussT/A, Vs = prsT /A,
Ver = e T /A, w) = (KT/2A) 00, W)y = (KT/A) 1, w) = (KT/2A) 77, and again
use the characteristic function

() = 1, t € [nA,nA+ eA]
XnAnAteAllt) = 0 t ¢ [nA,nA+ eAl.

For our numerical work described below, we put A = T so thatt = 7, 2 = X+/1/D,
a=r03=0,v= CQ/Ka Vss = Mssy Vrs = Hrsy, Vrr = [rr, wg = (K/2)7727
wys = K1y, and w)) = (K/2)1;.

To investigate the dynamics of the plant — insect model system, we solved
equations (10) — (18) numerically by an explicit finite difference scheme. Neuman
zero-flux boundary conditions were used. The initial conditions assumed at t = 0
were that plants and susceptible (ss) insects are homogeneously distributed in
space, while heterozygote (rs) insects are concentrated in a small region at the
centre of the whole domain and Bt-resistant (rr) insects are absent. The mesh
step sizes chosen were Az = 1 and At = 0.001, sufficiently small to ensure the
accuracy of the simulations.
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3. Results

The study of the after-effects of an invasion of Bt-resistant insects is a main ob-
jective of this work, and there is a key parameter that could characterise the
Bt-resistant pest’s survival and impact on the plant biomass — viz. the so-called
growth number, defined as [18]

kg
=—— —v
y+1
Our computer simulations show that the initially small population of heterozygote
rs-insects can trigger invasion of the model Bt-resistant insects into the agricultural
ecosystem, if the growth number of resistant insects (G,..) is positive and greater
than the growth numbers of susceptible insects (G,s and G45) — i.e.,

G >0, (19)

Gyr > Gy and G, > Ggs. (20)

If conditions (19) and (20) are met, Bt-susceptible pests are displaced by Bt-
resistant ones. As this takes place, the susceptible insect biomass decreases towards
0 (ie., iss =0 and i, = 0).

We have also shown that the parameter space (v, k,..3) is subdivided into
two regions, characterised by different types of intrinsic plant-insect dynamics.
The intrinsic dynamics imply that periodical sowing of plants is absent, and all of
the terms on the right-hand sides of equations (10) — (13) are taken into account.
At w? = 0, an Hopf bifurcation takes place in the (v, k,.(3) parameter space if
G = GH, where

GH = %(kwﬁ —v). (21)

Figure 1 presents the function k.. = 2G + v, which demarcates these two
regions in the (v, k,..3) parameter space. In the lower region 2, the plant-insect
intrinsic dynamics exhibits limit cycles, whereas in the upper region 1 there are
stable nodes. The Hopf bifurcation occurs if the parameter w® # 0, so that the
oscillatory behaviour of the plant-insect system can invade region 1.

Figure 2 shows the dependence of the average plant biomass

1 [t : :
(p) = —/ / p(x,t)dzdt, t=nA (22)

on the duration of the insect reproduction period €A in each of the two regions
in Figure 1, where L is the size of the whole domain. All the graphs in Figure
2 were obtained with periodic Bt plant sowing (cf. equation (18)), at the same

values of the growth numbers (G, = 0.07, G, = 0.0425 and G5 = 0.0425) and

with w? = Wl = w? = 0.1 (Figure 2a), ! = W% = w? = 0.8 (Figure 2b) and
w? = wl = wY = 7.0 (Figure 2c). Notice that stable nodes are characteristic of

S
the intrinsic plant and insect dynamics at w? = w2, = w? = 0.1; whereas under

W= wl = w? =08 and W = WY = W = 7.0, the intrinsic dynamics is

rs
oscillatory.
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os- k. P

°% a1 %3 %
v
FIGURE 1. The function krr = 2 ; = 0.07 Below the graph

(region 2) one has a limit cycle, while stable nodes are located above the
graph (region 1) at w? =0; if w? = 0, limit cycles, stable focuses, and stable
nodes appear in region 1. For example, under k., = 0.41, stable nodes are

at w?  0.45, limit cycles are at 0.45 wQ 3.5, and stable focuses are at

W 3.5. The simulations were carried out under the following set of the
model parameters: a« = 0.1; = 4.0598; ,p = s = s =0.2; pp = s =
ss = 1; = 100. The parameter values correspond to observational and

experimental data (see [29] and the references therein). The only exception is
the values of the parameters rr, rs and ss, which in nature are less than 1;
the parameter values ,r = rs = ss = 1 imply the strongest impact of pests
on the plant biomass. Notice that for smaller values of these parameters the
results remain ualitatively the same, however, the length of the transition
period, when Bt-susceptible and Bt-resistant insects coexist, increases.

There is a distinct difference between the graphs (p) (eA) obtained for each
of the regions 1 and 2 shown in Figure 1, characteristic of intermediate parameter
values w0, wl and w?, (W? = WY = w? = 0.8 in Figure 2b), rather than under
small (w? = w?, = w? = 0.1 in Figure 2a) or large (w? = w2, = w? = 7.0 in Figure
2c) parameter values. To gain greater insight into why such a difference between
the graphs occurs (characteristic of region 1 and region 2), let us consider the
phase trajectories shown in Figure 3, which describe the dynamics of the spatially

averaged Bt plant and Bt-resistant insect biomasses

L
p= %/0 p(l’, t)dma (23)

1 L
Tpp = E/o irr(x, t)dx, (24)
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FIGURE 2. The dependencies of the plant biomass (p) on the length of the
insect reproduction period at (a) w? = wf = w? = 0.1; (b) Wl = W0, =
w? = 0.8;(c) w? = Wl = w? = 7.0 pg = 3 x 1071; the start of the growing
season coincides with the beginning of the reproduction period. Here and
hereafter we set A = 150, which roughly corresponds to the length of a
normal growing season [24]. Graphs 1 represent the dependencies for a set
of the model parameters from region 1 of the model parameter space shown
in Figure 1: ky, = 0.1; krs = kss = 0.0898; v = 0.5036; other parameters
are the same as in Figure 1. Graphs 2 represent the dependencies for a set of
the model parameters from region 2 of the model parameter space shown in
Figure 1: krr = 0.07; krs = kss = 0.0629; v = 0.0525; other parameters are

the same as in Figure 1.

at w? = wl, = w? = 0.8. It is evident from Figure 3 that at €A = 10 (i.e., when the
length of the insect reproduction period is equal to 10 days) the trajectory repre-
sents regular oscillations of the plant and insect biomass in region 1 of Figure 1,
while in region 2 the trajectory is irregular. The irregular character of this trajec-
tory implies irregularity in changes of local biomass values p(z,t) and i, (z,t) —
cf. equations (23) and (24). In turn, such a local instability arises from fickle local
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FIGURE 3. Phase portraits of the Bt plant — Bt-resistant insect dy-
namics in regions 1 and 2 of the parameter space shown in Figure 1 at
€A = 10;40;60; w9 = Wl = w? = 0.8. The phase portraits are obtained
for different values of the duration of the insect reproduction period, eA. The
values of the diffusion number =, which correspond to each of the portraits,
are shown above the phase trajectories. The parameter values are the same
as in Figure 2. The calculations were carried out after completion of the
transition processes, when Bt-resistant and Bt-susceptible insects still coex-

isted.

insect diffusion fluxes, due to temporal variations of the inhomogeneous spatial
plant and insect biomass distributions (not shown).

To characterise the total effect of the diffusion fluxes, we introduce another
parameter, a diffusion number:

A

Appropriate values of = are displayed in Figure 3. One can see that = = 0 for the
regular plant-insect dynamics in region 1 of Figure 1 at e A = 10. This is due to the
fact that in this region the transient spatial plant and insect patterns that form in
the early stage of the invasion of the Bt resistant insects are eroded through the
diffusion of the insects. Both the plant and insect biomasses are therefore finally
distributed homogeneously in space (not shown). In contrast, in region 2 with
E # 0 (in Figure 3 at €A = 10), the Bt plant and Bt-resistant insect patterns do
not erode and vary in time (not shown). Variations of the patterns result from the

“’“ a t) dzdt . (25)

[I]
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joint impact of flattening action of insect diffusion on the one hand, and growth
of the insect ant plant biomass on the other.

As Figure 3 suggests, in region 2 at €eA = 10 the maximum values of the plant
biomass are distributed in a wide range between 0 and 1 along the horizontal axis.
Thus on average, the plant biomass in region 2 takes smaller values than in region
1, where the maximum plant biomass is close to 1.

As the duration of the insect reproduction period €A increases, the plant-
insect biomass oscillations arising in region 2 of the parameter space become reg-
ular (cf. Figure 2 at w? = w?, = w? = 0.8), and the values of = get very close to
zero (cf. Figure 3). The maximum values of the plant biomass in region 2 become
even larger than the maximum values of the plant biomass oscillations in region
1. However, the averaged plant biomass (p) given by equation (22) is still smaller
in region 2 than in region 1 (cf. Figure 2). The reason is that in region 2 the
minimum plant biomass value is less than the minimum plant biomass value in
region 1. Besides, in region 2 the plant biomass takes its minimum values for a
much longer time than in region 1 (cf. Figure 3), resulting in the total decrease of
the (p) value (cf. Figure 2).

It is notable that the difference in the character of the plant-insect dynamics
does not necessarily lead to essentially different dependencies of the averaged plant
biomass (p) on the duration of the insect reproduction period eA. Indeed, for
example at w? = WY, = w? = 0.1, the graphs (p) (¢A) in region 1 and region 2 are
very close to each other (cf. Figure 2), even though the underlying plant-insect
dynamics are different (not shown). Thus in region 1 the oscillations of the Bt
plant and Bt-resistant insect biomass are regular, while in region 2 the oscillations
are very irregular. The corresponding values of the diffusion number are zero in
region 1 and around 0.02 in region 2, at all values of the duration of the insect
reproduction period €A.

4. Concluding remarks

We have developed a conceptual reaction-diffusion model of the Bt crop — Bt-
susceptible ss- and rs-insects — Bt-resistant rr-insects system, in order to simulate
massive invasion of Bt resistant insects. We have shown that the growth numbers
Gyr, Grs and G, determine whether or not Bt-resistant insects can invade a field
sown with a Bt crop. The results obtained imply that thorough measurements
could allow us to estimate the liability of invasion for a given transgenic crop sown
in a given geographical region — viz. of the constants $ and -, which parametrise
the saturating functional responses (equations 10 — 13); the parameters ks, ks and
krr, which are yield coefficients of the susceptible ss- and rs-insects respectively,
and resistant rr-insects to the plants (equations 11 — 13); and the insect mortality
rates vgs, Vps and v, (equations 11 — 13) to calculate the growth numbers G-, G5
and Ggs. Such measurements would be of particular interest to check the validity
of the growth numbers in agricultural practice, and for invasion risk assessments.
To our knowledge, such measurements have not yet been carried out.
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Since our model for the plant and insect dynamics depends on uncertain
input parameters, the model output should not be interpreted as predictive of
the plant-insect system behaviour, but must be interpreted within the context of
possible scenarios of population dynamics. Within our conceptual approach, we
investigated the dynamics of the model agricultural system in parameter space,
which we have shown consists of two regions in Figure 1 with different intrinsic
dynamics [16].

We have shown that values of the constants w?, w%, and w?, which parametrise
the effective fecundity rates of ss-, rs-, and rr-insects respectively as represented
n (15) — (17), essentially affect the character of the dependence of the averaged
plant biomass (p) in equation (22) on the length of the insect reproduction period,
in both region 1 and region 2 of the parameter space (cf. Figure 2).

It has been shown that in the general case the dependence of fecundity rate
can be represented by the function

_ Byi?
" By +i’

F(i) (26)
where ¢ is the population density and the function B represents the population
density such that half of the females can be fertilised [3, 4]. If the population
density is high (i.e., # >> Bs), then F ~ ¢ and in this case the spatio-temporal
dynamics can be described with the use of our model (10) — (18). If the population
density is low (i.e., i << By), then F ~ 2. Proper plant-insect dynamics have been
analysed in [18, 17, 16], and it is of interest to compare the results obtained from
studies of both limiting cases.

(1) In [16] where F' ~ i?, we have found that the plant-insect dynamics
resulting from an invasion of Bt-resistant insects can be non-unique throughout
the insect reproduction period. In particular, a chaotic attractor and the limit
cycle have been shown to coexist — so that the Bt-plant — Bt-resistant insect
system manifests either chaotic or regular oscillations of plant and insect biomass,
depending upon the spatial distributions of the plant and insect biomass. Our
analysis of the massive invasion of Bt-resistant insects, carried out with the model
(10) — (18) where F' ~ i, showed that the intrinsic dynamics of Bt plant and
Bt-resistant insect biomass can be either an equilibrium or regular oscillations
with no tinge of chaoticity (the dominant Lyapunov exponent was not positive).
Hence chaotic dynamics do not emerge if the density of Bt-resistant insects is high,
resulting in the dependence F' ~ 1.

(2) For F ~ 2, the distinction between the intrinsic dynamics in regions
1 and 2 of parameter space in Figure 1 has been shown to lead to distinctions
between the dependencies of the averaged plant biomass on the duration of the
insect reproduction period [15]. In contrast, for F' ~ ¢ as in model (10) — (18),
these dependencies can be very similar to each other — viz. when values of the
constants w?, w?, and w?, which parametrise the effective fecundity rates of ss-, rs-,
and rr-insects respectively in equations (15) — (17), are beyond some intervening
interval (cf. Figure 2).
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(3) For both F ~ i? and F ~ i, the regular or irregular character of plant-
insect oscillations under periodic Bt plant sowing essentially depends upon local
insect fluxes resulting from inhomogeneous spatial insect distributions under Bt-
resistant pest invasion. To characterise the insect diffusion fluxes, we introduced a
parameter, the diffusion number = — cf. equation (25). For F' ~ 4, the plant and
insect oscillations are irregular as = > 0.02, independently of the system location
in parameter space. For F' ~ 32, the interrelation between the character of the
plant-insect oscillations and the value of the diffusion number = has been shown
to be more complex than for F' ~ i, and depends on the model system position in
the parameter space [15].

The results obtained imply that the insect fecundity rate can essentially
impact the regular or irregular character of plant-insect dynamics and Bt plant
biomass, under an invasion of Bt-resistant pests.
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Reducing the Emission of Pollutants in
Industrial Wastewater through the Use
of Membrane Bioreactors

Mark I. Nelson, X. Dong Chen and Harvinder S. Sidhu

Abstract. Many industrial processes produce wastewater containing pollu-
tants, the concentration of which must be reduced before the wastewater can
be discharged. One way to do this is through the use of a biological species
(‘biomass’) that consumes the pollutant (‘substrate’). In a membrane bioreac-
tor the biomass is constrained to remain within the reactor whereas the feed
stream flows through it.

We investigate the behaviour of a reaction governed by Contois growth
kinetics in both single and double membrane reactor configurations. The op-
timal performance of both configurations is determined and compared. It is
found that in many cases the cascade reactor may outperform the single re-
actor by two orders of magnitude.

Mathematics Subject Classification (2000). Primary 92C45; Secondary 92E20.

Keywords. Bioreactors, Membrane bioreactors, Reaction engineering,
Wastewater reclamation.

1. Introduction

Many industrial processes produce wastewater containing high levels of pollutants.
Before the wastewater can be discharged the pollutant concentration has to be
decreased. One way to achieve this is to pass the wastewater through a reactor
containing biomass, which grows through consumption of the pollutant. In a mem-
brane bioreactor, a membrane filtration process is used to to separate the efluent
from the biomass. This process retains biomass within the bioreactor, increasing its

Results in this paper were presented at the International Conference on Mathematical Modelling
and Computation held at the University of Brunei Darussalam during 5-8 June 2006, in
conjunction with the 20th anniversary celebration of the foundation of the university.
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concentration and allowing for a more efficient treatment of contaminated waste-
water. This produces a higher quality effluent than is obtained using conventional
reactors. Consequently, membrane reactors are increasingly being used as elements
of advanced water processing schemes.

We consider a simple model for a membrane bioreactor in which the treat-
ment process is modelled as a continuously stirred tank reactor (CSTR). However,
unlike a CSTR the biomass is constrained to remain in the bioreactor whilst the
pollutant (‘substrate’) flows through it. The biomass growth kinetics are modelled
using the Contois expression [1]. Contois growth kinetics have previously been
used to model the aerobic degradation of wastewater originating in the industrial
treatment of black olives [2], the anaerobic treatment of dairy manure [3], the
anaerobic digestion of ice-cream wastewater [4], the anaerobic treatment of textile
wastewater [5] and the aerobic biodegradation of solid municipal organic waste
[6]. In these papers the use of a Contois expression was validated by a compari-
son of model predictions with experimental data. In [4, 5] Contois growth kinetics
were shown to give a superior fit to experimental data than other growth rate
expressions. Contois growth kinetics have also been used to simulate the cleaning
of wastewater by microorganisms [7].

We investigate the performance of a single membrane reactor by determining
the conditions for the biomass to die-out and the conditions for self-sustained os-
cillations to be generated within the reactor. We then investigate the performance
of a cascade of two reactors and compare its performance against that of a single
reactor.

2. Model equations

We investigate a microbial system in which cell mass (X;,¢ = 1,2) grows through
consumption of a substrate species (S;). The specific growth rate, equation (5),
is given by a Contois expression with variable yield coefficient, equation (6). The
objective is to minimise the substrate concentration leaving the reactor (Sz). Al-
though our model is simplistic, it is still worth analysing since it is a standard
bioreactor engineering model. The dimensional and dimensionless forms of our
model are stated in § 2.1 and § 2.2 respectively.

2.1. Dimensional model

The governing equations for the Contois kinetic system in a cascade of two reactors
arise from a simple mass balance on substrate and biomass and are given by

Reactor 1
ds, p(S1, X1)

VIS — F(Sy—8) — x, B2y 1
(e (So = S1) —ViXy Y(S) 1)
dX

Vi— = ViXip(S1, X1) — Vad X, 2)

dt
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Reactor 2
dSQ 12 (SQ, XQ)

Vo—==F (51 —S53) — VoXog—""—=~ 3
2% (S1 2) 2 X2 Y (S) (3)
dX.

Vamy = VaXop (82, X2) — VadXo. (4)

Specific growth rate
M(Squ) = K. X, + 5, (5)
Yield Coefficient
Y (Si) =a+8S, (a,8>0). (6)
Residence times
Vi
Ty = f7 (7)
T+ T =T (8)

This is the simplest model for a membrane reactor. The terms that appear in
equations (1)—(6) are defined in the nomenclature. The linear dependence of yield
coefficient on substrate concentration (3 # 0) was proposed by Essajee and Tan-
ner [8].

2.2. Dimensionless equations

By introducing dimensionless variables for the substrate concentrations (S* =
BKS), the cell mass concentrations (X* = SK2X) and time (t* = p,t) the
system of differential equations (1-4) can be written in the dimensionless form

Reactor 1
dsy 1 STXT

= = (§F —§F) — , 9
T A A A RS S IR ®)
dXx; SX;

= —d* X}, 1
dt*  SF+ X; "Xy (10)

Reactor 2
ds; S5X3

(11)

1
_ S* _ S* _ ,
a5 R SR e )
dX; S3 X5
= —d*X;. 12
dt* S5+ X3 2 (12)
Dimensionless residence time relationship

T+ Ty =T, (13)

This form contains four parameters S;, a*,d*, 7* and we take the residence time
(7*) as the primary bifurcation parameter. The substrate concentration in the feed
(S3), the dimensionless yield constant (a*) and the dimensionless death rate (d*)
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are the secondary bifurcation parameters. The values for o* and d* are determined
by the choice of microbial system and are therefore not ‘tunable’ parameters.

A feature of our dimensionless scheme is that there is a one-to-one relationship
between the dimensionless variables and their dimensional counterparts. Hence
we often write, for example, ‘the residence time’, rather than ‘the dimensionless
residence time’. We refer to S; simply as the feed concentration.

2.3. Summary of results for planar systems

Here we summarise some useful results [9] regarding the behaviour of planar sys-
tems of the form

dx

E —f(l?,y),
dy

a = 9@y

Much of the behaviour is determined by properties of the Jacobian matrix (J)
evaluated at any steady-state (xo, yo);

Juin Ji2
J = 14
(J21 J22> (14)
where

Juu=fz, Ji2=fy,
Jo1 = gz, Jo2 = gy

The Jacobian matrix (14) has a zero eigenvalue when
Ji1J22 — Ji2J21 = 0.
The conditions for a double-zero eigenvalue are
Ji1doa — Ji2Jo1 =0 and H = Ji1 + Ja2 = 0.
The conditions for a Hopf bifurcation are
Ji1Jog — JigJo1 >0 and H = Ji; + Ja2 = 0. (15)

A degenerate Hopf bifurcation, at which two Hopf points annihilate each other in
an unfolding diagram (H2; degeneracy), occurs when the following conditions are
satisfied:

H=0,
dH _ (16)
drs 7

It is possible for isolated branches of periodic solutions to be formed that are
not associated with a Hopf bifurcation [9], through particular degenerate Hopf
bifurcations — but this possibility has not been investigated in this study.
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2.4. Numerics

Steady-state diagrams were obtained using the path-following software Auto 97
[10]. In these diagrams, the standard representation is used: solid and dotted lines
represent stable and unstable steady states respectively; squares are Hopf bifurca-
tion points; and open and filled-in circles represent unstable and stable periodic
orbits respectively. For a periodic orbit, the norm used is the integral over the pe-
riod of the solution. We investigate the efluent concentration leaving the reactor
(S*) as a function of the residence time (7).

3. Results for a single reactor

3.1. Analytical results

3.1.1. Steady-state solutions. The equations (9) and (10) have physically mean-
ingful steady-state solutions given by

(57, X7) = (5,0) (17)

(87, X7) = (f?;,;z) ! (1)

where X is given by

12_;* [~ (1—d*) 7 — (" — §3) + v/a] (19)

a=1—d)Vr +2(1—d)(a" =S + (" +S)°.

X:

We refer to the steady-state solution defined by equation (17) as the ‘death so-
lution’, because all the biomass has died. We refer to the steady-state solution of
equation (18) as the ‘no-death solution’, and note that d* < 1 is required for the
substrate component of the no-death solution to be physically meaningful (S* > 0).
It can be shown that the cell-mass component of this steady-state solution (X) is
strictly positive.

Calculation shows that

dX

0.
dr* <

Consequently for the no-death state

ds*
dr* <0,

so the substrate concentration is a decreasing function with respect to the residence
time (7*) and therefore is minimised at infinite residence time.
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3.1.2. Stability analysis of the ‘death’ solution. From an operational viewpoint,
the ‘death solution’ must be avoided since this would result in no biomass present in
the reactor to consume the substrate (pollutant). The eigenvalues of the Jacobian
matrix evaluated at the ‘death solution’ are found to be

1
)\1 — ——*,
p
Ao =1-—d".
Thus the death state is stable if
d*>1,

which occurs when the cell mass death-rate is greater than the maximum spe-
cific growth rate. Note that the stability of the death state is independent of the
operating parameters (77,.S;). Henceforth we assume that the condition d* < 1
holds.

3.1.3. Hopf bifurcation on the ‘no-death’ state. Next we find the condition for
Hopf bifurcations to occur on the ‘no-death’ state. Note that this steady-state is
only physically meaningful for d* < 1. After some algebra we obtain

d*(1—d of (1—d*)°
J11Jo9 — J12Jo1 = ¥ 14 ( )

* 12
T [a (1-d*) +d*X

Thus the determinant of the Jacobian matrix is always positive, with the assump-
tion that d* < 1, and consequently a double-zero eigenvalue degeneracy cannot
occur.

Thus from § 2.3 the condition for a Hopf bifurcation to occur in the system,
after some algebra, is given by

H() =ao+a(1—d*) " +as (1 —d)?7 +as(1—d)*r" =0, (20)
ao = (" + S;)*,
a1 =2(a" = Sp) + (" + 55)" d°,
az=1+2(a"—S5)d + (" + S5 —1)d*,
as =d[1+ (a* —1)d"].

Observe that because 0 < d < 1 the coeflicient a3 of the cubic term is strictly
positive, and since
H(0)=(a+55)%>0
there are at most two positive Hopf bifurcation points.
With a* = 0.01, d* = 0.3 and S5 = 1.05, the parameter values used for
Figure 1 (b), equation (20) has zeroes when 7* = 1.335 and 7* = 1.974. These
are the values of the residence time corresponding to Hopf bifurcation points.
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Condition (16) shows that when o* = 0.01 and S§ = 1.05 an H2; degeneracy
occurs where

(d*,7*) = (0.2126,1.396), (21)

and we conclude from this analysis that natural oscillations do not occur when
d* < 0.2126. Further, from the Hopf condition (20) it is possible to deduce that
Hopf bifurcations cannot occur when

o> s, (22

i.e., when either the feed concentration or the death rate is sufficiently small.

3.2. Numerical results

Figure 1 shows two steady-state diagrams, each exhibiting the ‘death’ and ‘no-
death’ solutions. In diagram (a) the value for the death-rate (d*) is lower than the
critical value given by equation (21) and there are no Hopf points. In diagram (b)
the death rate (d*) is higher than the critical value given by equation (21) and there
are two Hopf points. In Figure 1 (b) the average value of the effluent concentration
on a limit cycle is higher than that at the corresponding unstable steady-state —
periodic behaviour does not improve the performance of the reactor.

Figure 2 shows the curve defined by equation (16) for a fixed value of the
yield constant. If the feed concentration value is above the the H2; locus, then the
steady-steady diagram contains two Hopf points. If it is below the locus, then the
steady-state diagram contains no Hopf points. This figure shows that the range of
feed concentrations over which oscillations are possible increases for higher values
of the death rate.

4. Results for a double-reactor

In this section we investigate the performance of a cascade containing two reactors
in series. For a given total residence time (7;°) we investigate how the effluent
concentration (S3) varies as a function of the residence time in the first reactor
(11). (The residence time in the second reactor is simply 73" — 77). The limits
7 = 0 and 77" = 7, represent the degenerate case, in which the ‘cascade’ reduces
back to a single reactor of residence time 77" = 7;".

4.1. Steady-state Diagrams

Figure 3 shows a sequence of steady-state diagrams as a function of the total resi-
dence time (7;°). In each figure the performance of the cascade varies considerably
as the reactor-design is varied through the choice of the residence time in the first
reactor.

In Figure 3 (a) the effluent concentration has a global minimum of S5 =
4.19 x 10~° when the residence time in the first reactor is 7;* = 4.52. The effluent
profile is very flat for residence times near 7 = 4.52. Consequently, there is only a
very small degradation in reactor performance if the residence time of the reactor is
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FIGURE 1. Steady-state diagrams showing the variation of substrate ef-
fluent (S*) with residence time (7*). Parameter values: feed concentration,
Sy = 1.05; yield constant, o = 0.01.

not the optimal choice — there is robustness in the optimal reactor performance.
In Figure 3 (a) the two Hopf points are to the left of the global minimum. In
Figure 3 (b) the Hopf points straddle the global minimum, which is now unstable.
We define the best performance of this reactor to be the value associated with the
Hopf bifurcation at 7" = 1.97. The robustness of the reactor performance to small
variations in the reactor design is not as high as it is in Figure 3 (a). If the residence
time in the first reactor is slightly too high, the effluent concentration increases due
to periodic behaviour; whereas if it is too low, the effluent concentration is given
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FIGURE 2. H2; degeneracy diagram. Parameter value: yield constant, a* = 0.01.

by a steady-state with a noticeably higher value. However, in both circumstances
the performance of the double reactor is superior to that of a single reactor with
a residence time 77 = 2.5.

Observe that in Figures 3 (a) and (b) there is a single periodic solution branch
which connects the two Hopf points, whereas in Figures 3 (c¢) and (d) there are
two disjoint periodic solution branches. The transition between these two types of
behaviour can be understood by applying the Hopf bifurcation equation (20) to
a single reactor with parameter values specified in the caption of Figure 3. This
shows that there are Hopf bifurcation points in the single reactor when 7* = 1.97
and 7% = 2.34. These are the values of the Hopf bifurcation points exhibited in
Figures 3 (a) and (b). Thus these Hopf bifurcation points are generated by the
dynamics of the first reactor. In Figures 3 (c) and (d) the total residence time is
smaller than 2.34 — and therefore in these figures one Hopf bifurcation point is
generated by the dynamics of the first reactor (at 77 = 1.97), whereas the other
(the one on the left) is generated by the dynamics of the second reactor.

In Figure 3 (c) the global minimum is unstable, and the same remarks re-
garding the operation of the reactor apply as for Figure 3 (b). At values of the
residence time between the Hopf points the steady-state solutions are now stable,
whereas in Figures 3 (a and b) they were unstable. Thus in Figure 3 (d), in which
the two Hopf points again straddle the global minimum, the global minimum is
stable. Here there is some degree of robustness in the performance of the reactor to
errors in its construction, although the robustness is less than for the case shown
in Figure 3 (a).
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FIGURE 3. Steady-state diagrams for a double membrane reactor cascade
showing the variation of substrate effluent (S3) with residence time in the
first reactor (77). Parameter values: death rate, d* = 0.2, feed concentration,
S = 1.65; yield constant, o™ = 0.01.

4.2. Comparing the Performance of a Cascade with a Single Reactor

In Figure 4 we compare the performance of the best double reactor design with
that of a single reactor. The single reactor performance line is found as the stable
component of a steady-state diagram for a single reactor. Thus depending upon
the total residence time, the best single reactor performance is either given by a
steady-state solution or a periodic solution, — cf. Figure 1. For a given value of
the total residence time, in Figure 4 the best performance of the double reactor is
obtained from the corresponding steady-state diagram. The best performance is
defined to be the global minimum, if that is stable; and if it is unstable, the Hopf
bifurcation that gives the lowest efluent concentration. The optimal performance
was never found to be associated with a stable periodic solution.

Figure 4 shows that at sufficiently small residence times there is little dif-
ference between an optimised cascade and a single reactor. However, at higher
residence times there is a considerable difference between their performance: an
optimised cascade can be superior by two orders of magnitude. Figure 4 also shows
that the performance of a single reactor can sometimes be replicated by a double



Reducing the Emission of Pollutants in Industrial Wastewater 105

" best double reactor
single reactor --------
c
£ 01}
[
<
[0}
o
s
© 0.01
€
()
=}
=
[0}
g o001t
[
k<]
(%2}
C
£
& 0.0001 |
1e-05 L ! ‘ ‘ ‘ |
1 2 3 4 5 5 . s

Dimensionless total residence time

FIGURE 4. Comparison of performance in the best double membrane cas-
cade against the performance in a single reactor. Parameter values: death
rate, d* = 0.2, feed concentration, S§ = 1.65; yield constant, a* = 0.01.

reactor having a much shorter residence time. Under such circumstances, a cascade
has a considerably greater throughput of polluted wastewater.

Figures similar to Figure 4 have been obtained for different values of the feed
concentration. The values of the total residence time at which the performance of
the single and double reactor configurations starts to differ depends upon the feed
concentration. However, the ‘selling point’ remains the same — i.e., the optimised
cascade outperforms the single reactor for most residence times, two orders of
magnitude for ‘moderate’ residence times and even higher for even larger residence
times.

5. Conclusion

We have analysed microbial growth in a single membrane reactor, using a Contois
growth model with a variable yield coefficient. We also considered a cascade of two
membrane reactors, in which the residence times in the two reactors are varied
whilst keeping the total residence time fixed. The optimal performance of the
cascade, measured by the minimal stable efluent concentration, was determined
and compared to that of a single reactor operating at the same residence time.
The performance of a cascade could be two orders of magnitude better than that
of a single reactor. For both the single and cascade reactor configurations, it was
found that periodic behaviour did not improve the performance of the reactor.
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Appendix A. Nomenclature

F Flowrate. (1hrh)
K Contois saturation constant. (—
S Substrate concentration. (g1™h)
S* Dimensionless substrate concentration. S* = 8K S. (—)
So Substrate concentration in the feed. (g1™)
Ss Dimensionless substrate concentration in the feed.

Sp = BK;So. (7)
v Reactor volume. 4
X Cell mass concentration. (g1™)
X Dimensionless cell mass concentration. X* = K2 X. (—)
X3 The dimensionless cell mass concentration in the

second bioreactor in a cascade. (—)
Y (95) Cell mass yield coefficient. (—)
d Death rate of cell mass. (h™1)
d* Dimensionless cell mass death rate. d* = d/ ., (—)
t Time. (h)
t* Dimensionless time. t* = ppt. (—)
a Constant in yield coefficient. (—)
a* Dimensionless yield constant. o* = aK. (—)
6] Constant in yield coefficient. (1g™h)
u(S) Specific growth rate. (hr1)
L Maximum specific growth rate. (hr_l)
T Dimensionless residence time. 7* = p,,, - V/F. (—)
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Model Hysteresis Dimer Molecule.
I. Equilibrium Properties

Christopher G. Jesudason

Abstract. A Hamiltonian system describing hysteresis behavior in a dimeric
chemical reaction is modeled in a MD simulation utilizing novel two-body
potentials with switches, a technique that is particularly suitable for numeri-
cal thermodynamical investigations. It is surmised that such reaction mecha-
nisms could exist in nature on the basis of recent experiments which indicate
that electromagnetic hysteresis behavior is exhibited at the molecular level,
although experimental interpretations tend to construct models that avoid
such mechanisms. Numerical results of various common equilibrium thermo-
dynamical and kinetic properties are presented together with new algorithms
that were implemented to compute these quantities. No unusual thermody-
namics was observed for the chemical reaction whose hysteresis potential is
‘time reversible invariant’. A revision of the concept of ‘time reversibility’ to
accommodate the above results is suggested. The general design of the re-
action mechanism also allows for the use of conventional potentials and, by
the utilization of switches, overcomes the bottleneck of computations which
involve multi-body interactions.
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1. Introduction

Recently, experiments have detected the presence of magnetic hysteresis behavior
at the single molecule level [1, 2]; synthesis of such systems is also a hot topic of
research [3]. Such facts suggest that non-single-valued functions are involved in
the phase trajectory of the system. A rational extension of this concept, which has
profound theoretical implications, is to construct a dynamical trajectory where
the region of formation of the molecule does not coincide with that of its break-
down. There has been a reluctance in the past to consider such loop or hysteresis
systems because of the absence of experimental evidence of hysteresis behavior at
the molecular level, and because of the influence of the belief of ‘time-symmetry’
invariance which discourages such a view. These factor led to the construction of
dynamical pathways which were both single valued and did not have any loop
or circular topology; a detailed mathematical examination of these common time
symmetry presuppositions — so essential to physics — has been made [4, 5] and
it was shown that such views are often not warranted or were incorrect. This
work reports a workable model hysteresis reaction pathway which leads to ther-
modynamically consistent behavior, exhibiting properties that will require new
developments in reaction theory, and also predicts the feasibility of such mech-
anisms in nature. It suggests a re-definition and extension of the ideas of ‘time
reversibility’ and ‘microscopic reversibility’ to cater for the proposed mechanism.
The dimeric particle reaction simulated may be written

k1
24 = A, (1)
k_1

where k; is the forward rate constant and k_; is the backward rate constant.
The reaction simulation was conducted at a very high mean temperature, about
T, =T* = 8.0, well above the supercritical regime of the LJ fluid by a factor
of 10 times the magnitude of normal simulation temperatures in reduced units.
At these temperatures, the normal choices for time step increments do not obtain
without also taking into account energy-momentum conservation algorithms in re-
gions where there are abrupt changes of gradient. The total system temperature
for this equilibrium simulation has an uncertainty of about 10~° LJ units when all
particles, whether atomic or dimeric, are sampled ; all other quantities determined
have greater uncertainty, due to the smaller presence of the species, or if only a
layer in the cell is sampled for runs of less than 5M time steps. There have been
various attempts to model chemical reactions with different objectives in mind
[6, 7, 8,9, 10, 11]. Some used generalized models with few details to predict the
main features experiments might reveal [6] at the reaction coordinate close to the
transition state (TS), such as what might occur within a solvent-caged reaction
complex: A-H---B = A..-H-B . This particular pioneering approach [6] was fur-
ther elaborated by Bergsma et al [11] in order to examine the limits of validity of
TS theory (TST) by not carrying out an ab initio study of all the possible reactive
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trajectories, but by examining trajectories constrained to the TS surface because
of the limits of computing power. An example of an ab initio detailed chemical
reaction approach with a 1000 atom system using an assumed 3 body potential
for the exchange process F + Fy = Fo + F is that of Stillinger et al [9] who admit
that the procedure was ‘very demanding’. The current study involves 4096 par-
ticles or atoms, and therefore is much improved where statistics are concerned.
At the other extreme are generalized studies of hypothetical schemes [8] such as
the ‘chemical reaction’ A + A = B + B used to elucidate some kinetic properties.
Clearly in such models, species A and B must represent complex systems that
can be physically distinguished; in chemical applications, they might represent for
instance cis and trans isomers of some compound or they might represent meso-
scopic species. Some simulations do away altogether with the details of molecular
dynamics based on dynamical laws [7], replacing them with the Ansatz that the
details of the interaction between individual particles are not essential in the study
of the statistical evolution of the system. Such an approach would make studies
attempting to correlate the details of the dynamics to macroscopic properties dif-
ficult or obscure, despite the great savings in computer time, and therefore does
not suit the purposes at hand. The objectives of the present study include:
(a) Designing a mechanically well defined reaction model with low computational
demands and where the averaged motions of the dimer may be correlated with
the macroscopic kinetic and thermodynamical properties and where no anomalies
must be observed in the macroscopic results. Such an outcome would imply that
the dynamics are reliable enough to be used in other studies.
(b) Introducing some degree of complexity to the dimer such as vibrational and
rotational states for more detailed dynamical investigations.
(c) Utilizing the thermodynamically consistent model (as judged by the results of
an equilibrium simulation) in nonequilibrium simulations.
Here we focus primarily on (a) above. To this end a new general algorithm (which
will be discussed separately in another planned work) was used to conserve mo-
mentum and energy; (b) is represented in rotational studies and (c) in an NEMD
simulation.

The following essential thermokinetic parameters will be determined and dis-
cussed in the sections that follow:

e The thermodynamic equilibrium constant through extrapolating the density
to zero.

e The activity coefficient ratio.

e The standard Gibbs Free energy, Enthalpy and Entropy of the reaction
through extrapolation.

e The Arrhenius activation energy and pre-exponential terms, which bears no
immediate connection to the potential of activation in Fig. 1, and the rate
constants of the forward and reverse reactions.

e Self-diffusion and rotational diffusion constants.
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e The probability distribution for the kinetic energy of a labeled atom to test
the Gibbs ensemble postulate relative to the dynamic (switching) Hamiltoni-
ans used here. Within experimental error, there appears to be full conformity
to the Gibbs thermodynamical postulates.

The method appears very promising for quantitative simulations of real systems,
and will be utilized in the years ahead for various reaction studies, including those
for conventional molecules.

2. The model
We examine the dimeric particle reaction given in (1) above
2A = A2

in a range of equilibrium fluid states all well above the LJ supercritical regime.
This model resembles somewhat that of ref. [8] except that a harmonic potential is
coupled to the products to form the bond of the dimer whenever the internuclear
distance reaches the critical value 7 between two free atoms A.
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FIGURE 1. Potentials used for this work.

In the current study, the potentials as given in Fig. 1 are used, but other
configurations are possible, as verified by direct simulation, such as the excited
state configuration of Fig. 2 and the reduced distance model with the same spatial
coordinates for the onset of the forward and reverse reactions in Fig. 3. This
is a typical reaction potential and it is proposed that a quantitative simulation
of a simple dissociation reaction of a diatomic gas such as Hy be attempted. It
was found that the equilibrium exchange rate of eqn. 1 was very low at lower
temperatures and changed rapidly at higher temperatures to a saturation level for
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the latter model (Fig. 3), not making it very suitable for studies where rates of
formation and breakdown of bonds must be large enough for accurate statistics to
be gained across the MD cell over a wide range of density and temperature ranges
for a test system; the reason for the slow exchange is in part related to the small
reaction or collisional cross-section of the molecule.
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FIGURE 4. Pressure and temperature distribution across the MD cell.

The MD mechanism for bond formation and breakup is as follows. The free
atoms A interact with all other particles (whether A or As) via a Lennard-Jones
spline potential and this type of potential has been described in great detail else-
where [12]. An atom at a distance r from another particle possesses a mutual
potential energy wy; where

uny = 4e [(%)12— (g)s] for 7 < 74, 2)

r

3

upg = aij(r —re)? + bij(r —re) forr, <r <r,

ury =0 for r > Te,

and where 7, = (26/7)5 0 [12]. The molecular cut-off radius r, of the spline poten-
tial is such that r. = (67/48)rs. The sum of particle diameters is ¢ and ¢ is the
potential depth for interactions of type A-A (particle-particle) or A-A, (particle-
molecule) designated (1-1) or (1-2) respectively. The constants a;; and b;; were
given before [12] as

ai; = —(24192/3211)e /72,

bi; = — (387072/61009)e/r2. (3)
The potentials for this system are illustrated in Fig. 1. Any two unbounded atoms
interact with the above ury (1-1) potential up to distance ry with energy E =

ury(ry) when the potential is switched at the cross-over point to the molecular
potential given by

u(r) = upipn(r)s(r) + urs[1 = s(r)] (4)
for the interaction potential between the bonded particles constituting the mol-
ecule, where u,;p(r) is the vibrational potential given by eq. (6) below and the
switching function s(r) has the form given by eq. (7). LJ reduced units are used
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throughout this work, unless stated otherwise, by setting o ande to unity in the
above potential description. The relationship between normal laboratory units,
that of the MD cell and the LJ units, have been extensively tabulated and dis-
cussed [12] and will not be repeated here.

For the system simulated here with the potentials depicted in Fig. (1), the
switching function is operative up to rp, the distance at which the molecule ceases
to exist, and where the atoms which were part of the molecule interact with the
(1 — 1) potential ury like other free atoms; bonded atoms interact with other
particles , whether bonded or free with the ur; (1-2) potential. The point r; of
formation corresponds to the intersection of the harmonic wu,(r) and ur; curves
, and their gradients are almost the same at this point; by the Third Dynamical
Law, momentum is always conserved during the cross-over despite finite changes
in the gradient, since the sudden change of the force field is between only the two
particles where the Third Law applies, thereby conserving momentum also. Total
energy is conserved since the curves cross, and errors can only be due to the finite
time step per cycle in the Verlet leap frog algorithm, which would cause the atoms
to be defined as molecules at distances r < r¢. Similarly at the point of breakup,
there is a very small (~ 10~* LJ units of energy) energy difference between the
LJ and molecular potentials, despite using the switching function in the vicinity
of the region to smoothen and unify the curves; the small energy differences at the
cross-over points are less than that due to the normal potential cut-off at distance
r. where the normal (unsplined) LJ potential is used in MD simulations.

In order to overcome this problem, a new algorithm (NEWAL) was developed
(the details of which will be described in another work) which conserves momentum
and energy at these two different types of cross-over points, where in one case,
the switch is used (for breakup of the molecule) and not for the other during
molecular formation. Briefly, if E,(r) is the inter-particle potential (energy) and
E,.(r) that for the molecule just after the cross-over, the algorithm promotes the
particles to a molecule and rescales the particle velocities of only the two atoms
forming the bond from v; to v/; (i = 1,2) where v/; = (1 + a)v; + 8 such that

—a(mivi+mava)
(m1+mz)
conservation), and the principle of energy conservation implies that « is determined
from the quadratic equation a®qa+2qaa—A = 0 witha = (vi—v2)? ,q = PICrETTY
and A = (E, — E,,) . Interchanging m and p allows for the same equation to be
used for break-up of the molecule to free particles. For the simulations, success in
real solutions for a for each instance of molecular formation is 99.9 % and 100%
for breakdown, where the A value in this instance is very small ( ~ 1.0 x 107%).
In these simulations, we ignored the cases when there was no solution to the
quadratic equation, meaning no molecules are allowed to be formed at all, and
the interactions are of the (1 — 1) variety. This new algorithm, coupled with a
shorter time step (from the typical 0.002* for low-energy non-reacting systems to
0.00005%), ensured excellent thermostatting, where the thermostatting was carried
out at the ends of the box only, as is the case in most real systems. It should be

energy and momentum is conserved, yielding § = (for momentum
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noted that this smaller time scale is not unrealistic as the temperature for this
system 1is of the order of 20 — 30 larger than the usual values chosen, and so the
translational kinetic energy of the particles would scale by the same order. In this
equilibrium study, the MD cell (which is a rectangular box) is divided into 128
equal orthogonal layers in the x direction, which is of unit length in cell units.
In this method of boundary conditions [12], the first 64 layers to the midpoint
along the x axis are a mirror reflection about the plane parallel to the other two
axes passing through this = axis mid-point. The y and z directions have length
1/16 each (cell units). This shape is chosen because non-equilibrium simulations
will concentrate on imposing thermal and flux gradients along the z-axis, which
would allow for more accurate sampling of steady state properties about this axis
[13]. The layers that are mirror reflections about the mid-point plane are averaged
for steady state thermodynamical properties, leading to effectively 64 layers. With
this algorithm, with only end wall thermostatting, we sample each of the layers for
temperature and pressure changes, and find that the profiles are rather constant, as
shown in Fig. 4. The heat supply term (per unit time) is zero to within the error
of fluctuation of energy. Without the algorithm, (but with the same time step
increment) the center of the effective cell (layer 32 ) would have a temperature
T* higher than that of the thermostatted end layers by over 2 units, and the heat
supply term would be significantly negative, implying a virtual heating up of the
system at the middle due to the potential differences of the switches at the cross-
over points which, because of to the finite time step increment will not conserve
energy. The pressure too would be unrealistically higher at the center of the cell,
which is unphysical for systems in thermodynamical equilibrium.

The algorithm above therefore is very effective in overcoming these problems.
It should be noted that the uncertainty with regard to temperature for each of
the layers would be about 10 — 100 times larger than the total system tempera-
ture which is derived from averaging over every particle in the system, whether
bonded or not. Prior to the implementation of this algorithm, each layer would
be thermostatted to maintain a constant and uniform temperature and pressure
profile (during the preliminary design). The non-synthetic thermostatting at only
the boundaries of one direction of the cell approximates most physical systems;
thermostatting each layer is used for heat of mixing studies but would not show
the long-range fluctuational dynamics of energy transfer due to the thermostats,
even if the noise levels are much lower. Further, for chemical reactions, there will
be energy interferences due to the thermostatting of each layer, and so here, only
the ends of the cell were thermostatted to eliminate any such effects, even if a
greater uncertainty was introduced due to the long range bilateral transfer of en-
ergy from system to thermostat. It is found that the results of this study differ
only by about 15% (for the equilibirum constant) to that found earlier when all
the layers were thermostatted without implementation of the energy-momentum
conservation algorithm. At regions r < 74, s(r) — 1 according to (7) implying
u(r) ~ Uyip(r), i.e., the internal force field is essentially harmonic for the molecule
and at distances r > rgy,, u(r) ~ ur, so that the particle approaches that of the
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free LJ type as r — oo; the breakup is defined to occur at r, > r4,,. Concerning the
mechanism for the switching, in quantum mechanical kinetic descriptions, switch
mechanisms are frequently used for describing potential cross-overs [14], but from
a classical viewpoint one can suggest that the inductive LJ forces due to the par-
ticle potential field (with particles having a state characterized by state variables
srg) cause the internal variables at the critical distances and energies mentioned
above to switch to state s); when another force field is activated for the atoms of
the dimer pair. State sp; reverts again to state sp; at distances rp.

Incidentally, the shape of the potentials and switching mechanism used here
is surprisingly similar to ezperimental discussions of the charge neutralization re-
action [14]

KT +1T7 - K+1 (5)
except that the discussion does not explicitly mention the crossing over of the KI
and KT~ potentials at short distances (high energy) due to the ‘time-reversal’
presuppositions referred to above. The existence of a cross-over would make the
potential mathematically equivalent to the present treatment and there is good
reason to suppose that such processes can and should occur in electro-magnetically
induced reaction pathways (such as is manifested in charge-transfer and Harpoon
mechanisms) especially since the KI potential curve exists at shorter distances well
before the cross-over point. It is therefore postulated that there might well exist
cross-over points not at the same vicinity for molecular formation and breakdown
in actual reactions and that this simulation model is illustrative of such types of
reactions. The following values were used here for the potential parameters:

(a) Current study (Fig. 1)
ug = —10,79 = 1.0,k ~ 2446 (exact value is determined by the other input pa-
rameters), n = 100,77 = 0.85,r, = 1.20, and ry,, = 1.11.
(b) Excited state model (Fig. 2)
ug = 10,79 = 1.0, k ~ 2446 (exact value is determined by the other input param-
eters), n = 100, ry = 0.85, 7, = 1.30, and 74, = 1.17.
(¢) Reduced distance model (Fig. 3)
ug = —8,79 = 0.6, k ~ 2446 (exact value is determined by the other input param-
eters), n = 100, ry = 0.90, r, = 0.90, and 74, = 0.90.

The intramolecular vibrational potential w,;(r) for a molecule is given by

Upin(T) = ug + %k‘(r — o). (6)

A molecule is formed when two colliding free particles have the potential energy
u(ry) whenever r = ry < rg, at the value indicated in (a) above. This value can be
defined as the isolated 2-body activation energy of the reaction and has the value
of 17.5153 at . A molecule dissociates to two free atoms when the internuclear
distance exceeds 7, (which in this case is 1.20). The switching function s(r) is

defined as )

s(r) = —F——= (7)

1+(TL)
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where
s(r) —1 ifr < rew
{ s(r) —0 for r > rgy
The switching function becomes effective when the distance between the atoms
approaches the value rg, (see Fig. (1)).

Some comments concerning the MD potentials are in order. It is generally
not correct to assume that the potentials in Fig. 1 represent the transition state
theory (TST) potential surfaces; these surfaces can only be derived by computing
the actual potential of the dimer or free atoms at a known internuclear distance in
the presence of all the other species. The zero density limiting potentials of Fig. 1
cannot cause stable molecules to exist if they were formed by excited atoms with
total kinetic energy in excess of the zero density activation energy, since if energy
is conserved the formed molecule would (except for a finite number of kinetic en-
ergy values, depending on the model) have to dissociate again to the atomic states
from which they were formed initially. There must be energy interchange at the
potential well of the molecular species to remove energy so as to prevent disso-
ciation. This is achieved through the presence of the temperature reservoir. This
reservoir, if it is coupled to the system, would induce a system behavior whose
limit at zero density would not be the same as an isolated mechanical system.
Likewise, all standard states and other state functions of activation (free energy,
entropy, etc. ) must be computed as functions of all the coordinates of the particles
involved in the interaction (including the reservoir). The numerical magnitude of
these functions cannot be inferred only from the isolated potentials above; i.e.,
these potentials in conjunction with statistical mechanics should in principle yield
the various system properties. Here, we extrapolate to zero density at fixed tem-
perature to derive these functions, which cannot be inferred from mechanics only,
nor from the potentials.

3. Thermodynamic results from equilibrium mixtures

The reacting mixtures considered here were in thermodynamic equilibrium with
4096 particles. The cell was thermostatted at the ends of the cell maintained at
the same temperature.

3.1. Determination of accuracy of computation and convergence

It will be observed that the results provided without any adjustments are relatively
smooth, even for this supercritical LJ system at relatively very high temperatures
using non-synthetic thermostatting of the systems at the boundaries of the cell
only. Although this method is closer to many experimental situations where ther-
mostats are located at the boundary of the system, the transfer of energy to and
from any volume element within the system to the thermostats via the molecular
and particle interactions would imply a greater fluctuation in kinetic energy and
possibly other forms of potential energy than if each particle were individually
thermostatted through a synthetic algorithm. As mentioned before, the algorithm
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(where a separate study will be presented) assures of flat temperature and pres-
sure profiles with end-point thermostatting; just reducing the time step without
implementing the algorithm was inadequate in ensuring the flatness of the P — T
profiles. The steps and criteria used to ensure adequate sampling with energy con-
servation were as follows:

(1) For the time increment selected, and for runs for a particular (p,T)* duple
combination whose system properties were to be investigated in detail, the follow-
ing had to obtain:

(a) the heat supply to either of the reservoirs had to have a standard error of
fluctuation about zero that was (much) less than one standard error. The actual
heat supply term in an NEMD experiment is typically several orders of magnitude
greater. This ensures that there is overall energy conservation. It was found that
this situation obtained for the (0.7,8)-duple which was used in testing various
properties. In particular, the run length was varied, as follows, at 3M, 4M, 6M and
8M (where the set of values will be denoted M)with the above criterion obtaining
in each case of the set values. Hence the length of the run at 10M was chosen as
a safe figure, where, incidentally, the above still obtained.

(b) the P — T profile had to be flat for all these combinations of conditions.

(c) properties of interest, especially the concentration equilibrium constant, rate
constants and probability distributions were also viewed at this particular duple
value and for M, and the variation was all within the vicinity of the errors given
in the text for the duple concerned.

(2) For some of the algorithms, such as the ones for the diffusion coefficients, the
maximum possible time prior to molecular breakdown was used (absolutely no
extrapolation was attempted) in computing the coefficient from the Einstein ex-
pression, and so would be independent of M for large enough runs, (where the
total duration of the molecule in general does not exceed about 20, 000 units of §t*)
which means that there is no problem with the choices of M or 10M. Likewise,
for the probability distribution, the sampling is done at each 15th time step, and
so depicts in general very low scatter, so as to be able to discern some features
such as apparent temperature differences, as discussed in the sequel to this work.

Typical runs of 10 million time steps were performed per run at each gen-
eral particle density p (where p is determined as a general density irrespective
of whether the particle is free or is part of a molecule), where the first 200,000
steps were discarded so that proper equilibration could be achieved for our data
samples. The sampling methods have been previously described [12] where sam-
pling of all data variables were done each 20*" time step and where there were
100 dump values where each dump consists typically of 5 x 10° samples which
are averaged. The 100 dump values are then averaged again to yield the standard
errors of all variables. Dynamical quantities however had to be sampled at each
time step dt* = 0.00005. The thermostatting method conserves momentum and
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registers the energy absorbed at the thermostats [15]. All parameters given here
are relative to LJ reduced units, sometimes denoted by *.

3.2. Equilibrium constants

There are two independent methods that are attempted here, each of which leads
to the same results. The non-kinetic method (3.2.1) directly determines the con-
centration of reactants and products, and infers from these quantities K., at
T7,, = 8.0, whereas the kinetic method (3.2.2) infers K., from taking ratios of
the computed forward and backward rate constants at the same temperature.

