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Abstract Local-scale and large-scale factors can affect the presence of a species of
understory vegetation in the forest. Local-scale factors may be the influence of sur-
rounding trees, while climate and latitude are typically considered large-scale factors.
A model for the presence of a species needs to take into account both scales. A
conditional logistic model is proposed for those studies where only the local-scale
factors are of interest and that avoids estimating the large-scale parameters. Condi-
tioning is carried out by the number of quadrats in the plot where the vegetation is
found. As the latter is a sufficient statistic for the large-scale factors, a model free
from these parameters is obtained. Data gathered in the permanent sample plots of
the 1985–1986 National Forest Inventory of Finland is used for illustration, where the
local-scale factor of interest is the influence of the trees, quantified by an index based
on the size and location of the trees. The model fitted to Vaccinium vitis-idaea showed
a significant and positive influence of Scots pine on the presence of this species, while
for Calamagrostis arundinacea, a decrease in the odds ratio was observed due to the
influence of Norway spruce.
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1 Introduction

The layer of vegetation that grows underneath the canopy of the trees, or understory,
plays an important role in the forest by giving shelter to animals, and protecting and
enriching the soils through the nutrient cycle. Reinikainen et al. (2000) compared the
abundance of understory vegetation species in Finland between the 1950s and 1990s
and reported a significant decrease of many species. Some of the obvious causes were
the changes in forest management and agricultural practices that have modified the
site conditions, age class distributions, and tree species composition, but which have
also led to an increase in the timber production (see also Mäkipää and Heikkinen
2003).

How the understory responds to the effect of the overstory, large-scale environ-
mental factors, and competition is expected to be complex, but limited efforts have
been done to study it (McKenzie and Halpern 1999). In particular, models that quan-
tify the effect of the trees on the undestory at a local scale could help to further
understand the ecological dynamics that occur in the forest between trees and veg-
etation, which is important for the biodiversity of the forests as well as for for-
est management practices. Such models may also help to improve the classification
of sites which is currently carried out according to understory species; to compre-
hend the regeneration of stands where understory species such as grasses affect the
survival of saplings; and to study how local changes in the tree stand affect the
understory.

Kühlmann et al. (2001) analyzed the correlation between single-tree influences
and the abundance of plant species by considering only the variation around local
averages, in this way circumventing the large scale factors. Their analysis was purely
explorative and the approach is not directly applicable to statistical modeling, which
would provide a better insight into the relationship between tree influence and under-
story vegetation.

The aim of this paper is to develop an approach for modeling the local variation of
factors on the presence of a specific understory species in such way that the large-scale
variation due to other environmental factors is taken into account. One way would
be to fit a logistic regression that requires estimating the parameters from both local
and large scales. Instead we propose a conditional logistic model that avoids comput-
ing the large-scale parameters but still provides estimates for the local-scale factors
of interest. This is achieved by including in the model nuisance parameters that are
statistically sufficient for the large-scale factors. Our examples in particular illustrate
how the model can be applied for quantifying the influence of species of trees on a
single species of vegetation.

Sections 2 and 3 of the paper describe the data and the influence potential mea-
sure used to summarize the effect of the trees and that later serve as examples. The
statistical models in terms of unconditional and conditional logistic regression are
provided in Sects. 4 and 5. An application to the presence of Vaccinium vitis-idaea
and Calamagrostis arundinacea using the influence of Scots pine (Pinus sylvestris),
Norway spruce (Picea abies), and birch (Betula pendula and B. pubescens) serves as
illustrations in Sect. 6.



Environ Ecol Stat (2007) 14:149–159 151

2 Data

The Finnish Forest Research Institute (METLA) gathered data on trees and under-
story vegetation on the permanent sample plots (PSP) during the 1985–1986 National
Forest Inventory. The PSP were established for monitoring purposes and consisted of
2,905 circular plots located on forestry land. The extensive study area and the system-
atic sampling ensured that data was gathered from different tree stand compositions,
ecological conditions, and management practices. This data has been analyzed for
monitoring the health of the forest and for studying particular understory species
(Tonteri et al. 1990; Korpela and Reinikainen 1996; Mäkipää and Heikkinen 2003).

