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Part One

Analysis of Determinate Structures



1 Principles of statics

Notation

force

angle in a triangle opposite side F;
horizontal force

length of member
bending moment

axial force in a member
support reaction
vertical force

11 concentrated live load
pr. distributed dead load
angle of inclination

g<W’V§NI:“"1

RN

1.1 Introduction

Statics consists of the study of structures that are at rest under equilibrium
conditions. To ensure equilibrium, the forces acting on a structure must bal-
ance, and there must be no net torque acting on the structure. The principles
of statics provide the means to analyze and determine the internal and external
forces acting on a structure.

For planar structures, three equations of equilibrium are available for the
determination of external and internal forces. A statically determinate struc-
ture is one in which all the unknown member forces and external reactions
may be determined by applying the equations of equilibrium.

An indeterminate or redundant structure is one that possesses more
unknown member forces or reactions than the available equations of equilib-
rium. These additional forces or reactions are termed redundants. To determine
the redundants, additional equations must be obtained from conditions of geo-
metrical compatibility. The redundants may be removed from the structure,
and a stable, determinate structure remains, which is known as the cut-back
structure. External redundants are redundants that exist among the external
reactions. Internal redundants are redundants that exist among the member
forces.



4 Structural Analysis: In Theory and Practice

1.2 Representation of forces

A force is an action that tends to maintain or change the position of a struc-
ture. The forces acting on a structure are the applied loads, consisting of both
dead and imposed loads, and support reactions. As shown in Figure 1.1, the
simply supported beam is loaded with an imposed load Wi located at point
3 and with its own weight wp;, which is uniformly distributed over the length
of the beam. The support reactions consist of the two vertical forces located at
the ends of the beam. The lines of action of all forces on the beam are parallel.

Figure 1.1

In general, a force may be represented by a vector quantity having a magni-
tude, location, sense, and direction corresponding to the force. A vector repre-
sents a force to scale, such as a line segment with the same line of action as the
force and with an arrowhead to indicate direction.

The point of application of a force along its line of action does not affect the
equilibrium of a structure. However, as shown in the three-hinged portal frame
in Figure 1.2, changing the point of application may alter the internal forces in
the individual members of the structure.

100 kips
—

25 kips

50 kips 50 kips

50 kips 50 kips
® (i)

Figure 1.2

Collinear forces are forces acting along the same line of action. The two hor-
izontal forces acting on the portal frame shown in Figure 1.3 (i) are collinear
and may be added to give the single resultant force shown in (ii).
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50 kips 20 kips 30 kips
T2 3| T2 3
@ (ii)
Figure 1.3

Forces acting in one plane are coplanar forces. Space structures are three-
dimensional structures and, as shown in Figure 1.4, may be acted on by non-
coplanar forces.

7777 7777
Figure 1.4
In a concurrent force system, the line of action of all forces has a common

point of intersection. As shown in Figure 1.5 for equilibrium of the two-hinged
arch, the two reactions and the applied load are concurrent.

Figure 1.5



6 Structural Analysis: In Theory and Practice

It is often convenient to resolve a force into two concurrent components. The
original force then represents the resultant of the two components. The direc-
tions adopted for the resolved forces are typically the x- and y-components in a
rectangular coordinate system. As shown in Figure 1.6, the applied force F on
the arch is resolved into the two rectangular components:

H = Fcosf
V = Fsinf

Figure 1.6

The moment acting at a given point in a structure is given by the product
of the applied force and the perpendicular distance of the line of action of the
force from the given point. As shown in Figure 1.7, the force F at the free end
of the cantilever produces a bending moment, which increases linearly along
the length of the cantilever, reaching a maximum value at the fixed end of:

M = Fl

The force system shown at (i) may also be replaced by either of the force
systems shown at (ii) and (iii). The support reactions are omitted from the fig-
ures for clarity.