3.2.1. Non-kinetic method. In order to find the thermodynamic equilibrium con-

stant, K4, the following procedure was adopted. The concentration ratio, K.
defined as -

K, =22, (8)

TA

was determined as a function of average system density, p where the z’s represent
number density concentrations. For this and all other equilibrium quantities, the
system temperature was set at 7., = 8.0, with the actual temperature fluctuating
error of order < 107%. At very small densities, the system becomes an ’ideal’
mixture, but as mentioned previously, the limit of the potentials cannot be the
same as the isolated potentials used in the MD calculations, since if this were the
case, all the molecules would break up, yielding a net zero value for the equilibrium
constant at the limit of zero density. As another project, it would be of interest
to determine the limiting density and thermostatting time intervals at which the
equilibrium regime breaks down in this system, and to elucidate the theory when
this occurs. There may well be technical difficulties involved in computations of
very low density systems though. The plot of K. = K (p) is shown in Fig. 5.
The accuracy of the K. values varies inversely with a function of p, where in the
captions sd refers to the number of standard deviations of the standard error. At
low densities, fluctuations in K. implies that any extrapolative method can be
ruled out, unlike previously (when NEWAL was not devised) when all the layers
were individually thermostatted and where a least squares fit n-order polynomial
expansion p(z) = Y., a;z" to derive the zero density limit of the concentration
ratio was utilized; the value of n was between 2 to 4. The zero density limit K
where Ko(T*) = K.(p — 0) is the true equilibrium constant. It is clear that
in this system Ky and K. in general differ significantly; it serves as a warning
that, in general, one cannot ignore activity coefficients in the calculation of such
properties in model systems and theoretical demonstrations if semi-quantitative
results are desired. In the present study, it was discovered that at very low densities,
fluctuations are significant, as shown in Fig. 6 for the case of a run at T},, = 8.0.
The method used in the present case is to take the mean value of K, for very
low p values (rarefied state) ranging from 0.03t00.09, for about 12 values at any
one temperature and to approximate this as Ko(7™*). The fluctuations show that
in this range of density, the system has ‘saturated’ itself in that all the p values
yield approximately the same mean K.. Also, at such exceedingly low densities,
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FIGURE 5. Variation of concentration ratio K. with p, the system number
density at LJ temperature T, = 8.0 with sd = 3 at p = .03 and sd = 50 at
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one would expect a larger fluctuation in the determination of the rate values;
nevertheless, we notice a saturation, with a maximum scatter of values for K,
of about £0.006. In view of the fact that at much higher densities, the absolute
change of this constant is very much greater for unit change of density, the errors
are still relatively not large. The results derived for T = 8.0, are

Keg(T) = lim Ko(T) = 0.0610 4 .002 L.J units. (9)

In previous studies prior to NEWAL implementation, using polynomial extrapola-
tion, a value of 0.050+.001 was derived. However, these two values, although close,
need not coincide because the phase-space trajectory of the two systems are not
the same theoretically, meaning they are not the ‘same’ chemical reaction system,
even the only alteration here involves the time step and the thermostatting of each
layer. (A change in the time step increment would alter the phase-space trajectory;
so would the thermostatting mechanism.) Knowing K.,(T) from (9), which is an
invariant quantity for any one temperature, the activity coefficient ratio, ® can be
calculated for the other densities at the same temperature by using

Koy = K. 222 = K.®. (10)
VA
The ratio of activity coeflicients ® is shown as a function of density in Fig. 7.
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FIGURE 7. Variation of ® with p, the system number density at LJ tem-
perature T, = 8.0.

It is clear from the ® ratio that for normal densities, the equilibrium reaction
mixture is highly non-ideal, which may be expected due to the large differences
in the LJ energy well for the molecule and the atom (see Fig. 1). It is probably a
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poor approximation to use ideal models for test systems in reactor design, which
is often the practice. Further, the above technique allows for the general determi-
nation of activity coefficient ratios via simulation. The determination of separate
activity coefficients is a challenge. One real problem is the fact that molecules in
the equilibrium state cannot exist in isolation. In mixtures, either the reaction goes
to completion, or they do not react, as in the simple theory of mixtures. In the
latter case, one might postulate separate ideal states for the ‘pure’ components,
but in the present elementary case, for any one temperature, there is a finite value
for Ky meaning the presence of all components in a system at equilibrium. It is
therefore a challenge to find a suitable model or concept to solve this problem with
cycle changes. Even if a hypothetical state were defined, one must still design the
route or cycle taken to the equilibrium state which consists of product and reac-
tant species. The derivation would require a series of very elaborate and detailed
computations and is not attempted here since it is not immediately relevant. Nev-
ertheless, from the equilibrium distribution at various temperatures, the standard
enthalpy, entropy and Gibbs free energy can be computed. Traditionally, many
have interpreted these quantities as reflecting function changes for ‘pure’ compo-
nent reactants to pure molecular product without any simultaneous presence (or
equilibrium) between the two.

3.2.2. Kinetic rate method. The rate constant is a defined quantity, with the stan-
dard form below. The overall rate of reaction r may be written in terms of the

experimentally determined forward rate (r; = kiz?%) for the process 2A Lt A,

k_
and backward rate (r_; = kjx4,) for the process Ag S oAasr=r —r_q =
ki3 — k_1wa,; k1 and k_; are the respective rate constants.
At equilibrium r = 0, and so
TA, k1

= 11
xi k—l ( )

The ratio of rate coefficients is the concentration ratio K. where

k1

K.= . (12)
To verify the above equilibrium constant independently from concentration mea-
surements used in the previous section, one can extrapolate to zero density p the
values for r1/23 = Q = k; and r_1/za, = R = k_1 . The rates were calculated
independently from the program by monitoring the number of bonds formed or
broken for each time step dt* and averaging this quantity over the 10M time steps.
Then the relevant equations are

| Q\_ . _lmQp—0) _Q
hm(p—>0) (E) —Keq = m = ﬁ (13)

The plots of @ and R at low densities are given in Fig. 8.
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FIGURE 8. Values of Q and R variables at T%, = 8.0 and at rarefied

S
densities showing “saturation” behavior to a mean value as required by the

limit theorems. At such low densities, fluctuations are observed with an even
scatter about the mean value.

As for the direct determination of the equilibrium constant from concentra-
tion measurements, fluctuations imply an averaging at very low densities of the
values given in the figures to derive the limits. The results with the estimated
errors are

. 0 .
<Q>{p<0.09} = ;ll% Q = Q" =0.870£.006 L.J. units, (14)
_ . _ 0 _ .
<R>{p<0.09} = ;lmo R=R"=14.32+ .1 L.J. units. (15)

It will be noticed that at very low densities, we would expect the number of
errors due to the breakdown process to be very much higher than that due to the
formation process, since the number of dimers tends to a low number and this is
reflected in the R? uncertainty. The ratio of the values given in (14) and (15) gives
the true equilibrium constant according to (13) where

k
Keq(kinetic) = lim —— = 0.061 +.001 L.J. units. (16)
p—0 k_4

This kinetically derived result is in excellent agreement with the results from the
previous method. The agreement indicates that the system is in a steady (equi-
librium) state and that the simulation method is fairly coherent. The @ and R
functions at other densities are given in Fig. 9.

3.3. Standard states

We use the form AG®(T') = —kT'In K, to determine the standard free energy state
AGO(T) of the dimer reaction. The justification is that we can choose the standard
state to be at constant pressure (of zero value) for the standard state, implying
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FIGURE 9. Variation of Q and R variables with density at T%,, = 8.0.

that the chemical potential standard state for each species is only a function of
temperature, so that AG°(T) is strictly only a function of temperature [16, p.177—
179]. We repeat the same process as described above in section (3.2) for T, = 8
for different temperatures (from T* = 4 — 20). Each determination required at
least 8 runs at varying low densities. It was found that at low temperatures, the
fluctuations were greater, as shown in Fig. 10 where the variation of K., versus
1/T is given. The linearity of this curve can also be used to derive an average
value for each of the quantities calculated below for the entire temperature range.
The curve used to determine the other standard state functions was the Gibbs free
energy curve, given in Fig. 11. For this curve, the error bars (except for the first
data set) all refer to the errors relative to the least squares fit of a quadratic curve
to the simulation result. The fit is rather good. The standard entropy AS?(T)is
derived from the thermodynamical entity [16, eqn. 6.34, p.182]

dAG(T)
T

Clearly to use (17), we must know AG(T)as a function of temperature 7. We
write therefore a simple quadratic equation with p coefficients:

AGY(T) = p()T? + p(2)T + p(3). (18)
The nonlinear least squares method yields

p(1) = —0.0233441,  p(2) = 1.0531305,  p(3) = 15.46544989

= —ASY(T). (17)

with an overall uncertainly of the free energy as approximately +0.3. Differentiat-
ing (18) yields the entropy as

ASY = —(2p(1)T + p(2)),
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which is linear. The standard enthalpy AH? is given at constant temperature by
the entity [16, p.183]
AHY(T) = AG° — TAS°, (19)

which therefore means that the standard enthalpy is given by
AH® = —p(1)T? + p(3).
It can be verified that this expression and that for AS° recovers the quadratic (18).

The plots for the standard entropy and enthalpy as functions of temperature
are given in Fig. 12.
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FIGURE 12. Plot of standard enthalpy AH?(T) and entropy AS?(T') from
AGO(T) quadratic curve fit with the temperature 7*.

Most experimental methods take gradients to yield average values of the stan-
dard states over a temperature range. Here, the explicit values can be calculated
over the temperature range. From the calculations, we find that the standard en-
tropy is negative, as it must be at moderate to low temperatures since the free
particle state has a larger phase space than the corresponding dimer. It may ap-
pear counter-intuitive that the standard enthalpy is positive. It must be pointed
out that at these temperatures, the particles are not trapped at the bottom of
the potential well, and that the activation energy is positive, and that the inter-
nal potential energy at the point of formation of the molecule is not lost, but is
converted to internal kinetic energy even up to the point of the break-up of the
molecule, implying a positive value of this quantity relative to the dissociated par-
ticles. A quantitative treatment of these terms has been attempted [17]. It must be
concluded that the simulations are able to determine the standard states without
having to construct extremely detailed cycle diagrams; further, the simulation can
also check on the correctness of the cycle diagrams used to determine standard

state values.
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3.4. Activation energies

From the way the algorithm was constructed for molecular formation, the molec-
ularity of the elementary reaction is 2, leading to a single second-order reaction of
formation, and for the dissociation of As, a first-order reaction results since the
molecule is only allowed to exchange kinetic energy with all other particles within
the system without further reactions to the dissociation limit. A frequently used
model for the kinetic constant k; for these rates, due to Arrhenius, has the form

E;
k; = A; exp ( RT) (20)
where the rate constant is a function of the temperature only and where A; is ide-
ally not temperature dependent. It should be noted that the Arrhenius equation
is strictly valid for 2-dimensional systems where the pre-exponential factor is in-
dependent of temperature and where the exponential factor exp (— gT) represents
the fraction of molecules having energy in excess of F; [18], where F; is usually
understood to be the activation energy. The reason why this form is so durable is
that the exponential term represents the fraction of excited state atoms, and this
term dominates over the pre-exponential term with temperature variation, which
gives the impression of a constant A; factor for the plots. The rate constants for the
forward k; and reverse reaction k_; were plotted versus 1/T for the given density
of p = 0.7 and was found to be reasonably linear (Figs. 13, 14, with the activation
energies for the forward and the backward reaction rates (F; and E_; respectively)
and the corresponding collision factors (A;,A_1) determined approximately as

E, =21.40+ .10 LJ units, A; = 3.50+ 0.2 LJ units,
E_; =7.26 £ .02 LJ units, A_1 =270%£.04 LJ units.

There are two separate rate constants here, for first and second order. The second-
order forward rate constant k; has a form given by

8kT\ '/ : )
ky(T) = 7b2,,, (E) exp (—;T> = Ajexp (— ;T) (21)

according to ‘simple collision theory’ (SCT). Very roughly, if the mean tempera-
ture for the plot (which spans from 4 to 20) is 12, then (21) above yields for the
given value of Ay, by = 0.9153....., which is reasonably close to 0.85, the theo-
retical value. However, €* = 21.40, which is higher than 17.5153, the set simulation
potential value for the formation of a molecule. Since we can expect a yet greater
accuracy for the determination of €* as compared to A; due to the domination of
the exponential terms, it may be safe to suppose that other factors contribute to
the true activation energy other than what is described by SCT. Future work will
attempt to determine what other energy factors are implicated in €*; currently,
SCT views this energy as a pure mechanical work energy, which obtains at the
molecular level. Similarly, variation of A; with various energy terms cannot be im-
mediately ruled out. Generally, the above values do not bear a direct relationship
to the isolated 2-body potentials of Fig. 1, but nevertheless some approximate
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correlations are evident; F; is somewhat close to the isolated activation energy
17.5153 measured from the free atomic states, and likewise F_; is somewhat close
to the energy difference from the bottom of the molecular potential at —10 to
the potential at r,, a distance of approximately —9 energy units. However, for a
first-order reaction, a different interpretation for energy differences obtains than
that due to SCT, which is concerned with bimolecular processes; the first-order
interpretation is that the molecule decomposes when it overcomes an energy acti-
vation threshold, and the fraction of such molecules is reflected in the exponential
term, the pre-exponential term reflecting the mechanism of the decomposition.

4. Results from equilibrium dynamical trajectory analysis

This section concentrates on variables which had to be sampled at each time step
of duration dt = 0.00005* in order to compute the property of interest: the rate
of reaction in the previous section above is also based on instantaneous sampling
but more properly belongs to topics associated with equilibrium. Of importance
in nonequilibrium and kinetic studies are the values of the diffusion coefficients,
reaction correlation coefficients and the energy probability distributions, which if
the principle of local equilibrium (PLE) obtains, imply that we may approximate
the values computed in an equilibrium simulation for those in a nonequilibrium
volume element having the same state variables. Examples of these quantities
(which can also gauge the appropriateness of the model for nonequilibrium studies)
are provided.

4.1. Rotational diffusion constants

Although connected in some ways to diffusion, a somewhat unconventional ‘reori-
entation’ diffusion function (cos ¢(t)) has been defined [6] where ¢(¢) is the angle
between R(0), the unit internuclear distance vector of the dimer at ¢ = 0, and
f{(t), the same unit vector at time ¢. Such a definition might have applications in
conjunction with their being part of transform functions [6, egs. (17)—(20), p. 211],
where the postulated exponential decay of this function when acting as a kernel of
the transform could force convergence of the function being convoluted. It is found
that the exponential decay assumption in cos(¢(t))is a fair but not perfect fit, per-
haps implying that another type of theory for ‘rotational diffusion’ constants may
yield even better fits with the experimental curves. We provide one such example
(arccos(t)), an approximation to (6(t)), which provides a far better fit and there-
fore is a candidate for another area of research in stochastic theory of rotational
diffusion. It must be mentioned, however, that the theory of ‘rotational diffusion’
as developed by P. Debye and others [19, p. 81-84, esp. eq. (49)] etc. makes use of
‘dissipation kinetics’ where a constant torque M is balanced by an inner frictional
force ¢ parameter, so that M = ( %, where 6 is an angular displacement. Such a
theory leads to a relaxation in the distribution function f by a factor ¢(t) given
by ¢(t) = exp —%t, so that for a particular orientation angle 6, f has the form
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f=A[1+ Cyp(t)cosb]. The mean dipole moment of the entire sample also decays
with the same rate as with ¢. It is not immediately clear that the orientation angle
must also relax according to a first-order rate law. If the effect is a projection of an
orientation onto an axis, then this would correspond to the result given by Allen et
al. [6]. O’Konski and Haltner [20] have characterized TMV (a virus) by studying
the birefringence relaxation rate, written § = d, exp(—t/7) where 7, is the initial
value of birefringence [20, eq. (3), p. 3607], and the ‘rotational diffusion coefficient’
Dy, is defined here as Dy, = 1/67 with an additional factor of 1/3 compared to that
of Allen. Most of these theories suppose that even at the molecular level, one can
use frictional coefficients, as for macroscopic systems where the retarding force
is linearly proportional to some form of velocity of the system, the constant of
proportionality involving the frictional coefficients [21]. More recent experimental
studies of rotational diffusion [22, 23] assume a first-order relaxation of fluores-
cent directed intensities of the chromophore of the molecule with the rotational
diffusion constant defined as in [20]. To show that the results obtained are typi-
cal, we graph the functions as defined by Allen et al. [6]. The method used here
to determine (cos¢(t)) is to create a table whenever a molecule is formed which
maps out for each increment in the time step i the value of cos ¢(i) until it dis-
integrates: for each i*" time step there exists for each sampling subinterval M (M
being a variable) values of ¢(7) due to other molecules which have existed, and the
average value for each sub-interval is computed as {cos ¢(i)) = ZJJVil cos ¢;(i)/M.
According to Allen et al. [6], the function decays as

(cosd(t)) = Aexp(—t/m) (A=1)
with linearized form

In ({cos ¢(t))) = —t/m1 (22)
where the ‘rotational diffusion’ coefficient D, is given by D, = % The results of
the simulation are graphed in Figs. 15-17. Fig. 15 graphs the proposal found in
[6]. It is clear that there is an initial chaotic regime, followed by a very slow de-
cay of approximate form Aexp(t/7),(A = 1) if we measure the time from the
end of the chaotic regime onwards; fitting this portion of the curve from the
400th — 800th time step to the above exponential yields 7. = 1.38 4+ .02LJ units.
A ‘rotational diffusion constant’ D, = % may be defined and the value obtained
is D, = 0.36 &= 0.01LJ units. The shape of the (cos ¢(¢))curve resembles that de-
scribed in [6] (where the ‘initial chaotic region’ is mentioned) implying a somewhat
typical rotational motion, but it is clear from the figure that even in the fitting
region, there is an apparent concave shape, as the tangent line makes clear. Never-
theless, for the sake of parametrization, this particular definition is used to derive
the diffusion constant D, data at other regimes of varying p (at constant tempera-
ture) in Fig. 17 and for varying temperature (at constant p) as depicted in Fig. 16,
all of which are determined from the gradient between the 400th-800th time step,
i.e., in these figures, the same method of determining D,. was used as for the above
determination of D,. at p = 0.7 and T* = 8. As with the case of rectilinear diffusion
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motion Dy = BEkT, where B is the density dependent mobility coefficient, which
is the steady state velocity acquired per unit external force [24, sec.14.4, eqns.
(2-11), p.464-465], we obtain at fixed density p a linear relationship with tem-
perature, suggesting a similarity or isomorphous theoretical construct in relation
to rotational motion. Noting that different thermodynamical variable regimes are
associated with different error margins when determined experimentally, we also
notice an approximate linear correlation with density at fixed temperature. From
the rectilinear equation, this would be the case if the mobility coefficient B were
inversely linearly related to the density of the medium, which is a very reasonable
assumption at higher densities (p* = 0.75 — 1.0). The figures show that the change
of the diffusion constant with p at fixed temperature is much less dramatic than
with temperature at fixed p.

Fig. 18 gives a clear indication that the long-time correlation concerning
time and the logarithm of 6 shows a very good linear fit (i.e., Infvs. t) , and
so one can also derive a rotational diffusion coeflicient where the actual angular
distance relaxation is a first-order process by creating an appropriate theory as
suggested by the computations (at least for the model adopted here). Lynden-Bell
(R.M.) [25] has written an extensive review of the theoretical underpinnings of
molecular reorientations; she concentrates on the concept of angular momentum
as an indicator of reorientations. Many possibilities present themselves concern-
ing the reorientation correlation function relaxation in time, which has the form
Cia(t) =< Jo(t) « Jo(0) > / < J4(0) « Jo(0) > with a denoting the orientation
with respect to a particular molecular axis. J, denotes the angular momentum
about the designated axis of rotation. This Cy,(t) correlation function can have
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an exponentially decaying form if the Fokker—Planck or J diffusion model is used.
This is one of several possibilities [25, Fig. 1, p. 503] but for this dimer (a linear
molecule), an exponential decay (linear in In(Cj,) may be expected, where the
angular velocity w correlation is identical to C;(¢t). Here we note a long time lin-
ear correlation with Inf(¢) and not its derivative. It could very well be that if the
actual angular momentum were monitored, then an exponential decay with time
would be observed in the current model, or that relative to those theories which
predict an exponential decay with the w correlation function, the current result
for the evolution of 6(t) is in accordance with it; if not, then another theoretical
approach may be feasible, complementing those given by others, such as Steele or
Powles [25, Conclusions, p.517] and the many others since that time.

4.2. Self-diffusion coefficients

In these simulations, the mean lifetime of the molecules varies broadly in the re-
gion of 24,000 to 2400 time steps as the corresponding temperature varies from
T = 4.0 to T = 8.0. The accurate determination of the three-dimensional (3-D)
self-diffusion coefficient D, for any particle requires the determination of the inte-
gral of the long time limit of the velocity autocorrelation function, or the equivalent
Einstein expression of the mean square displacement at infinite time with respec-
tive forms

1 o0
D= / dt (vi(t) - vi(0)) (23)
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FIGURE 19. Self-diffusion coefficients at varying temperature fixed p = 0.7,
where A-A refers to the dimer and A to the atom, and D denotes the self-
diffusion coefficient.

and
2tD, = % <|r1(t) — ri(0)|2> (t — 00). (24)

We overcome the infinite time problem here by determining the diffusion coefficient
according to (24) at the time of breakup tp,; of molecule ¢ (where the time is 0
when the molecule is formed), thus allowing for the maximum time possible before
Dy 1 i is computed (where m refers to the dimer.) Likewise, we can monitor the
time spent as a free particle of any labeled atomic species (j), and determine the
self-diffusion coefficient D , ; (where a refers to the atomic state). The molecular
self-diffusion coefficient is the average of all molecules determined during the dump
interval, and lastly the 100 dump values for the entire run is averaged to provide an
estimate of uncertainty. Similarly, a labeled particle is used to determine the atomic
diffusion coefficient based on the time spent as a free — non-bonded particle. The
results for this supercritical fluid are given in Figs. 19-20. The curves in Fig. 19
appear very linear, verifying the formula Dy = BKT, according to previously
developed theories [26, eq. (49)] especially at lower temperatures. In non-reactive
systems with spherical particles, the Stokes—Einstein law for diffusion of species 7 in
a liquid j of viscosity n; is D; ; ~ % The viscosity is independent of density,
and so very approximately, one might be able to interpret the reaction as one
species A-A moving within the matrix of the other atomic species A where the
Stoke’s law for the force acting on each of the species is viscosity dependent, and
obtains for both. Under this assumption and approximation, since the viscosity is
independent of temperature, a first-order linear relationship with the temperature
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is predicted for both species, as observed. Furthermore, this result is rather normal
experimentally [16, p. 494, Fig. 16.7] for fluids (e.g., Ar(g) or HyO(l)). The ratio
of molecular to atomic diffusion constant is relatively close to 0.50 everywhere.
The mass of the molecule is twice that of the atom and approximately twice the
diameter, leading to this approximate ratio.The actual theoretical prediction due
to size, energy interaction and mass effects is not well developed, and no extensive
data are available for even non-reacting systems. The reactive system here depicts
values of the diffusion coefficient which do not differ significantly for systems which
do not react. In one study [27, p.2044 Table V] of solute diffusion in a solvent,
where interactions are solvent-solvent (1-1) and solvent-solute (1-2) only, (i.e., no
(2-2) interactions) the Ly system has the following Lennard-Jones parameters
m2 = 2; :ff = 4; ”ff 2 leading to the diffusion coefficients D; = 0.063 and

D2 = 0.017 (accuracy not specified) and for the Sy system, the Lennard—Jones

parameters % = %, :ff = %, fo = 2 leading to the diffusion coefficients D; =
0.082 and D, = 0.190. For the same mass ratio, the diffusion constant ratios
vary from 0.27 to 0.43 for very different and extreme (e o) combinations where
the variation with temperature is not significant for these ratios based on the
scanty information of the graphs drawn; however, for the work of this paper,
€ = 1, and 0 = 1 throughout. The ratios from the above literature are not too
different from the ones reported here. The variation of the diffusion constant with
density is much less dramatic than for the temperature according to Fig. 20 with
a slight decline in diffusion constants with increasing density, as is to be expected
since the mobility would decrease. The errors appear large because the variation

of the coefficients with varying density is relatively slight for fixed temperature
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unlike that for the variation with temperature. Resorting again to the Stokes—
Einstein equation with the presuppositions above, we would expect at constant
temperature for there to be no change; the variation is due to the fact that the
two fluids do not approximate as two fluids where one fluid serves as a solvent
for the other. For hard spheres, the self-diffusion coefficient varies inversely with
the density of the gas. If this is another effect, combining this with the Stokes-
Einstein expression and its assumptions above would lead to the prediction of a
weak inverse dependence of the diffusion coefficient with density, which is precisely
what is observed. Fig. 19 yields the dimer (A-A) diffusion coefficient as ~ 0.09 and
the atomic (A) self-diffusion coefficient as ~ 0.18, which is very close to the mean
value found in the graph of Fig. 20. It appears that first order kinetic theory,
and the Maxwellian prediction of invariance of viscosity with density (pressure) is
verified in these results.

4.3. Kinetic energy probability histogram
The potentials described in egs. (2-7) have the form

H=3"" pl/om+ Yy Viri-r) (25)

together with switches operating to determine the type of potential operating.
This difference might conceivably alter the Gibbs postulate in the following man-
ner. One of the postulates states that the time average of a particular system
equals the ensemble average. The density-in-phase p corresponding to the prob-
ability of a particular state is given by p o exp —3H and so the kinetic energy
of any particle would be Boltzmannized for any particular system and therefore,
if a labeled particle is monitored throughout the whole simulation, from the time
it is bonded and when it is not, then the above postulate demands a Boltzman-
nized kinetic energy distribution. The Gibbs postulate can be directly tested for
the chemical reaction system to verify whether or not the switching mechanism
modifies or contradicts the Gibbs postulate. Experimentally, (Fig. 21), it is found
that switches that lead to non-single-valued Hamiltonians do not affect the Gibbs
postulate. If this postulate is valid for loop-like hysteresis systems, then the time
trajectory of any indexed particle I must also yield, when averaged over a very
long time, the result (in 3-D) 3kT/2 = p?/(2m;) whether the particle is bonded
or not over the trajectory equally weighted for all the states that it traverses. The
Maxwellian probability density function per unit energy increment is given by

3/2
_ 2 12 gen (£
P =27 (ﬂkT) € /% exp (k‘T) (26)
Eq. (26) is the standard form used for the absolute velocity distribution function
since the energy € o< v? for velocity v and this form tests for the Boltzmann
distribution for kinetic energies. Noting that the accuracy of the single particle
is reduced by a factor of ~ 4000 (the number of particles in this simulation),
we find that the Gibbs postulate seems to be verified, in terms of the shape of
the P function (which appears Maxwellian) as well as the computed value of the
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FIGURE 21. P functions for kinetic energy of fixed indexed atom A which
either is bonded to some A> dimer or not at system temperature T, =
8.0 and p = 0.7 with apparent temperature of atom < T >gtom= 8.1£0.2.The
uncertainty here is 3 standard error units.

temperature with the error estimated as +0.1, by studying an atom of fixed label
as it forms and breaks bonds with neighboring molecules, as shown in Fig. 21.
Clearly the time average of dynamical properties for this particle would equal the
ensemble average. We notice that the reduced accuracy of the sampling is reflected
in the greater scatter of the P function points.

5. Conclusion

The main thrust of this work is to depict a modeling method using exclusively
two-body potentials that might be useful for thermodynamical simulation. In the
course of the demonstration, the study shows that the model of the molecule uti-
lizing switching potentials does lead to typical behavior predicted from standard
thermodynamics even for these unusual hysteresis-type reaction mechanisms which
theorists have largely ignored, due perhaps to the influence of ‘time-reversible’
symmetry concepts. It is demonstrated that microscopic loop-like pathways do
not influence the macroscopic thermodynamical results in any fundamental way.
In particular, the Gibbs ensemble postulate is obeyed, implying that the thermo-
dynamics is well-behaved.

The method used here to reduce expensive 3-body calculations to easier 2-
body calculations may be used as a basis for non-equilibrium simulation applica-
tions, which will be the subject of further investigations. The two-body potentials
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yield extremely good thermodynamic results, whilst being super-efficient in re-
ducing computational costs, because the use of switches and algorithms that can
preserve momentum and energy during potential transitions, and it is expected
that semi-quantitative results at least can be determined for any known molecular
potential. The NEWAL algorithm is effective for the extreme conditions of the
simulation, and would prove to be a valuable tool in reducing errors attributable
to switching potentials and high velocities and energies. This reduction in error
would be even more evident at more ‘normal’ conditions with the temperature
parameter scaled 10 — 20 times less than those used here.

A whole generation of scientific literature has been devoted to establish-
ing necessary connections between the direction of material flow (microscopic re-
versibility or ‘time reversibility’) and thermodynamics, but the results here suggest
that there need not be any necessary connection between the two. In other words,
although the point of breakdown of the molecule is different from the point of for-
mation,which may be considered irreversible in terms of path, causing a hysteresis
loop in the potential (which is a common phenomena in science, e.g., the various
ferromagnetic and ferroelectric hysteresis curves in solid state theory), yet we ob-
serve no unusual thermochemistry for the macroscopic properties that result from
the simulation; thus the two concepts can be decoupled to some extent because
thermodynamics relates to an averaging process, whereas in pure dynamics, the
temperature parameter does not have a role. (I am excluding the synthetic Hamil-
tonians used in simulations of constant temperature systems without explicit use
of a perturbing thermal reservoir that introduces indeterminacy to the system by
the introduction of random forces.) Further, pure dynamical motion is not the
result of any averaging procedure where classical theory is concerned. In other
words, the degree of decoupling of the above two concepts can be decided upon on
the basis of the conjunctions of the following propositions being true due to the
results presented here:

A.
Non-reversible mechanical dynamical pathway A
Simulation of system at zero net flux steady state
with defined temperature =

Existence of thermodynamical equilibrium.

On the other hand, the conventional assumptions may be stated thus:
B.

Non-reversible mechanical dynamical pathway A
Sitmulation of system at zero net flux steady state
with defined temperature =

Non-existence of thermodynamical equilibrium.
The problems associated in giving a precise characterization of A above and its
elucidation for thermodynamical equilibrium states may well prove to be a worth-
while challenge. It would be of interest to repeat and compare some of the above
calculations for a conventional system without hysteresis to rule out any necessary
connection between dynamics and equilibrium thermodynamic properties.
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Abstract. The hysteresis dimer reaction of Part I is applied to test the Gibbs
density-in-phase hypothesis for a canonical distribution at equilibrium. The
probability distribution of variously defined internal and external variables is
probed using the algorithms described, in particular the novel probing of the
energy states of a labeled particle where it is found that there is compliance
with the Gibbs’ hypothesis for the stated equilibrium condition and where
the probability data strongly suggests that an extended equipartition princi-
ple may be formulated for some specific molecular coordinates. The possible
ambiguity of internal variables as described in mesoscopic nonequilibrium
thermodynamics (MNET) is very briefly discussed in relation to Hamiltonian
variables, and a canonical distribution for a certain class of internal variables
is observed and described, and plausible reasons outlined, where it is found
that the always free dimer and atom particle kinetic energy distributions
agree fully with Maxwell-Boltzmann statistics but the distribution for the
relative kinetic energy of bonded atoms does not, even when all of these coor-
dinates are not canonical variables. The principle of local equilibrium (PLE)
commonly used in nonequilibrium theories to model irreversible systems is
investigated through NEMD simulation at extreme conditions of bond for-
mation and breakup at the reservoir ends in the presence of a temperature
gradient, where for this study a simple and novel difference equation algo-
rithm to test the divergence theorem for mass conservation is utilized, where
mass is found to be conserved from the algorithm in the presence of flux cur-
rents, in contradiction to at least one aspect of PLE in the linear domain. It is
concluded therefore that this principle can be a good approximation at best,
corroborating previous purely theoretical results derived from the generalized
Clausius Inequality which proved that the PLE cannot be an exact principle
for nonequilibrium systems.
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1. Introduction

The previous chapter provided details of the method and characteristics of the
dimer reaction system

k1
20 = A, (1)
k1

where k1 and k_; are the respective rate constants. The methods used to ensure
accuracy and convergence of results for the time steps used were also discussed
in that chapter. In this work, the system is probed for probability distribution
functions, and an NEMD simulation of the dimer system is also carried out to study
the applicability of one aspect of PLE. The details of the computations, together
with the precautions used to ensure reproducibility of results are discussed in [1].
Indeed, for the NEMD portion, the verification here of conservation of mass can
only imply convergence of the system to a steady state. Comparisons between the
theoretical Maxwell distribution to that derived from equilibrium simulations is
carried out in Sect. 2 because fundamental deductions can be made concerning
the theory and applications of the canonical distribution. Additional results are
presented in Sect. 3 from NEMD using a novel difference equation which can be
used to check for conservation of matter. Here, it is found that current fluxes exist
in regions when this would not be expected according to one aspect of PLE. The
NEMD runs were used to ascertain whether PLE is indeed a principle or merely
a good approximation for describing general thermodynamical systems (whether
reversible or not). It is concluded that simulations provide examples that go beyond
linear and local equilibrium theories.

2. Probability histograms

These are provided in Figs. 1-7 for the translational kinetic energies of the different
species probed as well as the total internal energy of the dimer, plotted with the
Maxwell distribution relative to the apparent temperature determined from (4)
below. The comparisons provide clues to the following:

e Shape of the probability function P, which could perhaps be used to deter-
mine whether the assumptions used in theories are reasonable or not. The
shape even for this equilibrium system is not always Gaussian, and so there
is no reason to assume a priori that nonequilibrium systems must conform
to a Gaussian distribution where certain internal variables are concerned.

e A rationale for extending the theory of equipartition in an equilibrium system
where the temperature relative to a particular kinetic energy coordinate is
not the same as for the total system temperature determined from standard
equipartition. Such a possibility seems to be supported by the evidence below.
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The method of determining these probability histograms involves sampling at each
time step the respective quantities, binning the values of the particular distribu-
tion, followed by normalization. Such a method ensures that an accuracy is ob-
tained that is able, for instance, to discriminate between the different apparent
species temperatures. For a given Hamiltonian H weakly coupled to a heat bath,
written N o
HZE;ZM—G—V(M,TQ,...,T”) (2)

where V is the potential that is position variable r dependent, the probability
density function per unit area of phase space (p, q) is
P(p.q) = Z2 3)
where the partition function Z has the form
[ e P"dpdr
- NI
The separability of the Hamiltonian above for the momentum p and position vari-
ables r which is of the same form as our chemical system Hamiltonian (augmented
by switches) leads for large N to the exact result (in 3-dimensional systems) (usual

laboratory units) 3T
N (%) = Eat/cema @

which is the method used to determine the system temperature here. The momen-
tum coordinates p; refer to all atomic species, whether bonded or not. The Gibbs
postulate can be directly tested for the chemical reaction system to verify whether
or not the switching mechanism modifies or contradicts the postulate, which refers
to the time average of a system property being equal to the ensemble average when
these limits exist. Experimentally, (Fig. 6), it is found that switches in non-single-
valued Hamiltonians does not affect the Gibbs postulate. Furthermore, over the
time of the simulation, for the indexed particle I, the following (3-D) result must
hold so that the particle and system temperature is defined:

3kT;/2 = (p7/(2mr)) (5)

where the brackets represent the time average. It is found that the temperature T

above of this single indexed particle coincides with the mean system temperature

whether the particle is bonded or not over the trajectory, equally weighted in time

for all the states that it traverses. Integrating the P function in (3)above over all

equal energy values, the Maxwellian probability density function results, and is

given per unit energy increment by
3/2

€

P=2r(=kT) e/?exp—(-=). 6

(07) b5 (©

Eq. (6) is the standard form used for the absolute velocity distribution function.
The above form is still derived from the quantum probability operator/function

P(Q) < exp —BH (p, q) (7)
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where the phase space is averaged over equi-energy surfaces. Eq.(7) also makes the
definition of the partition function ) possible as

Q= Z w; exp —BE;(p, q)

for a system where even for @, (p,q) represents the canonical coordinates only.
The Gibbsian and other thermodynamical state functions are derived strictly from
operations on @, e.g., U = kT? (ag}z)VN for the energy and P = kT (ag"/z)T N
for the pressure. Other internal coordinates cannot (unless proved otherwise) gi7ve
rise to state functions where standard statistical mechanics is concerned.

An apparent temperature parameter < T >x is computed here for some

species X and is defined such that

3<T>X:<p?x> ®)

2 2mX

where mx is the mass of species X and px is its momentum variable. This parame-
ter is clearly not well defined as a temperature if it does not obey the equipartition
result above, for the obvious reasons connected to conjugate transforms. In statis-
tical thermodynamics, the total system Hamiltonian

N\ 2 R
H= E . p;/2m + E i V(r; —rj) ©))
leads to the density-in-phase having form

p(p,q) o exp[—H(p,q)/kT] (10)

and so for systems with separable coordinates, each kinetic energy coordinate
Ey; = p?/2m and potential form V (|r; — r;|) will have the above Boltzmann dis-
tribution. The (p, q) coordinates are termed ‘canonical’ and equipartition and the
distribution laws are derived relative to these coordinates only [2]. The develop-
ment of Statistical Mechanics by Gibbs very clearly relates the density-in-phase
probability to these Hamiltonian coordinates only and nothing else [3, Chap. 5,
p. 46], so that no other coordinates are mentioned. In particular, the thermody-
namical properties are (average) integrals over the coordinates, and therefore no
dynamics are to be inferred from this development. Furthermore, the ‘Gibbsian’
entropy, a strictly equilibrium concept, is more of an after-development, for in the
original Gibbsian development, the entropy for the petite and grand ensemble is
respectively the average [3, p. 203, eq. (545)] of quantities n and H where H has
additive terms in the chemical potential; if these terms represent work, then the
form

S = —kB/dXNp(XN)ln[CNP(XN)]

results, called the Gibbs entropy [4, p.342, eq. (7.2)]. No exact theory of entropy
with the same logical clarity, breadth and application of the classical forms has
been produced, and consequently, all forms proposed are assumptions with regard
not just to the form of the entropy expression, but also its statistical analog.
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And these forms are for strictly equilibrium thermodynamics. Even using rigorous
classical principles, it was shown recently that there exists, on topological grounds,
another type of entropy called the surface entropy, different from the one developed
by the Clausius definition [5]. One form proposed in MNET [6, eq. (7)] is

P(v,1)
PEQ(77 t)

where S.4 is the entropy of the system when the ‘nonequilibrated’ degrees of free-
dom +y are those that obtain at equilibrium. This entropy form is fundamental to
the entire MNET theory [6, sec.4] Conventional treatments of statistical mechan-
ics of the Gibbsian kind do not refer to the 7y coeflicients, for these are integrated
out (such as the p and ¢ Hamiltonian variables, as in the Gibbs entropy arising
from the average of the H and 7 function). One other curiosity, from the conven-
tional point of view of equilibrium statistical mechanics is that it is the probability
distribution function which determines the other Gibbsian potentials, such as the
chemical potential, so that variation of the probability distribution function would
also vary the potential, unless it is assumed that to first order, such a potential is
not varied and that the variation is significant only for the probability distribution,
so that in general [6, eq. (18)] one writes

55 = 7 / 1()5P (. t)dr.

The above form should be contrasted to non-additive entropies that have
found widespread application in recent times, such as the Tsallis non-normalized
entropy [7] where uniqueness is proven relative to some axioms in conditional
probability. Here the entropy is postulated to have the form

Sq(p) = q_% (1 - /pq(x)dx>

where p is the probability distribution, and ¢ a real parameter, with recovery of
the Gibbs form when ¢ — 1. The debate concerning its general validity still rages,
and widespread applications have been attempted for this non-extensive entropy.
This entropy and the MNET one do not have much resemblance at first sight;
perhaps they belong to different regimes of applicability, but interpretations that
the Tsallis entropy is relevant to nonequilibrium theory abound. The thrust of this
work is such as to neither support nor contradict MNET, but to give an example
of ‘internal coordinates’ from an exact point of view with reference to the process
Hamiltonian which precisely determines the trajectory of the simulation between
times when the thermal reservoir is not interfering with the motion. But the defi-
nition of internal and canonical variables is at all times uniquely defined. However,
the ‘internal coordinates’ during a chemical reaction or other process refer to an
artificial aggregation — meaning they are transient species — such as the center
of mass (C.M.) velocity and position for particles k, [ forming a molecule which is
not permanent, e.g., P; = pi+p; (k #1), R, = ri + 1), and so these are

S =8eq— kB/P('y,t) In dry

1
e (
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not canonical coordinates in the defined sense [2] and there is no immediate rea-
son a priori that these coordinates for the internal energy or potential must have
Boltzmannized distributions. It could well be that if the mean lifetime 7 of the
species obeyed 7 — oo , then they might qualify as a pseudo-canonical variable,
but a theory for such limits does not seem available. Permanent aggregated states
can be expressed in terms of canonical transformations Q = Q(p,q), P = (p,q)
[2, Chap. VII] and the new Hamiltonian that results must by ensemble theory
be subjected to the density distribution described above. But for systems which
are described by ‘internal’ coordinates of a non-permanent nature (in the sense
that the forces between the particles cease when the molecule decomposes) and
which does not refer to the system Hamiltonian, no general theory exists, and
no presuppositions can be made regarding their density distributions. It may be
remarked that, in statistical mechanics for canonical distributions, average quan-
tities M (corresponding to classical thermodynamical state functions) are defined
as M = Zi\;l M,; P; where P; is the probability of state ¢ with value M;. The par-

tition function Q = 2V g; exp — =) for the system has been defined so that

operations on it, Oy [Q], vield the average value for property M [8, p. 422], e.g.,

dlnQ —
- =E (11)

yields the total energy due to translational kinetic energy for systems that conform
to the canonical probability law. It follows that the density-in-phase probabilities
are correlated to the (p, q) phase space volume elements, and that the canonical
(p, Q) coordinates or their equivalents are central to the above procedure. Clearly,
when the process defined by the coordinates is not canonical, then it is not in gen-
eral correct to insist by necessity that any coordinate combination is ‘self-similar’ to
a canonical coordinate set, with a canonical probability distribution. Nevertheless,
theories have been created that assume in certain situations that the (Gaussian)
density for internal variables is true [9, 10] without clear qualification concern-
ing the situation when this condition obtains in terms of the Hamiltonian of the
system. How does one specify so-called ‘nonequilibrated degrees of freedom’ ~y vari-
ables which still exist for equilibrium systems [6, p.21504, sec.3], and what is the
relation of these variables to the Hamiltonian variables? In equilibrium statistical
thermodynamics, the Gibbs energy and all other thermodynamical state functions
are derived from the partition function through averaging with the canonical dis-
tribution, which pertains to the entire system taken as a whole; to infer that each
microscopic portion of the system at a particular phase-space coordinate is nec-
essarily self-similar to the whole is incorrect, as a few counter-examples to this
proposition show below (Figs. 2—4). Furthermore, the PLE has been proposed as
useful [9] for these new theories, and another counter-example to this is also pro-
vided, this time from a NEMD simulation. In other words, basic simulation is able
to refine the assumptions used for theories, and in particular, the hysteresis sys-
tem described here refers to internal coordinates and variables which are not of
the same variety as those that pertain to such ‘mesoscopic’ level thermodynamics.

Or[Q] = NET?
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FIGURE 1. P functions for translational kinetic energy of Ay about cen-
ter of mass at system temperature T, = 8.0 and p = 0.7, with apparent
temperature of molecule indicated.

The total internal energy coordinate (TIEC) and the internal kinetic energy coor-
dinate (IKE) are not Gaussian distributions for equilibrium systems according to
the simulation results below. Of great theoretical interest is that, for cases of non-
permanent coordinates, some types of distributions are essentially Bolztmannized,
others are not, even for an equilibrium system. It would be of great significance
and interest to provide criteria which can predict when a Boltzmann distribution
can be expected. The apparent temperature parameter < T' >x may well qual-
ify as a temperature in an extended equipartition scheme if there is agreement
with the Maxwellian distribution even if this temperature does not correspond to
the unique system temperature < T >,,s. Here the degree of agreement with the
Maxwell distribution is either very good (in some cases), or rather bad. It would
be of great theoretical interest if some form of relationship between the apparent
temperatures could be made on the basis of internal energetics. The uncertainty
(unless stated otherwise) is of the order as given in the error bars of Fig. 5 which
is at 100 standard error units and which would not feature in any figure where
errors are typically quoted at 3 standard error units. This figure corresponds to
the TIEC distribution. The errors in the temperature are given in Figs. 1-7. Fig. 1
shows that the center of mass (C.M.) kinetic energy follows quite accurately a
Maxwellian P function with a temperature parameter higher (T* = 8.33) than
the system temperature (T7,, = 8.0). The fact that the shape is Maxwellian at
the indicated temperature parameter does seem to imply that theories may be
developed within an equilibrium system with different coexisting temperatures,
provided that these parameters require that a Maxwellian form regarding shape
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prevails; after that first stage one perhaps might also be able to propose generaliza-
tions to temperature not requiring a Maxwellian distribution. But a proper theory
would have to begin from first principles which can subsume without contradiction
the previous axiomatics, including the Zeroth Law. Another inference is that these
non-standard ‘temperatures’ have definite values (or limits), where the degree of
scattering is relatively low; hence one might expect some type of stochastic aver-
aging which yields exact values (limits). How these averages are performed, and
the theoretical justification for these averages, remain significant challenges. The
other important scientific question is the explanation of the shift of ‘temperature’
< T >x for such Boltzmann distributions for non-permanent aggregates.

An atom bonded to a molecule does not have a clear Maxwellian shape, as is
evident from Figs. 2-3 since there is interference from the internuclear potentials.
The graph in Fig. 2 computes the absolute kinetic energy AKE (also denoted
K.E.(1))of the particle with respect to the MD cell, whereas Fig. 3 refers to half
the relative kinetic energy and half the translational kinetic energy about the C.M.
of the bonded pair, where the relative kinetic energy €y ¢ re;. is written as

1. . 1,
€k.e.rel. = 5#(1‘1 - 1‘2)2 = 5,“1'2 (12)

for any two bonded atoms 1 and 2, where the reduced mass p is given as % =

mil + mig and where the intermolecular axis vector is r = ry; — ra. The total internal

kinetic energy IKE is also defined as the relative kinetic energy of a bonded pair,
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given as €x.¢.re. as above. The AKE averages

11 1
§.§(V1 — V2)2 = Z {V12 —|—V22 — V1.V2}

whereas the kinetic energy about the C.M. (KCM) averages the expression

2
%2(‘,1_572‘,2) = i {V12 +V22 + V1.V2} .
Adding these expressions and then dividing by 2 would lead to convergence of the
result to that for AKE, which is what is presented in Fig. 3 as K.E.(2), which is
almost the same graph as for Fig. 2. The reason for this computation was to check
for consistency of result for the two different sampling techniques.

The IKE distribution, that of an internal coordinate, is clearly non-Gaussian,
as depicted in Fig. 4. This result is not consistent with any theory which assumes
that motion along these coordinates is in local equilibrium with Gibbsian-like
equations (which would demand a canonical energy weightage from elementary
statistical mechanics) along the entire trajectory, as has been suggested in some
applications of nonequilibrium thermodynamics. [9, 10].

TIEC defined above refers essentially to the vibrational and rotational kinetic
energy of the molecule Ej;., since the translational kinetic energy about the C.M.
has been factored away where

P
Brice = V(Iri = x3]) + 5 (13)
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with V(|r;—rj|) = uo+3k(r—ro)? . Hence the intermolecular potential would play
an important part in determining the motion along the internuclear axis, with the
environmental potential due to other particles playing a moderating role by intro-
ducing stochasticity to an otherwise plainly mechanical system. The probability
of occurrence of a state is proportional to the time spent at any configuration ac-
cording to Gibbs, and with a harmonic potential, most of the time spent will be at
the turning points in simple harmonic motion (SHM). In the molecular potential
used there is a ’dissociation hump’ just prior to the dissociation limit, leading to
a departure from the Maxwell (M) distribution; other reasons for departure from
the M distribution include the dissociation itself, precluding higher energy states
from being accessed. It is clear that the distribution in Fig. 5 is non-Maxwellian
and corresponds faintly with the shape of the molecular potential energy function,
with its humped potential near the distance of dissociation. SHM in conjunction
with permanent canonical coordinates has been used as a classic description of
equipartition. If the particles were bonded permanently, this quantity would have
a canonical distribution, which it clearly does not, because bonds are formed and
broken at a rate that precludes adjustment to a Gaussian probability factor. This
distribution, which also refers to an internal coordinate for total internal molecular
energy, is not consistent with some recent nonequilibrium theories [9, 10] which
assumes without proof that these Gaussian factors must obtain.

Noting that the accuracy of the single particle is reduced by a factor of ~ 4000
(the number of particles in this simulation), we find that the Gibbs postulate seems
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given in the text. The error bars are for 100 standard error units at T,, =
8.0andp = 0.7.

to be verified in terms of the shape of the P function (which appears Maxwellian)
as well as the computed value of the temperature with the error estimated as +0.2
by studying an atom of fixed label (no. 29) as it forms and breaks bonds with
neighboring molecules, as shown in Fig. 6. Clearly the time average of dynamical
properties for this particle would equal the ensemble average. We notice that the
reduced accuracy of the sampling is reflected in the greater scatter of the P function
points. The time averaged particle temperature corresponds within error to the
system temperature.

Finally, since the molecular P function has been mentioned, it would be
interesting to compare it to the case of a random, but always free A particle which
is given in Fig. 7, where the determined temperature is slightly lower, (to within the
error limits) than the system temperature, and where the shape of the P curve is
Maxwellian. This particular species type cannot fulfill the Gibbs postulate because
its trajectory is confined to those areas where there is no molecular formation, and
so its time averaged properties, like the temperature, need not necessarily equal
that for the system as a whole as determined from the equipartition principle. We
can conclude that the energy subsystems that can be chosen for devising a theory
of unequal temperature distributions in an equilibrium system all of which have a
Maxwellian probability profile include at least the following candidates:

e Translational k.e. about C.M. for As,
e Fixed indexed k.e. of particle A (in both free and bonded state),
e Random, always unbonded k.e. of particle A.



154

0.07

C. G. Jesudason

0.061 S
0.0sf 2
o

P function

0.03pP

0.01}

0%
0

o
o)
)
Q
o
o
?

?

Maxwell distribution

o P(K.E. of indexed A atom)

20

40 60

80
Energy /LJ units

100

FIGURE 6. P functions for kinetic energy of fixed indexed atom A which

either is bonded to some Az dimer or not at system temperature T, = 8.0

€
and p = 0.7 with apparent temperature of atom < T >qtom= 8.1 £ 0.2. The
uncertainty here is 3 standard error units.

0.07 v v v
Maxwell distribution
0.06} 0 P(K.E. of always free A atom)||
060
o ©
0.05p~ © .
o
c °
2 0.04 ° 1
© °
S )
2 0.03P ) <T> =7.77+.01 .
o v o) freeatom 77
(o)
0.02} 1
0.01f 1
m i
0 20 40 60 80 100

Energy/LJ units

FIGURE 7. P functions for kinetic energy of a free (unbonded) random

atom at system temperature T, = 8.0 and p = 0.7 with apparent tempera-
ture of the random atom indicated.




Model Hysteresis Dimer Molecule. II. Deductions from Probability Profiles 155

The following is suggested as a result of the above observations.

Conjecture 1. If the random forces are external to the subsystem, and they all
have the same force law when acting on the particles of the system which may
be different from the force law for internal forces acting on the particles of the
same subsystem, then the kinetic energy of the C.M. of the subsystem would have
a probability distribution that is Mazwellian.

The above conjecture is weak as it stands and should be supported by a
theoretical approach using stochastic calculus.

3. NEMD results

A NEMD simulation was conducted with the thermodynamical variable distribu-
tion for temperature and number density depicted in Fig. 8. The results presented
here are additional to the results presented elsewhere [1, Case 2 simulation] for
the same thermodynamical conditions, where this time, we concentrate on the
flow properties of the system, rather than the static property of the equilibrium
constant variation across the cell given previously. Figs. 9, 10 are the flux and
divergence of the flux for ‘Case 2’ simulation where a temperature gradient across
the MD cell is imposed together with the making and breaking of bonds at the
ends of the cell leading to a molecular flux according to the thermodynamical
conditions and rate details of the breaking and formation of bonds as given in [1].

108

= Case 2variables | .., -

Temperature T

FIGURE 8. Temperature and density profile for Case 2 simulation along
the MD cell which was divided up into 64 layers in the X axis direction.
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the difference equation in the text to verify the conservation law.

The cell is broken up into 64 layers along the X-direction and the thermostats are
placed at the ends of the layers. Fig. 9 has overlapping error bars with magnitudes
that do not change significantly over the range where the fluxes are evident. The
stationary source and sink quantities are denoted o (o and o, are the rate of
formation and breakdown of the dimer in unit time and unit volume respectively
throughout the cell). The conservation of mass equation for atoms and dimers
reads as follows, where the subscripts refer to the species label for the flow vector
J and the concentration c:

dea,/dt = —V.Ja,+05—o0p,
dea/dt = —V.Ja—207+20;. (14)
The steady state conditions are
V.Ja = =2(cf —o0op) =—20,,
V.Ja, = or, (15)

where (05 — 0p) = 0, and o, is a scalar flux. At thermodynamical equilibrium,
o, = 0. If the PLE were valid in the sense that for chemical reactions which are
in a state of local equilibrium, the affinity of the reaction A is zero leading to
zero oy, then the J4, Ja, fluxes must vanish; clearly here, this is not the case.
Some elaboration seems necessary. The affinity is defined as A =Y _I* | v;u; where
w; is the chemical potential. The Gibbs equilibrium criterion is equivalent to the
affinity vanishing at constant pressure and temperature. The rate o, cannot be
linearly proportional to the temperature gradient, if the common understanding
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of the Curie symmetry principle is used [11, p. 21]. One can couple a flow J; of
substance 7 and rate v according to the linear thermodynamic equations

d1 A
Ji = Lii%T‘FLicfy
d1 A
v = La%f + LCC? . (16)

In such an understanding, L;. = 0 or else a scalar cause A/T produces a vector
effect J;. So L.; = 0 also by the reciprocity condition. Hence in the naive sense
above, one would not expect flows to be present along the cell where there is no
artificial (externally imposed) formation or breaking of bonds for the reasons that
follow. One might argue that L;; # 0 induces the flow; but it was found that no
perceptible flow was observed when there was no breaking or forming of bonds at
the reservoir ends; but in any case (16) suggests that the rate is due only to the
affinity not being zero, and the conservation equations show that the divergence of
the flow is related to the chemical rate v = o,.. If the rate were zero over the whole
length of the cell, then if the flow rate J4(J4,) were zero at one end of the cell, then
by integration it would also be zero along the whole cell length; experimentally
the flow is zero at one of the ends (at colder temperature), so a zero reaction rate
v everywhere implies zero flow rate elsewhere under these conditions. To check for
flux conservation, the divergence term is discretized by integration over one layer,
using the trapezoidal rule, where for any layer 7,

/; V. Ja,dV = (o,(0) = ”’“2“ — DAV _ Jay.aif (1) = Ja, (i) — Ja,(i — 1) (17)

where the layer has volume AV. Similarly, for the atomic fluxes,
Ja,dif (1) = Ja(@) — Ja(i — 1) = —(0,(3) + 0 (i — 1))AV. (18)
Eq.(15) says that
2V.Ju, +V.Js =0 (19)

which may be expressed as
Ja(t) = 2J 4,055 (1) + J4,4ir(3) = 0. (20)

The plot of J; given in (20) in Fig. 10 complies with the conservation law rather
well, within statistical error. We have therefore shown that PLE in the above
sense is not a rigorous principle from numerical simulation with this counter-
example. Another result from NEMD concerning equilibrium constants has been
reported [1]. It has been shown that local stochastic equilibrium dynamical vari-
ables do not necessarily have Gaussian (canonical) distributions. Both these con-
ditions are demanded as being essential by some specialists [9, 10, 12] in their
theories. The theoretical developments concerning PLE begins with the general-
ized Clausius Inequality,

d
f% <0, gqc¢ {adia, tot} (21)
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where [1] two separate forms of heat obtain: (i) adia refers to a diathermal heat
transfer across the primary system boundary whereas (ii) tot refers to a nonlo-
cal heat term which includes various heat transfer terms due to standard state
substance and thermal reservoirs, heat pumps and the primary system. The in-
equality above holds for both types of heat transfer separately. It is deduced [1,
Corollary 1] that it is impossible for any irreversible pathway which exchanges
heat Pj, connecting two equilibrium states A, B to contain the same sequence
of points as Pp4, that is, for the equilibrium pathway for all Pg4. The set of all
equilibrium states (which are points in the thermodynamical space) is 3 where
Pap C ¥ and where the set of points in P4 (or P4p) is denoted {w}. It is shown
that Pp, = {w} U {A} where A ¢ X. The theoretical development [1] does not
provide a specific form for A but physical considerations suggest that this variable
includes spatial gradients and time derivatives of ¥. As such, the theoretical de-
velopment states that the use of simple differentials of equilibrium state functions
used routinely to describe nonequilibrium systems is incomplete. It is suggested
here that this incompleteness shows up in the NEMD simulation results provided
here, which is not well described by the first order linear thermodynamics theory
in conjunction with the Gibbs equilibrium criterion.