The sample plots had a radius of 9.77 m (area = 300 m2) and were distributed in
clusters on a grid over Finland (area = 337,000 km2) as shown in Fig. 1a. The clusters
in Southern Finland consisted of four plots on a north–south transect, with 400 m
between plots and 16 km in every direction between the clusters; in Northern Finland,
the clusters were formed by three plots each, with 600 m between plots, and a distance
of 24 km in north–south direction and 32 km in east–west direction separated the
clusters.

Six quadrats of 2 m2 were systematically assigned in each plot. The quadrats were
located at 3 and 8 m north and south of the plot center, and at 6 m east and west; see
Fig. 1b. Not all six quadrats, however, were consistently measured during the field
work, and therefore the number of observed quadrats in a plot varied between one
and six.

For each species of understory vegetation, the percentage of the area of the quadrat
covered by it was determined visually by the field workers. This provided the data
on the presence and absence of the vegetation. Information on trees with diameter
at breast height (DBH) larger than 10.5 cm was also recorded; of particular interest
to this study were species, relative location in the plot, and DBH. Furthermore, the

(a) (b)

Fig. 1 Permanent sample plots of 1985–1986 National Forest Inventory of Finland. Right: Every
dot represents a cluster of plots; greatest distance north–south is 1,160 km, and west–east is 540 km
west–east. Left: Grid is 2 m2 and included here for scale purposes
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type of soil of the quadrat was also ascertained, i.e., whether it was mineral soil or
any of eight subtypes of peatlands. For this paper, only quadrats in mineral soil were
selected, since the conditions in peatlands were expected to be more heterogeneous;
68% of the 10,929 quadrats were on mineral soil. A set of conditions on the number of
quadrats where the understory species was found in the plot were also required; the
reasons for this will become clear when the model is presented. Nevertheless, even
after these selection criteria, the set of plots was still distributed over a large area of
the country, so that the large-scale factors were still a concern.

3 Influence potential of trees

In this study, we used the definition of influence potential by Kühlmann et al. (2001)
to measure the effect of surrounding trees, and that adapts to the structure of the PSP
data and the information available there. Here we opted to call the index “influence
potential on a quadrat” or IPQ. Its formulation is

IPQ(qij; T) =
NiT∑

t=1

dt exp

(
− r2

t(ij)

cT

)
, (1)

where q is the quadrat indexed by the plot i and quadrat number within the plot
j = 1, . . . , ni; dt the DBH of tree t = 1, . . . , NiT ; NiT the total number of trees of
species T in the plot; r the Euclidean distance between the tree t and the quadrat ij;
and cT reflects the range of influence of the tree species. The range of influence is
defined as

√
log(100) cT , i.e., the distance at which the effect of a tree, independent of

its DBH, reaches 0.01. Thus, any tree beyond that distance is not expected to have a
significant influence on the vegetation on the quadrat. One generalization is to let cT
depend on DBH. Although this is biologically reasonable, it also introduces additional
complexity in the estimates, and we have therefore opted for the current simpler form.
The absence of a tree species in the plot results in IPQ equal to zero.

Similar tree influence indices as the one we applied have previously been used
by Kuuluvainen and Pukkala (1989), Kuuluvainen et al. (1993), Økland et al. (1999),
and Saetre (1999) to relate it also to understory vegetation; however, in those cases
the understory species were analyzed in groups, and the data was collected in small
and relatively homogeneous boreal stands where large-scale factors were not an
issue.

4 Logistic regression model

In developing the model, we assume that measurements are collected in quadrats
located in plots, and that plots are distributed over a large study area, which is a typi-
cal setup in forestry and ecology. We are interested in modeling the probability of the
presence of an understory species in a quadrat. This probability may be affected by
two processes at different scales. The first is at large-scale and affects the vegetation
throughout the study area. In the data from the PSP, for example, latitude would be
obviously such a factor since certain species prefer warmer conditions and are present
more often in plots situated in the south of Finland (see, e.g., Reinikainen et al. 2000).
When the plots are relatively small compared to the study area, the large-scale factors
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affect all the quadrats in the plot in similar fashion and thus can be considered as
plot-level covariates. Of these factors, those that have been measured can in principle
be specified explicitly in the model; other factors, unknown or unmeasurable, can be
included through a plot-level intercept.