‘F )F iF )F
Forces 4 = = A
Ea 2 1 2 14/ 2
F M = Fl
Moment
Fl Fl Fl

O] (ii) (iii)

Figure 1.7
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1.3 Conditions of equilibrium

In order to apply the principles of statics to a structural system, the structure
must be at rest. This is achieved when the sum of the applied loads and sup-
port reactions is zero and there is no resultant couple at any point in the struc-
ture. For this situation, all component parts of the structural system are also in
equilibrium.

A structure is in equilibrium with a system of applied loads when the result-
ant force in any direction and the resultant moment about any point are zero.
For a system of coplanar forces this may be expressed by the three equations
of static equilibrium:

>XH=0
>V =0
>XM=0

where H and V are the resolved components in the horizontal and vertical
directions of a force and M is the moment of a force about any point.

1.4 Sign convention

For a planar, two-dimensional structure subjected to forces acting in the xy
plane, the sign convention adopted is shown in Figure 1.8. Using the right-
hand system as indicated, horizontal forces acting to the right are positive and
vertical forces acting upward are positive. The z-axis points out of the plane of
the paper, and the positive direction of a couple is that of a right-hand screw
progressing in the direction of the z-axis. Hence, counterclockwise moments
are positive.

Figure 1.8
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Example 1.1

Determine the support reactions of the pin-jointed truss shown in Figure 1.9.
End 1 of the truss has a hinged support, and end 2 has a roller support.

V3=20kips  V,=20kips

H, = 10 kips

V, = 15 kips V, = 25 kips
(i) Applied loads (ii) Support reactions

Figure 1.9

Solution

To ensure equilibrium, support 1 provides a horizontal and a vertical reaction,
and support 2 provides a vertical reaction. Adopting the convention that hori-
zontal forces acting to the right are positive, vertical forces acting upward are
positive, and counterclockwise moments are positive, applying the equilibrium
equations gives, resolving horizontally:

H, +H, =0
H, = —Hj;
= —10 kips ... acting to the left

Taking moments about support 1 and assuming that V, is upward:

16V, —8H, —4V, —12V, = 0

V, = (8 X 10 + 4 X 20 + 12 X 20)/16
= 25 kips ... acting upward as assumed

Resolving vertically:

Vit+V, +V;+V, =0
V, =-25+20+20
15 kips ... acting upward

The support reactions are shown at (ii).
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1.5 Triangle of forces

When a structure is in equilibrium under the action of three concurrent forces,
the forces form a triangle of forces. As indicated in Figure 1.10 (i), the three
forces Fy, F,, and F5 are concurrent. As shown in Figure 1.10 (ii), if the initial
point of force vector F, is placed at the terminal point of force vector F;, then
the force vector F; drawn from the terminal point of force vector F, to the ini-
tial point of force vector F; is the equilibrant of F; and F,. Similarly, as shown
in Figure 1.10 (iii), if the force vector F5 is drawn from the initial point of force
vector F; to the terminal point of force vector F,, this is the resultant of F; and
F,. The magnitude of the resultant is given algebraically by:

() = (R)* + (F)* = 2KF, cosf;

F3

FZ
® (i) (iii)

Figure 1.10

and:

F, = Fsinfycscf;

or:

F/sinf; = E/sinf,
= Efsinf;

Example 1.2

Determine the angle of inclination and magnitude of the support reaction at
end 1 of the pin-jointed truss shown in Figure 1.11. End 1 of the truss has a
hinged support, and end 2 has a roller support.
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8 ft
® V, = 10 kips

Fy; =20 Eips

(i)

Figure 1.11

Solution

Taking moments about support 1 gives:

V, = 8 X 20/16
= 10 kips ... acting vertically upward

The triangle of forces is shown at (ii), and the magnitude of the reaction at
support 1 is given by:

R* = (,)* + (B — 2V, F;cosf,
=102 + 20> — 2 X 10 X 20c0s90°
R = (100 + 400)°-
= 22.36 kips

The angle of inclination of R is:

0 = atan (10/20)
= 26.57°

Alternatively, since the three forces are concurrent, their point of concur-
rency is at point 6 in Figure 1.11 (i), and:

0

atan (8/16)
= 26.57°

and

R = 20sin90°/sin63.43°
= 22.36 kips
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The reaction R may also be resolved into its horizontal and vertical
components:

H,; = Rcos?
= 20 kips

V, = Rsind
= 10 kips

1.6 Free body diagram

For a system in equilibrium, all component parts of the system must also be
in equilibrium. This provides a convenient means for determining the internal
forces in a structure using the concept of a free body diagram. Figure 1.12 (i)
shows the applied loads and support reactions acting on the pin-jointed truss
that was analyzed in Example 1.1. The structure is cut at section A-A, and
the two parts of the truss are separated as shown at (ii) and (iii) to form two
free body diagrams. The left-hand portion of the truss is in equilibrium under
the actions of the support reactions of the complete structure at 1, the applied

V3 = 20 kips V, = 20 kips V3 = 20 kips

Hy = 10 kips Hj = 10 kips

. 5.59 kips
H,; = 10 kips H; = 10 kips

12.5 kips
V, = 15 kips V, = 25 kips V, = 15 kips
(i) Applied loads and (ii) Left hand free
support reactions V, = 20 kips body diagram
15 kips

5.59 kips

12.5 kips

V, = 25 kips
(iii) Right hand free
body diagram

Figure 1.12
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loads at joint 3, and the internal forces acting on it from the right-hand por-
tion of the structure. Similarly, the right-hand portion of the truss is in equilib-
rium under the actions of the support reactions of the complete structure at 2,
the applied load at joint 4, and the internal forces acting on it from the left-
hand portion of the structure. The internal forces in the members consist of a
compressive force in member 34 and a tensile force in members 45 and 25. By
using the three equations of equilibrium on either of the free body diagrams,
the internal forces in the members at the cut line may be obtained. The values
of the member forces are indicated at (ii) and (iii).

Example 1.3

The pin-jointed truss shown in Figure 1.13 has a hinged support at support
1 and a roller support at support 2. Determine the forces in members 15, 35,
and 34 caused by the horizontal applied load of 20 kips at joint 3.

1A
H, = 20 kips L Cut h“

8 ft
H,= 20 kips
V,= 10 kips
8 ft 8 ft
jf—— |
(i) Loads and support reactions (ii) Free body diagram
Figure 1.13

Solution

The values of the support reactions were obtained in Example 1.2 and are
shown at (i). The truss is cut at section A-A, and the free body diagram of the
right-hand portion of the truss is shown at (ii).

Resolving forces vertically gives the force in member 35 as:

P35 = V,/sinf
= 10/sin63.43°
= 11.18 kips ... compression

Taking moments about node 3 gives the force in member 15 as:

P =12V,/8
=12 x10/8
= 15 kips ... tension
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Taking moments about node 5 gives the force in member 34 as:

P, = 8V,/8
=8X10/8
= 10 kips ... compression

1.7 Principle of superposition

The principle of superposition may be defined as follows: the total displacements
and internal stresses in a linear structure corresponding to a system of applied
forces is the sum of the displacements and stresses corresponding to each force
applied separately. The principle applies to all linear-elastic structures in which
displacements are proportional to applied loads and which are constructed from
materials with a linear stress-strain relationship. This enables loading on a struc-
ture to be broken down into simpler components to facilitate analysis.

As shown in Figure 1.14, a pin-jointed truss is subjected to two vertical
loads at (i) and a horizontal load at (ii). The support reactions for each loading

V3 =20kips V, = 20 kips

Hy = 10 kips

V| = 20 kips V, = 20 kips Vi =5 kips V, = 5 kips
® (i)

V3= 20kips V,= 20 kips

H; =10 kips

V= 15 kips V, = 25 kips
(iii)
Figure 1.14
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case are shown. As shown at (iii), the principle of superposition and the two
loading cases may be applied simultaneously to the truss, producing the com-
bined support reactions indicated.

Supplementary problems

$1.1 Determine the reactions at the supports of the frame shown in Figure S1.1.