4. Conclusion

We have shown through numerical counter-examples that the PLE and the canoni-
cal averaging assumption used in recent thermodynamical theories as fundamental
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and required assumptions are approximate in nature, at best. In canonical averag-
ing, the internal variables do not have the same algebraic structure as the variables
that are explicitly featured in the system Hamiltonian. A previous work [1] shows
that the PLE neglects other variables not found in the equilibrium state space. It
would be of interest to repeat and compare some of the above calculations for a
more conventional system without hysteresis, to definitively rule on the effects of
artifacts due to the use of these novel potentials. The NEMD simulation provides
an example of a system that may be better described by theories that go beyond
linear and local equilibrium theories.
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Mathematical Modelling and Simulation
of Coronary Blood Flow

Bernhard Quatember and Martin Mayr

Abstract. As in vivo observations and measurements of flow conditions in
the coronary circulation are extremely difficult and clinically almost infeasi-
ble, the use of mathematical models and the performance of simulation studies
are the only practical way for a good understanding of coronary haemody-
namics. As the range of clinical applicability of known models in this field
is rather limited, we developed a detailed lumped parameter model of the
coronary haemodynamics. From the beginning we aimed at its use as an aid
for interventional cardiologists and heart surgeons. At this stage of develop-
ment, our lumped parameter model can already be of some help to physicians,
when appraising the adverse effects of stenoses on myocardial blood supply
and assessing the attainable improvement of the supply by therapy. The crude
approximations inherent in lumped parameter modelling restrict the applica-
bility of this unsophisticated approach to an imprecise global assessment of
the blood supply to the myocardium and its detoriation in the case of coronary
artery disease. However, to be able to assess other specific pathophysiological
processes, such as thrombus development and stenoses growth, for instance,
we need precise knowledge of the local three-dimensional flow pattern in a
stenosed section of the coronary artery tree, especially around the apex of
the stenosis. We present simulation studies of the three-dimensional flow in
stenosed sections of the coronary arteries, based on a distributed parameter
modelling approach. In these studies, the governing partial differential equa-
tions are solved with the finite element method. Particular attention is given
to the acquisition of patient-specific data, especially of data describing the
geometry of the patient’s epicardial arteries, derived from medical images.
These data are required not only for the patient-specific adaptation of our
lumped parameter model but also, in the case of our three-dimensional flow
simulations, for the generation of a finite element mesh in the flow domain
under investigation. However, we deal with the mesh generation issues only
very briefly.

Mathematics Subject Classification (2000). 81T80, 37N10, 76D05, 35Q30,
65N50.

Keywords. Mathematical modelling; Simulation model; Lumped parameter
model; Nonlinear model; Coronary haemodynamics; Coronary stenoses.
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1. Introduction

In this chapter, we deal with modelling approaches and simulation studies of the
blood flow of the human cardiovascular system, especially in the coronary vessels.
The fluid mechanics of blood circulation, or haemodynamics, is a rather diffi-
cult scientific domain — mainly due to the complicated structure and function of
the cardiovascular system and considerable differences between individuals. In the
human body, the cardiovascular system performs several essential physiological
functions. An important one is to transport the substances involved in metabolic
processes that take place in the cells (tissues and organs). Substances that play a
major role in these processes are oxygen, various nutrients, and carbon dioxide.
The cardiovascular system consists of the heart, the pulmonary circulation, and
the systemic circulation. A relatively small but very important part of the sys-
temic circulation is the coronary circulation which is responsible for the supply of
blood to the myocardium. The coronary vessels comprise the epicardial arteries,
the intramyocardial arteries and arterioles, the capillary bed, the intramyocardial
venules and veins, and the epicardial veins. The entire system of coronary vessels
is subdivided into the left and the right coronary network, since both of them
have a tree-like structure. The coronary blood flow must be strong enough to meet
the metabolic requirements of the heart, for otherwise the myocardium becomes
vulnerable to ischemia [1-3]. The coronary blood flow can be reduced by diffuse
narrowing (atherosclerotic plaques), and especially by stenoses in the epicardial
arteries as well as by thrombi. Thrombus formation and development usually takes
place in the area of a stenosis in the epicardial arteries. The adverse effects of these
pathological changes are of particular importance for interventional cardiology and
coronary surgery.

Measuring the blood flow within the coronary vessels is fraught with consid-
erable difficulties, and in vivo measurements of pressure and flow pose especially
severe problems. Given these difficulties, it is obvious that the use of simulation
models of the coronary haemodynamics is extraordinarily important and almost
indispensable [4-8] for:

e facilitation of the detailed study of the flow behaviour in the coronary circu-
lation easily and thoroughly;

e assessment of the adverse effects of pathological changes (e.g., stenoses), es-
pecially in the field of coronary artery disease; and

e predicting the success of planned therapeutical measures.

It is thus very important to provide physicians with appropriate simulation models.

To quantitatively assess the supply of blood to the myocardium and its im-
pairment that results from pathological changes, we need simulation studies of the
entire coronary network which thus have a global character [9]. Due to the complex-
ity of the coronary vessels, the blood flow in the entire coronary network can only
be simulated by employing lumped parameter models. We developed such a model,
which allows a quantitative assessment of the blood supply to the myocardium,
especially the reduction that results from stenoses and other obstructions in the
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epicardial arteries. Our lumped parameter model of coronary haemodynamics is
described in § 2 and § 3. The results of simulation studies with this model are
presented in § 4.

Severe stenoses in the epicardial arteries not only reduce the blood supply to
the myocardium but may also stimulate pathological processes at the molecular
and cellular level, mainly due to irregular flow conditions around a stenosis. In
these processes, activities in the blood cells and their immediate vicinities play a
predominant role. These include cell-cell interactions, cell-plasma interactions and
interactions between the blood cells and the arterial wall. The most interesting
sites of these activities are the region around the apex of the stenosis and the flow
domain downstream from the centre of the stenosis. These processes are of con-
siderable clinical interest, since they are responsible for the growth of the stenosis
and the eventual formation and development of thrombi. A sound knowledge of the
relevant three-dimensional flow conditions is required in all investigations of these
pathophysiological processes. A lumped parameter modelling approach of course
cannot provide the sufficiently detailed haemodynamic knowledge that would be
required for investigations of this kind, since this medical problem area requires a
fair knowledge of the three-dimensional flow pattern in an epicardial artery. We
describe computer simulations of the three-dimensional flow field around a severe
eccentric stenosis in § 4.

At this stage of development, our modelling approaches are solely based on
the morphological and physiological data found in the literature. They are therefore
not patient-specific, so the range of clinical applicability is rather limited. How-
ever, we are now developing methods and software modules to adapt our lumped
parameter model to patient-specific data, and give some relevant details in § 6.

2. Basics of our lumped parameter modelling approach

We constructed a simulation model of the coronary flow dynamics that can be used
to investigate the blood supply to the myocardium under physiological conditions,
and under impaired perfusion conditions that result from coronary artery disease.
In our modelling efforts, we concentrated on the adverse effects of stenoses (local
narrowing) and diffuse narrowing in the epicardial arteries. However, our modelling
concept could easily be adapted to other pathophysiological changes.

The simulation model described here has been designed on the basis of the
geometric (morphometric) data, mechanical properties and values of other func-
tional parameters relevant for a hypothetical average adult. In this model, it is
possible to define geometrical changes that involve stenoses and diffuse narrowing
in the epicardial arteries, for studies of coronary artery disease. At this stage of de-
velopment, as mentioned earlier, our modelling approach is not yet patient-specific,
but we are attempting to acquire the patient-specific data needed for adaptation
of the simulation model to individual patients.

We confined our modelling to the left coronary artery system, i.e., to that part
of the coronary network belonging to the left coronary artery, since this subsystem
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plays an especially important role in our medical problem area. Nevertheless, the
model could of course also be applied to the right coronary arterial system.

2.1. General characteristics

As previously mentioned, we have chosen a lumped parameter modelling approach.
Lumped parameter models only permit simulation studies that very roughly ap-
proximate the real behaviour, but have the following distinct advantages:

e the model equations are a system of differential algebraic equations, whose
solution is much less computationally expensive than the solution of the par-
tial differential equations used in the case of the more accurate distributed
parameter models; and

e system identification tasks that would enable the determination of patient-
specific parameters by means of measurement results remain tractable.

Due to these advantages, lumped parameter models are frequently used in current
cardiovascular research [10-17].

Our modelling is based on several simplifying assumptions regarding the
structure and geometry of the coronary vessels. We consider the arterial and ve-
nous system to have a strict tree-like structure. Collateral conduits have not yet
been taken into account. The flow domain in each segment of the epicardial arteries
and veins is modelled as a cylinder with a perfectly circular luminal cross-sectional
area. We regard the tree-like structure of the intramyocardial arteries, arterioles
and venules, veins as being symmetric — and model each intramyocardial gen-
eration of the tubular tree as a parallel connection between identical tubes. The
capillary bed is treated as an intramyocardial generation of the tree-like structure.

Apart from these coarse approximations of the structure and geometry of the
coronary vessels, a further simplification regarding the mechanics of flow in the
tubular vessels has been made. Our modelling is based on assuming that the flow
through each tubular segment is a “fully developed” incompressible laminar viscous
flow — i.e., classical Hagen—Poiseuille flow. The velocity profile across the luminal
cross-sectional area is thus a paraboloid, with zero velocity at the vessel wall and
maximal velocity at the centreline of the vessel. One may however consider that, at
each and every point in time, blood is flowing uniformly across the entire luminal
cross-sectional area at an average velocity. Thus the flow velocity is independent
of spatial coordinates, and the blood flow can be considered to be a process with
lumped parameters [18].

The coronary artery tree originates from the aorta, in close proximity to
the aortic valve. From there, the blood flows through the arterial subsystem, the
capillary bed and the venous subsystem of the coronary circulation. Finally, it
is drained into the right atrium, mainly via the coronary sinus. The pressure at
the inlet of the coronary vessels is thus the aortic pressure pa(t), which in our
model is thus the input pressure. On the other hand, the pressure at the outlet
of the coronary circulation is virtually identical to the pressure pg(t) in the right
atrium, and so the output pressure in our model. The total perfusion pressure is
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FIGURE 1. Block diagram of the auxiliary model of the entire cardiovas-
cular system, with embedded model of the coronary circulation.

thus pr(t) = pa(t) — pr(t), which can be regarded as the driving pressure of the
coronary circulation.

A fair knowledge of the pressures pa(t) and pgr(t) and their variation in
time are a prerequisite for carrying out any simulation runs of our model. To
generate the values of pa(t) and pr(t), we developed an auxiliary model of the
entire cardiovascular system, with our model of the coronary circulation embedded
in this system. This auxiliary model is also a lumped parameter model. Figure 1
shows the structure of the auxiliary system, together with the embedded lumped
parameter model of the coronary circulation. The auxiliary model comprises the
following submodels:

submodel of the left atrium (with mitral valve);

submodel of the left ventricle (with aortic valve);

submodel of the right atrium (with tricuspid valve);

submodel of the right ventricle (with pulmonary valve);

submodel of the pulmonary circulation; and

submodel of the systemic circulation excluding the coronary circulation,
which is a small but very important part of the systemic circulation.

Moreover, the auxiliary model is based on an especially crude modelling approach.
For each submodel, we provided only a small number of lumped components. These
have been formulated in conformity with the description and the data given in [19].

The total perfusion pressure pp(t), the structure and geometry of the coro-
nary vessels, and the mechanical properties of the vessel walls all have substan-
tial influence on the coronary blood flow. However, in a thorough analysis of the
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coronary blood flow, we also have to consider other phenomena and quantities.
Various aspects of the regulation of the coronary blood flow play a decisive role
in coronary haemodynamics, and we must also take into account the interactions
between coronary blood flow and myocardial mechanics, especially the effects of
the intramyocardial pressure on the coronary blood flow [20,21].

2.2. Morphological and physiological basis

At this stage of development, our modelling approach is based solely on morpho-
metric and physiological data found in the literature [3,8,21-26]. Collecting the
information required was a difficult task, since articles with appropriate data are
rare. Moreover, we have to consider that measurement data very often refer to an-
imal experiments. Additional difficulties are caused by the variation of important
characteristics in coronary networks, even among healthy adults. This is particu-
larly true of the structure and geometry of the epicardial arteries. We considered
a number of relevant descriptions in the literature, and made every effort to define
a structure and geometry for the epicardial arteries that can be regarded as repre-
sentative for a hypothetical average adult, as the basis for our modelling approach.
We deal with the issue of patient-specific data in § 6 in detail, but at some future
time we intend to consider the patient-specific geometry of the epicardial arteries.

2.2.1. Morphology of the coronary vessels. As previously mentioned, we devel-
oped an adequate representation of the structure and geometry of the epicardial
arteries [27]. In doing so, we simplified the complex network of the epicardial arter-
ies by combining smaller arteries to form a tree-like structure with eight arterial
branches. In coronary artery disease, stenoses and diffuse narrowing almost ex-
clusively appear in the epicardial arteries. In our model, we are already able to
specify stenoses with various degrees of severity, and to determine the site where
they appear. However, we are not yet able to account for the formation of collateral
conduits.

In modelling the intramyocardial arteries, we took the morphometric inves-
tigations of Spaan [21] completely into account, by providing a separate lumped
component for each of the 10 layers of the morphometric scheme in our model.
Detailed descriptions of the capillary bed in the literature [23,28-30] served as
the foundation of this part of the coronary network, which plays a key role in the
supply of the myocardium with oxygen and nutrients.

Very little precise morphometric data of the venous system could be found in
the literature. Our modelling of the venous system assumes that it is more or less
a mirror image of the whole arterial tree. However, we accounted for the higher
blood volumes in the venous system by making an appropriate adaptation in the
dimensions.

2.2.2. Mechanical properties of the coronary vessels. The specification of the me-
chanical properties of the coronary vessels was based on carefully selected data
from the literature [21-23,25,29-32].
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We assumed that the walls of all blood vessels are purely elastic. This assump-
tion is of course a simplification, since blood vessels exhibit viscoelastic properties,
but we consider that ignoring the viscoelastic behaviour should not have significant
influence on the results.

However, we allowed for the nonlinear character of the assumed purely elastic
behaviour of the vessels, in terms of ”transmural pressure-luminal area” relations,
by using distensibility diagrams from the literature [21, 23,25, 28] in formulating
the model equations.

2.2.3. Effects of intramyocardial pressure on coronary blood flow. The luminal
cross-sectional area of an intramyocardial vessel is dependent on the transmural
pressure, which is the difference between the pressure within the vessel and the
extravascular pressure. The extravascular pressure in the myocardium varies, due
to periodic compression within the myocardium generated by myocardial con-
traction. The investigation of the extravascular pressure is a current research
topic [20,21, 31, 33-38], and precise results for this quantity are not yet avail-
able. However, in conformity with comments elsewhere in the literature, we made
the following simplifying assumptions — viz,

e the hydrostatic pressure of the interstitial fluid around the vessel, the so-called
intramyocardial pressure, is identical to the extravascular pressure (e.g., the
effects of the attachment of connective tissue to blood vessels are ignored);
and

e the intramyocardial pressure at the endocardial surface is identical to the
left ventricle pressure — but on the other hand, at the epicardial surface it
is zero (ambient pressure, or more specifically, intrathoracic pressure), and
decreases linearly from the endocardial surface to the epicardial surface.

2.2.4. Coronary control. In the field of coronary control, we distinguish between
relatively large conducting vessels and resistance vessels, primarily arterioles and
pre-arteriolar intramyocardial arteries. The resistance vessels have an autoregula-
tory function — i.e., they enable the oxygen consumption (metabolic rate) of the
myocardium to remain constant when the total perfusion pressure in the coronary
system changes. Moreover, they are even able to adapt the coronary blood flow to
the higher oxygen demand that occurs during increasingly vigorous physical ex-
ercise — i.e., they can increase it. The coronary control mainly serves to regulate
the increase, whereby vasodilatory effects in the resistance vessels play a predom-
inant role. However, pharmaceuticals such as Dipyridamole also have vasodilatory
effects on the resistance vessels.

Under physiological perfusion conditions at rest, the perfusion pressure of the
intramyocardial vessels has a value within the autoregulatory range. When that is
the case, an impairment of the perfusion pressure does not cause a significant dete-
rioration of the perfusion conditions (the blood flow). However, in coronary artery
disease the range of coronary control may be exceeded as soon as the resistance
vessels are fully relaxed (maximally dilated).
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At present, the mechanisms responsible for coronary control are not very well
understood [39-42]. For this reason, we decided not to include a detailed descrip-
tion of all the regulatory processes in our model. At this stage of development, we
have chosen a straightforward approach to this problem area, where we confine
ourselves to the above-mentioned clinically important effects — viz. the coronary
flow under basal perfusion conditions, and the flow in the case of maximally di-
lated resistance vessels. There are the following reliable data for these two effects
in the literature:

o distensibility diagrams for the resistance vessels (arterioles and also other
small intramyocardial arteries) under physiological perfusion conditions at
rest, for which we introduce the term “distensibility diagrams of Type A” [21,
23,25]; and

o distensibility diagrams for fully relaxed (maximally dilated) resistance vessels,
for which we will introduce the term “distensibility diagrams of Type B” [21,
23,25].

We are thus able to carry out simulations

e based on the distensibility diagrams of Type A, which enable us to investigate
blood flow under normal perfusion pressure and basal perfusion conditions;
and

e based on the distensibility diagrams of Type B, which permit investigations of
the blood flow under conditions of severe stenosis in an arterial branch, lead-
ing to a maximal dilation of the resistance vessels in the perfusion territory
of the stenosis.

3. Description of our lumped parameter model of coronary
haemodynamics

Our lumped parameter model of the dynamics of coronary blood flow comprises a
large number of lumped components for the individual segments of the network of
the coronary vessels, rendering a fair representation of the inhomogeneity within
the coronary network. The model consists of two main parts — viz.

e the submodel of the epicardial vessels; and

e the submodel of the intramyocardial vessels.

As already mentioned, we embed our model of the dynamics of coronary blood
flow in a coarse model of the entire cardiovascular system.

3.1. Block diagram

A block diagram of the model of the coronary blood flow dynamics and its con-
nection with the auxiliary model of the whole cardiovascular system is shown in
Figure 2, where p4(t) is the aortic pressure and pgr(t) is the pressure in the right
atrium. The total perfusion pressure pr(t) of the whole system of the coronary
vessels is thus

pr(t) = pa(t) — pr(t) . (3.1)
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FIGURE 2. Block diagram of the entire system of the coronary vessels.

3.2. Pivotal points of the modelling approach

Let us now summarise the main features of our modelling, as introduced above.

1.
2.

We treat the blood as an incompressible Newtonian fluid.

We assume “Hagen—Poiseuille” flow, and moreover, assume that the vessels
are cylindrical — i.e., circular cylinders. (Entrance effects and specific effects
in bifurcation areas are of course present, but nevertheless ignored in our
coarse approximation.)

We assume that the coronary blood flow is laminar throughout the whole
cardiac cycle.

In the field of coronary haemodynamics, the inertia of the blood is not very
important, and we consider this only in the epicardial arteries. (However,
we do not consider any changes in the inertia due to volume changes of the
epicardial arteries during a cardiac cycle, and in all other sections of the
coronary vessels the inertia of the blood can justifiably be ignored.)

Body forces (such as gravity or Coriolis force) have justifiably been neglected.
As discussed in § 2.2.2, the viscous properties of the vascular walls are not
taken into account, and we assume purely elastic, isotropic and homogeneous
vascular walls.

As explained in § 2.2.2, we avoid the oversimplification that would result from
a linear treatment — and fully consider nonlinear elastic properties of the
coronary vessels, expressed in terms of the relationship between the pressure
and the luminal cross-sectional area from distensibility diagrams.
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8. Changes in the luminal cross-sectional area of the arteries, the arterioles, the
venules and the veins affecting the flow resistance are considered; but not the
changes in the lengths of these vessels (except those of the capillaries) during
the cardiac cycles, since these changes do not have a significant influence on
the flow resistance.

9. A rough approximation is made to consider the influences that the very com-
plicated changes in the cross-sectional area, and in the length of the capillar-
ies [29], have on the flow resistance.

3.3. Submodel of the epicardial vessels

3.3.1. Epicardial arteries. The structure and behaviour of the epicardial arteries
are illustrated in Figure 3. The model equations for our lumped parameter model
of haemodynamics are analogous to those for an electrical circuit (also lumped
parameter model). As no graphic symbols for the lumped components of our fluid-
mechanical model exist, we make use of this analogy and employ electrical circuit
diagrams in graphical representations of our model of coronary haemodynamics —
e.g., the diagrams in Figure 3 and Figure 4. In this circuit analogy:

e pressure corresponds to voltage;

volume flow corresponds to electrical current;

“inertance” (inertia of the fluid) corresponds to inductance;
compliance corresponds to capacity; and

flow resistance corresponds to electrical resistance.

Segments in Figure 3 (the lumped components) embody circular cylindrical ves-
sels, but their luminal cross-sectional areas change with transmural pressure dur-
ing cardiac cycles. At the epicardial arteries (also epicardial veins), recall that the
transmural pressure is assumed equal to the pressure in the lumen (luminal pres-
sure), since the extravascular pressure is taken to be zero. In the lumped-circuit
equivalent of Figure 3 for the representation of the tree-like structured epicardial
arteries, the flow resistances and the compliances associated with the individual
segments are depicted by symbols for variable resistors and variable capacitors,
since their values change over time throughout a cardiac cycle. On the other hand,
the inertances are depicted by symbols for non-variable inductances, under our
simplifying assumption that they are constant.

In the electrical circuit diagram (electrical analogue) of coronary haemodynamics
shown in Figure 3:

e the pressures p;(t) and volumetric rates of flow f;(¢) behave like voltages and
currents;

e the inertances L; are akin to the inductances;

e the compliances C;(t) are akin to the capacities; and

e the flow resistances R;(t) are akin to the electrical (ohmic) resistances.

In conformity with the electric circuit diagram in Figure 3, we formulate our model
equations for the epicardial arteries in 14 segments.
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FIGURE 3. Lumped circuit diagram for the representation of the tree-like
structured epicardial arteries (j-th section of the myocardium)

The equations of continuity for the individual segments are:
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wolt) = / (folt') — FH(E))dt’ + gt (3.9)
qialt) = / (Fralt)) — F5H(E))dE + gt (3.10)
Gis(t) = / (Fis(t)) — FH(E))dt + it (3.11)
() = / (Falt)) — FoH(E))dt + gt (3.12)

fori=1,2,...,14 (in 14 segments, cf. Figure 3) and j = 1,2,...,8 (in 8 sections
of the myocardium, cf. Figure 3) where

qi (%) is the blood volume of segment i,

qunstr is the unstressed blood volume of segment ¢,

fi(t), is the volumetric rate of blood flow into segment ¢, and

f3e4() is the volumetric rate of blood flow into the intramyocardial arteries

of section j of the myocardium.
For the 14 segments in Figure 3, the nonlinear relationships between

e the luminal pressure p;(t) of segment i (equal to the transmural pressure, as
mentioned above) and

e the luminal cross-sectional area a;(t) of segment i, as well as the blood volume
q;(t) of this segment

are respectively expressed (for i = 1,2,...,14) as

pi(t) = Ai(ai(t)) (3.13)
and
a;(t) = qil(.t) : (3.14)

where each A; is a nonlinear function depicted in the distensibility diagrams con-
tained in the literature [21,23,25,28], and the length I; of any segment ¢ is assumed
to be constant (a justifiable simplification, as mentioned above). The total pressure
drop in each of the 14 segments (i = 1,2, ...,14) is

pia ()~ pi(t) = i) ult) + 1 T80 (3.15)
fori=1,2,4538 11

pi-alt) ~ pilt) = Ri0)fi(0) + 1. (3.16)
fori=3,7,9,12,13

pua(t) ~ pualt) = Rus(t) fua(®) + s L0 (3.17)

pr(t) — pro() = Rao(t) frolt) + Lo L) (3.18)
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or in integral form

1 t
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fori=3,7,9,12,13
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0
with
fi(0)=0 and
po(t) = pa(t)
and where
L; is the inertance of segment ¢ which, as already mentioned, is assumed
as being constant,
pa(t) is the aortic pressure, and
R;(t) is the (viscous) resistance to blood flow of segment ¢, given (approxi-
mately) by the Poiseuille formula
li
Ri(t) =8mu—— 3.23
(0 = Sm (3.23)
where
I is the viscosity of the blood,
l; is the length of the segment ¢, and
a;(t) is the luminal cross-sectional area of segment.

In the numerical simulation of f;(¢t) (Equations 3.19 to 3.22), f;(0) = 0 has been
arbitrarily chosen, and consequently some settling time must elapse before the
numerical simulation produces meaningful results — i.e., the simulation proce-
dure must progress for a considerable number of timesteps, to produce meaningful
results.

3.3.2. Epicardial veins. We treated the epicardial veins in a manner similar to the
epicardial arteries. Our modelling approach is based on the simplifying assump-
tion mentioned in § 2.2.1 — viz. that the epicardial veins can be regarded in the
same way as the epicardial arteries. However, a few adaptations in respect to the
dimensions had to be made, and of course we had to employ different distensibility
diagrams.
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3.3.3. Stenoses. A stenosis in an epicardial artery causes increased flow resistance
due to the pressure loss that develops across the stenosis, and the extent of this
loss depends strongly on the geometry of the stenosis. Frequently, the severity of
stenoses is expressed in terms of “percent stenosis”, which refers to the reduction
in luminal cross-sectional area, usually expressed as the percent of the luminal
cross-sectional area that is unobstructed. We used the method described in [43], to
calculate pressure losses across stenoses in the epicardial arteries. Stenoses can be
arbitrarily chosen (defined) in all sections of the tree-like structure of the epicardial
arteries in the model.

3.4. Submodel of the intramyocardial vessels

The submodel of the intramyocardial blood vessels was formulated on the basis of
data found in the literature, especially morphometric data and descriptions of the
mechanical properties of the vessels.

3.4.1. Intramyocardial arteries and arterioles. Our modelling of the intramyocar-
dial arteries is based upon the morphometric scheme of Spaan [21] and distensiblity
diagrams found in [23]. In accordance with Spaan’s scheme, in each of the eight
sections of the myocardium (left ventricle) we regarded the whole system of the
intramyocardial arteries as a symmetrical tree-like structure with 10 generations.

Figure 4 shows an electric circuit diagram that represents the structure of the
arteries and arterioles. Unlike the electric circuit diagram for the epicardial arteries
in Figure 3, no symbols for the inductance (representing the inertance) appear in
Figure 4, since the effects of inertia are insignificant in all intramyocardial blood
vessels (inertance need not be considered).

However, there is an even much more important difference between epicardial
arteries and intramyocardial blood vessels, since the extravascular pressure in those
vessels does not have the value zero, but is equal to the intramyocardial pressure at
the particular position of the individual artery (arteriole) within the myocardium.

Moreover, we have to bear in mind that the intramyocardial pressure differs
considerably throughout the myocardium, and also changes over time during a
cardiac cycle. As discussed in § 2.2.3, the intramyocardial pressure will be high
in the zone close to the endocardial surface, but much lower near the epicardial
surface. For this reason, we divided each of the eight sections of the myocardium
into three layers of equal size — viz.

e a subendocardial layer,
e a mid-myocardial layer, and
e a subepicardial layer.

We treated the arteries of each generation in an individual layer as an array of
identical parallel tubes, with each array lumped together to form a single lumped
component of our lumped parameter model.

In § 2.2.3, we made the simplifying assumptions that the intramyocardial
pressure increases linearly from the epicardium to the endocardium. At the epi-
cardial surface, its value is equal to zero; and at the endocardial surface, it is equal
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FIGURE 4. Lumped circuit diagram for the representation of the intramy-
ocardial arteries.

to the pressure within the left ventricle. Moreover, we assume that the extravas-
cular pressure within each layer has the same value for all arteries and arterioles
within this layer. As previously mentioned, the arteries and arterioles of each layer
are represented by 10 lumped components. and the extravascular pressure of these
10 components will thus be the same. For the & individual layers (k = 1,2, 3), we
assume the extravascular pressure in the subendocardial layer to be

St (t) = 0.875PL(t), (3.24)
the extravascular pressure in the mid-myocardial layer to be
st (t) = 0.5P(t), (3.25)
and the extravascular pressure in the subepicardial layer to be
St (t) = 0.125PL(2), (3.26)

where Pr,(t) is the pressure in the left ventricle.

In conformity with the electric circuit diagram in Figure 4, we formulated
the model equations for the individual lumped components as follows.
The equations of continuity are of the form

t
l l [ l nstr
4 () = / (F90,(t') — £ o (#))dE -+ glopumst (3.27)
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with
fal'fllgn =[x
where
ql.‘jg (1) is the blood volume of lumped component [ in layer k of section 7,
q%,fjf"s” is the unstressed blood volume of lumped component [
in layer k of section j, and
iy is the volumetric rate of blood flow from the arterial system
in layer k of section j of the myocardium (left ventricle)
into the capillary bed, for
j=1,2,...,8 (8 sections of the myocardium, c.f. Figure 4),
k =1,2,3 (3 layers in each section, c.f. Figure 4) and
1=1,2,...,10 (10 generations, c.f. Figure 4).

The transmural pressure of all arteries (arterioles) belonging to the lumped com-
ponent [ in layer k of section j (the array of parallel tubes) is the difference

!
P () = pRt(t)
between

e luminal pressure péa,f ,(t) of all arteries (arterioles) that belong to the lumped
component [ in layer k of section j (the array of parallel tubes that is lumped
together) and

e the extravascular pressure p7“!(t) of layer k.

For each of the 10 generations in Figure 4, the nonlinear relationships between

e the transmural pressures péa,f ,(t) — pgUt(t), which refer to all arteries (arteri-
oles) that belong to lumped components of generation [, and
e the luminal cross-sectional area aéa,f ,(t) of all (identical) arteries (arterioles),
which belong to these lumped components as well as the blood volume qéa,f ()
of these lumped components,
are expressed

e in the case of generations =1 to =8, which contain conducting non-resistance

vessels, as
la ou n la

P8 = () = A (1)) (3.28)

and z
ay
la q',k,z(t)
a’jylgyl(t) = liy lgen (329)
Mkt U

for
j=1,2,...,8 (8 sections of the myocardium (cf. Figures 3 and 4))
k =1,2,3 (3 layers in each section (cf. Figure 4))
Il =1,2,...,8 (generations which contain conducting non-resistance vessels.
(cf. Figure 4)),
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where

A7 is a nonlinear function as depicted in the distensibility
diagrams contained in the literature [23],

e is the length of all the (identical) arteries (arterioles) which
belong to the lumped components of generation /; this length,
as mentioned above, is assumed as being constant and

nza,f ; is the number of all the (identical) arteries (arterioles)

which belong to the lumped component [ in layer k of
section j (array of parallel tubes which is lumped together); and

e in the case of generations /=9 and =10, which contain resistance vessels, as

! TypA [ 1
P (t) = ppt = N (ol 1) (3.30)
! TypB [ 1
PIAL6) — D2t = TP (ale 1)) (3:31)
and
lay
lay o Gea(t)
a’jykyl(t) — lay 19em (332)
3.k,0 1
for
j=1,2,...,8 (8 sections of the myocardium, c.f. Figure 4)
k =1,2,3 (3 layers in each section, c.f. Figure 4)
1=9,10 (generations which contain resistance vessels, c.f. Figure 4)
where
AgenTuPA g 4 nonlinear function as depicted in the distensibility diagrams
in the literature which refers to physiological conditions
at rest and
A9 TYPB g a nonlinear function as depicted in the distensibility diagrams

contained in the literature which refers to maximally dilated
resistance vessels.

The total pressure drop in a segment is

P (t) = Pyt () = R (6) Fi20,(0) (3.33)
and
la 1 la la
Friea(t) = Ry (pj,lg,l—l(t) _pjjil) (3.34)
3.k,

j=1,2,...,8 (8 sections of the myocardium (cf. Figures 3 and 4))
k =1,2,3 (3 layers in each section (cf. Figure 4))
l ,2,...,10 (10 generations (cf. Figure 4))

!
pio(t) = 5 (t)
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where

p5ei(t) is the luminal pressure of that segment (branch) j of the epicardial
arterial system which supplies its section
(perfusion territory) of the myocardium and
R;“Zl‘lly (t) is the (viscous) resistance to blood flow of lumped
component ! in layer k of section j, which is given
(approximately) by the Poiseuille formula
R (1) =8 i
k) = B

where p is the viscosity of the blood (assumed as being a constant).

(3.35)

3.4.2. Capillary bed. We treated the capillary bed as if it were an individual gen-
eration of the arterial system with one exception — viz. that the length of the
capillaries is no longer regarded as being constant. Thus we considered the changes
in length that occur during a cardiac cycle, based on the questionable assumption
that these changes are in proportion to the changes of length of the neighbouring
myocytes, to which the capillaries are connected [29]. Our depiction of the capil-
lary bed as arrays of parallel cylindrical tubes with laminar flow is of course an
oversimplification, which we had to make at this stage of development. In a future
version of the model, we intend to take into account the specific characteristics
of the blood flow in the capillary bed, which differs considerably from that in the
arterial system.

3.4.3. Intramyocardial veins and venules. As in the case of the epicardial vessels,
we treated the intramyocardial veins and venules in a manner similar to the in-
tramyocardial arteries and arterioles, again making the simplifying assumption
that the intramyocardial veins and venules can be regarded in a similar way as
the intramyocardial arterial system. We also had to make a few adaptations in the
dimensions, by employing distensibility diagrams of the intramyocardial veins and
venules, which differ from those of the intramyocardial arterial system.

4. Simulation studies with our lumped parameter model

We have already carried out several simulation studies with our model. In the
following, we present simulation results of the flow in the capillary bed (perfusion
territory) belonging to an arbitrarily selected branch of the epicardial arteries.

In these simulation studies, the perfusion pressures always remain within the
autoregulatory range.

We performed simulation runs under physiological conditions at rest, and
for two purely hypothetical cases of stenoses, assuming (unrealistically) that the
autoregulatory mechanisms do not come into play. By comparing the flow patterns
in the two cases with the flow pattern under physiological conditions, we gain a
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better insight into the adverse aspects of stenoses, and into the extent of the
necessary autoregulation, as described in § 2.2.4.

We have chosen the section (perfusion territory) of the myocardium that is
supplied with blood by the obtuse marginal branch of the epicardial arterial tree.
The flow into the capillary bed has been taken into consideration in presenting the
following simulation results, since the supply processes to the myocardium (oxygen
and nutrients) only takes place in the capillary bed.

For the hypothetical average adult, Figure 5 shows the volume flow into the
capillary bed belonging to the chosen obtuse marginal branch. This figure contains
three graphs, displaying:

e the volume flow in the case of physiological conditions at rest; and

e the volume flows in the two purely hypothetical cases of a single moderate
stenosis in the obtuse marginal branch (case 1: 55% stenosis, 0.45 cm long
and case 2: 70% stenosis, 0.45 cm long). [We thereby assume that the au-
toregulatory mechanisms do not come into play.|

As mentioned before, the above specification of the stenoses in terms of “percent
stenoses” refers to the reduction in the luminal cross-sectional area, expressed as
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FIGURE 6. Blood volume within the capillary bed belonging to the obtuse
marginal branch: comparison between physiological (normal) conditions and
the purely hypothetical cases of a 55%-stenosis and a 70%-stenosis (aortic
pressure curve “PA1”, represented by the thin line).

the percent of the cross-sectional area of the lumen that is unobstructed. Thus the
remaining luminal cross-sectional area at the position of the stenosis is respectively
45% or 30% of the unobstructed luminal cross-sectional area. For the hypothetical
average adult, Figure 6 shows the variation of blood volume with time in the
capillary bed belonging to the chosen obtuse marginal branch — viz.

e the blood volume in the case of physiological conditions at rest; and

e the blood volume in two purely hypothetical cases, involving a single moder-
ate stenosis in the obtuse marginal branch (case 1: 55% stenosis, 0.45 cm long
and case 2: 70% stenosis, 0.45 cm long), assuming that the autoregulatory
mechanisms do not come into play.

5. Simulation studies of the three-dimensional flow patterns
around an eccentric stenosis

As discussed in the Introduction, certain medical problems require simulation mod-
els produced via a distributed parameter modelling approach. A medical problem
area that requires a fair knowledge of the three-dimensional pattern of the dis-
turbed blood flow around stenoses is, for instance, the risk assessment and pre-
vention of thrombotic and thromboembolic events [3,44,45].
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5.1. Governing equations and their solution with the finite element method

We consider blood flow within the entire domain of the coronary arteries to be
laminar, and confine ourselves to steady state flow conditions at the end of the
diastole. As mentioned earlier, the model equations are now partial differential
equations — viz.

e the continuity equation and

e the Navier-Stokes equation,

and their three-dimensional versions are required. We solved these equations by us-
ing the finite element method. In doing so, we treated the blood as an incompress-
ible and homogeneous non-Newtonian fluid, which obeys the power law. Moreover,
it is necessary to specify initial and boundary conditions. We adopted “no slip”
conditions at the wall and “natural” boundary conditions at the outlet. At the
inlet, a paraboloid velocity profile was assumed as the boundary condition for our
case of a steady state flow at the end of the diastole. However, in our lumped
parameter coronary model for the entire circulation, we are able to calculate the
aforementioned boundary condition.

Geometry of the flow domain: We assumed a geometry typical for the proximal
segment of a circumflex artery with a severe eccentric stenosis. We made the sim-
plifying hypothesis that all luminal cross-sectional areas along the entire arterial
segment are ellipses. Figure 7a shows a wire-frame representation of the geome-
try of this diseased arterial segment. This Figure also contains the required nodes
for the generation of a mesh. Such a geometric model is called a meshable repre-
sentation of the geometry, or an empty mesh of the flow domain [46]. Figure 7b
illustrates the generation of a multi-block mesh.

(a) Meshable geometric representation of the  (b) Multi-block mesh generation approach:
flow domain (empty mesh) around an eccentric ~ generation of the mesh in one block of the flow
stenosis. domain.

FIGURE 7. Flow domain: wireframe model and mesh generation.
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5.2. Simulation results

We now present simulation results for the three-dimensional blood flow around the
central region of an eccentric stenosis in the circumflex artery.

Our finite element computations of coronary haemodynamics yield a wealth
of numerical data. However, excessively long lists of numerical data would be very
difficult to comprehend and to analyse. For this reason, the simulation results are
usually represented as surface plots, contour plots, fishnet plots, diagrams, and
other graphics.

The contour plots in Figures 8a and 8b show the spatial variation of an
especially important fluid mechanical quantity — viz. the shear stress in the central
region of the stenosis, under steady state flow conditions at the end of the diastole
and the assumption of rigid walls. Figure 7a shows the spatial variation of the shear
stress within the flow domain. The spatial variation of the flow-induced shear stress
along the inner arterial wall is depicted in Figure 8b. We confined ourselves to
this fluid-mechanical quantity, since the shear stress plays a key role in numerous
pathophysiological processes at the molecular and cellular level [45,47,48]. In both
figures, we used a three-dimensional Cartesian (OXYZ) coordinate system. The
Z-axis is the longitudinal axis of the stenosed artery and the X-axis lies in the
longitudinal cutting plane, where the stenosis possesses greatest eccentricity. The
simulation results in Figure 8a refer to the longitudinal cutting X-Z plane, whereas
those of Figure 8b represent the spatial variations of the shear stress along the inner
arterial wall.

(a) Contour plot of the variation of the shear  (b) Contour plot of the variation of the flow-
stress within the flow domain on longitudi- induced shear stress along the inner arterial
nal cutting plane; range 0.00dyn/cm2 to 48.93  wall; range 0.00dyn/cm?2 to 48.93 dyn/cm2.
dyn/cm2.

FIGURE 8. Simulation results: contour plots of the shear stress.
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6. Problem area of patient-specific modelling and simulation

To be of real clinical value, simulation studies of the coronary haemodynamic
must be carried out patient-specifically. Thus the simulation studies must be based
on the specific geometry and the mechanical properties of a particular patient’s
coronary vessels, so one must acquire the necessary geometric data of the patient,
which can only be derived from medical images. We confined our data acquisition
to the geometry of the epicardial arteries, because this subsystem of the coronary
circulation is most important for our modelling activities and shows considerable
anatomical variation from individual to individual.

At present, the preferred imaging modality to fulfil this task remains biplane
angiography, where the images are obtained by using a biplane angiography sys-
tem that consists of two “X-ray tube — image intensifier” pairs. The X-ray tubes
cast shadows of the coronary arteries, when filled with a contrast medium, onto
image intensifiers. The resulting two images are called biplane angiograms. In
both angiograms, the coronary artery tree must be segmented, and subsequently
its structure three-dimensionally reconstructed. In clinical settings, both the seg-
mentation procedures and the three-dimensional reconstruction should be carried
out (computed) entirely or largely automatically. In the case of our simulation
studies of three-dimensional blood flow around stenoses, we must also generate a
high-quality mesh in order to apply the finite element method. Unfortunately, our
recently developed algorithms (to undertake the tasks largely automatically) are
extremely expensive in terms of computing time, and require parallel computation.
Acquisition of the geometry of the intramyocardial vessels and the epicardial veins
is also much more difficult than for the epicardial arteries, another topic for future
research.

6.1. Segmentation methods

As previously mentioned, a fair knowledge of the geometry of the epicardial arter-
ies is a prerequisite for our patient-specific modelling approach, and the geometry
of the patient’s coronary (epicardial) arteries is preferably derived from biplane
angiograms. Complicated and computationally expensive image-processing meth-
ods are required to carry out a segmentation of the coronary artery tree — i.e., to
separate the tree-like structure of the epicardial arteries in the angiograms from
the rest of the images, especially from background structures.

Overview of our segmentation approach: Figure 9 shows a biplane angiogram
(Projection A) of the contrast-medium-filled epicardial arteries. We have to allow
for noise and background structures — and the finite focal size of the X-ray tube
causes a considerable geometric blurring, which leads to a deterioration of the
image quality. Despite the availability of advanced image-processing software, per-
forming such a segmentation continues to be an extremely difficult and challenging
task. After it became clear that the straightforward application of classical image-
processing methods would fail, we developed an advanced segmentation technique
using our a priori knowledge that the coronary (epicardial) arteries have a tree-like
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FIGURE 9. Angiogram: one projection (projection A) acquired with a bi-
plane angiography system.

tubular structure with sections of different size. Thus we detected the represen-
tation of the coronary artery tree (X-ray shadow of the contrast-medium-filled
arteries) despite the noise, background structures, artefacts and other weak
spots of the angiograms — by using special Hessian filters and applying skeleton-
ising procedures. We devised a special software module to detect the borderlines
of the coronary artery tree, which also permits a correction of geometric blurring
effects. Our segmentation procedures can therefore be divided into three phases
— viz.

e the Hessian artery enhancement filtering phase,

e a skeletonising phase, and

e the borderline detection phase,

described in more detail below.

Hessian artery enhancement filtering phase: Our approach is based on a differen-
tial-geometric criterion, relying on the values of so-called vesselness functions de-
rived from Gauss-filtered angiograms. Our Hessian-based vessel enhancement filter
involves a multi-scale filtering procedure, so it can be used for epicardial arteries
of any size. This filtering approach involves the repeated execution of the following
steps:

e Gaussian smoothing;

e calculation of a vesselness function, using the eigenvalues of the Hessian ma-
trix of the grey scale function; and

e representation of the vesselness function as a grey scale image.

We vary the value of the standard deviation of the Gaussian filtero; (i = 1,2, ..., N)
within an appropriately chosen range. For each i, we calculate the Hessian matrix



Simulation Model 185

V4(X) for 04=2 Vn(¥) for on=5

FIGURE 10. Hessian artery enhancement filtering approach: family of ves-
selness functions V;(Z), : =1,2,...,N.

H;(Z) for each pixel & of the filtered grey scale image (filtered angiogram), and
also the eigenvalues A ;(Z) and A2 ;(Z). In the region of tubular structures, we
have

[A1,:(Z)] > |Ao,s(Z)] . (6.1)

The family of N vesselness functions [49] for ¢ = 1,2, ..., N is defined as follows:

Vi(@) = {0 o o @eos
P (‘ 25,7 ) [1 —exp (— ) )] otherwise ,
in which
Rei(@) = iiﬁi? (6.3)
and
S; (%) = \/Au(f)? + Ao (8)2 (6.4)

The scaling factors 8; > 0 and (2 > 0 influence the sensitivity of V;(Z) to Rp (%)
and S;(Z), respectively. Here V;(Z) is restricted to the interval [0,1], where the
value 0 shows the indicated position in the image does not bear any resemblance
to a tubular structure, whereas values close to 1 denote a significant similarity to
the structure of a vessel. The family of N vesselness functions V;(Z) is represented
as a series of N grey-scale images. Figure 10 shows such individual images o;,
each representing the vesselness function for a particular value of ;. This family
of images is the basis for the subsequent skeletonising phase.

Skeletonising phase: From the family of filtered images just described, we extract
a new grey-scale image by computing the maximum intensity projection (cf. Fig-
ure 11). This new grey-scale image reveals the crude structure of the coronary
arterial tree. By thresholding, we generate a binary mask and then apply a thin-
ning filter to obtain a skeletonised angiogram. Such a skeletonised image is shown
in Figure 12.
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(@) (b)

FIGURE 11. Skeletonising approach: maximum intensity projection:
(a) procedure; (b) resulting image.

FIGURE 12. Skeletonising approach: skeleton after applying a thinning filter.

Detection of borderline phase: The third phase of our segmentation process in-
volves the application of algorithms to detect the borderlines (edges) of the rep-
resentation of the coronary arteries in our angiograms. This borderline detection
is a complicated procedure, and the computationally most expensive stage of the
segmentation process.

We first obtain a smooth approximation to the discrete set of points (pixels)
of the skeleton image by using splines (approximating splines), which may be re-
garded as preliminary centrelines of the coronary arteries. The tree-like structure
of these splines is superimposed onto the original image (angiogram). At rela-
tively short intervals, we draw normals to these splines that we call scan lines.
Along the scan lines we acquire the intensity profiles and then analyse each of
them thoroughly, on considering an interval that is marginally larger than the
expected maximal size of the coronary (epicardial) artery. Principally due to the
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finite focal spot size (apparent focal spot size) of the X-ray tubes, the relatively
small coronary arteries become considerably distorted by blurring. We developed
a special method to process these intensity profiles and so accurately determine
the borderlines, using newly-developed algorithms that eliminate error caused by
the blurring (cf. [50] for further details).

6.2. Three-dimensional reconstruction

We developed a special method for the three-dimensional reconstruction of the
epicardial arteries, involving the following steps (cf. again [46] for more detail):

e automatically construct the centreline in the three-dimensional space, using
a space curve (spline curve) that passes through the points of intersection of
the back projection rays belonging to the individual pairs of corresponding
points (epipolar constraints);

e automatically construct the normal planes at each of these points of inter-
section located on the space curve; and

e draw back projection rays from selected points of the borderlines, in both
projections. The back projection rays in the vicinity of a pair of corresponding
points are intersected with the normal plane that passes through the point of
intersection belonging to this pair. We define four curves that pass through
the aforementioned points of intersection on a normal plane. Subsequently,
we construct an ellipse that approximates the aforementioned four curves.
This ellipse is regarded as belonging to the inner surface of the coronary
artery under consideration. In this way, we obtain a basic wire frame model
of the arterial section.

6.3. Image-based generation of a high-quality mesh

We now give a brief summary of our image-based mesh generation procedures, for
stenosed sections of the epicardial arteries. We used a structured mesh with hex-
ahedra as elements, and a multi-block approach. To obtain a high-quality mesh,
we adapted the size of the elements to the flow conditions. As such an adaptive
procedure with an a posteriori error analysis would consume too much time, we de-
cided to employ specific a priori criteria. Although our criteria are heuristic, they
nevertheless reflect a fair quantitative a priori knowledge relevant to the coronary
artery under investigation, derived from a posteriori analyses of flow patterns in
so-called reference flow domains which are computed with extraordinarily high
accuracy. Heuristic a priori criteria are frequently taken as the basis for mesh gen-
eration in computational fluid dynamics, but we recognised that such qualitative
criteria often reflect engineering experience and are not always reliable — so from
the outset we aimed at better criteria for the mesh adaptation, by using quantita-
tive a priori knowledge. However, at this stage of development we restricted our
attention to mesh generation for concentric stenoses and stenoses with a relatively
low degree of eccentricity. We defined a series of reference flow domains that are
axially symmetric, by systematically varying the luminal diameter of the stenosed
arterial section and other characteristics of the geometry of the stenoses. In each
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reference domain, we generated an extremely fine mesh to compute the flow via
the finite element method. Because we used such an extraordinarily fine mesh, we
have confidence in the high accuracy of our computations for a particular reference
domain. The obtained solution is regarded as being close to the exact solution. We
performed an analysis based on this solution — specifically, we used a local error
estimate for approximate solutions obtained with meshes comprising elements of a
size that would allow an efficient computation of the solution with a pre-specified
accuracy. (We restricted ourselves to the interpolation error, explicitly neglected
all other sources of error, and applied Cea’s Lemma.) Our goal was to determine
the characteristics (size of the elements) of an optimal mesh for the particular ref-
erence domain and a pre-specified accuracy. From the results for all the specified
reference flow domains we built a look-up table. This task can be completed before
any patient-specific simulation studies are carried out. Based on the data contained
in this table, we are able to generate a high-quality mesh of our stenosed sections
of the coronary arteries within a relatively short period of time. This is beneficial
to cardiologists who cannot wait too long on simulation results. However, we have
to bear in mind that in reality the flow domains are not axially symmetric, even
for stenoses which cardiologists classify as being concentric, so meshes need to be
generated in genuine (not axially-symmetric) three-dimensional flow domains. We
exploited results from our heuristic approach for (axially symmetric) reference flow
domains as a priori criteria for more general mesh construction as follows. From
the look-up table, we selected the data for the two reference flow domains that
come closest to the previously calculated parameters of the stenosed section of the
coronary artery under investigation; and from those two reference flow domains,
we chose the one with the data that would produce a finer mesh. We employed
this data as the control data for generation of the mesh in the flow domain within
the stenosed section under investigation (cf. also [46]).

7. Implementation aspects — GRID environment

The development and implementation of our software is being done within the
framework of the Austrian GRID, a newly-established computational GRID ar-
chitecture. We take complete advantage of the powerful resources incorporated in
this GRID, to fully exploit the possibilities afforded by parallelism. Apart from its
potential for high-performance computing, the GRID can give all the cardiologists
in a geographic region equal access to our software [50,51].

The image-processing tasks and the three-dimensional reconstruction and
mesh generation tasks described above are computationally extremely expensive.
Fortunately, these tasks can be subdivided into numerous weakly coupled sub-
tasks, each requiring comprehensive computations. This coarse-grain parallelism,
in which the individual tasks are largely independent of one another, is well suited
for the assignment of subtasks to clusters of workstations incorporated in the
GRID — i.e., the supercomputers integrated in the GRID architecture are very
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suitable for future numerical simulation of three-dimensional blood flows based on
the finite element method.

8. Concluding remarks and future work

We described a lumped parameter model and presented simulation results obtained
with this model. Further, we dealt with simulation studies of the three-dimensional
blood flow around an eccentric stenosis. We demonstrated that, even at this stage
of development, our lumped parameter modelling and simulation facilities can help
in carrying out clinical assessments.

However, the present model has various imperfections that limit its diagnostic
performance capacity, so the model will be enhanced and refined in the future. We
aim to make the following improvements:

e incorporate individual patient geometry of the epicardial arteries in our model
(presently confined to a hypothetical average adult);

e make a detailed and more precise treatment of the control of the coronary
flow, especially of the autoregulation;

e include the viscoelastic properties of the vascular walls, not yet taken into
account;

e introduce a more detailed description of the coronary microcirculation, espe-
cially a more precise description of the changes of dimension of the capillary
bed over time; and

e employ a more sophisticated auxiliary model for the entire cardiovascular
system.

Another unsolved issue is that our model is based on the assumption that the ex-
travascular pressure of the intramyocardial vessels is equal to the intramyocardial
pressure. We also worked with the simplifying assumption that the intramyocar-
dial pressure is strongly dependent on the position within the myocardium — at
the endicardial surface, its value is almost identical to the pressure within the
left ventricle, and decreases linearly to zero at the epicardial surface. However,
as pointed out in [22,37, 38], this does not exactly accord with reality. In future,
we plan to provide a more realistic description of the interactions between the
contracting myocardium and the coronary blood flow.

We also plan to reconsider other modelling features, especially our lumped
parameter modelling approach, such as the possible formation of collaterals. Until
now, we have taken for granted that the coronary arteries have a strict tree-like
structure, which is essentially true under physiological conditions. However, in such
a strict hierarchical system of conduits we can only identify one transport path
from the inlet of the coronary artery tree to a particular capillary. Consequently,
each epicardial branch of the coronary artery tree is exclusively responsible for the
blood supply to a particular section of the capillary bed in the myocardium — i.e.,
each epicardial branch has its own perfusion territory. Usually, no efficacious col-
lateral connections between the individual perfusion territories exist under phys-
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iological conditions. However, in coronary artery disease, an effective collateral
vasculature may develop, so the number of collateral conduits and their size are
strongly dependent on ischemic history. In such a meshed arterial structure, there
can be two or even more paths for the transport of blood to a particular part
of the capillary bed. It may then become possible to supply the primary perfu-
sion territory of a severely obstructed or even occluded arterial branch with blood
from another branch of the arterial tree via these collateral conduits. We plan
to extend our lumped parameter modelling by incorporating lumped components
into the model that describe the blood flow through the collateral conduits. The
parameters of these lumped components can be determined on the basis of three-
dimensional perfusion imagery (PET, SPECT, MRI). In doing so, we need to solve
a complicated inverse problem.
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Santo Motta, Pier-Luigi Lollini and Francesco Pappalardo

Abstract. Living organisms are natural complex systems where mathematical
modelling may play a crucial role, since a model can be built with imperfect
knowledge of some related phenomenon and model parameters (initial data,
entities, relations between entities) can be adjusted to fit modelling results to
experimental measurements. The model can then be used to understand the
general behaviour of the phenomenon in different situations, to perform model
experiments or simulations, to understand the role of single constituents and
relations, to plan new experiments, or to test theoretical assumptions and
suggest theory modifications. Modelling can therefore stimulate scientific cre-
ativity and produce better theoretical descriptions of the reality. We describe
here our efforts to devise models of the immune system, and in particular the
competition between immune defences and tumor cells. An agent-based model
of the effects of a vaccine designed to prevent mammary carcinoma incidence
in transgenic mice was developed. This model faithfully summarises not only
the outcome of vaccination experiments, but also the dynamics of immune
responses elicited by the vaccine. A genetic algorithm was used to drive the
model and predict optimised vaccination schedules, which are currently being
tested in vivo. The implications of biologic diversity on model development
and perspectives to develop natural-scale models of the immune system are
also discussed.

Mathematics Subject Classification (2000). Primary 99Z99; Secondary 00A00.
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1. Introduction

A vaccine is an antigenic preparation used to establish immunity to a disease.
Vaccines can be prophylactic (e.g., to prevent or ameliorate the effects of a future
infection by any natural or “wild” pathogen) or therapeutic (e.g., vaccines against
cancer). A vaccine against a particular bacterium or virus is relatively easy to
create, since bacteria and viruses are foreign to the body and therefore antigens the
immune system can recognise are expressed. Furthermore, there are usually only
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a few viable variants of a particular virus. However, when viruses like influenza or
HIV continually mutate, it is much more difficult to develop appropriate vaccines.

The picture is also different for a cancer vaccine, which is often a process
whereby a person’s immune system is coaxed into recognising and destroying ma-
lignant cells without harming normal cells. Most cancer vaccines in development
by pharmaceutical companies are therapeutic and address specific cancer types.
A cancer vaccine is generally considered an immunotherapy, because it is not pre-
ventive and is only administered after cancerous cells have developed — unlike
prophylactic vaccines against diseases such as polio, influenza, and tuberculosis.
Moreover, a tumor can contain many different types of cells, each with different
cell-surface antigens. Tumor cells are corrupted normal cells and therefore display
few if any antigens that are foreign to an individual, which makes it difficult for
the immune system to distinguish cancer cells from normal cells.