Furthermore, we assume that there is a second process that works at a local scale.
Covariates related to that process differ for each quadrat, as is the case of IPQ that
depends on the distance between the trees and the particular quadrat. They can
therefore be also called quadrat-level covariates.

To study the presence of a species of understory vegetation, one possible model is
the logistic model (McCullagh and Nelder, 1989, Chap. 4). When it includes both the
large- and local-scale factors, it can be written as

P(Wij = 1) = exp(αi + y′
iγ + x′

ijβ)

1 + exp(αi + y′
iγ + x′

ijβ)
, (2)

where Wij is an indicator variable coded 1 when the understory species is present in
quadrat j in plot i, and 0 otherwise; αi the plot-level intercept; y′

i the row vector of
explicit large-scale factors for plot i; x′

ij the row vector of quadrat-level measurements
for the quadrat j in plot i; and γ and β are vectors of the corresponding coefficients.
To simplify the discussion, the terms y′

iγ can be absorbed into αi, i.e.,

P(Wij = 1) = exp(αi + x′
ijβ)

1 + exp(αi + x′
ijβ)

.

In similar way, the probability of a vegetation species being absent from the quadrat
can be modeled as

P(Wij = 0) = 1
1 + exp(αi + x′

ijβ)

and in general, the probability of Wij can be written as

P(Wij = wij) = wij exp(αi + x′
ijβ)

1 + exp(αi + x′
ijβ)

, (3)

where wij = {0, 1}. Models such as (3) are only estimable if we have restrictions on αi
or regard these parameters as random effects.

5 Conditional logistic regression

One way to allow for the large-scale factors in (3) but to avoid estimating them is to
condition on another event that is subject to the same large-scale factors. In this way,
if the model is appropriate, the large-scale factors will be canceled, leaving the local-
scale characteristics for further study. For this solution, we need a sufficient statistic
for the large scale parameters (Casella and Berger 1990, Chap. 6).

To find such a statistic, we turn to the vector of indicators for plot i, represented as

w′
i = (wi1, . . . , wij, . . . , wini),
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where wij = 1 if the vegetation is present in the quadrat, and wij = 0 if not, and
ni = {1, . . . , Ni} is the number of quadrats measured in the plot; w′

i will be referred to
as a pattern.

By assuming that the quadrats are independent in terms of the local-scale effects,
then the probability of observing the pattern wi is obtained from the probabilities of
the individual quadrats in (3) as

P(wi) =
ni∏

j=1

P(wij)

=
ni∏

j=1

exp
[
wij(αi + x′

ijβ)
]

1 + exp(αi + x′
ijβ)

. (4)

Furthermore, let zi = ∑
j wij be the number of quadrats where the understory

species is present in plot i. There are (Mi + 1) = (ni
zi

)
ways of arranging a vector of

length ni with zi elements equal to 1. In this context it means that in a particular plot
i, there are (Mi + 1) different patterns where the vegetation is present in zi out of the
ni quadrats. The probability of zi can be calculated from the probability of each of
these patterns. Using again (3), then

P(Zi = zi) =
Mi∑

s=0

P
(

w(s)
i

)

=
Mi∑

s=0

ni∏

j=1

exp
[
w(s)

ij (αi + x′
ijβ)

]

1 + exp(αi + x′
ijβ)

, (5)

where s designates the pattern. In order for (Mi + 1) > 1, however, it is necessary that
1 < zi < ni. The observed pattern is identified here as w(0)

i , while the other possible
patterns use superscripts s = 1, 2, . . . , Mi.

The conditional probability of wi given zi and ni is obtained by dividing (4) by (5),
giving

P(w(0)
i | zi, ni) =

∏ni
j=1 exp

[
w(0)

ij (αi + x′
ijβ)

]

∑Mi
s=0

∏ni
j=1 exp

[
w(s)

ij (αi + x′
ijβ)

]

=
exp

[(
X′

iw
(0)
i

)′
β
]

∑Mi
s=0 exp

[(
X′

iw
(s)
i

)′
β
] , (6)

where Xi is the matrix of covariates for the quadrats in the plot i and has size (ni × l),
and l is the number of covariates. Moreover x′

kiw
(0)
i represents the sum of the kth

local-scale covariate (e.g., IPQ) in the quadrats where the vegetation is present in plot
i. We have used that the denominators in (4) and (5) are equal, and that