71t

»|

10 kips

10 ft

ﬂ‘

Figure S1.1

$1.2 Determine the reactions at supports 1 and 2 of the bridge girder shown
in Figure S1.2. In addition, determine the bending moment in the girder at
support 2.

48 ft 48 ft

fe— |—

24 kips l l24 kips

100 ft 20 ft 100 ft 20 ft 100 ft

Figure $1.2



Principles of statics 15

$1.3 Determine the reactions at the supports of the frame shown in Figure
$1.3. In addition, determine the bending moment in member 32.

10 k1p§ 10 kips
-
/ \ 20 ft
10 ft 10 ft 10 ft 10 ft

Figure $1.3

$1.4 Determine the reactions at the supports of the derrick crane shown in
Figure $1.4. In addition, determine the forces produced in the members of the
crane.

-
L

30 ft

20 ft 10 ft

Figure S1.4
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$1.5 Determine the reactions at the supports of the pin-jointed frame shown in
Figure S1.5. In addition, determine the force produced in member 13.

20 ft

T

10 kips

20 ft

Figure §1.5

$1.6 Determine the reactions at the supports of the bent shown in Figure S1.6.
In addition, determine the bending moment produced in the bent at node 3.

10 ft 20 ft

l 20 kips

5 ft

St

Vi

Figure S1.6
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$1.7 Determine the reactions at the supports of the pin-jointed truss shown in
Figure S1.7.

> 4 ft p 4 ft _
[ [ |
10 kips 3 4
- ) JR—
2 ? [}
4 ft
H 6 5 v
1V1 v i20hm
6
Figure S1.7

$1.8 Determine the reactions at the supports of the bent shown in Figure S1.8.
The applied loading consists of the uniformly distributed load indicated.

10 ft 20 fit
1 kip/ft

AARRREERRE

2 3
3
V3

10 ft

Vi

Figure 1.8
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$1.9 Determine the reactions at the support of the cantilever shown in Figure
$1.9. The applied loading consists of the distributed triangular force shown.

1 kip/ft 1

21 ft

Figure $1.9

$1.10 Determine the reactions at the support of the jib crane shown in Figure
§$1.10. In addition, determine the force produced in members 24 and 34.

6 ft

|<—>|
3
4 ft
4
20
4 kips
7 ft
V.
1 v,

Figure $1.10
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2 Statically determinate pin-jointed
frames

Notation

panel width

force

horizontal force

truss height

length of member

bending moment

axial force in a member due to applied loads

axial force in a member of the modified truss due to applied loads
support reaction

axial force in a member due a unit virtual load applied to the modified truss
vertical force

concentrated live load

angle of inclination

g<§ wj’vgNFE*ﬂQ

)
~
=~

2.1 Introduction

A simple truss consists of a triangulated planar framework of straight mem-
bers. Typical examples of simple trusses are shown in Figure 2.1 and are cus-
tomarily used in bridge and roof construction. The basic unit of a truss is a
triangle formed from three members. A simple truss is formed by adding mem-
bers, two at a time, to form additional triangular units. The top and bottom
members of a truss are referred to as chords, and the sloping and vertical mem-
bers are referred to as web members.

Simple trusses may also be combined, as shown in Figure 2.2, to form a
compound truss. To provide stability, the two simple trusses are connected at
the apex node and also by means of an additional member at the base.

Simple trusses are analyzed using the equations of static equilibrium with
the following assumptions:

all members are connected at their nodes with frictionless hinges
+ the centroidal axes of all members at a node intersect at one point so as to avoid
eccentricities
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AT, N

Bowstring Sawtooth

SNAA NN

Pratt Howe

Vovivav AN

Warren Fink

Figure 2.1

Figure 2.2

+ all loads, including member weight, are applied at the nodes
+  members are subjected to axial forces only
«  secondary stresses caused by axial deformations are ignored

2.2 Statical determinacy

A statically determinate truss is one in which all member forces and external
reactions may be determined by applying the equations of equilibrium. In a
simple truss, external reactions are provided by either hinge supports or roller
supports, as shown in Figure 2.3 (i) and (ii). The roller support provides only
one degree of restraint, in the vertical direction, and both horizontal and
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\4 \4
® (ii)

Figure 2.3

rotational displacements can occur. The hinge support provides two degrees of
restraint, in the vertical and horizontal directions, and only rotational displace-
ment can occur. The magnitudes of the external restraints may be obtained
from the three equations of equilibrium. Thus, a truss is externally indetermi-
nate when it possesses more than three external restraints and is unstable when
it possesses less than three.