Cancer Immunotherapy is the use of the immune system to reject cancer.
The main premise is that the patient’s immune system may be stimulated to
attack the malignant tumor cells. This can be either through immunisation of
the patient, in which case the patient’s immune system is trained to recognise
tumor cells as targets to be destroyed, or through the administration of therapeutic
antibodies as drugs that recruit the immune system to destroy the tumor cells.
However, many kinds of tumor cell that arise as a result of the onset of cancer
are more or less tolerated by the patient’s immune system, since it responds to
environmental factors encountered on the basis of discrimination between self and
non-self. These tumor cells are essentially the patient’s own cells that grow, divide
and spread without proper regulatory control. On the other hand, many tumor
cells do display unusual antigens that are either inappropriate for the cell type or
its environment (or both), or are normally only present during development. Other
tumor cells display cell surface receptors that are rare or absent on the surfaces of
healthy cells, and which activate cellular signal transduction pathways that cause
unregulated growth and division of such tumor cells.

Nevertheless, despite any recognition difficulty the immune system plays
an active role in preventing tumor formation, as is evident from the study of
genetically-modified models (GEM) of mice designed to lack immune responses.
This simplified scenario shows that modelling the action of a cancer vaccine implies
a model of the stimulated immune response — i.e., a model of how the immune
system works. Our knowledge of the immune system (e.g., see [16]) is incomplete,
but mathematical modelling can provide a better understanding of its underlying
principles and organisation, which should ultimately help in the development of
new treatments and therapies for various human diseases. The immune system ap-
pears to be a distributed system that lacks central control, but which nevertheless
performs its complex task in an extremely effective and efficient way. Modelling
such a complex system requires the application of knowledge and methodology
from disciplines such as applied mathematics, physics and computer science.

In this paper, we review our efforts in approaching this topic, point out major
open problems, and pose questions on directions for further investigation. The
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role of mathematical modelling in biology is discussed in §2. In §3 we describe our
model for a cancer immunoprevention vaccine, and our first attempt to understand
biological diversity using our simulator. In §4 we draw conclusions and consider
future plans.

2. Modelling purposes and scales
2.1. Modelling purposes

A scientific endeavour often begins with the observation of natural phenomena,
followed by a classification of the observed phenomena, mostly according to its
morphological aspects. Thus one may know the entities taking part in a particular
phenomenon but have little or no knowledge of the rules that regulate it, and so
first formulate hypotheses and heuristic or qualitative theories to suggest how it
can be described and explained. However, a quantitative theory is often needed to
describe the observations or experimental results. Mathematical models are quan-
titative representations of phenomena built up in the framework of a theory using
the language of mathematics, used in a broad sense to include approaches based on
computer simulations. A mathematical model is appropriate only if a theory uses
(and predicts) measurable quantities and gives relations between them — i.e., mere
qualitative explanations of a phenomenon are not sufficient to construct a model.

The scientific method of course involves the general or qualified acceptance of
a theory as long as it continues to explain the observed data and its predictions are
verified. Nevertheless, one often faces the problem of how to proceed in scientific
research given incomplete and imperfect knowledge. Theories and models are ipso
facto imperfect representations of reality, and to keep models tractable we typi-
cally introduce simplifications and approximations when describing real phenom-
ena. Furthermore, models need to be tested against experimental measurements,
and discrepancies often suggest modifications of a theory or its underlying assump-
tions. Results from models may also suggest new experiments to verify the theory.
The theory-model-experiment loop works clearly and efficiently when complex phe-
nomena can be analysed in terms of simple rules and entities. An example is the
modelling of complex electric circuits using the entities and rules of simple circuits.
However, there are situations where complex phenomena cannot be studied by re-
duction to simpler ones — e.g., if the rules are not deterministic, or the phenomena
have chaotic behaviour, or if collective effects play new and important roles. In the
life sciences, it can be extremely difficult to isolate and study the behaviour of single
constituents. Even when this is possible, many of the properties of living organisms
are due to collective effects (populations) and in most cases these are not determin-
istic. Moreover, living organisms are the product of evolution. New mechanisms
have been built up by nature in order to solve new problems, even though the old
mechanism may persist and play a role in special situations. In this sense, redun-
dancy is a feature of living organisms — i.e., a specific function can be analyzed by
different parts of the system in order to recover system errors and malfunctioning.
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Living organisms are natural complex systems. Modelling may therefore play
a crucial role, since models can be built with imperfect knowledge of some phenom-
enon and the model parameters (initial data, entities, relations between entities)
can be adjusted so that modelling results fit experimental measurements. Such
models can then be used to understand the general behaviour of the phenomenon
in different situations, perform “model experiments” or “simulations” to under-
stand the role of single constituents and relations, to plan new experiments, or
to test theoretical assumptions and suggest theory modifications. Modelling can
therefore stimulate scientific creativity and produce better theoretical descriptions
of the reality.

2.2. Modelling scales

A particular theory or model may describe natural phenomena on some given scale,
for there is often a hierarchy of different scales. Choosing the scale may depend
on which aspects of the phenomena, from micro to macro, one intends to repre-
sent. This is a well-known feature in physics, but in biology and immunology the
definition of scale may be more ambiguous. A basic reference unit can be the cell,
irrespective of its physical dimension, when one may define three basic scales —
viz. the subcellular scale, the cellular scale and the macroscopic scale. Thus Bel-
lomo et al. [4] proposed a classification for tumor evolution and its interaction with
the immune system, which we adapt for our purposes as follows:

e the microscopic or subcellular scale refers to the main activities within the
cells or at the cell membrane — e.g., genetic changes, distortion in the cell
cycle and loss of apoptosis, expression and transduction of signals between
cells, etc.

o the cellular scale refers to the main (interactive) activities of each cell, e.g.,
activation and proliferation of cells

e The macroscopic scale refers to phenomena which are typical of continuum
systems. For instance: cell migration, convection, diffusion of antibodies.

Phenomena identified at one scale may be related to another scale. For instance,
interactions developed at the cellular level are ruled by processes performed at
the sub-cellular scale. Indeed, the immune system shows interesting phenomena
on each scale, and phenomena on the different scales are related.

Theories and models developed at the microscopic or subcellular scale deal
with evolution of the physical and biochemical state of a single cell. The evolution
of a cell is regulated by genes contained in its nucleus. Receptors on the cell sur-
face can receive signals transmitted to the cell nucleus, where the cell genes can
be activated or repressed. Particular signals can be responsible for identical cell
reproduction, or they can induce programmed cell death or apoptosis. Modelling
the overall activity of a single cell is a very difficult problem, as many biological
details are unclear or unknown. Biologists, mathematicians, physicists, computer
scientists and engineers have combined to develop and use mathematical and com-
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puter science techniques in modelling sub-cellular phenomena. Many references
can be found in PubMed and specialised symposia (e.g. [?]).

At the cellular scale, one is interested in the evolution of a system consisting of
a large number of different cells. Cell interactions are regulated by signals emitted
and received by cells through complex recognition processes. The connection with
the sub-cellular scale is evident, but now one may ignore the details of single cell
models and consider their outcome in the large system. This is analogous to what
is done in modelling complex circuits, where the electronic component elements
are replaced with equivalent circuits. The overall system may be described in a
fashion familiar from statistical mechanics and the theory of cellular automata or
gases and plasmas, where observable quantities are obtained by suitable moments
derived from statistical distributions.

At the macroscopic level, one is interested in describing the dynamical be-
haviour of observable quantities — in most cases the densities of various enti-
ties — using techniques from the framework of continuum phenomenological theo-
ries. This is analogous to using Lotka—Volterra equations in population dynamics.
Fitting the model parameters to the experimental data is always necessary to
validate the model, which may involve ordinary or partial differential equations.
Nonlinearity is an intrinsic feature, which leads to some sophisticated mathemat-
ical problems.

3. Modelling in immunology

3.1. Modelling the immune system

Models in immunology must take into account some general features of the im-
mune system. The most relevant are uniqueness, distributed detection, imperfect
detection and adaptability [10]. Uniqueness means that the immune system of each
individual is unique and therefore vulnerabilities differ from one system to another.
Distributed detection indicates that the small and efficient detectors used by the
immune system are highly distributed, and not subject to centralised control or
coordination. Imperfect detection means the immune system does not require the
absolute detection of every pathogen, so the system is more flexible in allocating
resources. Anomaly detection is the property of the immune system by which it can
detect and react to pathogens that the body has never encountered before. Adapt-
ability (or learning and memory) is the ability of the immune system to learn and
remember the structures of pathogens, so that future responses to the pathogens
can be much faster. These properties result in a system that is scalable, resilient
to subversion, robust, very flexible, and which degrades gracefully.

The major problem that the immune system solves is distinguishing between
self and non-self. Actually, the success of the immune system is more dependent
on its ability to distinguish between harmful non-self and everything else. This is
a difficult modelling problem, because the diversity of non-self patterns is much
greater than self ones, the environment is highly distributed, the body must con-
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tinue to function all the time, and resources are scarce. The immune system solves
all this by using a multi-layered architecture of barriers — viz. physical (the skin),
physiological (e.g., pH values), and the cells and molecules of the innate and ac-
quired immune response.

Systemic models of immune responses have mainly been devoted to collective
effects of various immune system constituents. These models do not study single
cells or single molecules, but focus on cell interactions and collective behaviour
in the initiation, control, and mounting of immune responses. Inside the scale
framework, these models focus on cellular and macroscopic levels. The panorama
of immune system models is quite broad. Nevertheless, all of these models are
based on two biological theories underpinning our understanding of the immune
system — viz. the clonal selection theory [5] and idiotypic network theory [11-13].
Nowadays, immunologists consider these two independent theories as mutually
complementary and consistent. However, while clonal selection theory is believed to
be the fundamental theory for understanding our modern knowledge of the immune
system, the idiotypic network theory is believed to be correct as far as the existence
of anti-idiotypic reactions is concerned but it is probably not relevant to controlling
the immune response. Most macroscopic level models, also referred to as continuous
models, have been formulated using the framework of both immunological theories
[24,25]. The cellular level models, also referred to as discrete models, are mostly
based on the idiotypic network theory.

The main task of the immune system is to perform a pattern recognition, us-
ing cellular receptors to recognise target antigens. The binding mechanism, mostly
unknown in detail, is based on different physical effects such as short range non-
covalent interactions, hydrogen binding, van der Waals interactions, etc. [25]. A
cellular receptor can recognise its target epitope if their surfaces have regions of
extensive complementarity similar to the key and lock mechanism. Perelson and
Oster [26] considered the constellation of features to be important in determining
binding among molecules the generalised shape of the molecules.

Assuming this shape can be described by an 7 parameters, then a point in
an 7-dimensional space (shape space) specifies the generalised shape of a receptor-
binding region, so they estimated that to be complete the receptor repertoire
should satisfy the following conditions: (i) each receptor can recognise a set of
related epitopes, each of which differs slightly in shape; (ii) the repertoire size
is of the order of 10° or larger; and (iii) at least a subset of the repertoire size is
distributed randomly throughout the shape space [25]. Farmer et al. [8] introduced
binary strings to represent shapes of receptors and epitopes, which enabled the
use of numerous readily available string matching algorithms that determine the
degree of complementarity between strings. Discrete models of the immune system
widely use this representation, to describe interactions between cell receptors and
antigens. Continuous models use affinity functions, which globally represent the
interactions between the cell population and the antigen population, and crucially
determines the behaviour of the model.
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3.2. Modelling tumor vaccines

The investigation of tumor immunity has led to many clinical attempts at curing
human tumors (immunotherapy). Once a therapeutic agent has demonstrated its
efficacy, it can be approved by regulatory agencies for routine use. An evaluation
of the preclinical results of vaccines in mouse models shows a clear dichotomy
between their therapeutic and prophylactic uses. In most instances, vaccination
before the challenge (prophylactic vaccination) prevents tumor growth, whereas
vaccination after the challenge (therapeutic vaccination) is much less effective.
Tumors are caused by a combination of exogenous and endogenous factors.
Cancer immunoprevention is based on the use of immunological approaches to
prevent solid tumors, rather than to cure cancer. This is mostly important in
tumors caused by endogenous carcinogens, where cancer cells are continuously
formed from corrupted normal cells. Cancer immunoprevention vaccines are based
(like all vaccines) on components which give the immune system the necessary
information to recognise tumor cells as harmful. Consequently, the cancer vaccine
must be administered for an entire lifetime — i.e., the immune response induced
by the vaccine must be maintained in a host for his entire life. Further, although
a typical vaccine may not eliminate all tumor cells, it can stabilise them to a safe
level. Moreover, a vaccine that is effective for a large population is very seldom
optimal for a single individual, although efforts in this direction started a few
years ago (e.g., see [6]). With regard to translation of cancer immunopreventive
approaches to humans, it is desirable to minimise the number of vaccinations in a
personalised schedule. In this paper, we report results from a first approach in the
search for an optimal personalised schedule of a cancer immunoprevention vaccine.
The Triplex vaccine [7,14,19] was designed to improve the efficacy of existing
immunopreventive treatments. A standard approach in oncology was adopted —
viz. combining multiple immune signals in the same vaccine. The Triplex vaccine
combines the target antigen with two “adjuvant” stimuli, interleukine 12 (IL-12)
and allogeneic histocompatibility molecules (MHC). The main purpose of IL-12
is to enhance antigen presentation and helper T cell (Th) activation in response
to the antigen. Allogeneic MHC molecules stimulate multiple T cell clones, and
cause a broad production of immunostimulatory cytokines that amplify immune
responses. A complete prevention of mammary carcinogenesis with the Triplex
vaccine was obtained when vaccination cycles started at age 6 weeks of age and
continued for the entire length of the experiment of about one year (Chronic vacci-
nation) [7]. The major unresolved issue with the Triplex vaccine is whether or not
the Chronic schedule is the minimal set of vaccinations to provide complete long-
term protection from mammary carcinoma. Shorter vaccination protocols failed to
prevent cancer — but between the Chronic and shorter protocols, there is a large
set of schedules that might yield complete protection with significantly fewer vac-
cinations than the Chronic schedule. A large set of experiments to investigate this,
each lasting one year, would be a feat to discourage any biological team from the
pursuit of an experimental solution in vivo. In our modelling approach, we first
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developed a vaccine computational model that specifically addressed mammary
cancer for a vaccine previously studied and tested in vivo by the cancer immunol-
ogists group at the University of Bologna, and then used the model to search for
a better schedule than the Chronic one.

3.3. The model

To describe the cancer - immune system competition one needs to include all the
entities (cells, molecules, adjuvants, etc.) that biologists recognise as relevant. In
our case, the choice of entities was driven by the experimental data on the Triplex
vaccine, where the relevant entities (the cells or molecules) have mechanical and
biological states — viz. position, lifetime, internal states and specificity. Position
and lifetime apply to all, but internal states only to cellular entities, and specificity
to both cellular and molecular entities.

The Catania Mouse Model (CMM) described previously [18,20] was imple-
mented in a simulator called SimTriplex using a Lattice Boltzmann-like approach,
including the entities (cells and molecules) of the adaptive and natural immune
system, the Cancer and the vaccine. The immune system entities are B Cells (B),
Antibody Secreting Plasma Cells (PLB), T-helper lymphocytes (TH), T-cytotoxic
lymphocytes (TC), Macrophages (MP), Dendritic Cells (DC), Interleukin-2 (IL-2),
Immunoglobulins (IgG), Danger Signal (D), Major Histocompatibility Complex
Class I (MHCI), Major Histocompatibility Complex Class II (MHCII) Immuno-
complexes (IC), Natural Killer Cells (NK). Cancer cells and Vaccine components
are: Cancer Cells (CC), Tumor Associated Antigens (Ag), Vaccine Cells (VC),
and Interleukin-12 (IL-12). All of the various classes of immune functional activ-
ity, phagocytosis, immune activation, opsonisation, infection and cytotoxicity are
described using probability functions and translated into computational rules.

An interaction between two entities is a complex stochastic event, which
may end with a state change of one or both entities. Interactions can be spe-
cific or non-specific. Specific interactions need a recognition phase between the
two entities (e.g., B > TAA). Recognition is based on the Hamming distance and
affinity function, and is eventually enhanced by adjuvants. We refer to positive
interaction when this first phase occurs successfully. Non-specific interactions do
not have a recognition phase (e.g., DC ++ TAA). When two entities that may
interact lie in the same lattice site, they interact with a probabilistic law. Both
specific and non-specific interactions are stochastically determined using a prob-
ability function, which depends upon different parameters computed via random
number generators. Changing the seed of the random number generator yields a
different sequence of probabilistic events. This simulates biological differences be-
tween individuals who share the same event probabilities. An overall scheme of
the interactions included in the CMM is shown in Fig. 1, which shows how the
vaccine interacts with the different components of the immune system and elicits
cytotoxic (left side) and antibody (right side) responses that kill tumor cells.

After appropriate tuning of the model, the in silico simulations were able
to reproduce the in vivo experiments using two independent sets of 100 different
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FIGURE 1. Interactions included in CMM model and simulator

virtual mice [20]. This result was achieved using a bitstring representation of length
I = 12. The repertoire we represented was then 2!2 = 4096, which is very poor
compared with the natural scale repertoire of 1016 + 1018,

3.4. Search for an optimal schedule

When a newly designed vaccine is ready to be administered for the first time in
vivo, whether to mice or to humans, the schedule is designed empirically — using
a combination of immunological knowledge, vaccinological experience from pre-
vious endeavours, and practical constraints. In subsequent trials, the schedule of
vaccinations is then refined on the basis of the protection elicited in the first batch
of subjects and their immunological responses — e.g., kinetics of antibody titers,
cell mediated response, etc. The problem of defining optimal schedules is particu-
larly acute in cancer immunopreventive approaches like the Triplex vaccine, which
requires a sequence of vaccine administrations to keep a high level of protective
immunity against the continuing generation of cancer cells over very long periods,
ideally for the entire lifetime of the host.

In searching for an optimal schedule, we tried different strategies. The first
was “trial and error”. We set successively repeating cycles of injections at dif-
ferent stages of virtual mouse age, and the simulator was used to determine the
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Number of vaccine administrations

Chronic (85%-100%) Heuristic (75%-96%) Genetic algorithm (multi) Genetic algorithm (single)
(88-91%) (20%)

FIGURE 2. Progression in reducing the number of vaccine administration.
The percentage of tumor-free mice at the end of the experiment is indicated

in parenthesis.

survival of vaccinated mice. In this way, we found an effective schedule of only 44
vaccinations — i.e., 27% less than the standard Chronic protocol [18]. A second
search strategy was based on genetic algorithms [17]. Attempts at using an un-
constrained genetic algorithm on a single mouse [21] led to the conclusion that an
effective schedule for that mouse does not protect against solid tumor formation in
a large (~83%) set of mice, due to biological diversity. (All biological experiments
are affected by natural immunological variability, resulting from subtle individual
variations in the generation of the immunological repertoire and interactions with
environmental variables [7].) We then concluded that a genetic search should si-
multaneously take different simulated individuals into account, and consequently
we were able to find a 35 injections schedule [15]. Figure 2 shows the number of
vaccine administrations for different schedules, together with the percentage of
survival of the individuals in the trial sets.

3.5. Searching for a personalised protocol

As already mentioned, a property of living organisms is biological diversity. This
diversity originates from fundamental constituents of the organism like DNA se-
quences, and changes in the organism due to interactions with its environment.
Consequently, each organism reacts in a different manner to an external stimulus
like a drug or a vaccine. Personalised medicine has recently attracted the interest
of many researchers. Most of these studies try to optimise a drug’s efficacy by
identifying the best dose and schedule in drug administration [2,3]. Minimisation
of drug toxicity is also an important goal.

A vaccination schedule is a series of vaccine administrations at different times.
The ideal administration times and the number of administrations are peculiar to
each individual organism, and the efficacy depends on both the time of adminis-
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tration and the number of administrations. In a protocol for the entire population,
efficacy can be achieved only by inserting extra administrations, which somehow
balance errors in administration times. Efficacy of the treatment for a single mouse
can be achieved with roughly 1/3 less administrations than in the Chronic case (cf.
Fig. 2). In translational research this implies that a human patient could receive
only 1/3 less of the standard protocol, drastically reducing toxicity.

Our model mimics biological diversity using probability functions in the
repertoire production and interaction events. A uniform probability density can be
represented by a sequence of uniformly distributed random numbers. For a given
random number generator, the sequence of random numbers is uniquely deter-
mined by the initial seed. By setting a seed for the repertoire and a seed for the
interaction events, the model represents a single mouse and a specific history of its
evolution. To mimic a population, we ran the simulator many times with different
seeds. On the other hand, experiments on mice show that mice respond differently
to the vaccine. We tried to understand the underlying reasons that make mice
different, using numerical experiments. As the model reproduces the in vivo ex-
periments, we assumed it would reproduce the behaviour of a population of mice
just as well.

Then we tried to understand if environmental events are relevant in changing
the mouse response to the vaccine. In [23] we randomly chose a mouse from our
sample of 100 mice. We ran the genetic search for optimal protocol for this mouse,
obtaining a 22 injections schedule. We used this protocol on the set of 100 mice,
and found that 27% of the mice were tumor-free (TF) while the remaining 73%
were not (NTF). We then proceeded to force all the mice in the sample to have the
same interactions with the environmental variables, by setting the environmental
seed equal for all mice. As a result, we obtained a set of TF mice of 30%. This result
led to the conclusion that the environment was not critical. The result, which we
plan to confirm with other numerical experiments, is not surprising because we
are dealing with an endogenous tumor.

The difference should lie in the immunological repertoire. To highlight this,
we considered two different mice — one belonging to the TF mice, and the other
belonging to the NTF mice. Numerical results (cf. Fig. 3) show that the dynamic of
specific B (against tumor associated antigen) and helper T lymphocytes (against
peptide/major histocompatibility class II complex) have clear peaks in the case of
the TF mouse, but the results are almost flat for the NTF mouse.

However, the difference was less evident for specific cytotoxic T lymphocytes,
so we considered the cumulative number of B and T lymphocytes as functions of
time — i.e., respectively

t
Bcumulative(t) - / B(T)dT
0
and

t
Tcumulative(t) :/ T(T)dT
0
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FIGURE 3. Specific B (against tumor associated antigen), specific cytotoxic
T lymphocytes (against peptide/major histocompatibility class I complex)
and specific helper T lymphocytes (against peptide/major histocompatibility
class IT complex) for TF and NTF mouse.

The plots in Fig. 4 show no initial significant differences in the repertoire, and the
TF mouse shows evident antibody response later that is not present in the case of
the NTF mouse.

These very preliminary investigations leave open the question of whether the
individual response is related to the initial repertoire, and clearly suggest that
the present version of our simulator is unable to detect any meaningful difference
between TF and NTF mice. We believe there are two major reasons for this — viz.
i) the diversity of modeled repertoire is too small with respect to the natural one,
and ii) the number of entities considered in our model is not sufficient to allow
a realistic representation of the expressed repertoire. Thus the model does not
generate sufficient statistical data to detect any significant signal-to-noise ratio.

Extension of the repertoire to a more natural scale faces nontrivial computa-
tional problems. As already mentioned, the repertoire was modelled using a binary
string of length [ and interactions driven by the Hamming distance between the
binding site of the two interacting entities. In the present version of the simulator,
computation of the Hamming distance uses a pre-computed look-up table of 2!
entries. With [ = 12 this occupies roughly 16 KB, which is easily allocated in the
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FIGURE 4. Cumulative behaviour for specific B lymphocytes (against tu-
mor associated antigen), specific cytotoxic T lymphocytes (against pep-
tide/major histocompatibility class I complex) and specific helper T lym-
phocytes (against peptide/major histocompatibility class II complex) for TF
and NTF mouse.

cache-memory of any platform. However, a natural scale repertoire has a diversity
of roughly 106 ~ 248, 50 the look-up table would have to be of the order of 4 - 10°
KB, which cannot be handled in any present or near-future computer platform.
The look-up table would need to be accessed from an external storage, leading
to an unacceptable decline in the performance of the simulator, so a different ap-
proach to compute the Hamming distance that keeps the competitive performance
of the look-up table is needed.

In [22] we have shown that an alternative, but still efficient, method relies on
binary magic numbers [9]. The best bit counting method takes only 12 operations
and does not depend on bitstring length. This method avoids the memory and
potential cache misses of the look-up table method. The counts of bits set in
the bytes is done in parallel, and the sum total of the bits set in the bytes is
computed by multiplying and shifting right bits, using binary magic numbers.
Magic numbers have unusual or special properties in certain calculations. With
binary magic numbers, it is possible to write algorithms that are typically faster
by a factor of N/loga(IN) than more obvious ones. The binary magic numbers
come in a sequence and a recursive template, where the N-th number is itself
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an infinite binary number from right to left of 2V ones followed by 2V zeroes,
followed by 2%V ones, and so on. Often one just uses these patterns, but occasionally
also the inverse (complement) reverse pattern, and we believe that this approach
should solve the problem of raising diversity to a natural scale without losing
computational performance. Nevertheless, the computational solution shall require
parallel platforms to run the simulator which implies re-coding the simulator using
parallelisation libraries. This work is in progress.

4. Conclusions

The immune system is a natural complex system. Modelling such a system is a
challenge requiring multidisciplinary contributions. Mathematical and computa-
tional methods play an important role. We discussed a modelling investigation
in the field of Artificial Immunity — viz. activation of the immune response in-
duced by a vaccine, and a first attempt to understand the immunological difference
between different individuals. This problem is still under investigation.

Even if our model can reproduce experimental results, it is very naive. An
important further step would be to include models at different scales, from the
subcellular scale to organs and functionalities. This goal may not be achieved
at the present stage of knowledge, but it is possible to use different modelling
tools to create a modelling environment to help provide an integrated approach.
Considerable effort is presently being devoted to achieve this goal in a European
Community funded project (ImmunoGRid: The Virtual Human Immune System),
and to show that mathematical and computational modelling can provide valuable
benefits in biology and immunology.
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Modelling the Response of Intracranial
Pressure to Microgravity Environments

William D. Lakin and Scott A. Stevens

Abstract. A majority of astronauts experience symptoms of headache, vomit-
ing, nausea, lethargy, and gastric discomfort during the first few hours or days
after entering a microgravity environment. It has been hypothesised that some
of these symtoms are related to the development of benign intracranial hyper-
tension as a result of the cephalic fluid shifts and relative venous congestion
that occur in microgravity. This hypothesis is tested here using a mathemat-
ical model of lumped-parameter type that embeds the intracranial system
in whole-body physiology. In addition to considering microgravity environ-
ments, this model is used to examine the response of intracranial pressures
to head-down tilt (HDT), a ground-based experimental procedure often used
to simulate the cardiovascular effects of microgravity. Predicted pressures in
these simulations include those in the cerebral vasculature, ventricular and
extra-ventricular cerebrospinal fluid (CSF), and the brain tissue extracellular
fluid. Various cardiovascular stimuli associated with microgravity, including
changes in arterial pressure, central venous pressure, and blood colloid osmotic
pressure, are considered both individually and in concert. Small alterations of
the blood-brain barrier in space due to factors such as gravitational unloading
and increased exposure to radiation are also allowed. Simulation results pre-
dict that in a healthy individual the upward fluid shifts and changes in central
venous pressure in microgravity cannot, by themselves, produce a large eleva-
tion in ICP so long as the blood-brain barrier remains intact. Indeed, in this
case the simulations suggest that ICP in microgravity is significantly less than
that in long-term HDT, and may even be less than that in the supine position
on Earth. However, simulations predict that ICP can increase significantly if,
combined with a drop in blood colloid osmotic pressure, there is even a slight
reduction in the integrity of the blood-brain barrier. These results suggest
that in some otherwise healthy individuals, microgravity environments may
elevate ICP to levels associated with benign intracranial hypertension, pro-
ducing symptoms that can adversely affect crew performance.

Mathematics Subject Classification (2000). Primary 93A30, 76Z05; Secondary
92C10 , 92C50.

Keywords. Lumped-parameter mathematical model, Intracranial pressure,
Microgravity, Blood-brain barrier.
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1. Introduction

Lumped-parameter models represent an attractive method for examining pressure
dynamics involving complicated human physiology. In this modelling approach, the
physiological system is subdivided into a number of linked, interacting subunits
termed “compartments”. In general, each compartment will contain a single phys-
ical constituent, such as blood, cerebrospinal fluid (CSF), or tissue and interstitial
fluid. However, depending on the model’s complexity, a given constituent may ap-
pear in more than one compartment of the model. Dynamics in each compartment
is specified by lumped time-dependent functions giving compartmental pressures,
while incremental changes in flows and compartmental volumes are obtained by
associating resistance and compliance parameters with adjacent compartments. In
particular, interaction between adjacent subunits is assumed to take place at the
interfaces of the model’s compartments. Spatial resolution is limited by the num-
ber of defined compartments, but models of this type with even a relatively small
number of compartments often produce excellent agreement with clinical data.

Lumped-parameter models have been used to study intracranial pressure
for more than 200 years. However, with few exceptions, previous models have
adopted restrictions known as the “Kellie-Monro Doctrine” to reduce complexity.
The Kellie-Monro framework considers the intracranial system to be completely
enclosed within the intracranial vault, which is assumed to be rigid. A specified
inflow of blood to the intracranial arteries provides a forcing for the system, and
outflow from the Jugular Bulb is assumed to instantaneously equate to this in-
flow. These restrictions yield a closed system with constant total volume. Strictly
intracranial models have produced a number of important results that illuminate
the mechanisms of intracranial pressure adjustments in situations involving both
normal and pathophysiology. However, the ability of these closed-system models
to incorporate the influence of important extracranial factors on intracranial pres-
sure dynamics is clearly limited. For example, the important buffering effects of
the spinal CSF space on intracranial pressure cannot be directly included.

During the first few hours or days of space flight, a collection of symptoms —
including headache, vomiting, nausea, lethargy and gastric discomfort — often af-
fects a majority of crew members. Although evidence suggests that some of these
symptoms are a form of motion sickness associated with the functioning of the
vestibular and sensory systems during exposure to microgravity environments,
other observed symptoms differ in significant ways from terrestrial manifestations
of motion sickness (TMS). While TMS is roughly coincident with the initiation of
motion, symptoms in microgravity are delayed. They involve active, rather than
passive, head motions and do not involve cold sweats, salivation, facial pallor, or
bowel urgency. Also, unlike TMS, symptoms in microgravity are usually associ-
ated with headache, and vomiting tends to be sudden without initial retching or
nausea.

It has been hypothesised [6] that elevated intracranial pressure (ICP) may
play a role in the development of some of the above symptoms in microgravity.
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Indeed, several symptoms, such as headache and sudden vomiting, strongly re-
semble those associated with benign intracranial hypertension. Further, the fact
that the onset of these symptoms occurs early in a flight suggests that they may
be related to the well-documented fluid shift that begins at launch and continues
for approximately 10 hours into flight. During this period, between 1500ml and
2000ml of fluid may shift from the lower to the upper body, with 90% of this shift
taking place within the first two and a half hours [22]. Central venous pressure
also decreases in microgravity, although the basis for this finding is measured data
from one astronaut over a 9-hour period [1].

This paper employs a mathematical model of lumped-parameter type that
has been developed [20] to study the effects of microgravity and its ground-based
clinical analogues on intracranial pressure (ICP). The Kellie-Monro Doctrine has
been revoked in this model. By embedding the intracranial system in whole-body
physiology, as opposed to confining it within the cranial vault, the present model
allows consistent inclusion of the shift of cephalic fluid from the lower to the upper
body observed in microgravity.

The cardiovascular effects of microgravity are often simulated by ground-
based head down tilt (HDT) procedures. Clinical data exists for intracranial pres-
sure (ICP) during short-term head down tilt [13], and comparisons between this
data and the results of simulations have been used to validate the present model.
All of the participants exposed to 8 hours of the 5 degree HDT procedures in [4]
reported headache and other mild symptoms. However, little corresponding data
exists for ICP’s during long-term exposure to either HDT or microgravity. The
headache and nausea suffered by astronauts in microgravity are not reported by
those exposed to extended 5 or 6 degree HDT in [14, 15], where a shift of cephalic
fluid similar to that in microgravity is speculated to occur. There is thus some
question about the extent to which long-term HDT effectively simulates the re-
sponse of ICP to microgravity.

Although the present simulations provide insights into the possible cardiovas-
cular effects of long-term HDT, the primary focus of this modelling effort is a study
of causal relationships between microgravity effects and intracranial pressures.
Stimuli considered will include microgravity-induced changes in arterial pressure,
central venous pressure, and blood colloid osmotic pressure. From this analysis,
levels of intracranial pressure may be quantified with respect to potential changes
in the cardiovascular system due to microgravity. Results of this study suggest
that the upward fluid shifts in microgravity and associated changes in the car-
diovascular system cannot, by themselves, elevate intracranial pressure to levels
associated with benign intracranial hypertension. ICP is found to be unaffected
by the expected changes in arterial pressure and to change in parallel with cen-
tral venous pressure. A moderate increase is predicted due to the expected drop
in colloid osmotic pressure in microgravity. However, even with all of these stim-
uli combined, ICP in microgravity is predicted to be less than that predicted for
long-term HDT, and it may even be less than experienced on Earth in the supine
position. Consequently, if benign intracranial hypertension does develop in space,
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the cause must be a factor not normally included in simulations assuming healthy
human physiology.

The integrity of the blood-brain barrier, which inhibits the movement of large
molecules into the brain from the cerebral capillaries, is related to the tightness of
the junctions between adjacent endothelial cells in the walls of the cerebral cap-
illary bed. Models of intracranial pressure dynamics usually consider deficits in
the integrity of the blood brain barrier only in simulations involving pathology or
trauma. However, even for healthy individuals, there are factors in microgravity,
such as gravitational unloading of the capillary walls and increased exposure to
radiation in space beyond the shield provided by the Earth’s atmosphere, which
may influence the tightness of these junctions. The present simulations indicate
that ICP can increase significantly if, combined with a drop in blood colloid os-
motic pressure, there is even a slight reduction in the integrity of the blood-brain
barrier. These results suggest that in some otherwise healthy individuals micro-
gravity environments may elevate ICP and produce symptoms associated with
benign intracranial hypertension.

2. The lumped-parameter model

The lumped-parameter model used for this study is a simplified variant of the
extensive whole-body model introduced by Lakin et al. [9] to study intracranial
pressure dynamics. These simplifications allow steady-state solutions for the pres-
sure fields to be obtained algebraically in closed form, thus preserving the accuracy
of the model over the full expected range of pressures. In the present model, the in-
tracranial portion of the larger model in [9] is preserved nearly intact. Additionally,
filtration from the intracranial capillaries is now modelled with a Starling-Landis
equation as opposed to the traditional hydrodynamic version of Ohm’s law used
in electrical circuit analogies [12]. This allows changes in colloid osmotic pressure
to affect capillary filtration and absorption.

Consistent with previous models of this type [7, 18], the intracranial region is
divided into interacting subunits termed “compartments.” As depicted in Figure 1,
the intracranial region is divided into six compartments. Three compartments are
vascular: intracranial arteries (I); capillaries (C), including the choroid plexus;
and the venous sinus (S). Two compartments involve cerebrospinal fluid (CSF):
ventricular CSF (F); and extraventricular CSF (T). The latter compartment (T)
includes both the subarachnoid CSF and CSF in the spinal theca. It thus extends
beyond the intracranial region and provides a bridge between intracranial and
whole-body physiology. The brain compartment (B) represents brain tissue and
interstitial fluid. The model contains three additional compartments modelling
strictly extra-cranial physiology: central arteries (A); central veins (V); and the
thoracic space (Y). Pressures in each compartment are given in mmHg and denoted
by a P, with a subscript indicating the compartment. For example, Pg represents
the spatially-averaged (lumped) ventricular CSF pressure. Fluid flow or filtration
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between compartments is given in ml/min and denoted by a @ with an ordered-
pair subscript indicating the direction of flow. For example, Q¢ represents blood
flow from the intracranial arteries to the capillary bed, and Q¢p represents the
fluid filtration from the capillaries into the brain tissue.
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1 lo | Coo
0 Qs
ic —> Capillaries (C) Q s
1 Q
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FIGURE 1. The lumped-parameter model. The dark line represents the
rigid cranial wall, Q;; represents fluid flow from compartment i to compart-
ment j, arrows indicate the customary direction of flow, Q;, s represents an
infusion rate of CSF, and C;; represents a distensible surface between com-
partments ¢ and j.

Assumptions

The following basic assumptions lead to the time-dependent differential equations
that describe the pressure dynamics of this system.

e All fluids are considered incompressible and isothermal.

e The regulation of cerebral blood flow (Qr¢) and CSF production by the
choroid plexus (Qcr) over a full range of intracranial pressures is described
in [9]. For the pressure ranges considered here, these regulation mechanisms
remain robust, so for simplicity constant rates will be assumed for these two
flows.
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e Fluid filtration across the blood-brain barrier (Qc¢p) is modelled by the
Starling-Landis equation

Qcs = K¢ [(Pc — P) —ocs(me — 7)) (1)

where P¢ is the capillary pressure, Pg is the brain interstitial fluid pressure,
e is the blood colloid osmotic pressure, mg is the colloid osmotic pressure
of the brain interstitial fluid, K¢ p is the filtration coefficient and ocp is the
reflection coefficient. The osmolality of the interstitial brain tissue fluid and
the blood plasma are assumed to be equal [16], so the only osmotic forces
considered in the model of this filtration are those due to differences in protein
concentrations.

e All other flows are related to pressure differences by the hydrodynamic version

of Ohm’s law
P, — P
Qij = —5—" =Zi;(Pi - Fy), (2)
where @);; is the flow from compartment ¢ to compartment j, P; and P; are
the spatially-averaged pressures of compartments ¢ and j respectively, R;; is
the lumped resistance (R;; = —Rj;), and Z;; is the fluidity (inverse of R;;).
Equation (2) is altered to accommodate position changes by taking

Qsv = Zsv (Ps— Py + Ggsysind), (3)
Qar = ZA[(PA—P[—GA[SiHG), (4)

where 6 is the angle of head tilt with up being positive, and G represents the
gravity-induced hydrostatic pressure exerted by the column of fluid between
the respective compartments. These equations represent a simplified form of
Bernoulli’s equation subject to the conditions of this model [5]. The forces due
to a change in the gravitational direction are applied only between central
and intracranial vascular compartments where the vertical column of fluid
between compartments is significant during a change in position. This is in
agreement with the viewpoint that alterations in CSF pressure due to position
change are primarily induced by the resulting change in intracranial blood
pressures [3].

e The deformation of the membrane between adjacent compartments is a func-
tion of the change in pressure difference between these compartments, so

dvi, d dP; de>

dt Yt [ dt  dt 5)
where V;; denotes the volume of the cup formed at the interface of compart-
ments ¢ and j, and C;; = C}; denotes the local compliance between the two
compartments [19].

P,— Pj]=Cj; (

Governing equations

Applying the law of mass conservation in the five strictly intracranial compart-
ments (I,C,F,S,B) and the bridging compartment (T) of the present model results
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in a set of six differential equations. For example, the differential equation for the
CSF (F) compartment is
dPp dPB>

QCF_ZFB (PF_PB)—ZFT(PF—PT):CFB (F_W (6)

Treating the pressures in these six compartments as the dependent variables, the
resulting system of equations in matrix form is

dP
C— +ZP = 7
dt + Q (7)
where the vectors P and Q are
PI ZAI (PA_GA[SiIIG)—Q[C
Pc Qrc — Qor + Ko ooB(mc — mB)
Pg Zsy (Py — Gsysind)
P — d =
PF an Q QCF
Py —Kcp ocp(ne — )
Pr CarGt + Cov X + Cry X + Qing + Zrv Py

(8)

and the fluidity matrix (Z) and compliance matrix (C) are

ZaAl 0 0 0 0 0
0 Kcp+Zcs —Zcs 0 —Kcs 0
7 — 0 —Zcs Zcs,8v,TS 0 0 —Zrs
0 0 0 ZFB,FT —ZFB —ZFT ’
0 —Kcs 0 —Z2rB Kce+ ZBT,FB —ZBT
0 0 —ZTs —ZFT —ZBT ZBT,FT,TS,TV
CrB 0 0 0 —CrB 0
0 CeB 0 0 —CcB 0
C- 0 0 CBs,Ts 0 —CBs —Crs
0 0 0 CrB —CFB 0
—Crp —Ccp —Css —Crp CBs,BT,cB,FB,IB —CBr
0 0 —Crs 0 —Csr CaT,BT,TS,TV,TY

Repeated subscripts in any entry in these matrices denotes summation — e.g.,
Zpr,rB = Zpr + Zrp. Equation (7) may appear to be linear, but it is nonlinear
if even one entry in the matrices Z or C depends on a component in the pressure
vector P.

If the oscillatory effects of the forcing terms in Q are subtracted, the solution
of equation (7) is a set of time-dependent pressures averaged over each cardiac
cycle. However, as shown in [20], properties of the matrices C and Z imply that a
solution P of equation (7) always tends to a unique steady state solution P*. For
this steady state, time derivatives in (7) are identically zero and hence

Pr-z'q, )
where Q* denotes the matrix obtained from Q in (8) by setting all derivative terms

to zero and replacing Pa, Py, ¢, and mp by Pa*, Py™, nf., and 7} respectively.
Thus in the steady-state the set of coupled differential equations is replaced by a
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set of coupled algebraic equations. Analysis of these steady state solutions is the
principal focus of this paper. All of the simulations performed here involve the
solution of equation (9). Because of the complexity of Z~1, closed form solutions
were obtained with the aid of the mathematical software package Mathematica.

Base-state calibrations

Before analyzing changes from a base state due to various stimuli, it is necessary
to approximate normal mean values for all dependent and independent variables
as well as obtain scale values for model parameters such as fluidity, filtration,
and reflection coefficients. Whenever possible, these starting values have been ob-
tained from available clinical data. However, in the case of other variables and
parameters, such as the filtration coefficient Kop and the base state pressures
Pr and Pg, it is necessary to estimate base and scale values from model calibra-
tion simulations by achieving consistency between model predictions and clinically
observed steady-state results of constant-rate CSF infusions. Constant-rate CSF
infusion procedures are simulated by incorporating an infusion term Q;,¢ into
equation (9). This calibration process is presented in full detail in [20]. Initial and
calibrated values used in the numerical simulations are given in Table 1.

3. Simulation methods

3.1. Head-down tilt simulations

Short term HDT is simulated by introducing a negative angle 6 in equation (9).
Additionally, clinically observed changes in central vascular pressures are incorpo-
rated into P} and Py in this equation. These results are then compared to the
clinical observations of Katkov and Chestukhin [8] for venous sinus pressure, and
the observations of Murthy et al. [13] for intracranial pressure. The values of Ggy
and G 47 representing the gravity-induced hydrostatic force exerted by the column
of fluid between the central and intracranial compartments are based on the dis-
tance between the right atrium and the base of the brain being 28.8 cm [8]. This
results in Ggy = G 45 = 22.232 mmHg. In clinical studies, a steady-state response
was measured after several minutes. Therefore, blood colloid osmotic pressure is
assumed to remain unchanged during the current simulations. Furthermore, the
jugular vein pressures provided by Katkov and Chestukhin [8] are considered to be
indicative of the venous-sinus compartment pressure as the pathway between these
compartments should remain unrestricted during supine and head down tilts.
During extended HDT, blood colloid osmotic pressure drops [15], which in
turn alters the normal forces involved in fluid filtration at the cerebral capillary
level. Thus, long term HDT is simulated in a manner similar to short-term HDT,
except that blood colloid osmotic pressure drops by 3.3 mmHg after 4 hours of 6
degree HDT [15]. This is incorporated into the model by setting 7}, = T — 3.3 in
equation (9). In this case, no clinical data exists for the intracranial response.
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TABLE 1. Initial and calibrated values used in the numerical simulations

symbol starting value units description

Py 92.0 mmHg central artery pressure

Py 82.0 mmHg intracranial artery pressure

Pc 34.1546 mmHg capillary pressure

Pg 7.82 mmHg venous sinus pressure

Py 5.4 mmHg central vein pressure

Pr 11.2 mmHg ventricular CSF pressure

Pp 11.2 mmHg brain pressure

Pr 11.0 mmHg extra-ventricular CSF pressure

Qs 1035.0 ml/min cerebral blood flow (arteries)

Qo 1035.0 ml/min cerebral blood flow (capillaries)

Qr 4278 ml/min total CSF formation rate

Qcr 0.2995 ml/min CSF formation from choroid plexus
Qpr 0.1283 ml/min other CSF formation

Qcr 0.1283 ml/min filtration across blood brain barrier
Qrp 0 ml/min net flow between ventricle and brain
Qpr 0.2995  ml/min transmantle CSF flow

Qcs 1034.5712 ml/min blood flow from capillaries to sinuses
Qrs 0.3209 ml/min CSF absorption into the venous sinuses
Qrv 0.1069 ml/min extracranial CSF absorption

oCB 1 none blood-brain barrier reflection coefficient
Kcs 0.0665 (ml/min)/mmHg blood-brain barrier filtration coefficient
Zrp 66.50 (ml/min)/mmHg fluidity between ventricular CSF and brain
Zi Q;;/(Pi — P;) (ml/min)/mmHg all other fluidities

3.2. Microgravity simulations

Since there is a greater fluid shift away from the dependent limbs in microgravity
than in HDT [21], microgravity simulations are performed by altering blood plasma
colloid osmotic pressures to a greater extent than that observed during head-down
tilt. If the blood colloid osmotic pressure drops 3.3 mmHg [15] with an 800 ml
reduction in dependent limb volume [14] during HDT, it is estimated from the
data of [4, 14] that an 1800 ml reduction in dependent limb volume [21] during
microgravity should result in a plasma colloid osmotic pressure drop of no more
than 6.3 mmHg. The limited amount of data available for humans in microgravity
suggests that mean central artery pressure remains unchanged (4 astronauts) [2]
and that central venous pressure drops to about 0 mmHg (one astronaut) [1].
These changes are incorporated into the model by setting Py, = 0, P} = P, and
& = T — 6.3, in equation (9). Again, in this case no clinical data exists for the
intracranial response.
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3.3. The blood-brain barrier in microgravity

There is no data available for the response of a healthy blood-brain barrier to
immersion in a microgravity environment. The integrity of the blood-brain barrier
is related to the tightness of the junctions between adjacent endothelial cells in
the walls of the intracranial capillary vessels. Several components contribute to
maintaining the tightness of these junctions on Earth. A major role is certainly
played by adhesion between the endothelial cells, and this component will not
be affected by alterations in gravity. However, gravitational unloading of body
tissues and fluids, one of the most pervasive changes caused by a microgravity
environment, may have an ability to alter the integrity of the blood-brain barrier.
Exposure to higher levels of radiation in space beyond the shield of the Earth’s
atmosphere may also affect the normal volumes of the endothelial cells in a way
that will reduce tightness.

Gravitational unloading

A measure of tightness may be obtained by examining the extent of the overlap
region and the space between the endothelial cells in the walls of the cerebral capil-
lary vessels. Due to the rigidity of the capillary basement membrane, the capillary
volume remains nearly constant, and hence the extent of the overlap region will
also remain nearly constant, even in the face of increased capillary pressure. A key
component of the tightness of this junction is therefore the space between overlap-
ping cells. This space will be termed the junction gap. In normal gravity, closure
of the junction gap is maintained through the joint action of the interior capillary
pressure and the external interstitial fluid pressure, which augment adhesion of
the endothelial cells. In terms of pressures in the model, the pressure ¢ that acts
to keep the gap closed can be written as the sum ¢ = Pg + Pg, where Pp is the
interstitial fluid pressure of the brain and P¢ is the intracranial capillary pressure.

Since the brain is mostly fluid, it is capable of transmitting hydrostatic pres-
sure to the capillaries. Thus, in normal gravity, hydrostatic forces act to augment
¢7. This augmentation is depicted in the top illustration of Figure 2. However, in
microgravity no such hydrostatic pressure is present and so this augmentation is
removed. This, in turn, reduces ¢ and, as depicted by the bottom illustration in
Figure 2, the tightness of the junctions may be reduced. This reasoning is consis-
tent with observations that for general capillary-tissue barriers in the rest of the
body much more fluid exits the leg tissues in actual microgravity conditions as
opposed to either the supine or head-down tilt (HDT) positions in ground-based
experiments [22].

Radiation effects

Beyond Low Earth Orbit, the protection of the Earth’s atmosphere against radia-
tion is no longer available, and protective mechanisms such as increased shielding
are necessary in order to protect crew members in space against adverse radia-
tion effects. Even with current countermeasures, considerable concern still remains
about radiation health issues.
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Interstitial fluid, hydrostatic pressure ¢
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Interstitial fluid, hydrostatic pressure ¢

No hydrostatic pressure
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FIGURE 2. The upper illustration represents the capillary endothelial cell
arrangement with gravity induced hydrostatic pressures augmenting cell ad-
hesion. The lower illustration represents the possible reduction in tightness
of the endothelial cell junctions in microgravity when the augmenting force
is eliminated.

Recent experiments on Earth by Leszczynski et al. [10, 11] involving cell
phone radiation demonstrate the potential effect that exposure to even small
amounts of radiation in space can have on the blood-brain barrier. They reported
that the mobile phone radiation activated non-thermal transient changes in the
protein expression levels of hsp27 and p38MAPK in human endothelial cells. It is
hypothesised in [10] that activation of hsp27 may cause an increase in blood-brain
barrier permeability through stabilisation of endothelial cell stress fibres. Increased
protein activity may even cause the endothelial cells themselves to shrink — less-
ening their volume, widening the junction gap, and reducing the overlap region.
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Consequently, radiation exposure in space appears capable of adversely impacting
the integrity of the blood brain barrier.

Modelling the integrity of the blood-brain barrier

If gravitational unloading, exposure to increased radiation beyond Low Earth Or-
bit, or some other feature of a microgravity environment induces slight changes in
the blood-brain barrier, with a Starling—Landis model for the flow Q¢ p the filtra-
tion coefficient Kcp and the reflection coefficient ocp in (1) can be adjusted to
reflect these changes. In particular, a decrease in the tightness of the blood-brain
barrier due to a change from the Earth-bound supine position to microgravity
may be modelled by an increase in the filtration coefficient and a decrease in the
reflection coeflicient.

In performing the simulations, equation (9) is solved for the steady-state
pressures Pp, P, and P§ in terms of P}, Py, 75, and the tilt angle 6. These are
described in terms of changes from the base state by

P} —Pp=APr = (P} —Py)—0.37 (15 —7c)—0.90 Gsy sin(6), (10)
Pg — Pp=APg = (P(} — Py) —0.37 (7‘(‘8 —T¢) —0.90 Ggy sin(9), (11)
Pg(v - FS = APS = (P‘x} - P\/) - GSV sin(G) . (12)

These equations form the basis for both HDT (6 # 0) and microgravity (6 = 0)
simulation results. It should be noted that due to the strict regulation of cerebral
blood flow in this model, the pressure changes above are unaffected by changes in
central artery pressure. In the more elaborate model in [9], where large changes
in central artery pressure are expected, this may not be the case. However, since
central artery pressure remains relatively constant in short term HDT [8, 17], long-
term HDT [14] and microgravity [2], there is no need to incorporate such large
changes into these simulations.

4. Simulation results

Validation of the mathematical model is necessary before it can consistently be
used to simulate the effects of long-term HDT and microgravity environments
where clinical data is unavailable for comparison. In the present work, model vali-
dation is provided by a comparison of the model’s predictions for short-term HDT
and clinical data.

4.1. Short-term head-down tilt

The results of short-term HDT simulations as well as clinical results are given in
Table 2, taken from [20], where changes from the base state are displayed. Here,
A(Ps—Py) = (P{—Py)— (Ps — Py ). This approach is adopted to accommodate
differences in the base state values between the model and clinical data. Also in
this table, AP;cp represents both P — Pr and Py — Pg, as these differences
are identical in short-term head-down tilt simulations. In the row corresponding
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TABLE 2. Summarised data from Katkov and Chestukhin [8] and
Murthy [13] and model results. Pressures are in mmHg and angles are in

degrees.
| | 0=-6 [o=-10] 6=-15 [0=-30]0=-75]
Ref. [§] Data A(Ps — Py) - 3.1 - 11 20.9
Model A(Ps — Py) - 3.86 - 1111 | 2147
Ref. [13] Data AP;cp 3.3 - 6.1 - -
Model AP p 210t03.70 | -~ |518t07.78| - -

to the model’s A Pr¢cp, a range is given that represents possible values, depending
on how central venous pressure changes during the HDT procedure. Since central
venous pressure was not measured by Murthy [13], a range of values for central
venous pressure was based on the data from [8]. This resulted in the range for
APrcp presented in the table.

The agreement displayed in Table 2 between measured data and model pre-
dictions validates the present lumped-parameter model as a vehicle for studying
HDT and microgravity. Agreement between model simulations and clinical data
further indicates that maintaining model resistances constant is a valid assumption
for predicting steady-state responses in the supine and HDT positions.

4.2. Long-term head-down tilt

The results of long term head-down tilt simulations for intracranial pressures can
be derived explicitly from equations (10) and (11). Specifically, ICP’s increase
in parallel with central venous pressure, and increase approximately 0.37 mmHg
for each 1 mmHg drop in blood colloid osmotic pressure. Thus if central venous
pressure increases by 1.6 mmHg [8, 14] and blood colloid osmotic pressure drops by
3.3 mmHg [15] during extended 6° HDT, it can be expected that ICP will increase
by about 4.9 mmHg.

4.3. Microgravity environment with blood-brain barrier fully intact

The results of microgravity simulations for intracranial pressures in this case may
also be explicitly derived from equations (10) and (11), where 6 is now zero. If the
blood colloid osmotic pressure drops by 6.3 mmHg, ICP’s increase by 2.3 mmHg
in addition to the changes in central venous pressure. Therefore, if central venous
pressure drops to zero during microgravity [1] then the ICP’s in microgravity
should fall to aproximately 3 mmHg below the base-state value in the supine
position on Earth. Consequently, so long as the blood-brain barrier remains fully
intact, even with all stimuli active, the model simulations do not predict that ICP
will be elevated by the cephalic fluid shift in microgravity, much less approach
levels associated with benign intracranial hypertension.
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4.4. Microgravity environment with blood-brain barrier effects

If small alterations in the integrity of the blood-brain barrier due to factors in
microgravity are allowed, results of the present simulations are shown in Fig-
ure 3, which gives level curves in terms of the parameters that characterise the
tightness of the blood-brain barrier. Normal ICP is defined as a resting value be-
low 15 mmHg, and abnormal ICP is considered to be a value greater than 18.35
mmHg [23]. Figure 3 shows that for a halving of the reflection coefficient and
a doubling of the filtration coefficient, the simulation predicts a brain pressure
of 19 mmHg. In absolute terms, these are small changes in the two coefficients.
Even so, simulation results predict a significantly elevated ICP that is within the
symptomatic range for benign intracranial hypertension.

11

ICP = 13 mmHg

0.9

oe ICP = 15 mmHg

07t
ICP = 17 mmHg

ICP:19V

50 100 150 200
Percent of Normal Filtration Coefficient

06

Reflection Coefficient: ¢ B

FIGURE 3. Level curves for brain pressure in the filtration coefficient-
reflection coefficient plane.

5. Conclusions

The model developed in this paper is designed to accurately reflect the steady-
state pressures of the intracranial system in response to various stimuli associated
with microgravity and its ground-based clinical analogues. Emphasis has been
placed on steady-state pressures as it can be shown that convergence to such
a steady-state is guaranteed, regardless of the value or nonlinear nature of the
compliances [20]. Currently, this guaranteed convergence has only been proven
when the resistances, or fluidities, remain constant. Therefore this assumption is
made for all fluidities except the fluidity between the intracranial arteries and
capillaries. In this exception, the fluidity is inversely proportional to the pressure
difference between these compartments, resulting in a constant cerebral blood
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flow. All other fluidities, as well as the capillary filtration coefficient, are assumed
constant. Comparisons to clinical CSF infusion tests validate this assumption at
the capillary/venule level, and comparisons to clinical HDT procedures validate
this assumption at the venous sinus/jugular level.