∑
j w(s)

ij = zi

for every s; the explicit intermediate steps to achieve (6) are included in the Appendix.
Since this conditional distribution (6) is free from the αi parameters, it follows

that Zi is sufficient for the large scale parameters (Casella and Berger 1990, p. 247).
Estimates for β may be obtained using the maximum likelihood method. Inference on
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a particular continuous covariate xk is done with the odds ratio calculated as exp(βk)

(Collett 1991, p. 263). Since the coefficients β in the conditional model in (6) are the
same as those in the unconditional model in (3), the estimated odds ratio also applies
to the unconditional probabilities, and thus also the interpretation of the effect of a
covariate is valid for both models.

6 Application

The conditional logistic regression model was applied to the study of the presence of
V. vitis-idaea L., and of C. arundinacea L. using the data from the PSP. For the analy-
sis, only quadrats situated on mineral soils were considered. As local-scale covariates,
IPQ of Scots pine, Norway spruce, and birch (hairy and silver birch) were analyzed;
these tree species represented the dominating species in the study area. The IPQ
measurements were corrected for edge-effects in order to account for the ignored
trees outside the plot. The correction consisted of an estimate of the expected IPQ
outside the plot; see Kühlmann-Berenzon et al. (2005) for details on the method.

The analysis was carried out with the statistical package R v. 1.7.0 (Ihaka and
Gentelman 1996), using the package survival v. 2.8-2, which contains a function for
fitting conditional logistic models. As no previous information on possible values of
cT were available, the likelihood for the model including IPQ of spruce, pine, and
birch was numerically maximized with the constrain that cT should be positive. The
obtained values of cT for each species were used in the model during the fitting.

The goodness of fit of the models was tested with the likelihood ratio test at the 5%
level of significance. Main effects were first included and subsequently interactions.
Residual plots were also used to check for outliers, in particular Pearson residuals
(Collett 1991, Chap. 5) and delta-beta graphs of Pregibon (1984); the latter show the
change in the estimate of a coefficient when a plot is ignored. No particular outliers
were observed in any of the cases.

6.1 Vaccinium vitis-idaea

According to Reinikainen et al. (2000), V. vitis idaea, known as cowberry, is one of the
most frequent field layer species, and it is most abundant on relatively dry and poor
sites with open canopy. Older Scots pine stands are known to be preferred habitat
type for this berry. Cowberry was found in 410 plots in mineral soils where the plot
also fulfilled the criteria that 1 < zi < ni. The locations of the plots can be seen
in Fig. 2a. In the analyzed plots, 89% of the trees were spruce, pine or birch. Some
relevant additional statistics are given in Table 1.

Even though there was a larger number of spruce trees and their mean size was
also larger than the other species, this species did not provide any influence, since its
optimal cT was 0.00, same as for birch. For pine, the parameter obtained was 5.80,
corresponding to an influence range of 5.16 m. The average total IPQ of pine in a plot
was 12.40, with a minimum of 0 and a maximum of 150.0.

The influence of pine was significant in the conditional logistic model, with a log
likelihood of −599.53 (log likelihood of null model was −604.10, P = 0.0025). The
estimated odds ratio indicated that with every increase of one unit in the sum of IPQ
of Scots pine in the plot, the odds of finding cowberry in at last one quadrats increased
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Fig. 2 Location of plots analyzed: The small dots are the sampling grid shown in Fig. 1a. The bigger
dots identify the clusters that included plots used in the conditional logistic analysis. The scale and
origin of the maps are arbitrary

Table 1 Vaccinium vitis-idaea: Mean (SD) number of trees per plot (area = 300 m2), DBH per tree,
and influence range of optimal cT

Tree species

Pine Spruce Birch

Number of trees per plot 6.88 (6.80) 10.92 (8.57) 4.25 (4.25)
DBH of tree (cm) 18.93 (7.39) 19.14 (6.76) 17.59 (6.30)
Influence range (m) 5.16 0.00 0.00

3.0% (see Fig. 3a), with a 95% confidence interval of 1–5%; the estimated coefficient
was 0.0265 with a standard error of 0.00901.