The primary concern of this work is to test the hypothesis [22, 6] that the
headaches and nausea experienced by astronauts in space are caused by induced
benign intracranial hypertension. Since there is a greater fluid shift away from
the dependent limbs in microgravity than in HDT [21], it is to be expected that
the resulting decrease in blood colloid osmotic pressure will be greater than that
observed in HDT. Calculations suggest that in this case, blood colloid osmotic
pressure should not drop by more than 6.3 mmHg. If central venous pressure
remains unchanged this results in an increase of ICP by about 2.3 mmHg. However,
if central venous pressure drops to approximately zero [1], this reduces ICP to
approximately 3 mmHg below the Earth-bound supine position. The simulations
therefore suggest that, without some other cardiovascular stimuli in addition to the
effects of both the cephalic fluid shift and the relative venous congestion due to the
lack of a gravity assist in the venous return, it is probable that ICP in microgravity
is significantly less than that in HDT and may even be less than that in the
supine position on Earth. The sensitivity analyses detailed in [20] shows that this
conclusion is valid over a wide range of values for model parameters that require
indirect estimation due to a lack of clinical data. Furthermore, this conclusion is
independent of the numerical values or nonlinear nature of the compliance terms.
Comparisons to clinical data further suggest that the assumed linear relationship
between pressure and flow is valid in both the supine and HDT position.

The model simulations that lead to the above conclusions for changes in
ICP assumed that an otherwise healthy blood-brain barrier remains intact in mi-
crogravity. Factors in microgravity such as gravitational unloading and radiation
effects appear capable of affecting the integrity of the blood-brain barrier. Changes
in the integrity of the blood-brain barrier are included in the present model by ad-
justing the filtration and reflection coefficients in the Starling-Landis equation (1).
The present simulations indicate that intracranial pressure can increase signifi-
cantly if, combined with a drop in blood colloid osmotic pressure, there is even
a slight reduction in the integrity of the blood-brain barrier. Indeed, the simu-
lations predict that changes in the filtration and reflection coefficients that are
small in absolute terms can produce a significantly elevated ICP that is within
the symptomatic range for benign intracranial hypertension. Thus although the
dramatic upward fluid shifts in microgravity are not predicted by themselves to
elevate intracranial pressure to symptomatic levels [20], the present results pre-
dict that some symptoms associated with benign intracranial hypertension may
be produced if some aspect of microgravity slightly affects the tightness of the
blood-brain barrier.

No data is available for the response of a healthy blood-brain barrier to im-
mersion in a microgravity environment. The degree to which various mechanisms
affect the tightness of the blood-brain barrier in microgravity can be expected to
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vary among otherwise healthy individuals. As seen in Figure 3 lesser reductions of
the tightness of the blood-brain barrier are predicted to produce ICPs that, while
elevated, fall below the abnormal range. This may help explain why some astro-
nauts experience symptoms related to elevated ICP while others remain symptom
free.
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1. Introduction

Initially, the growth of a tumor is dominated by uncontrolled mythosis [1], which
is a phase of exponential growth. Then as the size of the tumor increases, the
nutrients available become insufficient to satisfy all of the cells, so they must
compete for nutrients and the tumor growth is no longer exponential but tends to
plateau — i.e., the growth curve approaches a horizontal asymptote. In practice,
only an in vitro tumor nears this final steady state, since in vivo the host (e.g.,
a human patient) unfortunately dies well beforehand. Many mathematical models
of tumor growth involve an ordinary differential equation of form

a' = f(z)z,
where z(t) is the biomass of the tumor and the prime denotes differentiation with
respect to the time ¢, the function f(z) is approximately constant for small z, and
then has derivative f’(x) < 0 for larger x until x = Z > 0 (say), when the growth
stops (i.e., f(Z) = 0). One of the most prominent and robust of this family of
models is the generalised logistic equation, where

flx)=q—rz",v>0.
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After diagnosis, patients may undergo various therapies, including surgery as
a leading option. However, it cannot be guaranteed that a tumor has been totally
removed, and in order to kill metastases the patient may undergo chemotherapy.
In some cases, a chemotherapy is carried out beforehand, to reduce the size of the
tumor prior to its surgical removal. An anti-tumor chemotherapy may be modelled
by the ordinary differential equation

o' = (g —ra¥) - g(t),

where g(t) > 0 is the profile of the drug concentration. One way to deliver the
therapy is continuous infusion of the drug, in order to partially reduce drug-related
major side effects — i.e., g(t) is approximately constant, so the chemotherapy
model becomes

¥ = qz—ra*t —cx, (1.1)
12(0) = x9>0.

Let us suppose that the chemotherapy proceeds for a very long time, so that we
are interested in the asymptotic solution behaviour.

The constancy of g(t) is of course only approximate in reality, and a classical
way to represent the variability of g(¢) is to include a white noise perturbation
function £(t) of known standard error . This is considered in § 2, where ¢ is treated
as a stochastic bifurcation parameter. However, in § 3 some potential problems with
imposing a Gaussian perturbation in tumor models are stressed, which therefore
must be complemented by some biological caveats. Some alternative ways to model
uncertainties in mathematical oncology are discussed in the concluding remarks.

2. Deterministic and stochastic modelling of anti-tumor
chemotherapy delivered with continuous infusion

It is easy to verify that the deterministic model (1.1) has the following properties:

e if 0 < ¢ < g, then z(t) — z.(c) = ((¢ — c)/r)l/”, so the tumor is not eradi-
cated; and
e if ¢ > g, then 2/ < —rz!™ = 2(t) — 0T, so the tumor is eradicated.

However, it is important to stress that x.(c) is not normally compatible with actual
human life experience (even when z.(c) is quite small), because of the insurgency
of tumor-correlated phenomena — principally tumor diffusion processes that lead
to the birth of metastases.

To model the unknown variations of the therapy infusion and also the basic
tumor growth rate ¢, let us include a stochastic term ¢€(t)z in the model (1.1) to
obtain

' = qr—re't —cx +of(t)z,
z(0) = =z,
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where £(t) is a white noise. In particular, let us consider the stochastic model
de = (qr —raz'™ —cx)dt + oxdW,
z(0) = o,

where W (t) is a Wiener process. To the best of my knowledge, this is the first
stochastic model of CI chemotherapy in tumors, and both mathematical and bio-
logical aspects of the results are considered in this section.
Asis well known, the evolution of the probability density of a random variable
z(t) is determined by the Fokker—Planck equation, which in our context has the
form 5 ao
Op o0° 0 9 0 1w
ot = 3 9z2 @) = gy ((ax—ra™) p) .
2
At steady state, if % > (¢ —c), then p(z,t)—di(z),

so if there is eradication (i.e., if g—c < 0) then the presence of noise cannot change

the outcome of the therapy in the deterministic case (since o > 0). Furthermore
and more interestingly:

Remark 2.1. If ¢ — ¢ > 0, a noise with a sufficiently high o can induce the tumor
eradication with unitary probability.

On the other hand, if 02/2 < (q — ¢), the steady state equation

o’ &> , d 1+v
7@@ P) = a((((q—c))x—m: * )p)

has solutions of the form
2
plx) = Cz?/7"(a=0)=2 exp (—%x”) .
o2v
Thus

e if 02 € ((¢ — ¢),2(q — ¢)], then p(z) is decreasing and unbounded; and
e if 02 < g — ¢, then p(x) is bounded and it has a non-null maximum.

Summarising, there are two stochastic bifurcations — viz,

e at 02 = 2(q — c) there is a transition between eradication with probability 1
(i.e., p(z) = 0(x)) to the regimen ‘small tumor highly probable’; and

e at 02 = q — c there is a transition between the regimen ‘small tumor highly
probable’ to the regimen ‘small sizes are unlikely’.

3. Gaussian noise modelling in population growth models

The eradication result envisaged in Remark 2.1 is quite paradoxical, and it may be
biologically questionable — since it is likely that a real “tumor + chemotherapy”
system may be subject to significant variations in the tumor proliferation rate, and
to a lesser extent in the instantaneous delivery of the drug. Thus it is likely that
there may be rather high values of the parameter o, and the tumor eradication
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should be reached more often than actually observed. It is therefore worthwhile to
investigate why this happens, in a general setting. For this purpose, let us consider
a population of whatever kind (tumor cells, animals etc.) growing with a birth rate
B and a death rate u, so the population grows according as

z' =Bz — ux.
Suppose the growth is not constant, due to many small and partially unknown

external environmental factors, and that one considers modelling the sum of all
the external influences as a white noise: i.e.,

<E()E(t+0) >= 4(0),
=0 (1 + %é(t)) T — pzT. (3.1)

A first and worthy objection, that equation (3.1) represents an approximation of
a stochastic process with an integer space state, is neglected here. Our original
model involves an ordinary differential equation, and it was considered acceptable
to approximate the discrete state space by a real continuum. Thus let us proceed
by representing (3.1) as the stochastic differential equation

dX = gXdt + o XdW — pXdt,

which has the analytical solution

x(t):x(O)exp<<ﬂ—,u—%2>t+/otdW> .

As a consequence, we obtain the surprising result that

2

ﬁ—,u—%<0:>X(t)—>0.

However, this elegant formal approach has a hidden pitfall — viz. since the Gauss-
ian noise is unbounded, the perturbed birth rate may become negative, which is
of course biologically unrealistic. In mathematical terms:

Prob (Bdt + odW < 0) > 0.

Another major drawback is that the birth rate may become too big, which is
equally unrealistic. Similar problems may arise by adopting Gaussian perturba-
tions of many positive parameters in other biological models. Some intriguing
biological aspects related to the use of the Stratonovich approach in modelling
population dynamics may also be of interest [2].

4. Discussion

Bounded noise is necessary in population models, as has already been stressed
by several authors (cf. [4] and references therein). Non-stochastic models using a
fuzzy approach have also been proposed [3] as an alternative to stochastic models
in population dynamics [4] and in immuno-oncology [5]. The author has recently
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proposed a fuzzy oncological model of CI therapy [6], which produces some results
that are significantly different from those discussed in § 2 — viz.

e if g — ¢ > 0, there cannot be the noise-induced tumor eradication; and
e if g—c < 0, there can be tumor escape from the therapy-induced eradication
only if the “amplitude” of the fuzzy noise exceeds a threshold value.

However, although one may define a bounded fuzzy noise, the fuzzy approach
is not completely satisfactory given that the theory of fuzzy systems and fuzzy
differential equations is relatively unexplored. For example:

e the membership function of fuzzy theory does not describe the statistical
properties of fuzzy variables; and
e the theory of fuzzy bifurcations is incomplete and not yet well-founded.
In brief, in the mathematical description of parameter perturbations in oncological
models, it appears that:

e the use of Gaussian noise may lead to biologically paradoxical results;

e adopting the fuzzy noise approach leads to results that are biologically more
robust, but the underlying theory is immature; and

e a better approach may be to use non-Gaussian bounded stochastic noise, but
this does not allow the use of the Ito or Stratonovitch calculus [2].

In conclusion, a significant improvement in modelling tumor growth might require
the development of a more complete theory of differential equations with bounded
noise perturbations.
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Phylogenetic Analysis, Split Systems
and Boolean Functions

Andreas Dress

Abstract. In phylogenetic analysis, split systems have been investigated ex-
tensively over the last twenty or thirty years. In particular, the following
inverse problem has found much attention in this field: Given a finite set X,
let S(X) denote the set consisting of all splits of X, i.e., all 2-element subsets
{A, B} of the power set P(X) of X for which AUB = X and ANB =0
holds. Associate, to any Rx>q-weighted split system ¥ — i.e., to any map X
from S(X) into the set R>( of non-negative real numbers — the metric

Ds: X x X 5 Rso: (z,y) — > $({A, B}).
{A,B}eS(X):z€ A, yeB

Then given any metric D defined on X, one wants to find such a map ¥ from
S(X) into R>q such that Ds, at least approximately, coincides with D and
such that, in addition, the support of 3 has certain desirable properties.

Here we re-interpret this task in the context of a rather naturally de-
fined injective map D, from the R-vectorspace of all R-weighted split sys-
tems into the R-vectorspace B(X|R) of R-valued Boolean functions defined
on X (i.e., the R-vectorspace consisting of all maps from the power set
P(X) of X into R) that associates, to any given R-weighted split system
¥ :8(X) — R, the map Yo € B(X|R) that maps any subset A of X onto the
sum Xe(A) := > 4 cpx_ay 2({AU A’y X — (AU A')}). Note that Dx(z,y)
apparently coincides, for all z,y € X, with the difference between the sum
1Z] := > ses(x) 2(S) over all values of ¥ and the value X4 ({z,y}) that 2,
attains at the subset {z,y} of X.

More specifically, we show that there exist two canonically defined R-
linear involutions 7 and p of B(X|R) (i.e. R-linear endomorphisms of B(X|R)
for which 72 = p? = Idg(x|r) holds) that are mutually anti-adjoint (relative
to the canonical inner product defined on B(X|R)); and have the property
that the fixed-point space B(X|R)" of 7 coincides with the set of all Boolean
functions ® of the form & = X, for some (necessarily unique!) map ¥ € S(X),
as well as with the set of all Boolean functions of the form ® = II + 7(II) for
some appropriate Boolean function IT € B(X|R), and we discuss possible ap-
plications of these observations in the context of phylogenetic reconstruction.

Mathematics Subject Classification (2000). 05C05, 92D15.
Keywords. Phylogenetic Analysis, Splits, Split Systems, Boolean Functions.
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1. Introduction: set systems in phylogenetic analysis

Given a collection X of species, a clade C in X is a subset of X that consists of
all species in X that are offspring of a single ancestral species, while none of the
species in the complement X — C of C have evolved from this ancestral species.
In other words, denoting the last common ancestor of all species in an arbitrary
subset C' of X by lca(C), a subset C of X is a clade if and only if none of the
species in X — C' is a descendant of 1ca(C).

One of the most basic tasks in phylogenetic analysis is, given a set X as
above, to identify the collection of all clades in X. Yet, as Charles Darwin put it
in his treatise The descent of man, and selection in relation to sex: As we have
no record of the lines of descent, the pedigree can be discovered only by the degrees
of resemblance between the beings which are to be classed. That is, all that we
commonly can rely on to identify the collection of all clades in X is information
about how distinct, or how similar, the present-day species are that make up the
set X.

Consequently, a standard assumption in phylogenetic analysis is that, to-
gether with a finite set X of species or, more generally, of any kind of taxonomic
units (for short, taza), we are given a metric D defined on X that quantifies that
degree of resemblance between the taxa contained in X. In other words, one as-
sumes that one is given a map D : X x X - R : (z,y) — D(z,y) from X x X into
the set R of real numbers for which D(z,z) = 0 and D(z,y) < D(z, 2) + D(y, 2)
holds for any three taxa z,y, z under consideration!. And the task one has to ad-
dress can then be described as that of designing methods for deriving, from these
data, a phylogenetic X-tree T = T(D) that — at least approximately — repre-
sents the map D. That is, one has to find a finite edge-weighted and X-labeled
tree T = (V, E, ¢; p) consisting of

e a vertex set V,
an edge set £ C (‘2/),
a weight map £ : E — R from F into the set R~ of positive real numbers,
and a labeling map p: X —V whose image ¢(X) contains — at least — all
vertices in V' of degree 1 or 2

such that the distance D(x,y) of any two taxa z,y in X coincides — at least
approximately — with the length £p ((p(x), @(y)) of the unique path in T' from
o(x) to ¢(y) relative to £ (cf. for example [18] for a thorough discussion of this

The author was supported by the Chinese Academy of Sciences and the German BMBF; and
further support from the Royal Brunei Airlines, which enabled the author to contribute to the
International Conference on Mathematical Modelling and Computation held at the University of
Brunei Darussalam during 5—8 June 2006 in conjunction with the 20th anniversary celebration
of the foundation of that university, is also gratefully acknowledged. The author is particularly
grateful for many helpful comments by the editors and two unusually attentive and thorough
reviewers, who helped to improve the text drastically.

INote that, putting y := x, this implies that 0 < 2D(z,2) and hence 0 < D(x, z) holds for all
z,z € X; and putting z := z, that D(z,y) < D(y,z) and hence D(z,y) = D(y, z) holds for all
z,y € X — thus implying the standard inequalities required for D being a (pseudo-)metric.
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concept that was, and still is, one of the focal points for all conceptual development
in computational phylogenetics).

Remarkably, denoting the set consisting of all splits of X — i.e., the set of
all 2-element subsets {A, B} of the power set P(X) of X for which AUB = X
and AN B = () holds — by S(X), this task is simply equivalent to finding a map
Y from S(X) into the set R>( of non-negative real numbers such that:

(i) the distance D(z,y) of x and y coincides — again at least approximately —
with the sum

S(x:y) = > $({4, B});
{A,B}eS(X): z€A,yeB
(ii) X({0, X}) = 0 holds; and
(iii) any two splits in the support
supp (%) := {{4, B} € S(X) : £({4, B}) # 0}

of 3 are compatible — i.e., one of the four intersections ANA’, ANB’, BNA’,

BN B’ is empty for any two splits {4, B} and {A’, B'} in supp(%).
This fact, also discussed in extenso in [18], was probably folklore already in the
mid-twentieth century , in one or the other disguise. It was stated explicitly, more
or less just as stated above, by Buneman around 1970 (cf. for instance [7]); and
it has also been another one of those fundamental insights on which much further

development of computational phylogenetics was based.
Let us now recall the following simple facts:

(i) Any metric D defined on a set X — or, more generally, any symmetric map
D : X x X —R — can be viewed as a real-valued map defined on the subset
P<2(X) of P(X) consisting of all non-empty subsets of X of cardinality at
most 2.

(ii) Pursuing this point of view and noting that

Ya:y) = > X({A, B})
{A,B}eS(X): z€A,yeB

= > ({4, B})
{ABYES(X): {z0}2A, {2.1}2B

holds for all z,y € X, it was suggested in recent investigations of phylogenetic
diversity and related issues [1,6,9-17,19] to associate, to any map ¥ from
S(X) into R, the R-linear map X°® from P(X) into R that attains, on a given
subset Ay of X, the value

2*(4o) = > ({4, B}),
{A,B}eS(X): AgZA, AgZB
this way introducing an R-linear map

D* : S(X|R) = B(X|R): ¥ — £*
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(iii)

(iv)
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from the R-vectorspace

S(X|R) := RS
of all R-weighted split systems (i.e., all maps from S(X) into R) into the
R-vectorspace

B(X|R) := RP(O
of all R-valued Boolean functions defined on X (i.e., all maps from P(X) into
R).
Furthermore, it is easily verified (e.g., see [12]) that, putting

=) Z(S)

Ses(X)
for every ¥ € S(X|R) and restricting the map D*® to the subspace
So(X[R) i= {3 € S(X|R) : 5] = 0}
of S(X|R), one obtains an injective map
D’ := D*|s,(xr)

from Sp(X|R) into B(X|R).
Thus given any symmetric map D : X x X — R, viewing this map D as a
map from P<o(X) into R implies that the inverse problem of finding a map
¥ from S(X) into R such that
(i) D({x,y}) coincides, for all z,y in X, with X(z : y)
(ii) and certain additional desirable properties are also satisfied by ¥
can be rephrased as asking for an extension of the map D to a map D in
B(X|R) that (i) is contained in the image D*(Sy(X|R)) of the subspace
So(X|R) of S(X|R) relative to the map D*, and (ii) satisfies in addition
certain desirable properties — an observation that motivated searching for
the characterisations of that image D*®(Sy(X|R)) communicated in [12], and
the resulting consequences communicated here.
Finally, associating to any R-weighted split system ¥ € S(X|R) the map
Yo € B(X|R) from P(X) into R that attains, on a given subset A of X, the
value
Se(Ao) = Y. S({AUA X — (A UA),
AEP(X—Ao)
we obtain an injective map
D, : S(X|R) = B(X|R) : £ — %,
for which
0(A4) + 3. (4) = [X]
holds for every ¥ € S(X|R) and every non-empty subset A of X (while X¢

and X, attain the value 0 and 2|X| respectively, on the empty subset of X
provided X itself is not the empty set).
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Thus from a formal point of view, studying the map D, is essentially just as
good as studying the map D*® while, from the point of view of mathematical
simplicity, studying the map D, is often clearly preferable to studying the map
D*. In particular, the image D*(So(X|R)) of the subspace So(X|R) of S(X|R)
relative to the map D*® coincides with the image D, (So(X|R)) of that subspace
relative to D, while, as shown in [12], the image Dq (S(X|R)) of S(X|R) relative
to D, consists of all maps ® € B(X|R) for which

o4 = Y (-D*e)

A’eP(A)

holds for all A C X, and the image D, (So(X|R)) of So(X|R) relative to Dy —
and, hence, also the image D*(So(X|R)) of So(X|R) relative to D* — consists of
all such maps ® € B(X|R) that, in addition, vanish on every one-element subset
of X (and therefore also on the empty set).

These observations prompted the investigations communicated below. While
they may be of some interest in their own right in view of their intriguing simplicity,
they also imply for instance that, associating to any map ¥ € B(X|R) from P(X)
into R the linear form

TCS(XIR) SRS Y Y S({A, X - A}) ¥(4),
AeP(X) A’eP(A)

one has ¥* = 0 for some map ¥ € B(X|R) if and only if
B(A) = (MY w(a)

A’ ACA'CX

holds for every subset A of X, and that every R-linear form defined on S(X|R) is
of the form ¥* for some map ¥ € B(X|R) from P(X) into R.

Further, they imply that there exists a canonical one-to-one correspondence
between collections § C S(X) of X-splits and those collections p C P(X) of
subsets of X for which, for every subset A of X, the number #{A’ e p: A’ C A}
of proper subsets of A that are elements of p is even. And that this, in turn, holds if
and only if — dually — pNp’ is of even cardinality for all collections p’ C P(X) of
subsets of X for which, for every subset A of X, the number #{A’ e p’: AC A’}
of subsets in p’ properly containing A is even.

Thus if p is such a collection of subsets of X and X is not empty, p cannot
contain the empty set as this is the only proper subset of any one-element subset
{a}; and it either contains all or no one-element subset of X, because the cardi-
nality of {A’ : A’ C {a,b},A’ € p} = {{a}, {b}} U p must be even for any two
distinct elements a,b € X.

More specifically, associating to each split S = {A, B} of X the set system
p(S) ={Ag C X :0# Ay C Ay U{Ay C X : 0 # Ay C B} yields a collection
{p(S) : S € §(X)} of subsets of P(X) such that, given a collection p C P(X) of
subsets of X, the following assertions are equivalent:
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(i) p is a symmetric difference
Ap(S):Se€e8)={ACX :#{SeS: Acp(9)} isodd}

of set systems of the form p(S), where S runs through all splits in some
system S = S(p) C S(X) of X-splits;

(ii) the number #{A’ € p : A’ C A} of proper subsets of any given subset A of
X that are elements of p is even,

in which case the set S = S(p) is uniquely determined by p.
It is hoped that these observations may help to clarify some of the arguments
developed in [9-12] and related papers.

2. Two mutually anti-adjoint canonical involutions defined on the
space of Boolean functions

In this section, for a field K and a finite set X of cardinality n > 0, we introduce
two canonical K-linear involutions defined on the K-vectorspace

B(X|K) := KPX)

consisting of all K-valued Boolean functions defined on X — i.e., all maps from
the power set P(X) of X into the field K.
The first is the involution

T =T7xK) : B(X| K) = B(X| K) : T —1I

from B(X| K) onto itself, which maps any map II € B(X| K) onto the map II that
associates, to any given subset A of X, the element

m(4) = Y (-n*lma).

A’eP(A)

The map 7 is evidently a K-linear endomorphism of B(X|K), and it is also an
automorphism of B(X| K) of order 2 — i.e., one has

7'2 = IdB(X|K)
Indeed, we have

Lemma 2.1. The identity

S M = ()Mo = ()M daa
A AMCACA

holds for all A, A” C X with A" C A .
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Consequently, given any map II € B(X| K) and any subset A of X, we have

—

M) = > (~nTw)

A’eP(A)

= > =S (=)
A’EP(A) AV EP (A

= > ™oy Y (-l
A"EP(A) AT ATCATCA

= Y ()IImA”) (=1)A 64 4
A"eP(A)

— TI(A).

The second involution we introduce is the map
p=pxK) BX|K)—BX|K): I-1I
from B(X| K) onto itself that maps any map II € B(X| K) onto the map II that
associates, to any given subset Ag of X, the element
O(A) = (- 3y ) =—-nh > 1),
A ACA'CX A ACA'CX

This is also evidently a K-linear endomorphism of B(X| K), which satisfies the
identity
p* =Idp(x| k)

in view of the fact that

(M) = (-p*a Y Tw)

AT ACA'CX
S N N ) L D N 1 (07 ()
A ACA'CX A" A'CAYCX
S L NN 107 N O G ) e
A" ACA"CX Al ACA'CAY
= (DM ST TI(A”) (-1) ey 4
A" ACA"CX

= II(A)

holds for every map II € B(X| K) and every subset A of X.

In the next section, we use the fact that these two involutions are anti-adjoint
relative to the canonical inner product defined on B(X| K) that associates, to any
two maps &, ¥ € B(X| K), the sum

(@]T):= > B(A)T(A).

AeP(X)
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Indeed, one has (t/I; | ¥) = —(®| W) for all &, ¥ € B(X| K) as, given any two maps
D, ¥ € B(X| K), we have
@) = > 2A)V(4)

AeP(X)

= Y Y ole@)u

AEP(X) A’€P(A)

= Y > ()T u(4)

A’E€P(X) A: A’CACX

= Y el 3w
A’eP(X) A: AICACX

= ) —oA)T(A)
A’eP(X)

= —(®|0).

3. The fixed-point spaces of 7 and p

Now let B(X| K)™ denote the subspace of B(X| K) consisting of all fixed points
® € B(X| K) of the involution 7 = 7(x|k), and let B(X| K)” denote the subspace of
B(X| K) consisting of all fixed points ¥ € B(X| K) of the involution p = p(x|x) —
i.e., put
B(X|K)" :={® c B(X|K): ® =}
={PeBX|K): A CX = d(4)= > (-na4)}
A€eP(Ao)
and
B(X|K)?:={V e B(X|K):¥ =V}
={TeB(X|K): 4 CX = ¥(A)=—(-D)" Y w(A)}.
A: AgCACX
Of course, the fact that 7 and p are anti-adjoint relative to the canonical inner
product defined on B(X|K) implies that, given any ® in B(X|K)™ and ¥ in
B(X| K)*, we have
(@]T) =(2|T) = —(2|T) = —(2| T)
and therefore
2(®| ) =0.
However, we can do a bit better — i.e., we can establish the following

Theorem 3.1. Given X and K as above, the two subspaces B(X| K)™ and B(X| K)?
of B(X| K) are mutually orthogonal complements relative to the canonical inner
product defined on B(X| K), every p-invariant element in B(X| K)* is a p-trace —
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i.e., it is of the form II+1II for some I € B(X| K); and every T-invariant element
in B(X|K)7 is a T-trace — i.e., it is of the form IL +1I, for some Il € B(X| K).

Proof: The fact that
(@ [T+T0) = (| T1) + (& | TT) = (2| TT) — (@ | IT) = (@ — P| IT)
and
(I+T1| @) = (| @) + (TT] ¥) = (11| ¥) — (| T) = (II| & — T)
holds for all ®, ¥, 1T € B(X| K) implies that the subspace
B(X|R), :={II+1II: I € B(X|K)}
of B(X| K)? coincides with the orthogonal complement of B(X| K)7, and that the
subspace
B(X|R), := {II+11: 1T € B(X| K)}
of B(X| K)™ coincides with the orthogonal complement of B(X| K)?. In particular,

dimg B(X| K)™ + dimg B(X|R), = dimg B(X| K)? + dimx B(X|R),

= dimg B(X| K) = 2" < dimg B(X| K)”? + dimg B(X| K)"

must hold.

Furthermore, given any arbitrary but fixed element z € X, every 7-invariant
map ® € B(X| K)" is easily seen to be completely determined by its values on the
subsets of X containing z, and every p-invariant map ¥ € B(X| K)” by its values
on the subsets of X not containing z. Indeed, ® € B(X|K)", Ae¢ P(X) and z ¢ A
implies that (with B+ z:= BU {z} for all B C X — {z}),

B(A+z) = B(A+2)
= > (-y*le4)

A'CA+=

= > (-)HN(B(A) - B(A +2))

A'CA

= 3(A) - > ()4 +2)

A'CA
= 3(4) - Y (-)Ie(A +2),

A'CA

and therefore

QA) =B(A+2)+ > ()R +2).
A'CA
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Further, ¥ € B(X| K)?, A€ P(X) and z € A implies (with B — z := B — {z} for
any B C X with z € B)

V(A-—2) = T(A-2)
- DAY e
A—zCA'CX
= (DY wA)+ (= Y w(A)
ACA/CX A—2CA'CX—z

= TWHE)M Y )

A—2CA'CX—2z
= Y(A)+ (- Yo wA),
A—zCA'CX—=
and therefore

U(A) = T(A—2z) — (-1 > ).

A—2CA'CX—2z
Thus we must also have dimg (B(X| K)7), dimg (B(X| K)?) < 2"~1, implying that
B(X|R), = B(X| K)", B(X|R), = B(X| K)*,

and dimg (B(X| K)7) = dimg (B(X| K)?) = 2"~ ! must hold, and that B(X| K)™
and B(X| K) are mutually orthogonal complements, as claimed.

4. Discussion: some consequences and some special cases

(1) Note first that the above results imply that, to find a map ¥ € S(X|R) for
which D(z,y) = X(z : y) holds, for all z,y € X, for some given metric D, we
may just as well try to extend D, considered as a map from P<2(X) to R, to
a suitable map II € B(X|R)™ = D,(S(X|R)) that is actually contained in the
image of Syo(X|R) relative to D,, and then consider the pre-image ¥ € So(X|R) of
Y. relative to the map D*®. Actually, one can find any such extension II by

(i) first extending D to an arbitrary map II' € P(X|R) that vanishes on the
empty set and on all one-element subsets,

(ii) and then putting IT := %

Indeed, noting that, for every extension II' € P(X|R) of D that vanishes on
the empty set and on all one-element subsets, also 7(IT') is such an extension of D,
we see that also II = % is necessarily such an extension and that, in addition,
this extension must coincide with IT" in case II' was already contained in B(X|R)7.
We suggest exploring this approach towards dealing with the fundamental inverse

problem in computational phylogenetics in future research.
(2) It is also worth noting that
B(X|K)” n B(X|K)" = {0}
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holds, of course, for every formally real field K and hence, as we deal with linear
equations over Z only, for every field K of characteristic 0. Therefore, also

B(X|K)=B(X|K) ®B(X|K)"
must hold for every field K of characteristic 0 in view of Theorem 3.1.

However, this does not necessarily hold for fields of finite characteristic: E.g.,
it is easily checked that the map

®:P(1,2) 5F2: A |A] mod 2

is contained in B(X|F3)? N B(X|F3)". And it can also be checked easily that the
map

1if [A] =0,
—2if [A] =1
3 :P(1,2,3) > Fs: A il =1,
—1if |[A] =2,
2if |A] = 3,

is contained in B(X|F5)? N B(X|F5)".

It might be of interest to determine, for every field K, the K-dimension of
the intersection B(X| K)? N B(X| K)" in terms of (i) the cardinality of X and (ii)
the characteristic of K.

(3) It might also be of interest to determine explicit formulae for decomposing, for
a given field K of characteristic 0, any given map II € B(X| K) into an orthogonal
sum IT =II' + II” of a map IT' € B(X| K)™ and a map II” € B(X| K)*.

(4) Finally, specialising to the case K := Fg, recall first that
(i) associating, to each map II in B(X|F5), its support

supp(Il) ;= {A C X : TI(A) # 0}

yields a bijection between B(X|F;) and the set P(P(X)) of all collections
p C P(X) of subsets of X,

(ii) the sum IT + IT' of two such maps II, 1" € B(X|F3) corresponds to the sym-
metric difference pAp’ := (p — p’) U (p’ — p) of the associated collections
p :=supp(II) and p’ := supp(Il’), i.e., one has

supp(IT 4 IT') = supp(IT) A supp(IT')

for all I, II' € B(X|F2),

(iii) the collections p of subsets of X corresponding to the maps in B(X|F3)" are,
in consequence, those collections p C P(X) of subsets of X for which, for
every subset A of X, the number #{A’ € p: A’ C A} of proper subsets of A
that are elements of p is even,

(iv) the collections p’ of subsets of X corresponding to the maps in B(X|F3)? are
those collections p’ C P(X) of subsets of X for which, for every subset A of
X, the number #{A’ € p’: A C A’} of subsets in p’ properly containing A
is even,
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(v) and the inner product (II|II') of two maps II,II' € B(X|F3) coincides with
the parity of the intersection p N p’ of the corresponding two set systems

p :=supp(II) and p’ := supp(Il’).

Thus, using what we have established above in conjunction with the fact,
established in [12], that B(X| K)" coincides, for every field K, with the image of
the K-vectorspace S(X|K) := K) consisting of all maps from S(X) into K
relative to the map

DX : S(X|K)— B(X|K): Zw (ZF : P(X) - K)

where, in analogy to the case K:=R discussed above, X denotes the map from
P(X) into K that maps every subset Ay of X onto the sum

SEA) = ) T(H{AUAX — (4 UA)Y),
AeP(X—Aop)

we see that the following holds:

Corollary 4.1. There exists a canonical one-to-one correspondence between

(i) collections S C S(X) of X -splits,

(ii) collections p C P(X) of subsets of X for which, for every subset A of X, the
number #{A" € p: A" C A} of proper subsets of A that are elements of p is
even,

(iii) collections p C P(X) of subsets of X for which p Np’ is of even cardinality
for all collections p’ C P(X) of subsets of X for which, for every subset A
of X, the number #{A’ € p’': A C A’} of subsets in p’ properly containing
A is even.

More specifically, associating to each split S = {A, B} of X the set system
p(S) ={40 C X :0# Ay C A}U{Ay C X : 0 # Ay C B} yields a family
(p(S))ses(X) of subsets of P(X) such that a collection p C P(X) of subsets of X
is a symmetric difference

Ap(S):Se€8)={ACX:#{SeS: Aecp(S)} is odd}

of set systems of the form p(S) for some system S = S(p) C S(X) of X-splits

if and only if, for any given subset A of X, the number #{A’ e p: A’ C A} of

elements in p that are proper subsets of A is even, in which case the set S = S(p)

is uniquely determined by p.

It could be of interest to characterise those set systems p C P(X) that
correspond to compatible, cyclic, or weakly compatible split systems (as defined
in [7] and [3], respectively, see also [2,4,5,8]).
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1. Introduction

The potential applications of a delayed cellular neural network (DCNN) given by

dlicit(t) — —ailii(t) + szjf](lij(t)) + Zcijfj(xj(t — Tij)) =+ Ii (11)

for solving a wide range of problems, such as occur in various scientific disci-
plines [28, 33, 39, 43, 44], have motivated many researchers to perform fundamen-
tal studies such as investigating the existence and uniqueness and examining the
stability characteristics of an equilibrium state of the network [1, 2, 8, 10, 11, 14,
17, 18, 19, 21, 23, 27, 30, 40, 46, 45]. The outcomes of these studies led to a se-
ries of modifications to the original design of the network developed by Chua and
Yang [15, 16] and Roska and Chua [41]. Among them we include the removal of
the monotonicity and differentiability properties of the activation functions f;(-),
and waiving the symmetry arrangement within the connection weight matrices
[bij]mxm and [¢;j]mxm- Such modifications have been found to improve the compu-
tational performance as well as widening the scope of applicability of the network.

In view of its promising capability for solving problem areas which require
fast computation in real time, a number of researchers have investigated the expo-
nential convergence of the network (1.1) [4, 5, 6, 7, 9, 12, 13, 22, 29, 31, 34, 36, 37,
38, 48, 53, 54, 51, 56, 57]. Most of the results obtained relied on the construction
(or the modification) of the Lyapunov functional given by

m

V(x(t)) = Zai (e”t|xi(t) — x|+ i |cij| LjetTes /t e*|zi(s) — mf|ds). (1.2)

i=1 t—"Tij

This functional is one of the many variations of the original functional developed by
Gopalsamy [26]. By using (1.2) one can, through an appropriate analysis, extract
the following sufficient condition (see for instance, Cao [9])

m oy
a; > Zj(|bji| + lejil ) L (1.3)
j=1 "

under which the exponential convergence of the DCNN (1.1) is guaranteed. Accom-
panying the condition (1.3) are also the boundedness and the Lipschitz property of
the activation functions f;(-). We remark that monotonicity and differentiability
of the activation functions were not assumed in the DCNN (1.1). There are other
results found in the articles cited above which have been obtained by modifying
the form of the functional V(-). These conditions have been found to be more
relaxed than the condition (1.3) in terms of restricting the parametric values of a;.

Although the results include various aspects of connectivity within the net-
work, they are not adequate to capture a possible and useful relaxation, especially
when the design of the network has inhibitory and instantaneous self-connections,
namely, b;;, ¢;; < 0 and 7;; = 0. Under this proposed set-up the DCNN (1.1) can
be envisaged by the system given by
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dxdit(t) = —a;x;(t) + (bi; + ¢ii)gi(z:(t)) + Z bij £ (x(t))

J=1,j#i (1.4)

m
+ > cijfi(zi(t — 7)) + L.
j=1,5i

We have found in writing this article that the sufficient condition holding the
neural parametric values of the DCNN (1.4) is less restrictive due to the presence
of the inhibitory and instantaneous self-connections (b;; + ¢;;)gi(zi(+)). Moreover,
such relaxation is further enhanced by employment of the activation functions g;(+)
which are strictly monotonic.

The other aspect that we have included in this article is the removal of
the boundedness property of the activation functions. Such removal would allow
one to apply the DCNN (1.4) for solving optimization problems in the presence
of constraints of a more general type. One may refer to the articles [18, 20] for
some discussions on the need to use unbounded activation functions such as the
diode-like exponential-type functions that suit the constraint requirement of an
optimization problem. One ought to be cautious, however, that the problem of
analysing the existence of a unique equilibrium point of the network, when the
activation functions are unbounded, may not be a straightforward case. It may even
be possible that the network does not have an equilibrium state. It thus becomes
our main intention to dedicate Section 3 of the article to an investigation of the
existence of a unique equilibrium state of the DCNN (1.4) when the activation
functions are unbounded. The sufficient conditions obtained in this section will be
carried over to Section 4 for establishing the exponential convergence of the neural
states toward the unique equilibrium state.

2. Model formulation

It is always assumed in the formulation of the DCNN (1.4) that the time delays
are discrete so as to allow the processing and transfer of signals among the cellular
units to occur. In the actual implementation of the network for practical purposes,
however, it is always difficult to determine the values of these delays. One of the
better alternatives is to assume the propagation of signals being distributed over
a certain duration of time in a manner in which the distant past has less influence
compared to the recent behaviour of the neural state. The duration over which the
past effects affect the current state can extend over a finite or an infinite interval.
By incorporating this type of time delay into the processing part of the network
architecture of (1.4), the model becomes
m
VD) aa(t) + b+ cdgm®) + Y bify(as(e)

j=1.j#i

+ D el (/_too Kij(t — S)JJj(S)dS) + I;

j=1.j#i
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for convenience we put it in the form

dxcit(t) = _aixz( ) (bu + Cij gz 1:1 Z bz]f] 1:]
J=1,j#i 2.1)
+ Z ci;jfi / K;;(s)x;(t— s)ds) +I;

Jj=1,j#i

fori € T=1{1,2,...,m}, t > 0. The state x;(t) of the cell i at time t is measured
in terms of its voltage, whose rate of change is influenced by the current received
from the inhibitory and instantaneous self-connectivity (b;; + ¢i;)g:(xi(t)), by an
external input current source I;, and also by an input current received from a
neighbouring cell j through the nonlinear or piecewise linear activation function
fj(-). The connection strengths between cells ¢ and j at times ¢ and ¢ — s are
parameterized respectively by the constants b;; and c¢;;. The parameter K;;(-)
corresponds to the delay kernel that controls the past effect received from the cell j,
which influences the recent neural state behaviour of the cell i. The parameter a;
denotes the rate at which the cell ¢ resets its potential to its resting state when
isolated from other cells and inputs.

In studying the DCNN (2.1), the neural parameters are assumed to satisfy
a; >0, bii,ciiéo, I; e R for 1 €L, 99
bij,CijER for i,jEI, Z#] ()

The activation functions g;(-) and f;(-) with g;(0) = f;(0) = 0 are assumed to be
globally Lipschitzian, in the sense that there exist positive constants k;, k; and L;

for which
gi(u) — gi(v)

u—7v

Ki < SEi |filw) = fi(0)] < Lilu— vl (2.3)
for all u, v € R. We remark that (2.3) does not necessarily mean that both functions
are bounded and differentiable. The functions g;(-) are monotonically increasing
while f;(-) are not necessarily so. We have found in this article and also in [4,
35] that the monotonicity property of g;(-) is needed in the attempt to ease the
restriction imposed on the parameter a;. In the analysis below, we assume that
|gi(w)l], | fi(u)| — oo as [u] = oo.

The delay kernels K;; : [0,00) — [0,00) in (2.1) denote continuous functions
and they are assumed to satisfy

/ Kij(s)ds =1 and / Kij(s)et*ds < 0o (2.4)
0 0

for some positive constant . A typical class of the delay kernels is given by
Kij(s) = K.(s) = % 'yffl ~7i5% for s € [0, 0o], where y;; € (0,00),7 € {0,1,2,...}.
These kernels have been used by a number of authors [25, 38, 47, 51, 55] in var-
ious stability investigations and applications of neural networks with distributed
delays. One observes that K,.(-) — §(-) as r — oo, where §(-) denotes a Dirac delta
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function. We can use this to extract the delay terms in the DCNN (1.4) from those
of (2.1). For instance,

/_too K(t —1)z(r)dr = /Ooo K(F)a(t — r)dr

and
f(/_; K(t 7y (r)dr) = fla(t — 7)) as K(t—7) - ot 7).

It is for this reason one claims that the DCNN (1.4) denotes a special case of the
DCNN (2.1).
We supplement the DCNN (2.1) with an initial condition of the form

xi(s) = ¢i(s) for i €Z, sé€[—00,0], (2.5)

where each function ¢;(-) is bounded and continuous on (—o0,0]. A neural state
vector of (2.1) is denoted by x(t) = (z1(t), z2(t), ..., Zm(t))T for t > 0, where each
component x;(-) satisfies (2.1) and (2.5).

In this study, we associate a vector u € R™ with the general Euclidean norm
Jull, = (i, |ui|p)1/p, where p > 1. And, we use a Young inequality (see for
instance Beckenbach [3]) which states that for 7, s satisfying r > 1 and £ +1 =1,
we have

u?" S
uv < s + 5 for any wu,v > 0. (2.6)
We refer to the articles [4, 12, 52] for the use of the inequality (2.6) in the stability
investigations of delayed cellular neural networks.

3. Existence and uniqueness theorem

We investigate the existence of a unique equilibrium state x* = (z%,z5,...,2%)T

of the DCNN (2.1), the existence of which is an important prerequisite for the
global exponential stability of the DCNN (2.1). By letting z;(¢t) = z in (2.1) and
applying (2.4), one can derive the algebraic system
m

—a;x; + (bii + cii)gi(z]) + Z (bij +ci) fi(z5) +1; =0 (3.1)

j=1#i

for ¢ € 7 that governs the components of x*.
In the following theorem, we prove the existence of a unique equilibrium state
a* under the sufficient condition (3.2) given below. The method of proof is based on
constructing a continuous mapping on R™. If the mapping is a homeomorphism on
R™, then the existence of a unique fixed point of the mapping can be guaranteed.
This technique has been used elsewhere in the literature on neural networks [12,
18, 20, 51] wherein the usual boundedness condition of the activation functions has
been removed. We remark that unbounded activations in neural networks have also
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been considered by Gopalsamy [24] who used a contraction mapping principle for
establishing the uniqueness of the equilibrium state.

Theorem 3.1. Let p > 1 be a real number, and let the assumptions (2.2)—(2.4)
hold. Suppose the condition

P
61.7 p—1 + |C1,]

— (bii + cii)ki > p;l i (|bij
P iiis
1 m
+5 > <|b

Jj= 171751

.. P
oii5ET ) [T
J

(3.2)

85ip + |Cji|a;ip) LZ.;iP

is satisfied, where the a; denote positive numbers, and 0;5, 055, Tij, 055, Vijs Vij
denote real numbers that satisfy 0;; +0;; = 1, 055+ 07; =1 and vi; +7f; =1 for

i # j. Then there exists a unique equilibrium state x* of the DCNN (2.1).

Proof. We construct a map h(u) € C°(R™,R™) defined by h(u) = (hi(u), ha(u),
ooy him(1))T where

hi(w) = —azu; + (b + ¢ii)gi(ui) + Z (bij + cij) fi(uj) + 1; (3.3)
Jj=1.g#i
for u; € R. In order for the map h to be a homeomorphism on R™, one has to show
that the mapping is injective on R™ and it satisfies [|h(u)|, — oo as [|u||, — oo.
In the following, we show that the map h is injective on R™, namely, h(u) =
h(v) implies u = v for any u,v € R™. We have

- aiuz (bu + Cu gz uz + Z bl] + Cl] f] (u]) I
J=1,j#i

= —a;v; + (bu + Cu gz Uz + Z bz] + ¢ij f] (U]) + I;.
J=1,j#i

Noting that a; — (bs; + ¢ii)k; > 0 and applying the assumption (2.3) to the above,
we obtain

ai(u; — vi) = (bii + ci)lgi(wi) — gl + Y (bij + i) [f5(ug) — f5(v))]

J=1,j#i
< (bii + ci)ri(us — i) + Y (bij + ci) [ (ug) = £(v5)]
J=1,j#i
which then gives

la; — (bii + cia)ril i — vil < D ([bijl + lesg) Lyluy — v
i=1j#i
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Now,

Z az ) bu + Cu)"ﬁ”“z - U1|p

m m
<> > (|b1-j|+|c1-j|)Lj|ui—vi|1"1|uj—vj|

m m *
=D > (bl L s = vl (bl L g — )
i=1 j=1,5#1
m m *
3o S (eul™ LY s — P ) (e 7L g — vy,

=1 j=lj#i

where 0;; +6;; = 1, 75 +7;; = 1 and 05 + 0;; = 1. By using the Young inequality
(2.6) in the above, we obtain

Zaz a; b11+czz)/§1]|uz_vz|
<o 3 (S5

J=1,j#i

6”_1[/%717 1| 1_U1| |b1]

PPL g — Uj|p)

m m

+D i Y (p;1|cz'j

=1 j=lj#i

P 1
O'i_ip%lL;l” p-l lu; — vi|P + §|Cij

m _ 1 m P
<> at— Y (|bz‘j M |y aij%)L;”iji — vg|?
=1 p j=1,5#1
lis 1 lis o X * *
Y >0 (gl + el ) L =
= Piss

.
61.7 p—1 + |C1,]

Zai{[ai — (bii + cii)ki) — —— (|bij
i=1 =1,
1 & q *
- > _J<|bjz'|6-“p + |Cjz'|a'7'ip)LZﬁp}|ui —v? < 0.
b =,
J=1,j#i

It is not difficult to see that this system under the condition (3.2) yields u; = v;
which means u = v. Hence, the map h is injective on R™.

To show that [|h(u)l|, — oo as [lul|, — oo, we consider for convenience the
map h(u) = h(u) — h(0), where

P
ai_iﬁ)lﬂw -1
j

hi(u) = hi(u) — hi(0) = —a;u; + (bis + cis)gi(us) + Z (bij + cij) fi(uz)
=g



256 S. Mohamad

for u; € R. Let us assume that ||fl(u)||p — 00 is not true as [lul[, — oco. In other

words, there is a sequence {u,} such that ||u,||, — oo and ||fl(un)|| is bounded

as n — co. One can pick a subsequence {u/,} of {u,} such that ||ul,|| — oo and
||fl(u;)|| — A as n — co. Now,

Za1|uzn|p 1Sgn( 1n)i2’( )

=1
. m
— / p_l /
— Z || Sgn(um){ asul, + (bii + cii)gi(ul,) + Z (biy + ci3) )}
o Jj=1,j#i
s m
< Y o] s — (b camillufal? D0 (bl leig )Ly P sl
= i=1j#i
One can apply similar steps like before to obtain
S el P sgm(al Vo)
=1
3 P~ 1 S P P vij =2
Zaz{ bu + Cﬂ)] Ry — ——— Z (|b” 5i_7'pT1 + |Cij Ui.ipTl) Lj” 72T
= P iriz
1 & . ) .
- > aj <|bjz'|6-“p+ ICjz-I"-“”) LZ-“”}|u;n|p
P Jj=1,j#i
<o X aulu
i=1
where
p 1 S D »y..L
E_Iz%l%l{[ = (bii + cig)|ki — —— Z 8ij 321 —|-|c Ui_prl)Lj ip—1

J=1,j#i
> 2 (b e w) L") >0
oz
j=1,3

We then have

’BI)—‘

; . Ip < p—1 iz
E?él%l{al};|uzn| Za1|uzn| Sgn( 1n) ( )

max{az}Zm P haCal )|

By applying a Holder inequality to the above, we obtain
< 1 max;er{a;} m B g, U
' pg_#< ' 1)q) ( o p)
; i € min;er{a;} ; il Z| (u,)] ,
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where % + % = 1, which in turn yields

1 max;ez{o;}
g miniez{ozi}

_ A maxjez{a;}

||u£z||p < fl("%)” as m — oo.

P g miniez{ozi}
This contradicts our choice of {u;,} which satisfies [|u, ||, — 0o as n — co. It then
follows that the map h satisfies |[h(u)l|, — oo as [[u||, — oo.

We have established that the map h is a homeomorphism on R™ and this
guarantees the existence of a unique fixed point «* of the map h. This fixed point
represents the unique equilibrium state of the DCNN (2.1). The proof is now
complete. 0O

4. Exponential stability theorem

We proceed to analyse the global exponential stability of the unique equilibrium
state &* of the network (2.1) under the sufficient condition (3.2). Let us denote

l6—='l,= [ swp loio) —=i)] " < oo,
i—1 “8€[—00,0]
where p > 1 is a real number, and ¢;(s) for s € (—oo, 0] denote arbitrary initial
value functions of the network (2.1).

Now, we are ready to prove the exponential stability of the equilibrium state
z” in the norm ||-||,. For the convenience of the reader, we give below the defini-
tion of exponential stability. For definitions of exponential stability involving the
usual norms (i.e., |-, [l and [|-[|,,) and the general norm |||, we refer the
reader to the articles [5, 9, 37, 42]. We remark that Sasagawa [42] defined the ex-
ponential stability involving the norm ||-||,, as the exponential p-stability. Though
the definitions of exponential stability distinguished under different norms is not
an important notion due to the equivalence in norms within the Euclidean space
R™, the sufficient conditions obtained under the general norm ||-[|,, certainly can
generate a family of conditions, which in turn provides us with a vast range for
choosing the neural parametric values that will ensure the exponential convergence
of the network (2.1).

Definition 4.1. The unique equilibrium state x* of the network (2.1) is said to be
globally exponentially stable if there exist real numbers 8 > 1 and v > 0 for which

m 1/p
[Z ji(t) — 2fP] < B @ — ||, for ¢ >0,
=1

where the constants 3, v are independent of the initial values of the network (2.1).

Theorem 4.2. Let p > 1 be a real number, and let the assumptions (2.2)—(2.4)
hold. If the condition (3.2) is satisfied, then the unique equilibrium state * of the
network (2.1) is globally exponentially stable.
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Proof. The uniqueness of the equilibrium state x* of the network (2.1) follows
from Theorem 3.1. Let x(¢) denote a solution of the network (2.1) corresponding
to a given but arbitrary initial value function ¢. We obtain that

d@ilt) =21 g ai(t) — ) + (b + e gi(mat)) — gia?)

dt
+ Z bij[fi(x;(t)) — fi(x3)]
J=1,j#i
+ Z c” fj/ K;;(s xj(t—s)ds fj/ K;;(s xds)}
J=1,j#i

By applying the upper right derivative % |zi(t)—z} | = & (zi(t)—x})sgn(zi(t) —z})
and the assumptions (2.2) and (2.3) to the above, we obtain the system

d+ * * o *
31T — @il < —lai = (bis + cio)wallwilt) — 27| + > lbislLylay(t) — a5
j=1,j#1
+ Z iz L / Kij(s)|x;(t —s) —x}|ds
J=1,j#i
(4.1)
for t > 0.

Let us introduce a number 0 < v < p, where p is defined in (2.4), to the
condition (3.2) so that

— (bii + cii)ki —v

-1 L e o
-5 Z ('b” P ey 7T / Kz‘j(S)e”st) L;'Y o
LGy Ry 0 (42)

(2

J=1,j#i

71;0_'_|C |a71p/ K usds) 7711’20

’BI)—‘

for all ¢ € Z. Corresponding to this number v, we define nonnegative functions

w;(-) by
wi(t) = e“zi(t) — xf| for t € (—o0,00) (4.3)

and from which we derive the following:
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dtw;(t dr
U yetha(t) — af] + 0 S fastt) — a7
< vet|z(t) — xf| — [ai — (bis + cii)ri)e |zi(t) — z}
—+ Z |bij|Lje”t|xj(t) — JI;(|
j=lj#i
S |cij|Lj/ K (s)e? (¢ — 5) — 2]ds
j=1,57i 0
and hence
d*w;(t) G
. < —lai — (big + cig) ki — v]w;(t) + Z |bij| Ljw; (t)
N _ J=hi# (4.4)
+ Z |Cij|Lj/ Kij(s)e”*w;(t — s)ds
=L 0

for ¢ > 0. Associated with the solution w;(-) of (4.4) is a Lyapunov functional
V(t) = V(w(t)) defined by

Vi(t) = iai (wf(t) + i |cij aijL;ijp /°° Kij(s)e”" (/t wﬁ?(r)dr) ds)
im1 =g 0 e

(4.5)
for t > 0. We shall see in the following that this nonnegative functional is non-
increasing and bounded above by V(0), namely, V() < V(0) < oo for all ¢ > 0.

Firstly, we observe that
m . . oo 0
V() =Y ai(wf©) + Y leylirL] / Kij(s)e / wh(r)dr ) ds)
0

i=1 J=1,5#i -

= iai (wf(O) + Em: %|Cﬁ|a;"%ﬁip /0°° Kiils)e™ (/0 wf(r)dr) ds)

i=1 J=lg#i ° =

QZm(l—l— Z %|cﬁ|";i”LZ‘“p/ Kji(s)e”ssds)( sup wf(s)).
0

=1 j=ly#i s€(=00,0]

Since sup,e(_ o007 [7i(s) — @7 [P < 0o and

/ Kj;(s)e"*sds S/ Kji(s)e"*ds < o0
0 0

for 0 < v < p, we assert therefore that V(0) < co. Next, we calculate the rate of
change of V(-) along the solution of (4.4) to obtain
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dtV(t) _ Zai [pwf_l(t)d dt(t)

+ 3 Jeylirr” /O Koy (s)e" [wf(t) — w? (1 — )]ds]

j=1.j#i
m

< Zai[_p[ai — (bii + cii)ri — v]wi(t) +p Z |bij|ijf_1(t)wj(t)
i=1 J=1,j#i
+p§:kmL/ Ky ()" w! ™ (thw; (t — 5)ds
J=1,j#i
+ Ziwzwﬂﬁ’/ K (s)e* [wh (t) — w] (t = s)]ds|
J=1,j#i
<) o [—p[ai = (bii + cii) ki — v]wy (t)
i=1
i P YVij T *pr Vi
+30 (- Dbl L TR 6) + o 0L 1))
J=1,j#i
+ Z ( — 1)]ei |79 71 1L%”’ 1/ K;j(s)e”*w? (t)ds
J=1,j#i

afij;ijP/ Kij(s)e”SIUﬁ’(t—S)dS)

+leij

©Y e ”pL%/ Koy (s)e" [u? (1) — wh(t — 5))ds]
Jj=1,j#i

Zaz[ — (bii + cii) ki — VW (1)

=1

+@4>Z(m%ﬁ+mW*Afwm%WTﬁw

=1
v 'Y”p
”p/ Ki; sds) wf(t)}

+Z<|b

J=1,j#i

by —|-|C

which can be summarised as

+ m
d ;(t) < —; poc[a: — (b + cx)ms — 1]
-1 m ) . .
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1 &< o«
- X o (Jesil”
J=lj#i "
for t > 0. By using (4.2) in the above, we have d*V(¢)/dt < 0 for ¢ > 0. This in
turn implies that V(t) < V(0) < oo for all ¢ > 0.
We obtain from (4.5) that

el [ Koerds) Lt

m m m . o’e)
Z awl(t) < Z(O‘i + Z ey TP L) / Kji(s)e”ssds) ( sup wf(s))
i=1 i=1 G=1,5%i 0 5€(—00,0]

for t > 0. By using (4.3) in the above, we obtain

m
D it tay(t) — |
=1
m m

SZ(O@-—I— Z aj|cj1-|".7*'ipLZ“p/ Kji(s)e”ssds)( sup |xi(s)—xf|p),
i=1 0

=T s€(=00,0]

which in turn gives

m

Solait) — wiP <qe Yo (supfails) - i) (4.6)

=1 8€(—00,0]

for ¢t > 0, where

m * o0
v = I?Gazx{ai + E aj|cji|".7*'ipLZ'“p/ Kﬁ(s)e”ssds}/riréi%l {a;} >1
=L 0

Noting that z;(s) = 1;(s) for s € (—o0, 0], it then follows from (4.6) that

i 1/p
3 Jai(t) — m;‘v’) < Be | — ||, for ¢ >0,

i=1
where 3 = /7. The global exponential stability of the unique equilibrium * of
the network (2.1) has been established, and this completes the proof. O

One of the consequences of Theorem 4.2 is the following corollary:

Corollary 4.3. Let p > 1 be a real number, and let the assumptions (2.2)—(2.4)
hold. Suppose —(b;; + ci;)k; > 0 and

—(bii + cii)ri > p—1 Z <|bij
Ptz
1 m
+- 3 ° <|b
p] 1, ;éz
are satisfied, where the other additional parameters are defined in Theorem 3.1.

Then the equilibrium state * of the DCNN (2.1) is unique and globally exponen-
tially stable.

.. _P
8ijpoT + |Cij

. _P
i %) L7
J

(4.7)

85 + |Cji|a;ip) L;}’.;ip
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We remark that the network (1.4) denotes a special case of the network (2.1),
and it is always assumed in (1.4) that the discrete delays 7;; satisfy 7,; > 0 for i # j.
The following Corollary 4.4 is an adaptation of Theorem 4.2 in which we establish
the exponential convergence of the network (1.4) towards a unique equilibrium
state *. We remark that this corollary improves the results of Theorem 1 in Cao [4]
on grounds that our condition (3.2) is more relaxed than the sufficient condition
obtained in [4] in terms of restricting the parameter a;, and the activation functions
of the network (1.4) have been assumed to be unbounded and not monotonically
increasing in general, while all the activation functions of the network studied in
[4] have been assumed to be bounded and monotonically increasing.

Corollary 4.4. Let p > 1 be a real number, and let the assumptions (2.2) and (2.3)
hold. If the condition (3.2) is satisfied, then the unique equilibrium state * of the
network (1.4) is globally exponentially stable.

Of course, one may opt to adopt the results of Corollary 4.3 to the network
model (1.4) as a variation to Corollary 4.4.

In the following, we give a couple of corollaries of Theorem 4.2 which further
improve the global exponential stability results obtained earlier in the literature.
The comparisons are made based on the assumptions that a delayed cellular neu-
ral network has self-connections which are inhibitory and instantaneous and the
corresponding activation functions are monotonically increasing. These properties
have been included intrinsically in the earlier studies of the network. The follow-
ing Corollary 4.5 establishes the exponential convergence of the DCNN (2.1) (or
DCNN (1.4)) in the norm [|-|,. One can see that the condition (4.8) below is
weaker than the sufficient conditions obtained in [7, 8, 10, 11, 31].

Corollary 4.5 (Case p = 2). Let the assumptions (2.2)—(2.4) hold. Suppose the
condition

m

1 8 20 2 ij
a; — (bii + Cii)/ﬂ > B ' Z ,<|bij|2 id 4 |Cij| 1_7)Lj'Yl, ;
J=1,j#i (4.8)
1 & q o\ 727
t3 30 S (g e )
j=li#i

is satisfied, where the other additional parameters are defined as in Theorem 3.1.
Then the unique equilibrium state * of the DCNN (2.1) (or DCNN (1.4)) is
globally exponentially stable.

The following Corollary 4.6 establishes the exponential convergence of the
network (2.1) (or DCNN (1.4)) in the norm [|-||5. The results of this corollary can
improve some of the results obtained by Cao [§].
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Corollary 4.6 (Case p = 3). Let the assumptions (2.2)—(2.4) hold. Suppose the
condition
2 <« g ous 3715 /2
a; — (bii + cia)ri > 3 > <|bz'j|‘n’6”/2 + leig)? ”/Q)Ljv'/
j=Lj#i
1 - aj * ot 3’)’;1‘
+t3 D a_J-<|bji|36-“ + el '“)Li '

3
j=1.j#i

(4.9)

is satisfied, where the other additional parameters are defined in Theorem 3.1. Then
the unique equilibrium state * of the DCNN (2.1) (or DCNN (1.4)) is globally
exponentially stable.

We remark that the general Euclidean norm ||-[|,, of a vector u € R™ tends to
the norm |-|| ., if we let p — co. Henceforth, we assert in the following Corollary 4.7
the exponential convergence of the network (2.1) (or DCNN (1.4)) in the norm
|-l .o- One finds that the sufficient condition (4.10) given below is less restrictive
when compared to the condition obtained earlier by Mohamad and Gopalsamy [37].
To get the condition (4.10) from (3.2), we let §;; = 045 = 755 = ”P%l and ¢ =
o == % for i # j so that (3.2) reduces to

p—1 & 1 i
— (bis + cii)ki > —— Z (1biz] + lei; DL + - Z |bﬂ| + lejil ) Li
=L i =1

By letting p — oo in the above, we obtain the condition (4.10).

Corollary 4.7 (Case p = 00). Let the assumptions (2.2)—(2.4) hold. Suppose the

condition
m

— (bii + e > Y (Ibij] + less)) L (4.10)
J=1,j#i
is satisfied. Then the unique equilibrium state * of the DCNN (2.1) (or DCNN
(1.4)) is globally exponentially stable.

5. Conclusion

We have established the exponential convergence of the neural states of the network
(2.1) toward a unique equilibrium state under a set of sufficient conditions which
are delay independent and easily verifiable. The verifiable nature of our results
gives us a better advantage over those results obtained by Liao et al [32] especially
when the network has a large number of processing units. This can be found
useful during the actual implementation of the network in which the choice of the
parameter values in desiring the exponential convergence of the network can be
tested easily against the sufficient condition (3.2).
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The other advantage of our results which can contribute to the circuit im-
plementation of the network is the usage of the monotonic property of the acti-
vation functions incorporated only within the instantaneous and inhibitory self-
connectivity. We remark from most of the earlier studies of neural network models
(particularly, [23, 49, 50]) that the use of non-monotonic activation functions can
increase the memory storage capacity of a network when applied to associative
memory related problems. We believe that this aspect may not be affected by our
network (2.1) as the activation functions f;(-) can have the non-monotonic prop-
erty. In fact, the monotonic factor x; > 0 coming from the property x; < W
of the activation functions g;(-) coupled with the parameters b;;, ¢;; < 0 can play
a significant role in relaxing the restriction on the parameter value of a;. We are
aware that the parameter a; is always related reciprocally with the resistance R;
within the circuitry of the cell i. Maintaining a high value of a; (due to maintain-
ing a low value of the resistance R;) in responding to high values of b;j,¢;; € R
for all ,j € Z, as depicted from most of the conditions obtained in the earlier
studies, can be an impossible task to achieve, particularly when a computational
run of the network is attenuated over a long period of time, as this can cause the
value of R; to increase as a result of heating. Even worse is when the resistance
R; (during the circuit implementation) reaches a critical value where the network
starts to destabilize. This concern can no longer exist if a network follows the pro-
posed set-up similar to the circuitry of (2.1) in which the neural parameter values
satisfy the sufficient condition (4.7) of the Corollary 4.3. We can see from the
condition (4.7) that the choice of the parameter value of a; becomes insignificant.
This aspect added with the unbounded property of the activation functions lifts
the network to a greater height in terms of real-world applications, especially for
solving optimization problems which consist of unbounded constraints.
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Abstract. Researchers have paid a lot of attention to the single-vendor single-
buyer integrated inventory system, but not to the integrated single-vendor
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buyers. This may be a particular case of the Joint Replenishment Problem
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also relevant costs of the buyers, are considered in this paper. An integrated
inventory model for delivering a single product to many buyers is developed,
using either equal or unequal (or mixed) sized batches. An heuristic solution
algorithm is developed, and illustrated with a numerical solution. A compar-
ative study of two single-vendor — single-buyer numerical problems shows the
effectiveness of this new technique.
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1. Introduction

The integration of vendor-buyer inventory systems plays an important role in mod-
ern supply chain environments. Establishing a close vendor-buyer relationship may
be of mutual benefit [2, 3, 8, 9, 10]. Although researchers have given considerable
attention to the single-vendor — single-buyer integrated inventory system, there
has been little research on its extension to the single-vendor — multi-buyer case.
The Joint Replenishment Problem (JRP) — viz. the problem of coordinating the
replenishment of a group of items from a single supplier to many buyers — has
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conjunction with the 20t anniversary celebration of the foundation of the University.
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been studied extensively, but most work has ignored the set-up and inventory costs
of the manufacturer (references [5] and [7] are exceptions).

The widely accepted joint economic lot size approach assumes that system
benefits generated by this approach can be shared among the buyer(s) and the
seller in a costless way, but it has been argued that negotiated benefit sharing is
never costless [5]. It requires information sharing, communication, trust building,
travel and executive time — and hence an alternative approach for minimising
the total inventory and ordering costs for the vendor and buyer(s) was proposed,
and claimed to be individually responsible and rational, so no further negotiation
between the seller and the buyer(s) for benefit sharing would be required [5]. This
approach charged the buyer(s) the cost of shipping and handling associated with
their respective order by appropriate reduction in the unit selling price, and it
was shown that the system costs reduced as much as in the joint economic lot
size approach as available in the literature at that time. However, by ignoring the
suggested costs of benefit sharing by the joint economic lot size approach, it was
shown that there is an initial error in the recognised unit selling price charged
by the vendor [2]. A lower total joint relevant cost for a new example with a
modified way of defining the joint economic lot size was demonstrated, and it
was argued that the ability of the vendor to entice the buyer by paying for order
handling and processing costs depends on their interrelationship. Subsequently,
the joint replenishment of items from the viewpoint of integrated inventory was
addressed, considering major and minor set-up costs and also a fixed cost [7].
Although multiple items were considered, it was assumed that the selling of each
item was to only one particular buyer, which obviously may be too restrictive in
practice. A one-vendor multi-buyer supply chain for a single product had been
proposed earlier, to analyze the benefits of coordinating the supply chain through
the use of common replenishment time periods [11]. It was assumed that the vendor
does not keep any inventory, but orders the required quantity from an outside
supplier whenever an order from a buyer is received. Then without considering
integrated inventory, the vendor may decide common replenishment periods and
offer a price discount to entice buyers.

The single-vendor multi-buyer case has also been considered by others. An
analytical model was proposed to integrate and synchronise the procurement of
a raw material needed to produce multiple items, and then to deliver them to
multiple retailers [6]. The objective was to find the production sequence of items,
the common production cycle length, and the delivery frequencies and quantities
that minimised the average total cost. It has also been assumed that the demand
at each retailer for an item might be known and satisfied by the item stored at
the warehouse [1], to try to determine single-cycle policies which minimise the
average cost. However, these previous single-vendor multi-buyer models have not
dealt with integrated inventory, in producing a single product by a vendor and its
delivery to many buyers.

This paper develops a model for supplying an item to more than one buyer,
after its production by a manufacturer. We assume that there can be transfer
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in equal or unequal sized batches, and that each batch is transferred as soon
as its processing is finished, so there is only a transportation cost incurred. For
the first batches, a later batch is a multiple of the previous one in the ratio of
the production and total demand rates, and the remainder are equal to the largest
batch. We present an heuristic solution technique, and illustrate it with a numerical
example. To demonstrate the effectiveness of our technique, we have also carried
out a comparative study on the results of two numerical problems solved earlier [4].

In the next section, we list our assumptions and notation, and then present
the model and an optimal solution technique. In the following sections, we then
discuss solutions of a numerical problem using our solution technique, and then a
comparative study involving two single-vendor single-buyer numerical problems.
We draw our conclusions in the final section.

2. Model formulation

2.1. Assumptions and notation
In developing the models we assume

1. Deterministic constant demand and production rates;

2. No backlogging or deliberate planning for shortages;

3. Insignificant set-up and transportation times;

4. Both the vendor and the buyers agree to share the benefit of integrated
inventory system through negotiation.

We adopt the following notation.

For the vendor:

D= Annual rate of demand;

P = Annual rate of production (P > D and k = P/D);

h = Inventory carrying cost per item per year;

S = Production set-up cost per lot;

z= The smallest batch (part of a lot) size;

Q= The lot transferred from the vendor to the buyers;

n = Number of equal and/or unequal sized batches in a lot; and
e= Number of unequal sized batches in a lot.

For the it" purchaser (i =1,---,m):

D; = Annual rate of demand (D = Y_7" | D;);

h; = Inventory carrying cost per item per year;

S; = Cost of placing an order;

T, = Cost of transporting a batch from the vendor to buyer 7; and

g= Transport capacity of the transport equipment.
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2.2. Batch transfer on production model

2.2.1. The total cost function. We assume that z; = D;z/D, kz; = D;kz/D, ...,
kc_lzi = DikE_IZ/D

—i.e ki7lz; = D;k77'z/D so that

k-l = Z i W S N ) (1)
i=1
Let the vendor transfer the first batch of size z to the buyers. Note that
zi=2 = Diz/D =2 — (P/D)(D;z/P) =2z, = kz/P =2/D; = z/D (2)

because z; = D;z/D - i.e. the production time of the batch kz equals the time of
meeting the demand by the previous batch z. In the same way, one can show that
k?z/P = kz;/D; and so on. Generally,

kKz2/P=k"12/D;=k?"'2/D for j = 1,2,...,e. (3)

i.e. the production time of the batch k7z equals the time of meeting the demand
by the previous batch k7~!z. To keep to a minimum inventory, the synchronization
of the production flow is achieved by transferring the lot @ from the vendor to
buyers in e unequal sized batches of sizes z, kz, k%z, ..., k" 'z and n — e equal sized
batches of size k¢~ 'z, so that

Q

Zf_;é k" + (n —e)ke1
The batch z; for all 4, is transferred first. It meets the demand for the time z;/D;,
and in this time the vendor produces the 2"? batch kz and transfers the batch
kz; to the buyer i. This 2"? batch meets the demand for the time kz; /D; and in
this time the vendor produces the 3™ batch k?z and shifts the batch k?z; to the
ith buyer. This way of transferring batches to buyers continues until it transfers
the batch k¢~'z;. Then the vendor transfers this batch (when its processing at the
vendor finishes) repeatedly (n — e) times. The inventory pattern of the repeated
batches at the ith buyer per production cycle is shown in the following figure:

- (4)

2tk k24 kT e (kT 2 = Q = 2z =

N

v

| va.l T~
«— 2 — Time

. T ﬂ‘:D !

FIGURE 1. The inventory pattern for ith buyer per production cycle
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Total cost = Cost of the vendor + Cost of the buyers. The vendor transfers
each of batches as soon as it finishes its processing. Thus the WIP (Work-in-
Progress) inventory for the manufacturer per cycle is

22 k‘2z2 (ke—lz)Q (ke—lz)2 22 e—1 . 2e—1)

The average inventory per cycle for the ith buyer can be evaluated as

Z12 (k‘zz)2 (ke—lzi)Q (ke—lzi)Q
50, T ap, T vt Tap, T e g,
ke—lzi k,e—lz o1
—|—{1—|—2—|—...—|—(n—e)}< D, P )k zi, (5)

and substituting for z; = D;z/D produces

D,z [z;ﬁ:g k2 + (n — e)k>( V)

55 D +<n—e><n—e+1><1/D—1/P>k2<e—1>] (6)

The set-up plus ordering plus transportation cost per cycle is given by

m

S+ (si+nTy), (7)

i=1
so the total cost of the system per cycle is

(Sers-ane) (S0 £)

r=0 =1

11 1 Dih;
+ (n — 6)(7’1 —e+ 1) (5 — F) kQ(e_l)%] Z2

+S+Z(3i+nTi) :

=1

Since there are D/Q lots per year, we multiply this total cost by D/Q to obtain
the average total cost per year — i.e. the total cost function

" D;h; Dh
27- _ 2(8 1) ' _
[{Zk n ek }{i—l 2D i 2P}

+(n—e)(n—e+1) (; P) k(e 1)211%}1] %4—% S+Z(51+nﬂ)
i=1

or
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Z:;é k2r+(n—e)k2(“‘_l) 1 m 1. Dh
C(n,e,Q) = { {Ze kr+(n—e)k€—1}2 {2D 2:_1:1 Dihi + 2P } +
(n—e)(n—e+1)(1/D—1/P)k*(c~D =™ D;h;

{Z:;é kr-i-(n—e)ke—l}? 5
D m
+6 S+Z(si+nTi) .
i=1

on substituting for z from (4).
2.2.2. The constraint. The largest batch k°~'z; cannot exceed the capacity of the
transport equipment, so k¢~1z; < g. Substituting for z; = D;z/D we obtain
D D
z < k‘e—lgDi or k¢ 1z < Df or k2 <g,¢ = Min(Dg/D;) ; (9)
and substituting for z from (4) and simplifying leads to

e—1 Q
e—Zk‘_TSn—?. (10)
r=0

Thus we seek to minimise the total cost function (8) subject to constraint (10).

3. Solution technique

For given n and e, the cost function (8) is convex in @, so the minimum value of
@ and the associated minimum cost are respectively

Qmin =V E/F and Chin = 2VEF (11)

where
e=1,0r _ 2(e—1) m
ORI L ol Gl - LZDihiJr Dh (12)
1., ) 2D & 2P
{Zrzok +(n—ek } =
_ _ 2(e—1) _ ™ D.h.
n (n—e)(n—e+ 1)k (1/D 21/P) 21212 ihi (13)
{Siokr + (= ke
and

F:D{S+i(si+Ti)} : (14)

i=1

Constraint (10) is always satisfied for n = e = 1, hence an initial feasible
solution can be found as Q = ¢’ for these values of n and e, together with the
initial cost from (8) as the absolute minimal total cost. Then for these known
values of n and e, we can calculate the minimal @ using equation (11). If n0;
is the rounded up value of Q/¢’, then for n = n0 the inequality (10) is always
satisfied for e = 1, so (n0,1) is always an initial feasible solution. The integral
values of e, from 1 up to the highest integer (< n0) that satisfy the inequality



Single-Vendor Multi-Buyer Integrated Inventory Problem 275

(10) along with n = n0, are the feasible solutions. Thus a set of feasible values
of (n,e) can be determined satisfying (10). If (n,e) satisfies the constraint (10),
we observe that (n + x, e+ ) for any integral x also satisfies (10). For a given Q
and a feasible (n,e), it is proven in Appendix A that the coefficient of @ in (8)
is a monotonically decreasing function of x, for a given set of feasible solutions
(n + z,e+ z). Thus for any set {Q, n, e}, a part of the coefficient of @ in (8) is a
monotonically decreasing function of x, and the remaining part is a linear function
of . The total cost function is therefore a convex function in z, with a minimum
at the left-hand end of the range — i.e., where

Cn+z—1le+tz—1)>Cn+z,e+z)<Cn+zx+1l,e+x+1), (15)
implying

Dm
glx —1) §T>g ) and g(z) < g(z+1)+ 65 (16)
with

Zeﬁ—r 1 k2r+(n_ )k2(€5+m—1)
g(x) = {{Z““ ! kr+(n—ee)ke+m—1}2} {2D >oivy Dihi + }+

(n—e)(n—e41)(1/D—1/P)k>t=—D S°m  Dih; xQ, (17
{Setz bt (n—ephete 1} 2
leading to
gx) —g(z+1) ZT <glx —1)—g(x) (18)

For each feasible solution, we obtain 1ts mlnlmal total cost along with values of n
and e, and then the absolute minimum of the feasible solutions. Using the values
of n, e for this absolute minimum, we calculate the value of () and the associated
cost from (11); and continue to compute the value of @) and associated absolute
minimum total cost, until the absolute minimal total cost is equal or greater than
its previous value. The absolute minimal total cost so obtained — along with the
associated values of @), n and e — is the desired minimal cost solution.

4. Numerical illustration

We illustrate our solution algorithm with a numerical example, where an item is
supplied to 5 buyers. The artificially generated data for this are given in Table 1.

TABLE 1. Data for a single-vendor 5-buyer case

Purchaser s; D; h; T;
25 200 0.22 25
15 150 0.24 20
25 225 0.25 18
30 230 0.23 25
30 165 0.21 15

T W N~
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Relevant data are S = 300, h = 0.20, P = 1500, D = Z?:l D; =970, and g = 300.

Solution:

Step 1 Here Q = ¢’ = Min;(Dg/D;) = 843.48 and from (8) 759.05 is the ab-
solute minimum total cost. For n0 = €0 = 1, Qui, = 1686.68 and C\,;, = 607.30
from (11) — i.e. less than the previous absolute minimal total cost, and hence we
adopt Cpin = 607.30 as the absolute minimal total cost.

Step 2 For ) = 1686.68, the feasible solution is n0 = 2 and e0 = 1 and
C'(1686.68,2,1) = 549.08. We increase the values of n and e by 1 at each step and
calculate the respective total cost. Thus C(1686.68,3,2) = 546.57 and
C(1686.68,4,3) = 579.88 — which is higher than previously, so it remains the
absolute minimum at n = 3, e = 2. For these values of n and e, we then calcu-
late Qmin = 3106.32 and Cinin = 458.41 from (11). This value of Chy is smaller
than the previous one, so we set the absolute minimal cost equal to the present
Chnin = 458.41 and go to the next step.

Step 3 For Q = 3106.32, the feasible solution is n0 = 4 and e0 = 1 and
C'(3106.32,4,1) = 495.97. We again increase the values of n and e by 1 and calcu-
late the respective total cost, obtaining C(3106.32,5,2) = 478.14 and
C(3106.32, 6, 3) = 485.08 — higher than the previous value, which is then retained
as the absolute minimum at n = 5, e = 2. For these values of n and e, we calculate
Qmin = 3916.94 and Ci,;y = 465.57 from (11), and this value of Cy is higher
than the previous absolute minimal cost so we stop.

We conclude that the minimal solution is @ = 3106.32, n = 3, e = 2 and the
total cost is 458.41. The lot is transferred from the vendor with batches of sizes
757.64,1174.34,1174.34. Batch sizes for the buyers are shown in Table 2.

TABLE 2. Optimal batch sizes for the buyers

1t buyer  156.21,242.13,242.13
274 buyer 117.16,181.6,181.6

374 buyer 175.74,272.40,272.40
4*" buyer  179.63,278.52,278.52
5! buyer  128.87,199.76,199.76

Our solution technique can also be applied to solve single-vendor single-buyer
problems, as we now illustrate by comparing the results obtained recently in such a
case [4] with the outcome from our technique. Relevant data are S = 400, h; = 4,
P = 3200, D = D; = 1000, sy =0, 71 = 25, g = 300 and this numerical problem
is solved for h = 5, 7. The results for comparison appear in Table 3.

Thus our solution technique for the single-vendor multi-buyer model closely
reproduces the results obtained recently for a single-vendor single-buyer problem
by another procedure [4].
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TABLE 3. Comparison of results obtained in a single-vendor single-buyer case

Reference [4]

h n e Q Cost Batch sizes

5 3 3 553.84 1715.30 38.35,122.73,392.75

7 4 3 553.84 1786.44 22.60,72.33,231.44,233.40

Our technique

n e @ Cost Batch sizes

3 3 553.84 1715.30 38.35,122.73,392.75

4 3 559.77 1786.44 22.68,72.58,232.27,232.27

5. Conclusion

There has been considerable research on the single-vendor single-buyer problem,
but the single-vendor multi-buyer problem has received relatively little attention
in the literature. This paper has developed a model for the single-vendor multi-
buyer problem, where integrated inventory is considered. The production flow is
synchronised by transferring the lot from the vendor to the buyers in equal or
unequal sized batches. Properties that lead to a step by step solution have been
established, and our technique is illustrated for a particular numerical example.
Our solution technique was also applied to a single-vendor single-buyer case re-
cently solved in the literature. Our more general technique leads to the same result
as obtained by a previous method in the literature. Thus our new single-vendor
multi-buyer model and heuristic solution technique has enriched the vendor-buyer
integrated inventory literature.

Appendix A

Consider
(n—e)(n—e—l—l)kQ(e_l)Q: (n—e)(n—e+1) N (19)
{Tigr+ -} Tk + (- o)}
Let
fn+zetz) = (n—e)(n—e+1) < (n—e)(n—e+1)

2 > 2
D e | SR oary S ()
= fln+z+le+z+1).
Increasing each of the values of n + = and e + = by 1 yields
1 1

5 < 5 (20)
(S hrtm-a) Sk (- o)
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implying 1/(k¢**) < 0, a contradiction since k > 1. Thus
(n—e)(n — e+ 1)k2(=1
e—1 2
{Siso b+ (- ephe}

is a monotonically decreasing function of x. Now let us consider the remaining
term

Zi;(l) k2T 4+ (n _ e)kQ(e—l)
5-
{Sig b+ (n—e)ket}

The numerator can be transformed to

(21)

k2 — 1 Ly R*-1 k-1
e L R
+(n— ek — (n — ekt + [—]:__11 +(n— e)ke_l]
=[(k°+1)— (k+1)] % +(n—e)k kT = 1) + f(n,e), (22)
where
f(n,e) = ]:__11 +(n—e)k !
= kek—_k% +(n—ek kT = 1)+ f(n,e)
) (1 - k%l) % =k B~ 1) + f(n,e)
ke — ke —
= (kt-1) ( - 11 +(n—e)k* ! - 2 _1) + f(n,e)
= (k1 -1) (f(n,e) — %) + f(n,e)
ke — 1) (ke ! —
— k‘e_lf(n, 6) _ ( ;)2(_ . 1) ,
whence e Rk ket (- Dk o1) oy
{Eor+@-epet) J009 =Dy
Now let

h(n+z,e+ x)
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ke—i—x—l

(n —e)ketz—1 4 ZB“ Lgr

(ke—i-m _ )(ke—i-m 1 _ 1)

2

(k2 = 1) {(n = e)et==t 4+ S0t p

ke—i—m (k,e—i-m—i-l _ 1)(ke+m _ 1)

et+x etz 1. o 2
(n—e)ket +3 ok (k2 —1) {(n —e)kete 4 3cte k’“}
= h(n+z+1l,e+x+1)

IN

so that
e+x—1 etz
k e+x 1 - k e+x (24)
(n—e)ketz—1 3T k™ (n—e)ketr 43 T kT
< 1 (ke—i-m _ 1)(ke+m—1 1) B (k,e—i-m—i-l _ 1)(ke+m _ 1)
— (k-1

R VR B ((SULS gD variiy

Assuming the left-hand side of this inequality is non-positive, it can easily be
shown that

etz et+x—1 etx
Zkr <k Z k" = —l—I-ZkTﬁOS —1 — — a contradiction , (25)
r=0

so the left-hand side of this inequality is positive. Now if the right-hand side of the
inequality (24) is positive, then
ke—i—x—l -1 ke—i—m—i—l -1

5 > 5,  (26)
{(n — e)keta—1 4 yootel kr} {(n —e)kete 4 YOt kr}
which after simplification becomes
e+x 1
—(n— e’k — 1) + 2(n — e)k* ()~ 1{ Z kT4 ket — k}
e+x et+x—1
+ (Rt - Zk’“ (R (Y K >0. (27)
r=0

Assuming (1 — k) Zi:g_l k" 4+ k¢t —k is non-negative, it can be shown that k < 1
(a contradiction), so this form is negative. Again let

e+x e+x—1 2
(ke—i-m—l (Z kr) ke—i—m—i—l ( Z kr) > 0 7 (28)
r=0
which simplifies to

(B = 1) {(k = D) ke 42k (k4 = 1)} > (k4 1) (k7 —1)°. (29)
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Simplifying further this reduces to k¢***1 < 1 (a contradiction), whence

e+x et+x—1 2
(ke—i-m—l (Z kr) ke—i—m—i—l ( Z kr) <0, (30)
r=0
which from (27) is a negative number greater than 0 (a contradiction), so that
ke—i—x—l 1 k,e—i—m _ 1
o 2
{(n — e)keta—l p yoetrt k"“} {(n —e)kete + 3710 kr}

Now the right-hand side of the inequality (24) is negative, whereas its left-hand
side is positive (another contradiction), whence

is negative. (31)

Zi (1)k2r ( _ e)kQ(e—l)
2
{Si b+ (n = e)ket}

is also a monotonically decreasing function of z — and hence the coefficient of @
in (8) is a monotonically decreasing function of x.

h(n+z,e+z) > h(n+2x+1,e+x+ 1) such that
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Abstract. A term structured volatility model is proposed to describe the dy-
namic of poll data measuring the difference in popularity between the Govern-
ment and the Opposition in Australia. This model is then used to determine
the best time for the Government to call for an election in the Majoritarian
Parliamentary System. The results are in terms of the expected remaining life
in government and the exercise boundary, given certain values of popularity.
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Keywords. Stochastic differential equation, Dynamic programming, Election
timing.

1. Introduction

Stochastic Differential Equations (SDEs) have often been used to model various
phenomena in daily life (e.g., see [4,8,10-12]). Applications can be found in fi-
nance, insurance, biology, physics, medicine and many other areas. In finance and
insurance, the applications include pricing of options, portfolio optimisation, the
optimal time to sell an asset, and the calculation of insurance risks. In biology
and medicine, areas such as population dynamics, stochastic epidemic models and
neuroscience require a strong background in stochastic processes and SDEs. In
physics, applications include the development of the Langevin equation, kinetic
models and quantum mechanics.

The application of SDEs in this paper is to politics, and in particular the
mathematical modelling of poll data. The term “two-party-preferred” is used to
refer to the distribution of preferences (votes) between the two major political
groups in the Australian Parliament in Canberra — viz. the Coalition (Liberal

Results in this paper were presented at the International Conference on Mathematical Modelling
and Computation held at the University of Brunei Darussalam during 5-8 June 2006, in
conjunction with the 20th anniversary celebration of the foundation of the university.
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Party and National Party) and the Labor Party. Figure 1 (above) represents the
difference in the inferred two-party-preferred vote over a period with the Coalition
in Government and the Labor party in Opposition, where the poll data were nor-
mally taken fortnightly but approximately weekly after an election was announced,
and even more frequently in days leading up to the election date. The figure has
some similarity with the dynamic of stock prices in finance, and the poll process
may be modelled using the following SDE:

dS(t) = —u%dt + o(t)dW(t) (1.1)
where W (t) is a Wiener process, S(t) is the difference in the two-party-preferred
(-1 < S8 < 1), and p and o are positive constants. The drift of the above SDE has
a mean-reverting coefficient, which always reverts to zero as the less popular party
reacts to make its popularity higher in the next poll. An assumption of constant
volatility is analogous to that made in the original work of Black and Scholes, in
their now famous model of option pricing in finance [2]. However, the poll data
actually possess a weak time dependence, with clustering similar to that leading
to stochastic volatility models of stock price data, so a term structured volatility
model is preferable.

The organisation of the remainder of this paper is as follows. In Section 2,
volatility estimates for the poll data are performed and a term structured volatility
model is introduced. In Section 3, this term structured volatility model is applied
to the election timing problem, along with a discrete time model (cf. [9]). Results in
terms of the expected remaining life and exercise boundary are given in Section 4,
and concluding remarks are made in Section 5.

2. Term structured volatility model

Volatility estimates for the two-party-preferred data from April 1993 — December
2002 are performed using the EWMA (Exponentially Weighted Moving Averages)
method, which is basically an exponential smoothing procedure for analysing time
series data. This method gives more weight to recent and less weight to earlier
observations, in order to detect small changes in the volatility. The EWMA can
also react to a jump in the data faster than the simple moving average method. It
has been used in the RiskMetrics program introduced by the American Bank JP
Morgan of October 1994, to obtain estimates of volatility and correlation in the
framework of Value-at-Risk (VaR) (cf. [6] or Chapter 57 of [14]). In our case, a
dynamic volatility estimate follows from

dX?
— g
dtz g Ly ey
with A = 0.94 as the weighting factor (as in RiskMetrics) and dX; =

dS; + p (S;/(1 — S2)) dt;. The result of this EWMA method is given in Figure 1
(below). Note that the EWMA volatility estimates capture the jump in the data

Gr = AoF 4+ (1= ))
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FIGURE 1. Volatility Estimates for Two-Party-Preferred Data.

between the fourth and fifth year; and it appears that the volatility estimates for
the two-party-preferred data change over time, which may be due to volatility near
the election date.

The term structured volatility model accommodates the dynamic volatility
in the data similar to that for commodity markets [5] — viz.

%dt + () dW(t), o(t) =00+ o1edTY. (2.1)
In Figure 2, a dynamic volatility estimate is performed for each period between
four elections. This term structured volatility model is introduced in each of these
four periods, to capture the dynamic of the EWMA estimates. Parameters in the
term structured volatility model are estimated using the least-squares method,
while y is estimated using Maximum Likelihood Estimation (MLE). The parameter
estimates of the term structured volatility model are summarised in Table 1, and
results for the EWMA and a term structured volatility model for each period
between elections are shown in Figure 2. The results seem promising for the period
1998-2001, where the proposed model matches the EWMA volatility estimates
quite well, with a coefficient of determination R? of 96.96%. The rising volatility
close to the election day is also as anticipated in this period. However, other factors
such as volatility clustering in certain time intervals and jumps in the two-party-
preferred data contribute in the other periods. In Figure 3, the best fit of the

dS(t) = —u
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TABLE 1. Parameter Estimates of Term Structured Volatility Model.

Parameters | 1993-1996 | 1996-1998 | 19982001 | 2001-2004 | Best fit
0o 0.2568 1.2851 0.2096 0.2420 0.2508
o1 -0.0191 -0.8720 0.2105 -0.0024 0.1713
q 0.3968 0.0734 -5.5610 0.9524 | —17.4800

1993-1996 1996-1998
0.35 0.6
03 R2 = 17.69%

= ' 2 0.4
5 025 E
[e] [}

> > 02 )
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FIGURE 2. EWMA and Term Structured Volatility Model.

term structured volatility estimates from the model is given for each period, with
coefficient of determination R? of 51%. These parameters are used to derive the
model in the next section.

3. Election timing

In Australia and other countries with the Majoritarian Parliamentary System (e.g.,
Canada, New Zealand and Britain), governments have the constitutional right to
call an early election within their term in office, which is typically between 3 to 5
years. The Australian Constitution and the Commonwealth Electoral Act of 1918
give the Australian Government the right to call an early election, subject to the
approval of the representative of the Head of State (the Governor General). This
is in contrast to presidential elections in the USA for example, where there is a
fixed period of four years between elections.
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By announcing an election at the best time, an Australian Government can
maximise its expected remaining life in power. There are many factors considered
by the Government before it decides to call an early election — e.g., current
economic growth, inflation rate, unemployment level or political issues. In this
paper, Morgan Poll two-party-preferred data (www.roymorgan.com) are used to
measure the popularity of the Government and the Opposition. An optimal control
is devised for the Government, by locating an exercise boundary which indicates
whether or not a snap election should be called. This problem can be compared
with determination of the early exercise of an American option in finance.

In deriving the model, equation (2.1) and a discrete time model in [9] are
used. The notation used in the formulation of the problem is as follows (details
can also be found in [9]):

e P;.(t) is the transition probability from poll state S; to state S, over period
t, measuring diffusion in the polls over period t. Stationarity of the process
is assumed, so the transition probabilities remain unchanged even during an
election campaign.

® ().; is the conditional probability that the true state of voting intentions is
S, given that the poll state is .S;. This is a correction term to account for
sampling errors.

e P(W|S;) is the conditional probability of winning the election from the true
popularity state S;, which contains the exaggerated majority effect (i.e., a
party can win more than 50% of the votes and yet still lose the election).
This quantity is derived from the resultant proportion of seats won by the



288 D. Lesmono

Coalition and the true state .S, from the 22 Australian Federal Elections held
since 1949.

e E(L|S;,t) is the conditional expected remaining life of the Government, given
poll state S; and time ¢ € [0,Y] into the current term.

One may adopt Pr, = P* as Ty, = kdt and assume that the evolution process for
S remains the same throughout the election process. (Tt here is a lead time, the
period between announcing and holding the election, which can also be viewed as
an election campaign period.)

The objective of the party in power is to maximise the expected remaining
life in government by deciding whether or not to call an early election, with the
exception that at terminal time t=Y (Y = 3 years in Australia) an election is
compulsory. In each state at every time step, the Government must decide whether
or not to call an early election by considering the expected remaining life between
each alternative. The single control afforded to the Government in this problem is
the action of stopping (calling an election), and the problem centres around this
optimal stopping problem. Numerical dynamic programming is implemented to
solve the recursive formulation for the expected remaining life in government. If an
early election is called, time 77, will elapse with certainty after the announcement.
If the Government wins the election, the expected remaining life is extended and
the same problem is again considered, but with ¢ reset to zero. If the Government
chooses not to call an early election, it remains in power up to the next time step 0t
with certainty. At the new time t+dt the poll state will diffuse to a new value, and
again the decision whether or not to call an early election can be re-evaluated. At
the final time t=Y an election must be held, so the latest time to call an election
is at t=Y-T7p.

The expected remaining life when calling an early election and calling no
election are respectively

E(L|Si,t) = Tr+ Y E(L|S;,0)P..(T1)Q-; P(W]S)) (3.1)
j=1
and
E(L|S;,t) =t + Y _E(L|S;,t + 0t)P;;(5t), (3.2)
j=1

where the Einstein convention is used for summation over the repeated index z.
Thus the expected remaining life is the maximum between calling an early election
and calling no election — i.e.,
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E(L|S;,t) = max{ Ty + Y B(L[S;,0)Pi(TL)Q-;P(W|S;),
j=1
St+ Y B(L|S;,t + 6t)Pi;(5t) o . (3.3)
j=1

The algorithm for solving this problem starts with an initial estimate for the
expected remaining life at ¢ = 0 and calculates the expected remaining life at the
final time. Then the algorithm moves backward until a new value at time t =0 is
obtained, and updates the initial estimate. This procedure is repeated until there
is convergence — i.e., when the norm between the expected remaining life at ¢t = 0
in two consecutive iterations is less than a chosen tolerance value e.

4. Numerical results

For the computation, the popularity S (where usually —0.5 < S < 0.5) was divided
into m = 50 states, with n equal time intervals during the Y years. A lead time
of T, = 0.12 year (around six weeks) and a time step §t = 0.04 year (around two
weeks) were used. The number of time steps n = Y/dt, with Y either three or four
(the maximum term in years).

Numerical results in terms of the expected remaining life and the exercise
boundary are given in Figure 4(a) and (b). There are two surfaces in Figure 4(a),
respectively representing the expected remaining life for a maximum term of three
and four years. In those surfaces, the expected remaining life in general is almost
constant at the beginning of the term regardless of the level of popularity, and then
decreases as time elapses. The four-year maximum term gives a longer expected
remaining life than the three-year maximum term (around 10 years and 7 years re-
spectively), as the Government has more time to wait for its popularity to increase
before calling an election. It is interesting to note that, in a referendum in 1988 to
alter the maximum term of three-year to four-year, only 32.92% of the Australian
people were in favour of the four-year maximum term (cf. [1] for details).

From Figure 4(b), it is apparent that the exercise boundary is monotonically
decreasing in t. This agrees with proposition 1 of Balke [3]. Thus earlier in its
term, the Government needs higher popularity before calling an election and less
popularity as time elapses. This result agrees with one of the testable implications
of Smith [13] — viz. that an election is called when the government is popular. It
also agrees with other findings on the so-called reservation growth rate property of
election timing and the declining reservation growth rate of election timing [7].

The influence of p on the exercise boundary is also seen in Figure 4(b).
As p increases the exercise boundary moves up and the exercise region becomes
narrower — although it has no significant impact as time elapses — so the Gov-
ernment is less likely to call an early election. Larger u corresponds to strong mean
reversion and the speed the process reverts to zero.
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5. Conclusions

The dynamic of poll data has been described using a mean-reverting SDE with
a non-constant volatility coefficient in a term structured volatility model. (It was
evident from the data that the coefficient was not constant.)

This term structured volatility model was used together with a discrete time
model for election timing, to devise an optimal control for the Government in the
form of the exercise boundary. The expected remaining life in Government was
found, and a comparison between a maximum term of three and four years was
also provided. A four-year maximum term gave longer expected remaining life than
a three-year maximum term, because the Government has more freedom to choose
the best time to call an election before its term expires. The expected remaining
life in Government is almost constant at the beginning of a term regardless of the
level of popularity and then decreases as time elapses, especially for a low level of
popularity.

From the exercise boundary discussed, the Government should call an early
election when its popularity is higher than that of the Opposition. An earlier elec-
tion needs a higher Government popularity, and as p increases the exercise region
becomes narrower, making the Government less likely to call an early election.
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Abstract. In a semiparametric transformation model, an increasing transfor-
mation of the survival time is linearly related to a covariate Z with an error
distribution € — i.e., the survival time 7" has the property that a (T') = —6z+e¢
given Z = z, where « is an unknown extended real-valued function on R and
0 is an unknown constant in R?. In this paper, we consider the estimation
of the transformation function a and the regression coefficient & when the
survival time data are subjected to general censorship. An observation is said
to be censored by a general censorship scheme if there are random intervals
which would hide the observation when it falls inside them. In such cases,
we see the censoring interval instead of the actual observation. The maxi-
mum likelihood method is used to estimate the unknown parameters, and the
asymptotic properties of the estimators are studied.
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1. Introduction

Let € be a mean zero random variable with a known continuous strictly increasing
distribution function 1. Let T" be the variable of interest and Z a covariate, an
element of R%. We are interested in the effect of Z on the response variable T'. There
are many such models considered in the literature, and parameter estimation under
normal circumstances has been dealt with by various authors. The proportional

Results in this paper were presented at the International Conference on Mathematical Modelling
and Computation held at Universiti Brunei Darussalam during 5-8 June 2006, in conjunction
with the 20th anniversary of the foundation of the university.
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hazards (PH) model [7] and the proportional odds (PO) model are two special
cases that are well used in applications — cf. [20] for a discussion of some of the
parametric and nonparametric regression models.

We consider a semiparametric transformation model where a transformation
of the survival time is linearly related to a covariate Z with an error distribution e.
The transformation function a and @ are the parameters to be estimated. Our
motivation is that it is a strong generalisation of the ordinary regression problem
(linear or nonlinear), where the relationship between the variable of interest and
the covariate is precisely known. Several methods have been proposed to estimate
the regression parameters under semiparametric transformation models. These in-
clude maximum semiparametric likelihood [1,21], sieve maximum likelihood [23],
maximum partial likelihood [8], and rank approximations [22]. [15] developed semi-
parametric estimators of a and 6 when the distribution function of the error is
unknown. [12] extended this technique to censored data, and [11] developed better
estimators of the transformation function and the error distribution.

In many situations, it is common to have incomplete data, and incomplete
observation of the data often results from a random censoring mechanism. If data
become unobservable whenever larger than the values of another variable (called
the censoring variable), the observations are said to be right-censored. For right-
censored data, the product-limit estimator by [18] is the nonparametric maximum
likelihood estimator (NPMLE) of the unknown distribution function, and a simi-
lar estimator exists for the left-censored case. [2—4,9,14,24] and others considered
doubly censored data (i.e., both left and right censoring occur simultaneously),
where estimators for the distribution function and its asymptotic properties have
been studied. [10,13] and others studied the case of interval-censored data, where
one can only observe a censoring event and whether the time of the event of inter-
est occurred before or after the occurrence of the censoring event. [16] studied the
maximum likelihood estimator MLE for the PH model with Case 1 interval cen-
sored data, where all observations are censored by infinite intervals, and proved the
asymptotic normality of the MLE for the regression parameter. [19] considered the
MLE for the PH model with partly interval-censored data, where the data consist
of exact data and interval-censored data. [6] studied an efficient semiparametric
estimation of censored and truncated regression, based on a new approach for
estimating the density function of the residual in a partially observed regression.

The type of censoring we consider, and refer to here as general censorship,
is a generalisation of the different types of censoring in the literature. Under this
censorship, some of the data become unobservable when they fall inside a finite
or infinite random interval. Various combinations of finite and infinite intervals
yield all the different types of censorship in the literature (left censoring, right
censoring, double censoring and different cases of interval censoring) as special
cases — cf. [17] for a detailed discussion.

In this paper, we consider the estimation of @ and 6 when failure times are
subjected to general censorship. We use the maximum likelihood method to esti-
mate the unknown parameters, and investigate the large sample properties of the
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estimators. Numerical simulation is used to generate the data, and estimates of
parameters are computed for these data. The accuracy of the estimates is demon-
strated by computing the maximum and the average distance between the estimate
and the true value. Histograms and quantile plots for the regression coefficient are
given to demonstrate the asymptotic normality of the regression estimator.

The semiparametric transformation model (STM) is formally defined in Sec-
tion 2, and the STM under general censorship and computation of the MLE are
discussed in Section 3. The results of the numerical simulations are presented in
Section 4.

2. Semiparametric transformation model

Let us consider a class of transformation models where a transformation of the
survival time is linearly related to a covariate with error distribution ¢ — viz. a
d-dimensional covariate Z such that

a(lT)=—-0z+c¢

given Z = z, where « is an unknown extended real-valued function on R and @ is
an unknown constant in R¢. The distribution of € is denoted by 1), assumed to be
known. The function « is called the transformation function, and @ is referred to
as the regression coefficient. The transformation function « is assumed to satisfy
the following conditions:

1. «a is monotonic increasing.
2. lim «(t) = foo.
t—+oo

This model is known as the semiparametric transformation model. Further, let
F (-|z) = F, (-) be the distribution function of T given Z = z. It is straightforward
to verify that

F(t|z) =v¢ (a(t) +0z).

Well-known examples are the proportional hazards and proportional odds
models. The PH model is obtained when the error term follows an extreme value
distribution. Specifically, let A be an unknown nonnegative continuous function
from [0, 00) to [0, 00) so that A = fg’ A (t) dt is a monotonically increasing function
from [0, 00) to [0, 00). Then the distribution function for the PH model is given by

F(t|z) =1 —exp (—A (t) e%%).
The PH model can be seen to be an example of semiparametric transformation

model, by setting

e Y(x)=1—exp(—e”), and

o a(t) =logA(t) if t > 0 and —oo otherwise.
The PO model arises when the error term has a logistic distribution. Setting
¥ (z) = (1+ e %)L one has
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_exp(a(t) + 0z)
F(tlz) = 1 +exp(a(t) +6z)°

3. STM under general censorship

Let T;, i = 1,...,n, be a sequence of i.i.d. random variables with distribution F'.
Let (L;, R;), i = 1,...,n represent the censoring mechanism, consisting of n pairs
of i.i.d. extended real-valued random variables (L;, R;) such that P(L < R) = 1.
The it observation is said to be censored if T, € (Li, R;), when we do not get
to observe T;. Let 6; = I[T; ¢ (Li, R;)], so that §; = 0 if the i*" observation is
censored and 1 if it is uncensored. We assume that 7; and (L;, R;) are independent
given the concomitant variable Z.

The density function of T is given by f(t) = ¢'(a(t) + 0z)a'(t), so the
likelihood and the log-likelihood functions in the presence of censoring are given
by

L (0, a) = [ 1f- (1% [Fa(rim) — Fo(l)]' %
i=1

and

log L = >_ {6 (loglt(a(t:) + 0z:)] + loga’ (1)

+(1 = 6;) log[t(a(ri—) + 0z;) — P(a(l;) + 0z;)]}.

The value of this expression depends on the function « and its derivative only at
the jump points, and it can be made arbitrarily large by making o/(¢;) as large
as we want without affecting the values of a(t;). Consequently, we work with a
discretised version of the likelihood function, where o’(t;) is replaced by a discrete
jump size a; and «a(t;) by A; = ZL:O ar. Thus we find the function that maximises
this modified log-likelihood among all &’s such that « is an increasing step function
that is a constant for ¢ < t; and has jumps at t;’s.

We replace any empty censoring interval (a censoring interval that contains
no uncensored observations) by its midpoint as an uncensored observation, group
the censored and uncensored observations separately, and reorder the uncensored
observations in ascending order. Let ny be the size of the exact data and ny = n—ny
be the size of the censored data. Let ag = a(t;—) and a; be the jump size at t; for
i =1,...,n1. Then the modified version of the log-likelihood is given by

,(8,a) = Z{log[w’(Ai+0zi)]+logai}

+Zlog P Zak+0Zj - Zak+OZj ,
j=1

kit iy <r; kit 1y <l;
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which is to be maximised under the constraint that all of the a;’s except ag are
non-negative. If d;, i = 0 to n; maximises [,,(0, a), then the function & defined as
an increasing step function with jumps d; at ¢; and value ag for t < ¢; is the MLE
of a.

Let © C R? be the d-dimensional parameter space of 8. Let 8y and a denote
the true value of the parameters and let Fjy be the true conditional distribution
function of T given Z. The MLE’s of o, & and é, and @, are obtained by max-
imising 1,,(0, a) over © x A where A = R x R*"* the set of n; + 1 dimensional
vectors whose coordinates are all nonnegative except the first. Under some mild
assumptions, it can be shown that [,,(0, a) is strictly concave for each n, and that
it is bounded above. It therefore has a unique maximiser, and the maximiser (é, a)
can be obtained by equating the first derivative to zero and using the multivariate
Newton-Raphson algorithm.

4. Numerical simulation

We now present simulations of two semiparametric transformation models —
viz. the PH model where ¢ has a standard extreme value distribution yielding
P(e <t) =1 — exp(—e'), and the PO model where € has a logistic distribution
given by P(e < t) = # The transformation functions chosen were o (t) = logt
and ag(t) = t, the dimension d of the regression coefficient 6 was taken to be 1,
and two true values of @ (viz. 8y = 0 and 6y = 1) were considered. The values
of the covariate Z were randomly generated from a standard normal distribution.
The random variables L; and R; were produced according to four different levels
of censoring, set by letting L; and R; be the minimum and the maximum of ¢
independent exponential random variables for ¢ = 1,2,3 and 5. The sample size
n was taken to be 100, and each combination of all these factors was replicated
300 times. The implementations of data generation and computation were writ-
ten in the statistical software package S-Plus. The non-linear optimisation routine
Nonlinear Minimization subject to Box Constraints (NLMINB) based on the mul-
tivariate Newton—-Raphson algorithm was used for numerical maximisation. The
percentage of censoring, denoted by r, was taken to be the average of the censoring
percentages for the 300 replications.

The transformation function « is estimated by é&,, and the distribution
function F' by F The performance of Fn is more important than that of &,
[5], and can be measured by ||E, — Fo|| = max, |E,(t) — Fy(t)|. Another mea-
sure of this performance that we calculated is the mean of |F},, — Fy|, defined
as ny ' S | E(t;) — Fo(t;)|. The averaging was done over n; uncensored data
points, because those are the points where F), has jumps. The results are reported
in Tables 1 to 8. The accuracy of estimation when there is no censoring, produced
by the case ¢ = 1, is presented as r = 0 for comparison.

Tables 1 to 4 show the estimated value of @ and the performance of E, for
PH model. Results show that the estimates of 8 are good overall and are not
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TABLE 1. Simulation results for estimated values of ag(t) = log(t) and
6y = 0 in PH model.

Censoring percentage
6, =0 r= r = 30.89 r = 45.99 r = 62.06
Mean Var Mean Var Mean Var Mean Var
(7] 0.0101 | 0.0111 | 0.0032 | 0.0120 | 0.0039 | 0.0103 | 0.0107 | 0.0146
|EY — Fol| 0.0788 | 0.0007 | 0.0920 | 0.0010 | 0.1211 | 0.0018 | 0.2224 | 0.0069
Mean of |F,, — Fp| | 0.0314 | 0.0002 | 0.0344 | 0.0002 | 0.0402 | 0.0003 | 0.0465 | 0.0002

TABLE 2. Simulation results for estimated values of ag(t) = log(t) and
6y = 1 in PH model.

Censoring percentage
6,=1 r= r = 26.98 r = 39.98 r = 54.25
Mean Var Mean Var Mean Var Mean Var
(7] 1.0357 | 0.0187 | 1.0254 | 0.0187 | 1.0063 | 0.0103 | 0.9866 | 0.0301
|EY — Fol| 0.0839 | 0.0008 | 0.1042 | 0.0011 | 0.1284 | 0.0023 | 0.2500 | 0.0073
Mean of |F,, — Fp| | 0.0295 | 0.0001 | 0.0302 | 0.0001 | 0.0314 | 0.0001 | 0.0386 | 0.0001

TABLE 3. Simulation results for estimated values of ag(t) =t and 69 = 0

in PH model.
Censoring percentage
6,=0 r=20 r=9.93 r=14.14 r =19.92
Mean Var Mean Var Mean Var Mean Var
0 -0.0033 | 0.0112 | -0.0005 | 0.0124 | 0.0070 | 0.0140 | 0.0204 | 0.0094
| F — Foll 0.0808 | 0.0008 | 0.0817 | 0.0005 | 0.0872 | 0.0006 | 0.1096 | 0.0013
Mean of |Fn — Fo| | 0.0318 | 0.0002 | 0.0319 | 0.0001 | 0.0337 | 0.0002 | 0.0349 | 0.0003

TABLE 4. Simulation results for estimated values of ag(t) = ¢ and 8y = 1

in PH model.
Censoring percentage
6, =1 r=20 r=12.93 r=24.33 r = 25.09
Mean Var Mean Var Mean Var Mean Var
(7] 1.0337 | 0.0160 | 1.0061 | 0.0179 | 0.9954 | 0.0305 | 0.9389 | 0.0251
|E — Fol| 0.0899 | 0.0010 | 0.0890 | 0.0009 | 0.0924 | 0.0861 | 0.1145 | 0.0012
Mean of |F,, — Fp| | 0.0300 | 0.0002 | 0.0316 | 0.0002 | 0.0384 | 0.0002 | 0.0342 | 0.0002
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TABLE 5. Simulation results for estimated values of ag(t) = log(t) and
6y = 0 in PO model.

299

Censoring percentage
6, =0 r= r = 26.33 r = 40.08 r =53.77
Mean Var Mean Var Mean Var Mean Var
7] 0.0004 | 0.0350 | 0.0024 | 0.0238 | 0.0119 | 0.0310 | 0.0054 | 0.0450
|E — Fol| 0.0782 | 0.0007 | 0.0939 | 0.0014 | 0.1125 | 0.0019 | 0.1988 | 0.0054
Mean of |F,, — Fp| | 0.0304 | 0.0002 | 0.0327 | 0.0003 | 0.0319 | 0.0001 | 0.0379 | 0.0002

TABLE 6. Simulation results for estimated values of ag(t) = log(t) and
6y = 1 in PO model.