6.2 Calamagrostis arundinacea

Calamagrostis arundinacea is a type of small-reed grass most frequent in southern
Finland and known to be abundant on relatively fertile site types (Reinikainen et al.
2000). For the analysis 350 plots were used that fulfilled the criteria of C. arundinacea
not being present in all the quadrats. The spatial location of the analyzed plots can be
seen in Fig. 2b. The optimal cT for Scots pine, Norway spruce, and birch were 6.53,
3.05, and 0.00, and the corresponding influence ranges for the first two were 5.48 and
3.75 m. In average, the total IPQ from pine in the plot averaged 11.31 (range 0–130.6),
and from spruce 8.97 (range 0–91.2); see Table 2.

The best possible model only included the influence potential of Norway spruce as
significant covariate (β̂ = −0.035, SE(β̂) = 0.01034); the log likelihood of the model
was −502.98, and of the null model, −509.10 (P < 0.001). As the estimated coefficient
was negative, this meant that an increase of one unit in the total IPQ of Norway spruce
in the plot led to a decrease by 0.965 in the odds ratio, with a 95% confidence interval
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Fig. 3 Estimated odds ratio according to the change in w(0)IPQ

of (0.946, 0.985); see Fig. 3b. The effect of pine nor the interaction between pine and
spruce were significant.

7 Discussion

Our objective was to develop a model for the presence of an understory species that
estimated the local-scale variation but that also took into account large-scale factors.
In order to avoid estimating the latter, we conditioned on the number of quadrats
where the vegetation was present, which was sufficient in the statistical sense. Conse-
quently, the conditional model was free from the large-scale parameters. The relative
change in the odds ratio due to the local-scale covariates was the same in terms of
the unconditional and the conditional models since the coefficients for both logistic
models were the same.

The conditional model was fitted to the data from the permanent sampling plots
of the 1985–1986 National Forest Inventory of Finland where the interest was on the
influence of species of trees on two particular species of understory vegetation. The
results obtained from analyzing V. vitis-idaea showed that an increasing influence of
pine increased the odds of finding cowberry in the forest. In other words, the larger the
number and size of the pine trees in the plot, the more likely cowberry is to be found.
In the case of the grass C. arundinacea, an increasing influence of spruce caused a
decrease in the odds ratio. The results from the fit provided information not available
earlier, i.e., quantifiable effects of the tree species on the vegetation.

Table 2 Calamagrostis arundinacea: Mean (SD) number of trees per plot (area = 300 m2), DBH per
tree, and influence range of optimal cT

Tree Species

Pine Spruce Birch

Number of trees per plot 7.59 (7.84) 10.11 (7.18) 3.80 (3.30)
DBH (cm) 19.42 (7.47) 18.75 (6.98) 17.99 (6.83)
Influence range (m) 5.48 3.75 0.00
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In order to conduct a thorough study of local-scale factors that affect the presence
of understory species, other covariates beside the influence of the trees should be
included. Independently of what quadrat-level covariates are used, the model pre-
sented is applicable to ecological studies of vegetation, where the aim is to estimate
local-scale factors while taking into account the variation from large-scale environ-
mental factors.
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Appendix

P(w(0)
i | zi, ni) =

∏ni
j=1 exp

[
w(0)

ij (αi + x′
ijβ)

]

∑Mi
s=0

∏ni
j=1 exp

[
w(s)

ij (αi + x′
ijβ)

]

=
exp

(
αi

∑
j w(0)

ij

)∏
j exp

(
w(0)

ij x′
ijβ

)

∑
s

[
exp

(
αi

∑
j w(s)

ij

)∏
j exp

(
w(s)

ij x′
ijβ

)]

=
exp(αi zi)

∏
j exp

(
w(0)

ij x′
ijβ

)

∑
s

[
exp(αi zi)

∏
j exp

(
w(s)

ij x′
ijβ

)]

=
∏

j exp
(

w(0)
ij x′

ijβ
)

∑
s
∏

j exp
(

w(s)
ij x′

ijβ
)

=
exp

[(
X′

iw
(0)
i

)′
β
]

∑Mi
s=0 exp

[(
X′

iw
(s)
i

)′
β
] .
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