Censoring percentage
6, =1 r=0 r = 23.56 r = 35.43 r =48.44
Mean Var Mean Var Mean Var Mean Var
7] 1.0115 | 0.0308 | 1.0298 | 0.0408 | 1.0148 | 0.0405 | 0.9993 | 0.0469
|E — Fol| 0.0829 | 0.0008 | 0.0981 | 0.0010 | 0.1205 | 0.0020 | 0.2131 | 0.0066
Mean of |F,, — Fp| | 0.0296 | 0.0002 | 0.0300 | 0.0001 | 0.0311 | 0.0001 | 0.0342 | 0.0001

TABLE 7. Simulation results for estimated values of ag(t) =t and 69 = 0

in PO model.
Censoring percentage
0)=0 r=20 r =17.96 r = 26.84 r = 35.44
Mean Var Mean Var Mean Var Mean Var
0 -0.0125 | 0.0324 | 0.0125 | 0.0277 | -0.0005 | 0.0296 | -0.0136 | 0.0346
| F — Foll 0.0800 | 0.0007 | 0.0871 | 0.0007 | 0.1045 | 0.0011 | 0.1869 | 0.0038
Mean of |Fn — Fp| | 0.0311 | 0.0002 | 0.0340 | 0.0002 | 0.0344 | 0.0002 | 0.0387 | 0.0002

TABLE 8. Simulation results for estimated values of ag(t) = ¢ and 8y = 1

in PO model.
Censoring percentage
6, =1 r=20 r = 18.60 r=28.31 r=36.73
Mean Var Mean Var Mean Var Mean Var
7] 1.0236 | 0.0326 | 1.0042 | 0.0413 | 1.0440 | 0.0332 | 0.9867 | 0.0425
|E — Fol| 0.0836 | 0.0008 | 0.0889 | 0.0008 | 0.1049 | 0.0016 | 0.1827 | 0.0034
Mean of |F,, — Fp| | 0.0297 | 0.0002 | 0.0307 | 0.0002 | 0.0329 | 0.0002 | 0.0380 | 0.0003
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TABLE 9. The value of W for the PH and PO models.

Model 6, ap(t) Censoring percentage

r=0 |r=30.89 | r=4599 | r=62.06
6o =0 | logt | 0.0466 | 0.0436 0.0451 0.0321
r=20 r=2993 | r=14.14 | r =19.92
PH t 0.0342 | 0.0350 0.0319 0.0359
r=0 |r=26.98|r=239.98|r=>54.25
6p=1] logt | 0.0317 | 0.0445 0.0400 0.0420
r=0 |r=1293|r=24.33 | r = 25.09
t 0.0885 | 0.0311 0.0452 0.0272
r=0 |r=26.33|r=40.88 | r=>53.77
6o =0 | logt | 0.0369 | 0.0260 0.0231 0.0381
r=0 |r=17.96 | r=26.84 | r = 35.44
PO t 0.0404 | 0.0321 0.0383 0.0370
r=0 |r=2356|r=3543 | r=48.44
6o =1| logt | 0.0450 | 0.0240 0.0339 0.0324
r=0 |r=1860|r=2831|r=36.73
t 0.0361 | 0.0415 0.0405 0.0475

drastically influenced by the severity of censoring. As for the performance of E,,
the values of both || F,, — Fy|| and mean of |F,, — Fy| perform fairly well but they
are influenced by the rate of censoring. As the censorship rate increases, the error
increases, but continues to be within acceptable limits.

Tables 5 to 8 show the results for the PO model, and the conclusions are
similar. Thus under both of the PH and PO models, our method of parameter
estimation of @ and F' performs fairly well.

We also calculated the distance between the observed distribution of stan-
dardised @ and the standard normal distribution, measured by

)

where T; is the standardised value of é, ® is the cumulative distribution function
of the standard normal distribution and m is the number of replications (viz. 300,
as mentioned above). The results given in Table 9 show that the calculated values
of W are small for all cases, and hence the observed distribution of standardised
0 is close to the standard normal distribution.

The asymptotic normality of 8 was also examined by the Kolmogorov—Smir-
nov test. The SPSS program gave 0.200 as a lower bound for the p-value, for all
cases studied. This high p-value is strong evidence that it is reasonable to infer
the distribution of @ is normal.

1—1
m

v - ®(T))

1<i<m m

W= max (‘i (T
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5. Conclusions

Maximum likelihood estimation for the regression coefficients and the transforma-
tion function were carried out for a semiparametric transformation model, where
survival time data are subjected to general censorship. The optimisation steps were
carried out through a multivariate Newton—Raphson method using the NLMINB
procedure of S-Plus. In all our simulations the global maximum was attained and
the maximum likelihood estimates performed fairly well in the sense that the
estimated values were close to the true values of the corresponding parameter.
Asymptotic normality of the maximum likelihood estimators for the regression
coeflicients was verified by a Kolmogorov—Smirnov test using the SPSS package.
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Integer Programming Models
of Bookmobile Routing

Les R. Foulds, Stein W. Wallace, John Wilson and Martin West

Abstract. A bookmobile is a specially adapted bus or van used as part of the
outreach operations of public library systems. Bookmobiles play a significant
part in the service of the public library system in Buskerud County, Nor-
way. They are used to deliver and collect library materials (printed books,
audio books, periodicals, and music) to and from borrower groups through-
out the County, many in remote areas. The question of how best to utilise
the County’s bookmobile resources can be modelled as an interesting varia-
tion of one of the classical models of operational research — the travelling
salesman problem. The combination of the features that make this scenario
non-standard include multiple depots, simultaneous cost minimisation and
prize collection objectives, differing customer service levels, time windows,
route start time flexibility for some routes, multiple route duration restric-
tions, route lunch breaks, and overnight stays on certain routes. We report
on models for the bookmobile problem, and the outcome of its application to
the Buskerud County bookmobile system.

Mathematics Subject Classification (2000). 90B06, 90C10.

Keywords. Bookmobile problem, Vehicle scheduling, Integer programming,
Case study.

1. Introduction

Buskerud County, Norway, is located to the west of Oslo. The public libraries of
the County, based in the towns of Drammen and Gol, both operate bookmobiles
to serve identified groups of its borrowers that cannot visit a library. These book-
mobiles, which are specially designed vans, carry various library materials, such
as: printed books, audio books, periodicals, and music, to road lay-bys and private
farmhouses, in remote parts of the County, and to schools and other libraries. The
Buskerud Library Department is under considerable financial pressure to make
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efficient and effective use of its bookmobile operations. This led to us being in-
vited by those responsible for the bookmobile system to examine their operations,
with view to making suggestions for improvement. It became clear to us that the
question of how to best utilise the County’s bookmobile resources can be modelled
as an interesting variation of one of the classical models of operational research;
the travelling salesman (TSP). The TSP can be stated as: given a number of lo-
cations and the costs of travelling from any location to any other location, what
is the least cost round-trip tour that visits each city exactly once and then re-
turns to the starting location? The TSP model is quite important in industry as
a number of common endeavours, such as vehicle routing, scheduling, integrated
physical mapping, and circuit design can be formulated as TSP’s. In the present
chapter we focus on a scheduling solution, hence we review some of the relevant
TSP literature to highlight some key developments in this area.

The origins of the TSP are obscure. A discussion of the early work on the
problem by the British mathematicians Hamilton and Kirkman, can be found in
the book by Biggs et al [4]. In the 1930s, the mathematician and economist Karl
Menger [18] popularized the TSP as the “messenger problem”. Eventually, the
TSP gained notoriety as the prototype of a hard problem in combinatorial op-
timization. A breakthrough came in 1954 when Dantzig et al. [10] published a
TSP method and illustrated its power by solving an instance with 49 locations,
an impressive size at that time. In 1963, Little et al. [17] were among the first to
apply integer programming to the TSP and coined the term “branch-and-bound”
In their approach, subsets of tours are conveniently represented as the nodes of a
decision tree and the process of partitioning these subsets follows the branching
of the tree. Later, the application of spanning trees to devise effective solution
methods was also an important step forward (Held and Karp[14]). In the 1970s
and 80s, when it was established that constructing optimal solutions to large-
scale, general numerical instances of the TSP was beyond current computational
capacity, research into the problem was widened from exact methods to heuristic
(approximate) solution methods. For surveys of progress during that period, the
reader is referred to the reports of Burkard [6], Lawler et al. [16], and Rosencrantz
et al. [23]. Among the numerous TSP heuristics that have been devised since then,
some have been based on the “genetic algorithm” (GA) learning meta-heuristic ap-
proach, which takes ideas from genetics and natural selection. A GA is sometimes
employed to solve difficult optimization problems, where traditional techniques are
less efficient. However, the main limitation with GA’s is that they are not very
effective at solving large TSP’s (Tsai et al. [25]). When the number of locations is
above a few thousand, then a more advanced approach, termed a “hybrid genetic
algorithm”, can sometimes be successful (Nguyen [20]). See Gutin and Punnen [13]
for a comprehensive summary of other TSP work to date.

One of the variations of the TSP is termed the multiple travelling salesman
problems (MTSP). It involves a given set of locations, one of which is designated
as the “home location” where a given set of salesmen are based. The problem is
to find a minimum-cost assignment of some, or all of the salesmen to individual
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tours that each begin and end at the home location, such that each other loca-
tion is visited by exactly one salesman. Although MTSP models are employed in
many industrial applications (such as: crew scheduling, school bus routing, print
press scheduling, and mission planning), Tolga [24] stated that the MTSP has
not received the same amount of research attention as the TSP. Previous stud-
ies investigated solving the MTSP with GA’s using standard TSP chromosomes
and operators, as discussed earlier. However, Catera and Ragsdale [8] proposed
novel GA chromosome and related operators for the MTSP and compared the
theoretical properties and computational performance of the proposed technique
to previous methods. Computational testing shows that the new approach results
in a smaller search space and, in many cases, produces better solutions than the
previous techniques. A recent paper by Bektas [3] studied the MTSP thoroughly,
surveying the literature on it, discussing its practical applications, highlighting key
formulations, and describing exact and heuristic solution procedures.

A further variation of the TSP is termed the travelling salesman problem
with time windows (TSPTW). In this case, the travel costs are given as travel
times and each location has associated with it a “time window” — representing the
earliest and latest times by which the location can be visited. An early paper by
Baker [2] reported an exact algorithm for a version of this problem. More recent
work involving exact methods for the problem include a dynamic programming
approach by Dumas et al. [11], a branch-and-cut method due to Ascheuer et al.
[1] and the method of Focacci et al. [12] who developed a hybrid exact algorithm.
Heuristic methods for the TSPTW include those by Carlton and Barnes [7] who
used tabu search, Pessant et al. [22] who used constraint logic programming, and
Wolfler-Calvo [26] who based his approach on the assignment problem with a
parametric objective function. Also, Ohlmann and Thomas [21] describe a vari-
ant of the “simulated annealing” learning meta heuristic, incorporating a variable
penalty method to solve the TSPTW. Augmenting temperature from traditional
simulated annealing with the concept of pressure (analogous to the value of a
penalty multiplier), compressed annealing relaxes the time-window constraints by
integrating a penalty method within a stochastic search procedure. Computational
results validate the value of a variable-penalty method versus a static-penalty ap-
proach. Compressed annealing compares favourably with benchmark results in the
literature, obtaining best-known results for numerous instances.

Extensions to the TSPTW include dynamic time windows (Larsen et al.
[15]).These authors examine the TSPTW for various degrees of dynamism, in the
sense that part or all of the necessary information becomes available during the
day of operation. They seek to minimize lateness, and examine the impact of this
criterion choice on the total travel cost. Their focus on lateness is motivated by
the problem faced by overnight mail service providers. As the TSPTW is usually
harder to solve than the TSP for problems of the same size, instances solved
are necessarily of smaller-scale than those reported in the TSP literature, where
very large-scale instances can now be solved to optimality, albeit requiring large
amounts of computer time.
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When the MTSP and the TSPTW above are combined we have a scenario
with both multiple travelling salesmen and time windows (MTSPTW). This model
is often more appropriate for practical applications than the above-mentioned
models. It is also possible to extend the model to a wide variety of routing and
scheduling problems with immediate applications in road vehicle, ship, and airline
scheduling problems. This can be achieved by incorporating some additional side
constraints, often related to vehicle capacity and fixed service costs. Mitrovic-Minic
and Krishnaurti [19] use precedence graphs to establish bounds on the minimum
number of salesmen needed to visit all locations in the MTSPTW. Also, Chandran
et al. [9] employ a clustering approach for the MTSPTW to address the issue of
workload balance among the salesmen.

As will be seen in the discussion that follows, the bookmobile routing prob-
lem is an MTSPTW with additional side constraints. Unfortunately, the side con-
straints are many, varied, and significant, including: the existence of multiple home
locations, simultaneous cost minimization and prize collection objectives, differ-
ing customer service levels, route start time flexibility, multiple route duration
restrictions, route lunch breaks, and overnight stays on certain routes. As far as
the authors are aware, this particular combination of side constraints has not been
considered previously in the literature. Indeed, the only related side constraints
that appear to have been discussed in the open literature involve meal-break and
start-time flexibility for manpower planning (Brusco and Jacobs [5], but these have
little relevance for the MTSPTW. For these reasons, it seems difficult to apply the
solution techniques previously discussed to the bookmobile problem. Thus, the au-
thors elected to develop integer programming models of the problem and to apply
powerful, existing integer programming solution techniques.

In the next section we describe a special case of the County’s bookmobile
system, a model of its operations, and the outcome when we applied our approach
to the actual problem at hand. In Section 3 we generalise the description of the
operation of Section 2 to more general scenarios. We end the paper with conclusions
drawn from this case study and suggested directions for further research.

2. The Drammen bookmobile system

The first, and most pressing, question that we were asked to examine was how
to improve the bookmobile service to a selected number of borrower locations
surrounding the town of Drammen.

2.1. A Description of the Drammen operation

A single bookmobile is operated, once per week, over a four-weekly cycle. It must
service certain borrower locations (termed “compulsory borrowers”) once every
fourteen days (i.e., twice), but at the same time of day. This is because some of the
boroughs that comprise the County pay for certain borrowers located within them
to receive this service. There is also another type of borrower (termed “optional
borrowers”) each of whom may be visited at most once during the cycle. The
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optional borrowers are private individuals it is desirable, but not strictly necessary,
to visit. The regime of identified routes (termed “runs”) is carried out once, in the
same way, during each time cycle. The primary issue is one of devising a set
of feasible runs for the bookmobile so that the maximum number of (optional)
unweighted borrower locations are visited. The secondary issue is one of achieving
this at minimal cost. We now go on to describe the operation in more detail, and
highlight factors that constrain the operation.

Each run begins at Drammen, visits a given sequence of borrowers that it
services in turn, and finally returns to Drammen. The locations of all borrowers
are known, as is the (season-dependent) travel time for the bookmobile to traverse
all feasible road segments that link them. (Because of the terrain of the County,
the road network is somewhat sparse.) We can assume, without loss of generality,
a given set of road segment driving times for a given season of the year. Because
it is assumed by the planners that costs are directly proportional to time, the
secondary issue, mentioned above, reduces to one of minimising the total elapsed
time (travel, service, break, and idle time, combined over all runs).

Because the capacity of the bookmobile is ample to service any combination
of borrowers on any run, the vehicle is not “capacitated”. If any borrower is vis-
ited at all, its servicing takes a known time (termed its “duration”). Moreover,
each borrower can be serviced only during a known time window, which remains
constant for the borrower throughout the cycle. Servicing starts immediately upon
arrival. Suppose that the time windows of two borrowers who are visited one im-
mediately after the other, on a run, are such that idle time is necessary. The idle
time must occur just before the departure from the earlier borrower. Furthermore,
none of the runs can exceed a given number of time periods; there is a restriction
on the average time of all runs; and each run must contain a continuous break that
must overlap with the time interval from three time periods before the midpoint
(in terms of time) to three time periods after the midpoint. Each break takes place
at a borrower, immediately after servicing that borrower. Finally, the start time
of each run is arbitrary.

2.2. A Model of the Drammen operation

We now create a model of the operation that has just been described. To this end
we first introduce the necessary notation.

Basic dimensions.

n. the number of locations. (The depot, being the town of Drammen, is denoted
by location 1. The locations of the compulsory borrowers are denoted by
locations: 2,3, ..., q. The locations of the optional borrowers are denoted by
locations: ¢ +1,g+2,...,n; where 1 < g < n.)

m. the given number of runs to be carried out in each time cycle.

k. the index of the run carried out in the kth week of the time cycle.
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Input data.

M, N. relatively large, given numbers,

d;. duration of borrower i,

a;. the earliest time period during which the servicing of borrower ¢ can begin,

b;. the latest time period during which the servicing of borrower ¢ can begin.
(The interval [a;, b;] represents the time window during which the servicing
of borrower ¢ must begin, if it takes place at all.)

t;;. travel time in proceeding directly from location ¢ to location j. (For tech-
nical reasons it is assumed that all t;; > 0. The triangle inequalities
tij < tin + tny, for all 4,h, 5 do not have to be satisfied unless column
generation is used.)

u. the length of the break on each run, expressed as a number of time periods,

P. maximum allowable number of time periods for any run, and

T. maximum average number of time periods over all runs of a complete cycle.

Decision variables.
s the start time of the kth run,
1 if there is a break on the kth run,
Vik immediately after servicing borrower ¢,
0 otherwise,
{ 1  if the kth run proceeds directly from location ¢ to location j,
Lijk 0 otherwise,
yir the arrival time of the kth run at location 7. (If the kth run does not visit
location 4, y;x is defined arbitrarily.)

40 { 1  if compulsory borrower j is visited in weeks 1 and 3,
J 0 otherwise,

e { 1  if compulsory borrower j is visited in weeks 2 and 4,
J 0 otherwise.

We now develop a model of the Drammen operation. The primary objective
is to maximise the number of optional borrowers serviced. The secondary objective
is to carry out the primary objective in the minimum feasible total elapsed time

m

max | M Z szijk —Z(ym—sk), (1)

i=q+1 j=1k=1 k=1

subject to the following.
Each borrower can be visited at most once on any given run:

n
<l j=23,...m k=12...m (2)
i=1

Each optional borrower is visited at most once:

i=1 k=1
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Each compulsory borrower must be visited every fourteen days:

Z Z Tijk = 22’;-)

i=1 k=1,3

DD wik =27

i=1 k=2,4
o e
zj +z; = 1

Each run must depart from Drammen:
n
lejkzl k=1,2,...,m. (5)
=2
Each run must return to Drammen:
n
Yzar=1  k=12,...,m (6)
i=2
If a run arrives at a borrower, it must leave that borrower:

inhkzth]’k h=23,...,n; k=1,2,....m. (7)
i=1 j=1

Arrival times must account for duration, travel and break times:
Yik + di Fuvigt+ti; + N(zije — 1) < yjk
1=2,3,....,n; j=12,....n; k=1,2,....m, (8)
sk +ti; + N(xie— 1) < yjn j=2,3,...,n; k=12, ...,m.

Each run has exactly one break:
=1 k=12...,m 9)
i=2

If the break on the kth run occurs at borrower i, then the kth run must service
borrower i:

n
inijvik 1=2,3,...,n; k=1,2,...,m. (10)
j=1
The servicing of a borrower must occur during the borrower’s time window:
azgyzkgbz i=2,3,...,n; k=1,2,...,m. (11)
There is a time limit on the duration of each run:
Yik — S < P k=1,2,...,m. (12)

There is a time limit on the average duration of all runs:

m

> (yix — k) < mT. (13)

k=1
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Part of the break of each run must occur approximately half-way through the run:

1
yik +di < §(y1k +8k)+3+ N(1—vp),

1
§(y1k+3k)_3§yik+di+u+N(1—’Uik)7 (14)

1=2,3,...,n; k=1,2,...,m.

Each compulsory borrower must be visited at the same time of day on both of its

runs:
Yi1 = Yi3
s — } i=2,3,...,4q. (15)
And, finally, simple constraints:
zijk € {0,1}
vir € {0,1} i=1,2,...,n,
27,25 €{0,1} j=1,2,...,n, (16)
vk €{1,2,3,...} k=1,2,....m

sk€{1,2,3,...}

2.3. Application of the model

We now report on the outcome when the numerical instance for the Drammen
system was solved. The input data are given in Table 1, with 156 time periods of
5 minutes each defining the maximum length of any working day. Period 0 begins
at 8.00 am, period 1 begins at 8.05 am, and so on. Also, n = 22, ¢ = 18, m = 4,
M = 1000, N = 100, v = 8, P = 108, and T = 96. Borrowers 9 and 15 are
actually the same, except for their time windows. This means that there is one
special borrower that is visited four times, alternately in the afternoons and in
the mornings, week by week. This factor is reflected in the following specialised
version of constraint (4):

Y wmop=1 k=13,
- (17)
215157]% =1 k= 2,4.

The problem was solved to optimality using a standard IP software system —
viz. XPRESS-MP [27]. The best solution achieved by XPRESS-MP was established
as optimal by conducting further implicit enumeration based on the time windows
and driving times associated with certain key locations. This optimal solution
corresponds to the following runs, with the sequence of borrowers serviced (starting
and ending at location 1) as indicated by the order of the columns, as shown in
Tables 2-5. Table entries represent time period numbers when each event begins,
including the break.
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TABLE 1. The Input Data for the Drammen System.

3 4 5 6 7 8 9 10 | 11 | 12
; 3 4 4 4 4 3 6 6 4 4

a; | 6 0 |48 | 72 | 84 | 96 | 108 | 96 | 108 | 12 | 12

b; | 42 | 151 | 96 | 150 | 150 | 149 | 149 | 147 | 147 | 148 | 149

13 |14 |15 16 | 17 | 18 | 19 | 20 | 21 | 22
d; | 4 4 6 4 4 4 4 4 4 4
a; | 24 | 12 | 12| 12 | 12 | 12 | 96 0 0 48
b; | 150 | 150 | 66 | 150 | 150 | 150 | 148 | 149 | 151 | 148

TABLE 2. The run for the first week (Duration = 84).

Location | 1 |18 | 2 |17 |15 |13 |11 |12| 5 | 6 4 1

Arrive 21 (27141 |48 |57 |64 |78 |84 (90| 96 | 103
Break 68
Depart 1912513945 |54 |61 |76 |82|88 |94 | 100

TABLE 3. The run for the second week (Duration = 52).

Location | 1 |14 | 3 16 | 10 9 8 7 1

Arrive 94 | 99 | 103 | 108 | 124 | 132 | 137 | 144
Break 114
Depart 92 198|102 | 107 | 122 | 130 | 135 | 141

TABLE 4. The run for the third week (Duration = 103).

Location | 1 |18 | 2 |17 |15 |13 |11 (12| 5 | 6 4 19 | 20 | 22 1

Arrive 21 |27 |41 |48 |57 ({64 |78 |84 |90 | 96 | 101 | 109 | 114 | 122
Break 68
Depart 19 25139 45|54 |61 |76 |82|88 |94 | 100 | 105 | 113 | 118

TABLE 5. The run for the fourth week (Duration = 56).

Location | 1 |21 (14| 3 16 | 10 9 8 7 1

Arrive 89194 | 99 | 103 | 108 | 124 | 132 | 137 | 144
Break 114
Depart 88 193 |98 | 102 | 107 | 122 | 130 | 135 | 141
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The combination of the above four runs provides an objective function value
of (1000)4 — 84 — 52 — 103 — 56 = 3706, with all four optional borrowers serviced,
and a total elapsed time for all four runs of 295 time periods. These runs represent
the following improvements to the Drammen system. For the first time, the op-
tional borrowers are serviced. Indeed all four of them are serviced. Also, the total
elapsed time is 17% less than the schedule that was originally in use. That original
schedule was not only longer, but did not include any of the four optional borrow-
ers. The runs shown in Tables 2-5 were accepted by the Drammen librarians, and
have become the modus operandi for Drammen. We now go on to describe larger
problems.

3. Operations with larger numerical instances

We now briefly describe extensions of the Drammen operation, discussed in the
last section, to the routing and scheduling of the bookmobiles that serve firstly,
the southern part of Buskerud County, and secondly, the whole County. As will be
seen, these operation are significantly more complex than the Drammen operation,
both in terms of constraints and size.

3.1. A Description of the Southern Buskerud County operation

The Southern Buskerud County operation has most of the same features and
constraints as the previously mentioned operation, except for the following factors.
Most of the borrowers are compulsory, and most of the cumpulsory borrowers
must be serviced exactly once during each time cycle. The rest of the compulsory
borrowers must be serviced exactly twice, as in the Drammen operation. But as
we now have more than one run per week, this requirement must be reflected in a
specific constraint in any model of the operation. However each of the borrowers
that must be visited twice must not only be visited at the same time of day, as
before, but also on the same day of the week (e.g., every second Thursday at 11.00
am). This last restriction is now important, as there are to be fourteen runs per
four-weekly time cycle, as opposed to one per week, as in the Drammen case.
There are no borrowers that must be visited more than twice. There are also a few
optional borrowers, that as before, can be visited at most once.

However, the main difference from the Drammen operation comes about due
to the fact that some of the borrowers are located in remote areas far from the
depot, which is still the town of Drammen. This makes it necessary to incorporate
an overnight stay (of a single night) at a certain hotel at a given location, into one
of the runs. This means that most of the runs are completed within one working
day as before, but one run is completed in exactly two working days. Certain
identified borrowers must be serviced by this unique, two-day run. However, there
is time available on that run to service additional borrowers, whether compulsory
or optional. The question of which, if any, additional borrowers are serviced on the
hotel run is part of the decision problem. Naturally, for the two-day run, the hotel
departure time and all subsequent times on the run must be reset with respect to
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the hotel arrival time. Once again, each working day must have a break during
the middle of its elapsed time, hence the two-day run has two breaks. The above
imply that, in terms of TSP terminology, the Southern Buskerud County operation
is a MTSPTW with additional compulsory borrowers requiring differing service
levels, and also with one run being up to twice the normal allowable duration. The
numerical instance corresponding to this latter operation is also far bigger than
for the Drammen operation. OQur formulation is as follows:

max | M Z sziﬂf — Z Z(ylk—sik)- (18)

i=q+1 j=1 k=1 i=1,n+1k=1
Subject to:
Each borrower can be visited at most once on any given run:
n+1
owip<l  j=23,...,n k=12...,m (19)
i=1
Each optional borrower is visited at most once:
n+l m
szjkgl j=q+1,q+2,...,n. (20)
i=1 k=1

Each borrower in L; must be visited exactly once:
n+l m
i=1 k=1
Each compulsory borrower in Ly must be visited twice, at the same time of
the day, every fourteen days:
n+l 8
)PP PEIRRY
i=1 k=1
n+l 14
IS »
J J j=p+1,p+2,...,q (22)
i=1 k=9
z;’ + zj =1
Yik = Yjk+4 k= 1727374
Yik = Yj,k+3 k= 9, 10, 11

Each run, except for the second day of the overnight run, must depart from
the depot:

leijI k=1,3,4,...,m,
=2

n
§ Tpy142 =1
=2

(23)
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Each run, apart from the first day of the overnight run, must return to the
depot:

Zmﬂkzl k=2,3,...,m,
=2

n (24)
Zmi,n—i-l,l =1
i=2
If a run arrives at a borrower, it must leave that borrower:
n+1 n+1
inhkzthjk h=23,...,n; k=1,2,...,m. (25)
i=1 j=1

Arrival times must account for duration, travel, and break times:
Yik + di Fuvig + ti; + N(zije — 1) < yjn
1=2,3,...,n; j=L12....n+1; k=1,2,....m,
s+t + N(zje — 1) < yjx j=2,3,...,n; k=1,3,4,...,m,
Sn+1,2 tn+17j =+ N($n+17j2 — 1) < Yj2 Jj= 2,3,...,n.

(26)
Each run has exactly one break:
dvr=1  k=12..m (27)
i=2

If the break on a run occurs at borrower ¢, then the run must service bor-
Tower 1i:
n+1
owip o i=23,...,n k=12,...,m. (28)
j=1

The servicing of a borrower must occur during the borrower’s time window:
a; < yix < b; 1=2,3,...,n; k=12,...,m. (29)
There is a time limit on the duration of each run:
yix — 1k < P k=3,4,...,m,

Yn+1,1 —S11 < P, (30)
Y1,2 — Sn+1,2 < P

There is a time limit on the average duration of all runs:

(11— s1,1) + (Yr2 = Snr12) + ) (yir — s18) < mT. (31)
k=3
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Part of the break of each run must occur approximately half-way through
the run:

1
yik—i-diS§(y1k+31k)+3+N(1_Uik) 1=2,3,...,n

1 k=34, ...m,
(v +s18) =3 <wir +di + u+ N(1 — vig) m

2
1
yi1 +di < §(yn+1,1 +511)+3+N(1—vin),
X (32)
§(yn+1,1 +51,1) —3<yin+di+u+N(1—vp),
1
Yiz +di < §(y1,2 + Spt1,2) + 3+ N(1 —vin),
1
§(y1,2 +8nt1,2) —3<yio+di+u+ N(1—v;).
Each borrower in DH must be on the overnight run:
n n+1
Zl?ijl + Zl?ijg =1 j € DH. (33)
i=1 i=2
The hotel departure time is fixed:
Sn+172 = A (34)
And, finally, the simple conditions:
Tijk € {0, 1}
vi, € {0,1} i=1,2,...,n+1,
27,25 €{0,1} j=1,2,...,n+1, (35)
yik6{1,2,3,...} k=1,2,...,m.

sik €{1,2,3,...}

3.2. A Description of the County-wide operation

The County-wide operation differs from the previous case in the following ways.
The operation is based at two towns, Drammen and Gol, that serve as depots —
i.e., each bookmobile is based at exactly one of the towns, in the sense that it
begins and ends all of its runs at that town. The number of runs based in each
town is given. However, the question of which depot will service each borrower
is part of the decision problem. Further, in addition to the known hotel with its
dedicated borrowers serviced out of Drammen, there are to be four overnight runs
based in Gol. There are a number of available hotels, from which four must be
chosen. Also, finally, the two bookmobiles from the two depots must meet once
during a month. We are free to choose the place and time. During this encounter
they exchange library material.
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4. Conclusions and suggested directions for further research

There do not seem to be any models or solution techniques for bookmobile routing
and scheduling reported in the open literature. This version of the TSP is com-
plicated by a unique combination of factors. We have reported the outcome of a
successful implementation of a standard integer programming model for a small,
practical scenario. However, it is likely that more effective techniques will have
to be employed to produce useful schedules for instances of the dimensions of the
Southern Buskerud and County-wide scenarios. To this end, the authors are cur-
rently investigating the application of the learning meta-heuristic tabu search as
a solution technique for the extended problems that are discussed in Section 3.
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Abstract. The paper deals with a long-standing problem in the debate on
economic growth — viz. the issue of stability of the balanced growth path
in macroeconomic growth models. We first consider an early claim that the
replacement of a fixed coefficients technology by a neoclassical production
function provides the solution to the Harrod—Domar knife-edge instability
problem, and proceed to investigate the stability and onset of oscillations
in an “augmented” neoclassical model of macroeconomic growth. The model
embeds a Constant Elasticity of Substitution (CES) production function, slug-
gishly adjusting and non-market-clearing real wages, and endogenous fertility.
The analysis shows that (i) Solow models may suffer instability; (ii) a spark-
triggering instability may be due to the presence of a too strong “neoclas-
sicity” in production; and (iii) strong “neoclassicity” may lead to sustained
oscillations of the economy and also to knife-edge instability.
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1. Introduction

The first epoch of modern economic growth theory was dominated by the is-
sue of the intrinsic instability of the equilibrium growth path of the then domi-
nant Harrod—Domar model. The corresponding “knife-edge” problem was elegantly
solved by the advent of the neoclassical growth model by Solow [17]. By simply
postulating a neoclassical production function instead of the fixed coefficients tech-
nology used by Harrod and Domar, he proved the (global) asymptotic stability of
the equilibrium growth path of the economy, the so-called balanced growth path.
Solow [20] observed that the knife-edge problem stems from the assumption that
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production takes place under fixed proportions (i.e., without substitution between
labour and capital in production); but that if this assumption is replaced by neo-
classical production, “...the knife-edge notion of unstable balance seems to go with
it” [17, p. 65]. This result is a fundamental achievement in economic growth theory.

A more general question is whether neoclassical production theory is defi-
nitely the “panacea” ensuring the stability of the equilibrium of a growing econ-
omy.! The usual answer given in subsequent literature seems to have been posi-
tive. Moreover, the stabilising role played by neoclassical production seems valid
for other growth models not based on neoclassical production schemes — viz.
Harrod—Domar-type models, which do not feature cyclical growth, and growth
cycle models (e.g., Goodwin [8]). Indeed, Van der Ploeg [22] has shown that, by
enriching Goodwin’s model with the hypothesis of profit maximisation according
to a constant return to scale Constant Elasticity of Substitution (CES) produc-
tion function, the Lotka—Volterra-Goodwin perpetual cycles are replaced either by
damped oscillations or by monotonic convergence to the balanced growth state.
Consequently, contrary to fixed coefficients production schemes when the econ-
omy enters a phase unfavourable to firms where workers can claim higher wages
(thereby reducing profits and investments), neoclassical firms can replace labour
with capital and so maintain their profitability in a smoothly approached bal-
anced growth state. Thus the introduction of the neoclassical production function
removes the conservative Lotka—Volterra oscillations of the Goodwin system, and
renders asymptotically stable trajectories (Van der Ploeg [22, p. 228]).

A second fundamental result obtained by Van der Ploeg [22] is that the
presence of damped oscillations, instead of a monotonic convergence towards the
balanced growth path, is the consequence of a small factor substitution — thus “A
small elasticity of substitution...is more likely to lead to cycles than to monotonic
convergence to the balanced growth trajectories” (p. 229). A higher degree of
factor substitution (i.e., a stronger degree of “neo-classicity” in production) implies
stronger stability of the balanced growth equilibrium. In brief, the presence of a
neoclassical production function seems sufficient to ensure the stability of both
aggregate descriptive growth models and growth cycle models.

In this paper, we reconsider the central issue of stability of the balanced
growth path from a broader departure point. We take a highly flexible neoclassical
production function (a CES function) as the core of a general neoclassical Solow-
type model. In addition to traditional Solow features, our model involves three
additional assumptions — viz. (i) the wage earners do not save; (ii) structural un-
employment may persist and wages adjust sluggishly in the labour market; and (iii)
the fertility of individuals is endogenous and heterogeneous between population
subgroups, depending on their employment status.

1The term “neoclassical production theory” used here means a theory having production as one
building block, based on optimising firms with a production function showing a certain degree
of factor substitution. This definition is consistent with the notion of Solow et al. [22] and others
that the term “neoclassical” means an approach where, besides the assumption of Say’s Law,
capital and labour are directly and smoothly substitutable for one another.
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The stability of the unique balanced growth equilibrium of our model is in-
vestigated by using as the control (“bifurcation”) parameter the parameter tuning
in the production function — i.e., the degree of factor substitution that is a mea-
sure of the degree of “neo-classicity” in production. Our results, regarding the
relationship between the presence of a neoclassical production function and the
stability of the steady state of balanced growth, differ substantially from those in
the literature. There are economically plausible situations where a higher factor
substitution can be destabilising, while a technology tending to a strong comple-
mentarity between factors (the old Harrod-Domar-Goodwin world) can favour
stability. Whenever instability occurs, steady oscillations arise through Hopf bi-
furcations of the balanced growth path, and extensive simulation suggests that the
ensuing oscillations are at least locally stable. Thus the model provides plausible
avenues to (stable) steady oscillations around the balanced growth trend. This was
considered a central issue by classical and neo-Keynesian economists — Kaldor [23]
lists “cycles in the growth” as one of his stylised facts of economic growth — but
it is surprisingly overlooked in the modern growth agenda [2]. Our model provides
a unified endogenous explanation of this stylised fact, in shedding new light on
the relation between the stability of growing economies and the assumption of
neoclassical production theory, important for stabilisation policies.

The paper is organised as follows. Section 2 introduces the model. Section 3
analyses the existence and stability of the balanced growth equilibrium, its bi-
furcation into steady cycles, and how these features are affected by the elasticity
of substitution of the neoclassical production function. Section 4 is devoted to
numerical illustrations, and concluding remarks follow.

2. The model of the economy

Solow’s original model [2, 17] assumes perfect competition in the labour mar-
ket, and consequently full employment at any time (or at most an exogenously
given constant unemployment). Moreover, the rate of growth of the labour force,
the main engine of growth in the model, was assumed to be fully exogenous. As
previously indicated, in our model, we allow for persistent unemployment and en-
dogenous dynamics of the labour force, by endogeneising the population fertility.?
The amendments we make were proposed by Solow himself [17, 18]. In particular,
on the issue of unemployment Solow [17, 28, p. xviii] acknowledges the need to take
into account the stylised fact of wage stickiness: “this is the sort of amendment
that I mentioned in 1956, but did not pursue very far.” In such circumstances, “the
new equilibrium path will depend on the amount of capital accumulation that has
taken place during the period of disequilibrium, and probably also on the amount of

2Models with unemployment and endogenous fertility are investigated in Fanti and Manfredi [4],
focusing on the role of unemployment benefits; and in Manfredi and Fanti [14, 15], focusing on
age structure. Endogenous fertility may enrich the standard neoclassical growth model with full
employment, as shown in Fanti and Manfredi [4, 5].



324 L. Fanti and P. Manfredi

unemployment, especially long-term unemployment, that has been experienced.”
(ibidem, p. xviii). A parsimonious way to model this extension in a growth frame-
work is to consider a sluggishly-adjusting labour market, for instance according to
a Phillips real wage equation, without necessarily specifying the underlying model
of real wage determination. Growth scholars know that the Phillips equation is the
fundamental ingredient of another cornerstone economic growth model — viz. the
non-hortodox model of Goodwin, which is the famous Lotka—Volterra represen-
tation of Marxian class conflict between capitalists and workers [8]. It is notable
that the two most famous descriptive growth models (due to Solow and Goodwin)
have distinctively different assumptions — viz. whether or not the production is
neoclassical, and whether or not the wage is flexible to instantaneously clear the
labour market. In the Goodwin model, the impossibility of a factor substitution
(however small) is a special restrictive assumption. In the Solow model, the im-
possibility of stickiness in wage adjustments is special and restrictive. Our model
blends some features of these two models, and the main differences are discussed
further below in more detail.

In the Solow model, the accumulation rate is independent of the distribution,
and therefore there is the drawback that the investment would be the same for any
level of the profit.> On the other hand, the Goodwin model assumes that profits
alone finance investments, in that wage earners do not save. This assumption is
less heroic than it might seem at first glance, and certainly more realistic than
the corresponding Solow hypothesis — cf. empirical and theoretical research on
the determinants of investment by firms [7]. Solow himself [18] defends Goodwin’s
choice against his own, noting one of Kaldor’s [23] “stylized facts” of growth —
viz. that “economies with a high share of profits in income tend to have a high
ratio of investment to output” (p. 3), and that Goodwin’s assumption of equality
between profit share and investment/output ratio is just a representation of this
stylized fact.

The other major feature distinguishing the Goodwin from the Solow model
is the assumption of sluggish wage adjustment, which leads to the establishment
of some “natural” rate of unemployment. This feature is certainly more realistic of
the continuous instantaneous adjustment in the labour market assumed by Solow.
Finally, in the Goodwin model — as in the Harrod-Domar model — the produc-
tion is not neoclassical. The main dynamical consequence is that the Goodwin
model displays a steady-state cyclical growth rather than the monotonic growth
of the neoclassical Solow model, and unfortunately suffers the well-known prob-
lem of “structural instability” of Lotka—Volterra conservative cycles. In passing,

3Solow [18] explicitly explores situations in which the saving rate is variable. He postulates a
“fixed saving ratio from wage and profit income, a larger one from profits than from wages”
(p-29), and furthermore argues that in any case “any theory of saving that makes the saving
rate depend only on the variables of the model — the capital/output ratio, the labour/capital
ratio, the return of capital — can be handled in the same way” (p. 29). Thus the assumption of
saving-profits equality does not modify the properties of his original model.
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we note however that structural stability may be obtained in suitable variants of
the original Goodwin model (e.g., Fanti-Manfredie [3]).

Our model is a Solow—Goodwin synthesis for a closed “real”economy with
rational individuals, maximising firms, and a labour market governed by a real
wage bargaining system represented by a linear Phillips curve. The dynamics of
this economy arise from the rate of accumulation, from wage bargaining, and from
population dynamics. Let us now discuss the major features of our model.

2.1. Firms

Firms seek to maximise profit in a competitive market. Technology is represented
by the Constant Elasticity of Substitution (CES) production function with con-
stant returns to scale:

Y=c[zK?+1-2)L"] 7, 0<z<l,  -1<6<oo. (1)

=

The function n = 1/ (1 + 6) is known as the elasticity of substitution, and z is a
distribution parameter that becomes a distributive share for § — 0. Equation (1)
can represent any possible elasticity of substitution, and includes both the Cobb—
Douglas ( — 0) and the Leontief fixed-coefficients (f# — +o00) as special cases.
The labour input is measured in efficiency units: Lg (t) = L (t) 8(¢t),where L (t)
denotes physical labour, and §(¢) the stock of knowledge or the labour augmenting
technical progress. Firms hire labour until the productivity of the marginal worker
equals the real wage. Thus the optimal factor demand ratio, expressed in terms of
the distributive workers’ share of the national income (V'), follows from (1) after
some manipulations — i.e.,

==

where

oz 3)

(1-2)(1-V)
(V)= [— :
Under the neo-Keynesian growth theory assumption that the saving-investment
equality holds and assuming that the wage earners do not save, the profits-invest-
ment equality follows — i.e., profits (P) are reinvested by firms according to a
fraction s, (I = spP). The rate of accumulation K /K, where the dot denotes time
differentiation, can then be expressed as a function of the distributive share of
profit 1 — V —i.e.,
K _

z= spcle(l - V)19+_9 (4)
such that firms finance their investments by their profit income. As mentioned
previously, this is consistent with empirical evidence, as well as neo-Keynesian
investment theory [1].
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2.2. Employment status and individual fertility behaviour

We consider two sub-population types, the employed and unemployed. We fol-
low a modern approach where family choice determines the birth rate per unit
time [9, 16], rather than the lifetime stock of children, as in basic overlapping
generation models. Thus every time each individual family determines the crude
birth rate b, trading off between consumption ¢ and children. The income of the
employed individual is the wage earned per unit time (w), while the income of
the unemployed individual is the unemployment benefit, assumed to be a constant
fraction h (the so-called replacement ratio) of the wage. We assume that rearing
children is more expensive for employed individuals because of the opportunity-
cost of the wage, during the time of child care (e.g., due to a fraction of the wage
being paid to a nurse). Cost may include both direct costs (e.g., clothes) and indi-
rect costs (e.g., nursing), and it is assumed to be an exogenous constant fraction of
the income actually received. We denote such fractions as ¢ (¢ < 1) for the worker
and ¢, (g, < 1) for the unemployed individual, with ¢ > ¢, consistent with our
assumption on the opportunity cost of the children. The quantities qw and g, hw
therefore define the real cost per child, for the workers and for the unemployed
individuals, respectively.
At any time t, the representative employed individual maximises utility —
ie.,
max U(ct, by) (5)

ct,be

where the utility function U is well-behaved, subject to the income constraint
¢t +quiby < wy (6)

Assuming that preferences are represented by a log-linear utility function (for
simplicity we suppress suffix t),

Ule,b) =c"b'"%,  0<a<l, (7)
whence the demand for children by employed individuals is
(1-a)
be = —=. 8
. (8)
Similarly, the demand for children by unemployed individuals is
1—
p, = L= (9)

qu

The quantities b, b, denote the fertility rate of the two sub-populations of em-
ployed and unemployed individuals.* Since a fraction E of individuals is employed

4Such static optimisations can be derived from a fully dynamic optimisation problem by assuming
that: (i) the utility depends on the flow of births rather than on the stock of children; and (ii)
each individual faces a probability of death which depends on aggregate per capita consumption,
which individuals take as given [9].
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(and 1 — E unemployed) at any time ¢, where E is the rate of employment, the
overall fertility rate is

beEE'—l—bu(l—E)):(l—a) <M+E> :(l_a)qh(l—E)+quE '
qu q qqu

(10)
Equation (10) represents employment status as a source of heterogeneity in fer-
tility behaviour, consistent with an empirically documented significant correlation
between the unemployment rate (the presence of structural unemployment) and
fertility, which appears to have been a fundamental stylised fact of European his-
tory [1, 20]. Despite this evidence, with a few exceptions [4, 14] the dynamic inter-
action between fertility and employment status has not been included in economic
macro-models, and the present paper addresses this issue as well.

2.3. Labour market

The wage dynamics factor is represented by a simple linear “real wage” Phillips
equation, as in Goodwin [8] — viz.

w=w(-y+pE), 0<y<p (11)
where E = L/N is the employment rate (the ratio of the total labour actually
employed L to the total labour supply N) and ~, p are characteristic labour mar-
ket parameters. Equation (11) states that when unemployment decreases, workers
become more “powerful” and claim higher real wages, (and vice-versa), and is
consistent with different economic viewpoints. Thus it may arise not only from a
unionised labour market with a relative bargaining power depending on the state
of unemployment or from a “Marxian” labour market with industrial reserve army,
but also from a purely neoclassical labour market obeying a Marshallian [10, 11] or
a Walrasian adjustment process with persistent excess demand [6], in the presence
of a “natural rate of unemployment” and voluntary unemployment. The concept
of real-wage Phillips curve is supported by recent empirical work [21].

Since the wage dynamics factor affects the distributive share of labour, from
equation (2) it also affects the optimal factor demand ratio. Thus when workers
are able to obtain a larger share of national income, firms find it less profitable to
hire workers, and therefore switch away from labour to machinery.

2.4. Our model of the economy

The previous economic relationships lead to a two-dimensional dynamical system
involving the employment rate (E) and the labour share (V). Taking growth rates
in equation (2) K/L = ¢(V'), we have

[
L X 48 )
From (3) we have
6  1|la-v) v]_ 1 Vv
6 0la-V) V| ea-v)v’ (13)
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whence (12) becomes

L 1+6 —1 1 V ﬁ.
Zes,(1-V) Tz —— L 14
L Sp( V) cz 9(1 _ V) i ﬁ ( )
The dynamic equation for the employment ratio F then follows from the identity
E/E=L/L—n (15)

where n = N /N is the growth rate of the labour supply.

In this paper, we disregard participation and assume that n is defined by its
sole demographic component, the difference between the fertility rate b defined in
(10) and the mortality rate u, taken to be constant — thus

(1—a)

n=b—pu= ” [gh(1 = E) + quE] — p=n(E) , (16)
and hence from (14)—(15),
E 140 -1 1 1% ﬁ
—_— = 1 — V 0 0 - — - —_— . 1
o1V eT ey T (17)

Finally, since V. = w/A where A = Y/L, after a further time differentiation we
obtain the equation for the wage share dynamics — viz.,
v @] : (18)

V v A v 1V 38 VvV 0
w B

Assuming for simplicity 3 /B = ag (i-e., an exogenous constant productivity growth
rate), the economy is therefore described by the following two-dimensional model
in terms of the employment rate E and the share of labour V:

V w A w 6V BV 1+6

174 0

VS ayglyeE

E 146 =1 1 V (1—(1,)

Zes,(1-V) T ez —ag— — - 1—E)+ quE] +p .
=1 =V) e T s v [gh( )+ @Bl + p

(19)
This model encompasses most descriptive growth models as its special cases, and
allows for an endogenous determination of income, population growth, employment
and distribution. The last feature is not shared by models based on the Cobb—
Douglas production function, since the distribution is then determined by the
assumed technology.

3. Properties of our model: equilibria, stability and oscillations

Let us now proceed to investigate system (19). Since our focus is on the role played
by neoclassical substitution in the stability of the balanced growth equilibrium,
and perhaps the appearance of oscillations, we are especially concerned with the
role played by ¥ in determining the existence and local stability (or instabilty) of
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an admissibile positive equilibrium. Preliminary investigations show that, provided
0 < Vb < 1, the system (19) always admits a meaningful unique positive solution —
i.e., assuming it is positive initially, the solution always stays positive.

3.1. Equilibria
System (19) not only admits the “zero ” equilibrium Py = (0, 0),% but also an axis
equilibrium P, = (0, E») that have interesting economic properties, particularly
from a welfare perspective [4, 14]. However, since we are mainly interested in states
of balanced growth, we restrict our search to strictly positive steady states. It may
be shown that at most one strictly positive equilibrium P; = (Vi, E1) exists, when
the equilibrium level of employment is Fqy = (ag + 7) /p which is meaningful for
ap+7v < p. Let
(1-a)

qqu
be the corresponding rate of growth of the population. Setting f1 (V)= (1 —-V)™7 ,
from (19) meaningful equilibrium values of the wage share are solutions
V* (0 < V* < 1) of the equation

ny =

[gh(1 — Er) + quBr] — p (20)

f1(V)—Gzo =0 (21)

where n
G="117T9% (22)

CSp

For 9 > 0, f1 (V) is monotonically decreasing and convex in the admissible set
0 <V <1, whereas for —1 < ¢ < 0 it is monotonically increasing and convex on
0 <V <1.Let ® =(—1,+00) be the set of admissible ¥ values. The role played
by ¥ on existence and admissibility of the positive equilibrium is summarised by
the following result.

PROPOSITION 1.

(A) For G > 1 (and therefore G > z), the system admits a unique positive and
admissible equilibrium P; in the set ; = {—1 < ¢ < Y.}, where 9., > 0.

(B) For z < G < 1, a unique equilibrium that is always admissible exists for all 4.
(C) For 0 < G < z, the system admits a unique positive and admissible equilibrium
in the set Qy = {¥. < ¥ < 400}, where ¢, < 0. In particular, the equilibrium value
of the wage share is

_0
ﬂiﬂywﬂﬁ (23)

i=1- [
csp
The proof is given in the Appendix. Note that (23) follows straightforwardly

from (21) and (22).

Proposition 1 summarises how different degrees of neoclassical substitution,
as measured by ¥, affect the existence and admissibility of a positive equilibrium
of the economy — a central issue of debate in growth theory. Thus when G/z > 1

5Correctly speaking, since V' > 0, the point Eg = (0,0) may be considered an “extended”
equilibrium point.
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the balanced growth state exists in intervals of the form —1 < 6 < 6., — i.e., when
G/z > 1 the balanced growth state always exists under "neoclassical” technolo-
gies, and is only lost when the technology moves towards strong complementarity
between factors. Consequently, the balanced growth state exists in a neoclassical
world but does not exist in a Harrod-Domar world. When G/z < 1, the balanced
growth state exists in intervals of the form 0, < 6 < 400, with 8, < 0 — i.e., it
exists in the presence of complementarity, but may be lost when the neoclassical
substitution is too strong (—1 < 6 < 6.). Thus G < z implies scz > ag + n1, when
the economy saves and invests enough to overcome the expansion of the labour
force and the productivity, leading to endogenous growth. Factor substitution is
therefore the engine that allows endogenous growth, a result well known in the
growth literature [2].

To sum up, the “beneficial” role that Solow paid to neoclassical substitution
appears to largely be confirmed by the existence of the growth steady state, ac-
cording to our analysis. Indeed, in one case (G/z > 1) an increasing degree of
neoclassical substitution allows the onset of the growth steady state in circum-
stances, where it did not exist in a Harrod—Domar’s world; while in the other case
(G/z < 1), the steady growth state can actually be lost due to too strong a neoclas-
sical substitution, but the economy nevertheless enters an even more “happy”state
— viz. endogenous growth. Our discussion has shown that the existence of the state
of equilibrium growth depends, for any degree of neoclassical substitution ¥, on
the ratio G/z. As will be shown later, the same parameter also critically tunes
the local stability, and the following remark describes the effects due to 9 on the
equilibrium wage share V; (we omit the easy proof).

REMARK 1.
The function V; (9) is strictly decreasing for G > z and strictly increasing for
G <z

3.2. Stability and bifurcation of the balanced growth path: the role of neoclassical
substitution

Following some easy computations, the local stability analysis of the balanced
growth path P; leads to the following expressions for the trace and determinant of

the Jacobian J; at P; (for ease of notation we suppress the suffix 1 in the variables
E, V,n):

Tr(J) = (1i9(1f )+SZ>E, (24)

Det(J1) = (~1)esyz ™ ——pfi (V) E (25)

It is easy to check that Det (J;) > 0 independently of the sign of 1, so possible
switches of the balanced growth state from stability to instability are only governed
by T'r (J1). The condition of local stability of Py (T'r (J1) < 0), yields



Growth Models with Unemployment 331

1 p
Troa—vy °°° (26)
where
l1—a
0= h—qu) , 27
—(h—a.) (21)

and we have written V' = V (1) to stress our interest in a one-parameter discussion
focusing on the role played by ¢. Since the quantity

H9)=(1+0)(1-W(9) (28)

is non-negative in the whole admissible set of ¢ (¢ > —1), the positive equilibrium
is always stable for § < 0, so only the case § > 0 corresponding to rather large
unemployment benefits is of interest. (Fanti and Manfredi [4] study in detail the
dynamical role of unemployment benefits.) When § > 0, the fertility rate of those
who are unemployed exceeds that of those employed. This case is far from being
trivial, for it can be the consequence of economic environments where the rearing
costs of children are higher for employed individuals and, thanks to an achieved
high level of wellbeing or social protection, the society can afford high rates of
unemployment benefit. Thus a growing structural unemployment may cause the
unemployed individuals’ fertility to grow excessively, which has a destabilising
effect (see later). In this case, condition (26) may be rewritten as

H(©) < g : (29)

which leads to the following proposition (proof given in the Appendix).

PROPOSITION 2.

(A) For G > 1 (i.e.,, G > 2), the growth steady state P; exists in the domain
0 = {-1 <9 <.}, and is always locally asymptotically stable (LAS) when
the degree of neoclassical substitution is maximal (¢ — —17); and stability may
be lost only when the degree of substitution is decreased, but not necessarily.

(B) For 0 < G < 1 and G > z, the state of balanced growth exists in the domain
Oy = {¥. < ¥ < +oo} and always becomes unstable for sufficiently large 9.

(C) For 0 < G < 1 and z > G, the state of balanced growth exists in the do-
main Qs = {¥. < ¥ < +oo}. In this event, three sub-cases are possible — i.e., the
balanced growth state is:

(C1) always unstable; or

(C2) unstable for either relatively high (i.e., in a region 9, < ¥ < ¥, ) or relatively
low (i.e., in a region ¥ > ¥y, degrees of neoclassical substitution, and LAS in
between; or

(C3) LAS for (relatively) high (i.e., close to ,) degrees of neoclassical substitution,
and unstable for large 9.

Figures 1 and 2 illustrate Proposition 2 by showing the regions of ¥ where
stability or instability respectively prevails (Figure 1 shows case (A), whereas
Figure 2 illustrates case (C)).
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FIGURE 1. Regions of stability and instability of the balanced growth path
Py in case A of Proposition 2 (G > 1 > 2).
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FIGURE 2. Regions of stability and instability of the balanced growth path
Py in case C of Proposition 2 (0 < G < z).

It is notable how the stability of the balanced growth path is affected by
the degree of neoclassical substitution, tuned by ¢. For G > z, as in cases (A)
and B) of Proposition 2, the balanced growth path may lose stability only by a
decreased degree of neoclassical substitution (or by moving towards the Harrod—
Domar world). Thus the stability may be reinforced by augmenting the degree of
neoclassical substitution. However, case (B) differs from (A) in that too high a
degree of neoclassical substitution (i.e., a too low ¥) may prevent the existence of
the balanced growth path (cf. Proposition 1). On the other hand, for 0 < G < z
(case C) this is not necessarily so. In particular, there are cases where increasing
the degree of neoclassical substitution leads to instability, which has never been
pointed out before in the neoclassical growth literature. Thus high degrees of
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neoclassical substitution may trigger instability in circumstances which, although
dependent on the model parameters in a complex way, necessarily require: (i) a
sufficiently high weight of capital in CES technology (a high z); (ii) sufficiently
low population and productivity growth rates; (iii) a high level of the technology
index (c); and (iv) a high propensity to save by the capitalists (sp).

Our results demonstrate the importance of stability of the balanced growth
equilibrium, which is most relevant for both the Harrod—Domar and Solow model
viewpoints. If the growth equilibrium is stable, at least locally, Solow’s claim
that neoclassical technology (and therefore a variable capital-output ratio) solves
Harrod—Domar’s knife-edge is obviously correct. Unfortunately, we have shown
that this does not need to be the case. When a Solow-type economy is perturbed
by sticky wage adjustments and therefore by structural unemployment, which in
turn may feed back onto fertility, there are cases when the neoclassical model may
suffer instability. In some of these cases (cf. again Figure 2), too high an elasticity
of substitution may cause instability. The underlying mechanism is that a very
large elasticity of substitution quickly increases unemployment when wages start
increasing, and therefore increases the contribution to fertility by unemployed in-
dividuals; and larger fertility among unemployed individuals, compared to those
who are employed, is a destabilising factor [4, 5, 14, 15].

Indeed, fertility may be very high when employment is low, so an increasing
pace of population increase, further reducing employment, provides an instability
mechanism if the demand for labour is unchanged. This recalls the old Malthusian
intuition that the fertility of unemployed individuals may be destabilising since
it is unrelated to other economic variables, and so hardly controllable by internal
feedback in the economic system. It therefore emerges that instability arises not
only in a neoclassical world, for there are cases where a too strong “neoclassi-
cism” may itself be the cause of instability, as the spark triggering the Malthusian
mechanism. Under Malthus’ focus on the fertility of the “poor”, it is possible to
completely reverse the role that neoclassical technology has played in growth the-
ory. In this case, a way to restore a stable economy is, paradoxically, to reduce the
flexibility in production that Solow believed to be the “panacea” to remove the
Harrod—Domar instability.

To close this section, let us now consider what happens in the special but
pervasive case of Cobb—Douglas technology, arising in the limit for ¢ — 0), using
the following remark.

REMARK 2.
In the Cobb—Douglas case, the stability condition of the balanced growth path

p —-0>0 = z<£

1-1(0) 4]
leads to the observation that stability does not necessary occur, but requires a
balance between (a) the weight of capital in the CES technology (z); (b) the speed
of adjustment of the labour market (p); and (c) the set of parameters influencing
fertility ().
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3.3. Bifurcation of the balanced growth path

In reappraising the neoclassical solution of the knife-edge problem, let us now
consider the nature of the instability of the balanced growth path discussed in
Proposition 2. It is a trivial matter to check that all cases of instability described
in Proposition 2 occur by a Hopf bifurcation of the growth steady state (cf. Gucken-
heimer and Holmes [24]). Indeed, all possible cases of instability occur when there
is a change of sign of the trace Tr (J1), but the determinant maintains a strictly
positive sign. Thus all the points in Proposition 2 at which stability is lost are 9
points — i.e., they correspond to a transition from stable eigenvalues (i.e., with
negative real parts) to unstable eigenvalues. In addition, it is easy to check that
the test for nonzero speed is fulfilled — i.e.,

(@) #o0
9=0

at all 9y points, thereby completing the proof of the existence of a Hopf bifur-
cation at the ¥y points. The implication is that the kind of instability appearing
in our extended neoclassical model is of oscillatory type. The simulations of the
next section show in addition that the emerging cycles are always at least locally
asymptotically stable, and we comment further about this at the end of the next
section.

4. Simulation and working of the system: steady oscillating
balanced growth paths

We now illustrate the stability properties of the model, and the onset of oscillations
detected in the previous section, by a concrete example in which we focus only on
the dynamical effects of the parameter 6, keeping all other economic parameters
fixed.

The Hopf bifurcation theorem only predicts the onset of oscillations, and it
does not say whether the bifurcation is supercritical or subcritical — i.e., whether
the emerging periodic orbit is locally stable or unstable. For this reason, we un-
dertook a simulation to investigate the stability properties of the periodic orbits
emerging via Hopf bifurcation of the balanced growth state P;, and more generally
the global behaviour of the model. In these numerical experiments, we used the
following parameter values (in appropriate units): ag = 4 = 0, z = 0.5, s, = 1,
c=25,h =045 v = 0.009, p = 0.01, a = 0.99, ¢ = 0.2,¢q, = 0.05.% The in-
equality z > G holds in this example, so it falls under the assumption of (C b)
of Proposition 2, which predicts the possibility of instability and oscillations as a
consequence of too strong a degree of neoclassicity in production. The system is
initialised from values very close to the balanced growth state P;.

6We chose ag = p = 0 because these two parameters, obviously necessary to fit real data, do not
affect the qualitative features of the model.
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FIGURE 3. A phase-plane view of a stable limit cycle for 6 close to 0 =
0.775, (parameter set as in the text); initial conditions: V(0) = 0.95, E(0) =

0.91.

The simulation shows that, when the technology displays a high degree of
factor substitution (i.e., a relatively high 6: 8 < 0.775), the balanced growth state
P, is unstable. The instability is not only maximal with a perfect substitution tech-
nology, but the system also continues to be strongly unstable with a Cobb—Douglas
technology. On gradually reducing the elasticity of substitution, the system shows
progressively less wild unstable oscillations, until the threshold value § = 0.775
where the oscillations end in a stable cycle. From the economic point of view, this
implies patterns of growth with steady cycles around the path of balanced growth.
Further reductions in 6 stabilise the system. However, further reduction in 6 leads
to a second Hopf bifurcation (at § = 7.7), and again to steady oscillations; and
by further approaching the fixed coefficents world, to purely unstable oscillations
resembling the classical knife-edge behaviour. Morover, on starting from a “fully”
neoclassical technology (e.g., the perfect substitution case § = —1) and progres-
sively reducing the degree of factor substitution, we find the phase portrait of
the system undergoes the following transformations: no balanced growth state at
first — unstable balanced growth state P; (initially monotonic and subsequently
oscillatory) — unstable P;, but with convergence to a stable limit cycle — P;
as a stable focus, then a stable node, then a stable focus again) — destabilised
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FIGURE 4. Time paths of the rate of employment and wage share in the
limit cycle; initial conditions: V' (0) = 0.95, £(0) = 0.91.

Py, with convergence to a stable limit cycle — the cycle is destabilised, and full
instability occurs.

It is worthwhile remarking on at least three aspects that emerged from the
simulation. Firstly, both of the limit cycles that emerged, one for a high degree
and one for a small degree of substitution, were locally stable (and in all of our
simulations appeared to be globally stable), indicating the possibility that there
are two different cyclical growth paths, depending on quite different regimes of
flexibility in production. Secondly, a limit cycle exists in a significantly wide range
of §, implying that fluctuating rather than stationary growth is the rule for wide
ranges of technologies. (From this standpoint, our model predicts the stylised fact
of cyclical growth.) Thirdly, the oscillatory time paths of the unemployment rate,
and of the distributive shares, are consistent with another stylised fact of economic
growth — viz. that the rate of unemployment shows sharp fluctuations, whereas
distributive shares oscillate only slightly.

Another remark, more in the vein of the classical debate on growth, concerns
the nature of the instability occurring in our model. Compared to the basic Harrod—
Domar’s model, where the knife-edge represented an elegant definition for the pure
instability of a steady state, our model includes a much more reasonable instability
of the steady state in the form of steady oscillations. This is the consequence of the



Growth Models with Unemployment 337

fact that the model has a Goodwinian feature — viz. oscillatory potential due to
sluggish labour markets. In brief, the synthesis of the Goodwin and Solow models
presented in this paper has produced a very fruitful approach to growth.

5. Conclusions

There is a widespread belief that all growth models based on a non-neoclassical
production theory, such as the Harrod—Domar or Goodwin models, exhibit insta-
bility of the balanced growth path. It is also believed that a steady state can always
be “stabilised” by introducing neoclassical technology and the behaviour of firms.
This need need not be so.

This paper shows that neoclassical Solow models with sluggishly adjusting
real wages and endogenous fertility (extensions suggested by Solow himself), may
be unstable. The surprising result is that, under fertility behaviour as postulated
here, the existence of too strong a “neoclassicism” triggers instability in the model
economy. Paradoxically, one way to restore a stable economy is then to reduce the
flexibility in production, which Solow believed to be the “panacea” for removing
the Harrod—-Domar knife-edge instability. From this standpoint, we believe that
the model developed in this paper represents a significant extension of the neo-
classical growth model, and sheds new light on the relation between stability and
neoclassical production theory in a growing economy.

The present model also classifies the nature of the instability, showing when it
appears as steady oscillations as a consequence of the oscillatory potential embed-
ded in the hypothesis of sluggish wages (the heritage from Goodwin), and when it
degenerates into knife-edge instability. Moreover, we have shown that cycles: (a)
can be caused by changes in the degree of flexibility in production: and (b) can
occur not only in non-neoclassical situations with scarce substitution but also in
strongly neoclassical ones with very high degrees of factor substitution.
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Appendix
Proof of Proposition 1 (Existence of a nontrivial growth steady state)
Let us reconsider equation (21) — viz.
(1-V)"*s =Gzv . (A.30)

Since a discontinuity occurs for ¢ = 0 , we distinguish two cases — viz. ¥ > 0 and
-1 <9 <.
140

Case 1: ¥ > 0. When 9 > 0, the function f1 (V) = (1 —-V) ™o
monotonically decreasing and convex for 0 <V <1, as

is non-negative,

dfy (V 0 1 d>f1 (V 1+6 1
T _ (2l vp o o TAT_ 1000 vyiosg
(A.31)
with f1 (0) =1, f1 (1) =0, so f1 (V) is bounded in [0, 1]. Moreover,
8f182(9v) =1-V)xf1 (V) ;—21 In(1-V)>0 (A.32)

as 0 < 1-V < 1, implying that for 9 > 0 an increase in 9 produces an upward shift
in fi. When ¢ — +oo , f1 (V) approaches the line (1 — V), as in the Goodwin
model. Moreover, as 0 < z < 1, the quantity f» (¢) = z'/Y is monotonically
increasing in ¢ for ¢ > 0, with ﬁli,%l+f2 (¥9) = 0 and ﬁlir&fg () = 1. This in turn

implies that, as ¢ increases between 0 and +oo, the right-hand side of (21) Gz
increases between 0 and G. Thus if 0 < G < 1 a unique positive equilibrium exists
and is always admissible. On the other hand, if G > 1 a positive equilibrium exists
and is admissible for Gz7 < 1, or 27 < G for

v <9, (A.33)

where 9, = (—1) 11::5: > 0 — i.e., it is a meaningful bound. We summarise our
results as follows:

RESULT 1a. For ¢ > 0, the system (19) admits a unique equilibrium that is always
admissible if G < 1, while if G > 1 a unique admissible equilibrium exists in the
set 0 < ¥ < ,, where

Inz

InG
146

Case 2: —1 < ¥ < 0. When —1 < ¢ < 0, the function f; (V) = (1 —-V)7@ is
monotonically increasing and convex in 0 < V' < 1, with f; (0) =1, ‘}_iml fi(Vv)=
—

9, =(-1) > 0. (A.34)

+00. Since for —1 < ¥ < 0 the quantity z'/Y is monotonically increasing and
convex in ¥ between z~! > 1 and 400, so for G > 1 the function Gz7 is greater
than one and a unique admissible equilibrium always exists. On the other hand,
for G < 1 we need Gz# > 1 — i.e., after some algebra, we have

Inz

19>(—1)R: *

(A.35)
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where ¥, < 0 but not necessarily greater than —1. Thus if (—1) llrrl‘é < -1 (i.e.,
0 < z < G < 1), the threshold ¥, is not meaningful and a positive equilibrium
exists for all ¥ values — i.e., for —1 < 9 < +o0.

We may therefore summarise our results on the role of ¥ for the existence

and admissibility of the positive equilibrium in the case —1 < ¢ < 0 as follows:

RESULT 1b. For G > 1, the system (19) admits a unique admissible equilibrium
for all ¥ < 0. For z < G < 1, there is again a unique admissible equilibrium
for all ¥ < 0. Finally, for 0 < G < z an admissible equilibrium exists in the set
J < ¥ < 0 where

Inz
(=1) InG -’
By combining RESULTS 1la and 1b, and distinguishing the three cases (A), (B)
and (C) on the basis of the mutual values of G and z, we obtain Proposition 1 in
the main text.

Py =

Other useful results

We prove here some results that are useful for discussing the stability of states of
balanced growth. At the positive equilibrium P;, the following relation holds:

1-V =[G]™ 2T .
The function
(W) =1-V(¥) (A.36)

is strictly increasing in ¥ for G > z, and strictly decreasing for G < z. Indeed, by
some simple algebra we have

d d 1 \* @G
0 =250V =a-vo) () we.
so in particular the assumption G > z leads to the economic condition

n (El) + ag
ZCSp

>1.

Let us consider the behaviour of 7 (¢) for ¥ — —1. For G > 1, the P; equilibrium
exists and is admissible in (—1,9,.). Thus since G > 1 implies G > z, we have

Jm @)= im (Vo) =6 tim (Z)™ =0,

For G < 1, the P; equilibrium exists only for (9., +0c), where from (A.35) we

have ¥, = (—1)Inz/InG. Consequently,
lim 7 (9) = lim (1—V (9) =G Ii (if%—k (A.37)
gm0, )T 95, ~Yen\a@ - '

where k is positive and smaller than 1.
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Proof of Proposition 2

From (29), we need to consider the behaviour of H (¢) for § € (—1,400). Now
H (¥) is always positive for admissible equilibrium values of V. For G > 1, the De
I’Hopital theorem yields

4 (1-V©®
lim H(@) = lim (1+0)7(9)= lim M
9——1+ 91 ==l ST
= (-DA4+9)°1-V®) m&_y. (A.38)
z
For G < 1, lim H(ﬁ) — (1 + 19*) k>0. (A.Sg)

90T
Since the function 1 + 9 is monotonically increasing, we can distinguish the
three cases (A), (B) and (C) of the text:
Case (A):
For G > 1 (so that G > z2), the function 1 — V (¢) is increasing, implying that
H () is also increasing in the whole domain Q; = {—1 <9 < ¥,,} in which P,
exists (and is meaningful). From (A.38) 19EmﬁH(ﬁ) = 0, the P; equilibrium is

always locally stable when 99 — —1. By a continuity argument, stability continues
to prevail in a neighbourhood of (—1), and in particular instability will occur
(through a Hopf bifurcation at the point where H () = p/d) only if H (J..) > p/0.
Case (B):
For 0 < G < 1 but G > 2, H(¥) is strictly increasing in the domain Q5 =
{¥. < ¥ < +o0} in which P; exists (and is meaningful). As

lim (1-V#®)=G,

¥ —~+o00
it follows that ﬁmf H (¥) = 4+o00. Let H, = H (9.). If H, < p/d, the balanced
— 400

growth state Pj is locally stable in a neighborhood of ¥,; but as H (¥) grows
unbounded with ¥, instability will necessarily arise (through a Hopf bifurcation)
for large ¥ values. However, if instead H, > p/d, then P; is always unstable.
Case (C):

For0 < G < z (2/G > 1), P; still exists and is admissible on Qs = {0, < ¥ < +00}.
In this case, unlike cases (A) and (B), H (1) is the product of an increasing function
with a decreasing one. Again, H (c0) = 4+00. Moreover,

dH 1-V(9) P

Consequently, since G < z we have In& > 0 and 1 —In & < 1, so that a value
¥y exists (Jo = In & — 1) such that H (¢9) is decreasing for ¥ < 9» and increasing
thereafter (1 = 5 represents a minimum for H («)). Thus stability depends on the
mutual position of the line p/§ with respect to the value H (9,) and the minimum
of the curve H (), so the three cases in Figure 2 emerge and lead straightforwardly
to cases (C1), (C2) and (C3). Again, when instability arises it does so through a
Hopf bifurcation of the steady state.
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1. Introduction

Since the seminal work of Fourth and Woodlock [7] and Mansfield [14], and partic-
ularly the celebrated model introduced by Bass [1], the penetration of consumer
durables into a population of potential customers has been the subject of many
contributions in the field of marketing.

The Bass model describes the “first purchase” diffusion process of a new
product launched into a market of fixed composition and size N, consisting of two
segments at any time ¢ — viz. the unawares U (t), those uninformed about the new
product, and adopters A(t), those who are informed. The latter are called adopters
because it is explicitly assumed that they decide to actually buy the product at the
same time they are informed. From this perspective, the Bass model is a “diffusion
model”, focusing on the diffusion of information and leaving aside details of the
economic process of purchase. The information-adoption channels between the
two segments are considered to be the external influence due to the mass media
and advertising, and the internal influence due to interpersonal communication
(word-of-mouth). The market population is assumed to mix homogeneously and
be homogeneously exposed to the external influence, and there are no social or
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economic differences inducing a different rate of adoption of the new product in
a fixed time interval. At any time ¢ > 0, a percentage p € (0,1) is taken to be
reached by the marketing message, where p is called the coefficient of innovation or
of external influence, and contact between unawares and adopters to produce new
adopters in a percentage g € (0, 1), where g is called the coefficient of imitation or
of internal influence.

The Bass model is thus described by the system of ordinary differential equa-
tions

UA
U = —pU—-q—,
U/JXV )
A = pU —
p +qN7

where the prime denotes the time derivative. Since U(t) + A(t) = N at any time
t, the elimination of U(t) yields the equation

A
A’:p(N—A)+qN(N—A) (2)
for the adopters that, subject to the initial condition A (0) = 0, has the solution
1 — e~ (P+a)t
G ¢ (3)
1+ (g/p)e-pta
The graphs of the function A and its derivative A’ (the rate of increase of adopters)
are called the diffusion and adoption curves, respectively. Indeed, if every adopter
acquires the product just once and there are no succeeding generations of the
product, new adoptions may be identified with the current sales and the adopters
with cumulative sales. The diffusion and adoption curves are illustrated in Figure
1, where the “relative adopters” ratio A(t) = A(t)/N is plotted against time t.
When word-of-mouth is more effective than advertising (¢ > p), sales peak at ¢, =
(p+q 'In (¢/p) when A (t.) = N (¢ — p) /2q and then decrease. In particular, if

A(t) =

FIGURE 1. Diffusion (solid line) and adoption curves (dotted line) in the
Bass model.
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q > p the sales attain their maximum value at about the time that cumulative sales
are approximately one-half of N. When advertising is more effective than word-of-
mouth (¢ < p), sales strictly decrease over time. In any case, in the long run the
market is saturated — i.e. A (¢t) = N as t — +00. The current sales produced by
the external influence decrease as the adopters increase, whereas sales induced by
the internal influence display a “logistic” dynamics, with an initially fast and then
slower growth — cf. the relevant terms in (2).

Despite its simplicity, the Bass model (2) does describe the basic mechanisms
of the diffusion process and forecasts sales in various consumer durable sectors.
A number of extensions have been proposed (e.g. [2,6,8]), but most assume a
fixed market population — although in many markets there is growth due to de-
mographic or economic factors such as pricing, government action or marketing.
Previous contributions to account for a market of variable size ( [9,11-13,16])
simply assume that the variable N in the Bass model depends on the time and
possibly such economic variables, without considering how the demographic com-
ponent influences fluxes in market segments or the diffusion dynamics. More re-
cently however, the following model of first purchase in an exponential dynamic
market was introduced [4]:

UA
U’sz—pU—qT—,uU,

A
A’sz+qUT—MA7 @
N/:(b—/_,L)N7

where b > p. In this exponential model, the “birth” process involves only the
unawares segment, but the “death” process involves more than one compartment
at the common rate pu. Thus the parameters b and p capture not only a purely
demographic birth-death process but also socioeconomic aspects — each individual
can enter or leave the market according to age, wealth, or personal preference for
example. Since U(t) + A(t) = N(t), the resulting differential equation governing
the evolution of the relative adopters ratio A = A/N then obtained from (4) is

A =p+(g—p—b)A—qA*, (5)

containing the additional term with coeflicient b. Properties of the exact solu-
tion Ag of (5), given the initial condition Ag (0) = 0 and its dependence on
the demographic-economic parameters, have previously been discussed [4]. Major
features in this model can be summarised as follows:

e a relative study of the diffusion and adoption curves is necessary to account
for variation in the market size;

e adoptions and sales (both relative and not) do not coincide because of the
mortality process;

e the market is not saturated in the long run; and

e the relative diffusion and adoption path scenarios are essentially the same as
in the Bass model, and strictly linked to the relation between ¢ and p + b:
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indeed, adoptions peak if and only if the internal influence overcompensates
for the combined effects of word of mouth and the birth rate (¢ > p + b).

Despite a good fit with data and its usefulness for short to medium term analy-
sis, a major drawback of the exponential model is the unbounded market growth
assumption. The aim of this paper is to continue with a Bass-type model, but
to assume a market with a general logistic (and hence bounded) growth that we
believe to be more realistic — since markets are more likely to exhibit an initial
exponential growth phase followed by a deceleration, leading to an eventual near-
stationary level. In brief, the logistic model appears flexible enough to capture the
possible expansions that various types of markets display. We focus on analysing
and interpreting the forms that the corresponding adoption and diffusion curves
then take for different feasible parameters, highlighting the similarities and differ-
ences compared with the exponential model. The direction is similar to that in
our previous work, except that a qualitative analysis and simulation is pursued
because an exact solution is not available. We find once again that saturation does
not occur, despite the bounded market growth; but we find a greater variety of
possible relative adoption and sales pattern configurations, dependent upon mar-
ket “maturity”— i.e., on how far the initial population size is from the eventual
asymptotic level. In particular, there is a parameter configuration that produces
multiple peaks, not found in either the Bass or the exponential model.

Our presentation is as follows. In Section 2, we introduce the model, discuss
its assumptions and present a stability result. In Section 3, we consider some
properties of the adopters equation solution from a qualitative point of view, in
comparison with the solution in the exponential case. In Section 4, we analyse the
relative and absolute sales dynamics, and discuss our simulations to support the
theoretical analysis and interpret the various possible phenomena. Conclusions are
drawn in Section 5.

2. Logistic growth model

Let us consider the introduction of a new product at time ¢ = 0 into a marketplace
of size N (t) that evolves according to the logistic law [18]

N’ =[b(N) = m(N)| N, (6)

where the birth rate b(N) > 0 is differentiable with & (N) < 0 and the mortality
rate m(N) is differentiable with m/(N) > 0. Assuming b (Ny) > m(Ny) where
No = N (0) and that m(+00) > b(400), there is a unique globally asymptotically
stable (GAS) equilibrium N* such that

b(N*) = m(N*). (7)

Given its greater economic importance, we only consider the case Ny < N*.
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Among the possible birth and mortality rate behaviours, we will sometimes
refer to the linear logistic case

bB(N)=b—kN and m(N)=p+kaN where ki,ka >0, (8)
and to the density-independent fertility (DIF) case
b(N)="b>m(N). (9)

As indicated in the Introduction, both b and p are intended to be demographic-
economic parameters.

The market is composed of the unawares U (t) and adopters A(t) such that N (¢) =
U (t) + A(¢t) at any time ¢, and

A(0) =0, U (0) = No > 0.

As in the exponential model, let us suppose that the contact process between
unawares and adopters is captured by the so called true mass action form [4] —
i.e., at any time ¢, the rate of transition of individuals from the first segment to
the second is proportional to UA/N. Thus the model is described by the system
of differential equations

A
U’:b(N)N—m(N)U—pU—qUT,

A’:—m(N)A—I—pU—l—qUTA, (10)
N =0B(N)—m(N))N.

It is convenient to work with the relative ratios Y = U/N and A = A/N, so that
the system becomes

U =b(N)—b(N)+plU —qUA,
A = —b(N)A+pU+qUA, (11)
N'=[b(N)—m(N)]N .
for the solution set
r={U,AN): O<N<N*U>0, A>0, U+ A=1} .
Since U (t) + A (t) = 1, we obtain the corresponding relative adopters equation
A=p+(g-—p-b(N)A—qA . (12)

Remark 1. The dynamics of the adopters described by (12) does not depend on
the mortality function m (N), a direct consequence of the assumption that in each
compartment the mortality rate is the same — cf. also (5). Furthermore, the vari-
ation of the relative adopters over time is increased by the economic component
p(1—A) +qgA(1—A) > 0 similar to the Bass and exponential models, and is
decreased by the demographic term —b(N)A < 0 similar to the exponential model.
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Remark 2. The sign of the coefficient B (N) = q —p —b(N) is not determined a
priori, neither at No nor at N*. From the assumptions on b(N) it follows that

B (N (£) = b (N)N'(t) >0 (13)
with
Jim @ (N (5) =0 (14)

Hence if 3 (No) > 0, then 8 (N) > 0 for allt > 0, and if B (N*) <0 then 3(N) <0
for allt > 0.

Unlike the original Bass model, in the exponential model (5) the market never
saturates — i.e., Ag (+00) # 1. At first glance, this may appear to be caused by
the continual demographic growth, but this is not the case (cf. [4]). Indeed, the
birth of new unawares generally slows the diffusive process, and the magnitude of
Ag (400) depends upon the fertility rate b. The following proposition collects the
relevant results from a stability analysis of the logistic model.

Proposition 3. System (11) admits the unique GAS equilibrium (U*, A*, N*) on
T', where
* * N* _ *
_ B+ ond oy = 4PV 0t
2q 2q

with 3* = B (N*) and n* = 1/ (8*)* + 4pq.

A (15)

Proof. The equation N’ = 0 has the nontrivial solution N* > 0. Substituting in
(12) and setting A’ = 0, we obtain

gA> = B*A—p=0

and hence the unique admissible solution
R - 2
-A=2— B+ (B*)" +4pq | -
q
Since U* + A* = 1, we also have U*. Then using results for asymptotically au-
tonomous dynamical systems (see e.g. [18]), we integrate the differential equation
A =p+p*A—qA®

subject to the initial condition A (0) = Ay < 1, to obtain
_ 4B 1+¢ ¢ exp{-nTt}

A= T 6 e (D) 1o
and
b= 2q A0 — (n* + %)
2q Ao + (n* — B*)
where

Y=m"+5)/(n"—p5).
Since for all Ag we have A (t) — A* as t — 400, the result follows. O
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FIGURE 2. Different diffusion processes in the linear logistic population
(8) with the same N* but different values of b: b = 0.1 (solid line), b = 0.5
(dashed line), b = 0.9 (dotted line).

From (15), it is evident that A* < 1 and A* = 1 if and only if b (N*) = 0, so
the logistic market does not saturate. This is not so surprising, for eventually the
population approaches a stationary level characterised by replacement of individ-
uals, as in a stationary model with b(N*) = u(N*) # 0. That is why the adoption
mechanism never fades.

Furthermore, note that the negativity of the partial derivative

ob(N*)  2qn*
shows that the maximum diffusion decreases as the asymptotic fertility rate grows.
Obviously, a different fertility rate b (IV) is sufficient to produce different diffusion
histories (for the same N* and other parameters fixed), as illustrated in Figure 2
for the case of a linear logistic market.

3. The diffusion and adoption curves

In the Bass model fixed population framework, we recall that the diffusion curve
coincides with that of cumulative sales, and the adoption curve with current sales
(at time t). Analysis of the diffusion, adoption and sales patterns is more complex
in our logistic model from two standpoints — viz. (i) the mortality process, as adop-
tions and sales do not coincide; and (ii) it is opportune to distinguish between the
relative and absolute form of the relevant quantities. Indeed, analysis of the relative
adoption and diffusion characterises the “market penetration” of the product. This
is the objective of the present section, and the sales are analysed in the next section.

We start by observing that the relative adopters equation (12) in the density-
independent fertility case (9) coincides with that in the exponential model (5), so
we have an explicit solution that allows us to determine relevant properties of the



350 F. Centrone and E. Salinelli

g>p+b g<p+b

FIGURE 3. Relative diffusion (solid line) and adoption (dotted line) curves
in the logistic-DIF model.

diffusion and adoption curves (cf. [4]), as collected in the following proposition and
illustrated in Figure 3.

Proposition 4. For the logistic-DIF model, the percentage of adopters
+B 1—e
A ="1P =
2q 14 et
is strictly increasing for any admissible configuration of the parameters;
does not saturate the market if b > 0 (i.e., A* =1 if and only if b=10);
is concave if and only if ¢ < p+b; and
is S-shaped if and only if ¢ > p+b, with a flex point t, = (Inv) /n where the
adoption curve reaches its peak — viz. A(t.) = 5/2q .

(17)

Proposition 4 shows that in the logistic-DIF case, as in the Bass model,
there are only two possible adoption and diffusion scenarios. The first case is
characterised by an initial increase in current adoptions supported by word-of-
mouth until the peak is reached, and the corresponding diffusion curve is S-shaped.
In the second, the current adoptions decline from the initial peak caused by the
external influence, and the corresponding diffusion curve is concave. This is similar
to the Bass model behaviour, but now the shift from one scenario to the other is
determined by the magnitude of ¢ relative to p 4+ b. Thus the diffusion curve
is S-shaped if and only if the greater effectiveness of word-of-mouth relative to
advertising compensates for the rate at which the relative adopters decreases for
demographic reasons (cf. also Remark 1).

Remark 5. From the last bullet point in Proposition 4, for ¢ > p + b the relative
current adoptions peak when the diffusion is approzimately one-half of the market
size.

Relative adoptions in the logistic-DIF case do not depend upon the structure
of the market in which the new product is launched — i.e. the change does not
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FIGURE 4. Absolute diffusion dynamics in a logistic-DIF market depending
on the maturity of the market: Ng = 3N*/4 (solid line), Ng = N* /20 (dashed
line), No = N*/4 (dotted line).

depend on the difference N* — Ny. This is obviously not the case for the absolute
diffusion curve A (t) = A (t) N (t). In the linear case where m(N) = u+ko(N), and
with all other parameters fixed, the smaller the value of Ny the slower the diffusion
process (cf. Figure 4). It emerges that when b is not constant, this dependence also
alters the relative diffusion curve.

Returning to the general setting of the logistic dynamics (6), we have to
consider the Riccati equation (12) with variable coefficient 3. We begin by proving
a result on the monotonicity of the diffusion curve.

Proposition 6. For the logistic model (11), the relative diffusion function A is
strictly increasing with

dim A (t)=0". (18)
Proof. Let )
b (1) = 5o (BN + V(W) + 4pa)

be the time dependent positive solution of the equation p+ By —qy? = 0. It is easy
to verify that y, is not a solution of (12), for a simple computation shows that

B (N) y« (t)
L0 =
PO a0 - s
since B’ (N) > 0. From 0 = A(0) < . (0), we deduce the existence of § > 0 such
that Vvt € I5 (0)

>0

A(t) <y (t) (19)

hence A’ (t) > 0 for all ¢ € I5 (0). If there is a value ty > 0 such that A’ (¢p) = 0,
then the two conditions

A (to) = Yx (to) and y; (to) > A (to) =0 (20)

simultaneously hold. From the second condition and the regularity of A and y,,
in a left neighbourhood of ¢ty we would have y, > A’ (t). However, from (19) the
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first relation in (20) then could not be satisfied. Hence A’ (t) > 0 for every ¢ > 0.
Finally, since A — A* as t increases, then

: i _ * AF *\2 _ 0+ O
Jim A(E) =p+ A" — g (A7) =07

Thus the percentage of adopters grows over time for any parameter config-
uration, although it never saturates (recall Proposition 3). This is also enough to
sustain the adoptions mechanism indefinitely, as the entrance of unawares slows
down and the exit of adopters increases, unlike the exponential model where the
population growth rate is fixed. This is not surprising, since the mortality rate of
adopters is the same as for the population and at any time there are newcomers
to the market.

We would expect the more complex population dynamics of the logistic model
to be reflected in a richer set of possible adoption curve patterns. Let us now obtain
some more information on the shape of the adoptions curve, in order to further
examine similarities and differences between results for the exponential and logistic
models. We consider the second derivative

AT (t) =B (N)A(t) + B (N) A" (t) — 2gA(t) A (2). (21)

Proposition 7. The following conclusions on A" hold:
1.
lim A" (t) = 0;

t—+o00

2. if B (No) > 0 (respectively < 0) there exists a value t,. > 0 such that
A" (t) > 0 (respectively < 0) vt € (0,t,).

Proof. 1. Since 8 and A are bounded, from (18) and (14) we immediately obtain
limy, o0 A” (t) = 0. Note that the value of A" cannot approach zero from above,
since this would imply A” (t) > 0 asymptotically such that A’ (¢) would be even-
tually positive and strictly increasing, contradicting (18).

2. It is sufficient to observe that A" (0) = p3(Ny), for the conclusion follows by
a continuity argument. Thus when 8 (Ny) > 0, we have t, > .., where t,, is the
smallest zero of 8 (N) — 2¢.A(t). Indeed, since 3(Ny) > 0 = A (0), the conclusion
follows by the positivity of 5’ and A’. Note also from (15) that

lim (V) - 20A(t) = 5* — 21

t——o00 2q

=-n<0. (22)
|

If we could exclude the possibility of an infinite number of flexes, it would
follow from Proposition 7 that A" (t) — 0~. Hence if 8(Np) > 0, the diffusion
function A would have an odd number of flexes, whereas if 8 (Ny) < 0 it would
have an even number. Moreover, the “regularity” of N (¢) and of the Bass and
exponential model results (at most one flex point) leads us to conjecture that
the logistic model can display at most three flexes. This number is linked to the
relevant demographic dynamics, as shown below.
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<)

FIGURE 5. Relative diffusion (solid line) and adoption (dashed line) curves
for a linear logistic dynamics in a “mature” market with No = 3N*/4,q = 0.6,
p=0.1, u =0.01, k&3 = 0.01, k2 = 0.02, for different values of b : (a) b= 0.1;
(b) b=10.5; (c) b=0.9.

When the demographic component is negligible, more precisely when Ny is
sufficiently close to the maximum expansion level of the market N*, the dynamics
is qualitatively similar to that of the Bass model — i.e., characterised by only two
possible histories, depending upon the level of the internal influence parameter.
Different fertility and mortality rates (cf. Figure 5) do not seem to substantially
change these outcomes, except for the sign of the coefficient 8 associated with one
or the other, and the eventual diffusion level A*.

The situation is more complex when Ny <« N*. Then the evolving market
population, which directly affects the unawares and indirectly the adopters, can
interact in a more complex way with the influence mechanism.

Figure 6 illustrates this for the linear logistic model with 3 (N) < 0. Case (a)
resembles Bass-like dynamics; but case (b) is more complex. Since 5 (Ny) < 0, the
adoption curve that starts from the level p at time zero initially decreases during
the exponential phase in the market population, thereby increasing the relative
size of the unawares segment. When the recruitment of new individuals slows,
the influence mechanism temporarily prevails, allowing a period of growth in the
adoption curve. Finally, on approaching the near-stationary phase, the current
adoptions (at any time ¢) again decrease.

When (3 (Ng) > 0, the previous dichotomy is maintained (cf. Figure 7), with
A’ initially increasing. The additional first flex in A is due to the internal influence
in the exponential phase of the logistic market dynamics.
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FIGURE 6. Diffusion (solid line) and adoption (dashed line) curves of the
two-flexes case for the parametersb =1, u = 0.01,p = 0.2, ¢ = 0.8, k1 = 0.01,
k2 = 0.02, depending on the initial population level. (a) No = 3N*/4; (b)

Ny = N*/60.

It is notable that in both Figure (6b) and Figure (7b) the adoption curve has
two peaks, suggesting a marketing strategy to sustain the adoption process until

FIGURE 7. Diffusion (solid line) and adoption (dashed line) curves of the
three-flexes case for the parameters b = 0.6, u = 0.3, p = 0.03, ¢ = 0.85, k1 =
0.6, k2 = 0.02, depending on the initial population level. (a) No = 3N*/4;
(b) No = N*/80.

the second peak is reached.

We conclude this section by providing a comparison result illustrated in Fig-
ure 8, which shows lower and upper bounds for the relative adoption curve of a

and E. Salinelli

general logistic model in the logistic-DIF adoption case.

Proposition 8. For any p and q,
-Arnin (t) S -A (t) S -Arnax (t)

where Amin and Amax are the solutions of (12), subject to A(0) =0 when b (N) =

b(No) and b(N) = b(N*), respectively. Furthermore

vt >0

tlg-noo -Arnax (t) )

(23)
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Proof. Since b (N) is assumed to be strictly decreasing, for all (A, N) € T" it follows
that

B(No)A<B(N)A< B A,
whence the result from A, (0) = A(0) = Apax (0) = 0, on applying a classical
comparison result for ordinary differential equations (cf. [3], Theorem 8, page 23).
The equality in (23) can be obtained by comparing A* given in (15) with the limit
of (17), on setting b= b (N*). O

30

qg>p+b—kNy g<p+b—kN~*

FIGURE 8. Comparison between the diffusion dynamics for A (solid line),
Amin (dotted line) and Amax (dashed line) under a linear logistic dynamics.

Figure 8 illustrates some differences in the diffusion process, depending on
different demographics. With fixed influence parameters, the eventual diffusion of
a logistic market agrees with the logistic-DIF case with fertility rate b (IN*), while
in its early phase the behaviour depends upon the distance between Ny and N*.
This is due to the initial exponential but eventual near-stationary dynamics of a
logistic evolution. The difference evident in the intermediate evolutionary phase
increases with increasing values of Nj.

Figure 9 shows that the lower A, curve better approximates the logistic
case in the exponential phase when the value of Ny is small relative to N*; whereas
when Ny is near N*, the upper curve Apax provides a better approximation in
both the exponential and near-stationary phase.

4. Sales

In the Bass model where b = p = 0, the current and cumulative sales are given by
the adoption and diffusion curves, respectively. In our logistic model, the situation
is more complex for three reasons: (i) current absolute sales S do not coincide with
the variation of the adoptions; (ii) one has to distinguish between relative and
absolute sales; and (iii) relative cumulative sales make no sense. Let us consider
these three points further.
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(a) (b) (¢)

FIGURE 9. Approximation by minimal (dotted line) and maximal (dashed
line) exponential bounds of A (solid line) in a linear logistic market where
q > p+b— kL, with fixed parameters other than Ny: viz. (a) No = N*/40,
(b) No = N*/4, and (c) No = N*/2.

In order to link S to the time variation of the adopters A’, it is necessary to
take into account the demographic influence of the mortality term m (N) A. The
adopters at time ¢ + dt are

At +dt) = A(t) —m (N (t)) A(t)dt + S(t)dt
whence
(N—-A)A
—N
From (27) and since S > 0, the corresponding (absolute) cumulative sales given by

St)=A"#t)+m(N)A({t)=p(N—-A)+q (24)

I g’ S (1) dr diverge for t — +00, corresponding to the long term sustained diffusion
due to population replacement, and therefore are of little interest. To take market
growth into account, the study of relative sales & (t) = S () /N (t) is relevant, as
pointed out empirically in [5] and theoretically in [4]. On noting from (24) that

S (t) =p+ (¢ —p) Alt) — ¢A*(?) (25)
we can summarise the main properties of the relative sales curve as follows.
Proposition 9.

1. tlgrnOOG (t) = b(N*)A*;
2. G is strictly decreasing if and only if p > ¢;
3. there exists a unique ¢ > 0 such that & is strictly increasing on [O,ﬂ and then
strictly decreasing (i.e. & peaks at ) if and only if ¢ > p and n* > b(N*);
4. G is strictly increasing if and only if ¢ > p and n* < b(N*); and
5. when in the logistic-DIF model with b = b(NN*) the relative sales function
Gmax peaks at a point tay, then & also peaks at time ¢ > tyax.
Proof. Note first that &'(t) = (¢ — p — 2¢qA)A’, whence from A’ > 0 we have
>0 <« A<(¢-p)/2q. (26)
1. This follows by noting that & (t) = A'(t)+b(N(t)).A(t) and recalling the results
of the previous sections.
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2. If p > q, then the result follows from the non-negativity of A. Conversely, if
S is strictly decreasing, then by (26) it must be A (t) > (¢ — p) /2q for all ¢; but
A (0) = 0 implies ¢ — p < 0.
3. Ifg > pand * > b(N*), then limy_, 100 A (t) = A* > (¢ — p) /2¢. By A(0) =0,
the regularity and the strict increasing monotonicity of A, it follows that there
exists a unique ¢ (with A(f) = (¢ — p) /2q) such that A (t) < (¢ —p) /2q for t < £,
and for ¢ > £ we have A (t) > (¢ — p) /2q. Hence & attains its maximum at .
Conversely, the existence of a unique £ > 0 such that & is strictly increasing
on [0,%] and then strictly decreasing implies &' (f) = 0, and from (26)

0<A(t) = i-p = q>p.
2q

Furthermore, A (£) < A* implies n* > b (N*).
4.If ¢ > p and n* < b(N*) then A* < (¢ — p) /2q, and since A (t) < A* it follows
that &’(¢t) > 0 for every ¢ > 0.

Conversely, the monotonicity of & implies & > 0 — i.e., A < (¢ —p) /2q.
From the positivity of A we deduce ¢ > p, and passing to the limit we obtain
A* < (q — p) /2q, whereby the result follows.

5. Suppose that the logistic-DIF relative sales function &, peaks at a (unique)
point tmax — i.e. ¢ > p and Nmax > b (N*), a consequence of (17). Then from item
3, G attains its maximum at a point ¢ such that

q—p
-Arnax (tmax) =—==UA ('E) .
2q
From Proposition 8, A < A,,.x, and from the strict increasing monotonicity of A
and Apax it follows that ¢ > tax. O

Some comments on Proposition 9 are in order. Item 1 says that, unlike the
static case where sales eventually vanish, a positive birth rate guarantees that
advertising and word-of-mouth are sufficient to support the sales as in the ex-
ponential model, although the population growth is bounded. Relative sales also
behave monotonically, as in the exponential case. Recalling that as adopters grow
advertising is less effective as time passes, independently of the market size, item 2
shows that a prevalence of advertising over interpersonal communication causes
a decrease in relative sales. On the other hand, when word-of-mouth is stronger
than advertising, from 3 and 4 the market growth rate counts. Under 3 there is
a bound for the equilibrium growth rate that depends on the magnitude of p and
q, and which forces sales to decrease after a certain point. Under 4 a high popu-
lation growth rate combined with the prevalence of the word-of-mouth parameter
supports an increase of relative sales over time. All these results are illustrated in
Figure 10.

The logistic assumption is reflected in a richer series of cases in the behaviour
of the second-order derivative; as for relative adoptions, this is again due to the
magnitude of the difference N* — Ny, as shown in Figure 11.
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FIGURE 10. Different dynamics of the relative sales in dependence on the
values determined in Proposition 9 when Ny = 3N*/4.

FIGURE 11. Different dynamics of the relative sales depending upon the
values determined in Proposition 9 when Ny = N*/80, with other parameters
as in Figure 10.

Turning now to analyse absolute sales, unfortunately only a partial study of
their pattern seems possible, due to the complexity of the parameter configura-
tions and the difficulties in treating A’ analytically. Consequently, we illustrate
various cases numerically, confining the theoretical interpretation to consequent
observations. To this end, let us first note that

lim S(t) = tli+moo N(@#)(A (t) +b(N)A(t)) = N*B(N*)A* > 0. (27)

t—+o00

Thus contrary to the exponential model, the absolute sales do not eventually “ex-
plode”, due to the limited growth of the population.

We have S(0) = pNg, and S’ (0) = pNo(b(No) —m(Ng)+q—p) > 0if and only
if g > p—(b(Nog) — m(Np)). Thus the absolute sales are initially strictly increasing
if the internal influence is more effective than the external one decreased by a
demographic term. Recalling that increasing sales are possible under the more
restrictive condition ¢ > p in the Bass model, we can appreciate that the presence
of a growing potential market increases the effectivity of word-of-mouth; and if
this growth takes place at an initial rate b(Ng) — m(Ng) > p, each positive level
of ¢ initially produces increasing sales.

Moreover, from S (t) = & (t) N(t) we have

S'(t) = N () [(b(N) = m(N))& (1) + & (1)] ,

whence S’(t) > 0 if and only if (b(N)—m(N))& (t)+&’ (t) > 0. Thus recalling our
previous results about relative sales, we immediately conclude that the absolute
sales are strictly increasing (at any time t) if ¢ > p and n* < b(N*).
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A deeper analysis of the path of absolute sales would require a more complete
theoretical knowledge of the diffusion function. Nevertheless, from the previous
section and the partial results just obtained, we are able to provide some insights
for the linear case in Figure 12. Those on the left illustrate what happens for
different parameter configurations when the market has almost reached the level
N*, and those on the right illustrate the case of a market starting far from its
stable level. The different behaviour can be ascribed to the background of relative
adoptions and sales already mentioned. For example, Figure 12(a) recalls the Bass
model — the market is mature, hence for p > ¢ the sales decrease but do not
approach zero in the long run. In Figure 12(b), there is an initial increase during the
fast-growth phase of the population, despite the influence parameters. Afterwards,
in the near-stationary phase, the parameters p and g again become important, but
the sales also approach a steady state. Figure 12(c) shows that, after an initial
decrease, the sales can increase due to a stronger contribution from the birth rate.
Indeed, there is an immediate sales growth, when the population expands more
rapidly (cf. Figure 12(d)).

Interpretation of the other cases may be made in the same spirit and left
to the interested reader. In every case, it is found that the further the initial
population is from its equilibrium value, the longer the time necessary for the
sales to approach a stationary state.

5. Conclusions and future work

In this paper, we have introduced and analysed a model of diffusion of a new prod-
uct into a market with logistic demographics. We have shown that in a binomial
model (i.e., with only two segments) the introduction of a dynamic potential mar-
ket makes the adoption process richer and more complex. We compared this logistic
model with results obtained previously for a less realistic exponential model [4].
There remains no possibility of a saturated market, important in the dynamics
of the associated relative adoptions and sales, and the adoptions and sales do
not coincide due to the mortality mechanism. These aspects clearly distinguish
both of these models from the original Bass model, where a fixed population was
assumed.

Several important differences in the results of the exponential and the logistic
models have also emerged. Firstly, excluding the logistic-DIF case considered in
Proposition 4, the results for the relative adoption process in the logistic model are
further enriched. Thus the variable speed of the underlying demographics, inter-
acting with the influence process of advertising and word-of-mouth, can generate
more complex dynamics. Most strikingly, there is no longer a unique peak in the
relative adoption curve. For those involved in marketing decisions, an understand-
ing of the market behaviour from both the demographic and economic standpoints
is important, since it evidently determines the sales path that can be expected (cf.
the interesting and complex sales dynamics shown in Figure 12).
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FIGURE 12. Various scenarios for absolute sales in a linear logistic market
with Ng = 8N*/9 (on the left side) and No = N*/40 (on the right side). In
all cases k1 = 0.1 and ks = 0.02.

(a) and (b) b=0.1, . =0.01,p=0.7, ¢ =0.1;
(c)and (d) b=10.6,u=0.5,p=0.2,q=0.1;
(e) and (f) b=0.1, p=0.01, p=0.05, ¢ = 0.7;

(g) and (h) b=0.6,u=0.5,p=0.05,¢=0.7.
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Although several aspects of our work seem similar to some modelling in the
epidemiological literature (e.g. the SI models), most of the results we obtained
are very different. In our approach, the stability analysis is only an introductory
step, and the various solution behaviour we have found is obviously important in
marketing.

This work also opens several different perspectives for investigation. Further
clarification of the relationships and role of demographic and influence parameters
on the adoption, diffusion and sales dynamics in our logistic model is warranted.
Secondly, it would be worthwhile calibrating and testing this model on real data,
although collecting data on the demographic market dynamics appears to be a de-
manding task (cf. also [4]). One could also consider embodying our demographic
approach into some of the extensions of the Bass model introduced in the past
in the stationary framework — e.g., the polynomial models [17], where the mar-
ket is divided into more than two segments with different forms of interpersonal
communication. Further compartments for example might include those who are
aware of the existence of the product but have not bought it, rejectors of the
new product, others who have forgotten about the product but return again to
the market, or those who communicate an unfavorable judgement [6], [10], [15].
Of course, any of these possible extensions to render a more realistic model may
reduce the mathematical tractability.
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A Wavelet Neural Network applied
to Textile Spinning

Kanfeng F. Wang and Yongchun Zeng

Abstract. A wavelet neural network (WNN) model is applied to predict wor-
sted yarn evenness in textile processing. A compound network predicts yarn
CV (a statistic value of the yarn diameter distribution) and numbers of thin
places, thick places and Neps — by analysing the spinning theory and choos-
ing the correct input parameters. Excellent results are obtained with square
correlation coefficients 0.9854, 0.9758, 0.9312 and 0.8474 for these four rele-
vant indices, suggesting that the WNN offers a suitable control process for
improved yarn spinning.

Mathematics Subject Classification (2000). Primary 99Z99; Secondary 00A0O.

Keywords. Wavelet Neural Network, Yarn Unevenness, Yarn CV, Thin
Places, Thick Places, Neps.

1. Introduction

In the textile industry, yarn evenness is generally recognised to be a most im-
portant property to consider in weaving, and in fabric and garment performance.
Martindale [8] invoked the statistics of random processes to impose a limit on
achievable yarn evenness, and found that its ideal coeflicient of variation depends
solely on the coeflicient of variation of the fibre diameter and the average number
of fibres in the cross-section. The index of irregularity I, the ratio of the measured
evenness to the random limit, is of practical importance. The measured yarn even-
ness is always greater than the ideal yarn evenness, because the arrangement of
the fibres is worse than random. Grishin [4] suggested that yarn unevenness has
three contributing factors — viz. the roving irregular, ideal unevenness, and non-
ideal unevenness. Many authors have considered non-ideal unevenness. Fujino et
al. [3] showed that floating fibres are a dominant cause of additional yarn irregular-
ity. Johnson [7] analysed sliver elasticity in simulating the roller-drafting of staple
fibres, and suggested that it was responsible for a small degree of drafting irreg-
ularity. Lamb [9, 10] concluded that the three most commonly suggested causes
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of drafting irregularity were sliver elasticity, roller eccentricity and floating fibres.
The factors influencing yarn evenness are so complex that it is difficult to build a
universal model to take them all into consideration. Furthermore, even when using
the same fibres to produce yarns of identical specification, different spinners usu-
ally produce yarns of varying quality. It is also difficult to accurately predict yarn
quality in different mills using a mathematical model with descriptive rules, since
machine and processing conditions vary from mill to mill. However, Neural Net-
works (NNs) offer an alternative for mill-specific descriptions. The highly parallel
structure of NNs is also an advantage for parallel computer processing, which can
lead to a better fault tolerance and faster overall processing in resolving related
control processes. Moreover, the NN configuration automatically adjusts when new
samples become available. Cheng and Adams [1], Maresh et al. [12], Pynckels et
al. [11], Ethridge and Zhu [2,17], and Zeng et al. [15] have employed NNs to suc-
cessfully predict various yarn properties. This paper presents a new kind of neural
network, a Wavelet Neural Network (WNN), to control yarn evenness. The struc-
ture and principles of the WNN are considered in Section 2. Important factors
influencing the yarn unevenness are identified in Section 3, where appropriate in-
put parameters are chosen accordingly. Finally, from comparison with extensive
experiments as discussed in Section 4, we conclude that our WNN provides a
suitable control process.

2. Wavelet Neural Network

Wavelet neural networks may be based on the theories of feed-forward neural
networks and wavelet decomposition [16]. Although several theoretical studies have
demonstrated the superiority of WNNs over more conventional NNs, very little has
been reported on the application of WNN — especially in textile spinning.

The structure of the WNN employed in this study is shown in Figure 1. This
WNN has S input nodes, 7" hidden nodes and only one output node. Here U and W
are connecting weights, z,, is the input data, and V;, is the corresponding output,
with a Morlet wavelet defined by

h(t) = cos(1.75t) exp(—t%/2) . (2.1)

The calculated output is

v, = iwth (M) : (2.2)

a

where a; is the dilation parameter and b; is the translation parameter. Further,
the objective function of the WNN is

N

1

n=1
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A

Xn o X@ X (3)

FIGURE 1. Structure of the Wavelet Neural Network.

where VT is the output value corresponding to the input x,, and the superscript
T denotes the target output values.
A back-propagation algorithm used to optimise this objective is as follows:

e Initialise the dilation parameter at translation parameter b; and connect
weights us; and w; to some random values;

e Input all training data and calculate the corresponding output V;, using equa-
tion (2.2);

e Reduce the objective function E by adjusting W, U, a and b using Awy, Auy;,
Aag and Ab; given by

Aw(j+1) = ”ajfj) + alw(j) ,
Auy(j+1) = nauajj)JraAum(J),
Aa(j+1) = —nazfj)—l—ozAat(j). (2.4)
Ab(j+1) = —n%wtaﬁbt(ﬁ,

where 7 is the learning rate and « is the momentum; and
e Return to Step 2 to provide another round of training, and continue until the
network output V,, satisfies an adequate error criterion.
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FIGURE 2. Structure of the compound WNN.

3. Input Parameters and Experimental Design

The predicted yarn unevenness is characterised by the following four indices:

1.
oy = Yrzl=9d
d

a statistic value of the yarn diameter distribution, where d; is the ith mea-
sured value of the yarn diameter and d is the mean diameter;
2. Thin places, where the diameter is less than the mean diameter by 50%;
Thick places, where the diameter exceeds the mean diameter by 50%; and
4. Neps, the places where the diameter exceeds the mean diameter by 200%.

)

w

As already mentioned, Grishin [4] proposed that the yarn unevenness consists
of three parts — viz. the roving irregular, ideal unevenness and additional or non-
ideal unevenness. Thus we have

2 2
C‘/total =V,

roving

d—1
+ TCV;?ieal + CV2

non—ideal »

where d is the draft ratio (DR). The ideal unevenness, determined by the Martin-
dale [8] formula, is a function of the variation of mean fibre diameter (C'Vp) and
the number of fibres in the yarn cross-section. At the Commonwealth Scientific
and Research Organisation (CSIRO) in Australia, it was found that the mean fi-
bre length H, its distribution C'Vy and the content of short fibre (fibres < 30mm)
each have a role in determining yarn unevenness. Hunter and Gee [6] concluded
that, although trends are not always consistent, an increase in crimp frequency
typically causes the yarn irregularity to increase. Indeed, the yarn linear density
(Tex) particularly influences yarn unevenness, because there is a different fibre
number in a yarn cross-section for a different yarn linear density. Further exper-
iments at the CSIRO reported by Yang [18] also show that the yarn unevenness
increases with increased spindle speed (SV). In addition, we believe that both the
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twist and traveller weight (T'rW) affect the yarn irregularity. In summary, param-
eters such as D, CVp, H, C'Vjy, fibre percentage < 30mm, crimp, Tex, twist, TrW,
DR, and SV may all affect the yarn evenness, and should be included as inputs in
the model to predict the yarn C'V. Other research at the CSIRO has shown that
thin places are primarily determined by yarn evenness. The mean fibre length and
fibre length distribution also play a part, and that the circumstances are similar
for thick places to occur. Yarn Neps are formed through fibre entanglement that
occurs in scouring, carding, gilling and even combing. The mechanical settings and
the condition of wires and pins are also involved. With wool fibres, the mean fibre
diameter D, fibre length H and length distribution CVy are three major factors
contributing to Neps frequency in yarn. Generally, fine wool, with its less rigid
fibres, produces more Neps than coarser wool [13]. Neps frequency also increases
with mean fibre length and length distribution [5,14]. Analysis of spinning trial
data shows that yarn Neps are also linked to yarn evenness. Thus we use a com-
pound WNN model to predict yarn C'V, thin places, thick places, and Neps (cf.
Figure 2). Our predictions involve three steps. In the first step, the yarn C'V is
determined by eleven parameters. Secondly, this C'V value is combined with the
H and CV H values to predict thin places and thick places. Thirdly, the predicted
CV, thin places, thick places and D, H and CV H are used as input parameters
to predict the Neps.

4. Wavelet Neural Network

From 1999 to 2003, a large-scale experiment was conducted in a Chinese top
worsted mill, where 184 lots of top and yarn samples were collected and tested.
Forty lots were chosen randomly as the testing set, and the rest as the training set.
After training the WNN using the algorithm presented in Section 2, the testing set
was input into the well-trained WNN and the predicted values obtained. Figure 3
shows the contrast between the predicted values and the measured values of the
yarn CV, the number of thin places, the number of thick places, and the Neps.

It is evident that the WNN gives quite accurate results. The respective square
correlation coefficients between the predicted values and measured values for the
yarn CV, the number of thin places, the number of thick places, and the Neps are
0.9854, 0.9758, 0.9312 and 0.8474. However, we note that the prediction for the
yarn Neps is not as good as the other three parameters — probably because the
frequency of the Neps is also influenced by other factors such as the top wash,
carding and machine conditions not included in this study.

5. Conclusion

The wavelet neural network (WNN) introduced in this paper successfully predicts
several important properties of spun yarn.
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