In a simple truss with j nodes, including the supports, 2j equations of equi-
librium may be obtained, since at each node:

YH=0
and V=0

Each member of the truss is subjected to an unknown axial force; if the truss
has n members and r external restraints, the number of unknowns is (z + ).
Thus, a simple truss is determinate when the number of unknowns equals the
number of equilibrium equations or:

n+r=2j
A truss is statically indeterminate, as shown in Figure 2.4, when:

n+tr>2j

(i)

Figure 2.4

The truss at (i) is internally redundant, and the truss at (ii) is externally
redundant.
A truss is unstable, as shown in Figure 2.5, when:

n+r<2j
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FINA L NN

@ (i)

Figure 2.5

The truss at (i) is internally deficient, and the truss at (ii) is externally

deficient.
However, a situation can occur in which a truss is deficient even when the

expression n + r = 2 is satisfied. As shown in Figure 2.6, the left-hand side of
the truss has a redundant member, while the right-hand side is unstable.

NXL 1]

Figure 2.6

2.3 Sign convention

As indicated in Figure 2.7, a tensile force in a member is considered positive,
and a compressive force is considered negative. Forces are depicted as acting
from the member on the node; the direction of the member force represents
the force the member exerts on the node.

Tension Compression

Figure 2.7

2.4 Methods of analysis

Several methods of analysis are available, each with a specific usefulness and
applicability.



Statically determinate pin-jointed frames 23

(a) Method of resolution at the nodes

At each node in a simple truss, the forces acting are the applied loads or support
reactions and the forces in the members connected to the node. These forces con-
stitute a concurrent, coplanar system of forces in equilibrium, and, by applying
the equilibrium equations XH = 0 and ¥V = 0, the unknown forces in a maxi-
mum of two members may be determined. The method consists of first deter-
mining the support reactions acting on the truss. Then, each node, at which not
more than two unknown member forces are present, is systematically selected in
turn and the equilibrium equations applied to solve for the unknown forces.

It is not essential to resolve horizontally and vertically at all nodes; any con-
venient rectangular coordinate system may be adopted. Hence, it follows that
for an unloaded node, when two of the three members at the node are col-
linear, the force in the third member is zero.

For the truss shown in Figure 2.8, the support reactions V; and V,, caused
by the applied load W;, are first determined. Selecting node 1 as the starting
point and applying the equilibrium equations, by inspection it is apparent that:

and P, =V, ... compression

]
Wi

Figure 2.8

Node 2 now has only two members with unknown forces, which are given by:

P,; = Pj,/sinf ... tension

and P4, = Py3cos6 ... compression

Nodes 3 and 4 are now selected in sequence, and the remaining member
forces are determined. Since members 46 and 68 are collinear, it is clear that:

This technique may be applied to any truss configuration and is suitable
when the forces in all the members of the truss are required.
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Example 2.1

Determine the forces produced by the applied loads in the members of the saw-
tooth truss shown in Figure 2.9.

Figure 2.9

Solution

The support reactions are calculated, and the directions of the member forces
are assumed as indicated.
Resolving forces at node 7:
= 20 kips ... compression
Py, = V,/tan30°
= 17.32 kips.... tension

Resolving forces at node 6:

Py = Iy
= 20 kips ... compression

Resolving forces at node 3:

P,s = Ws/sin60°

= 11.55 kips ... tension
P;s = Ps; — Ws/tan60°

= 11.55 kips ... tension
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Resolving forces at node 4:

Py, = Pys/sin30°
= 5.77 kips ... compression

= 10 kips ... compression

Resolving forces at node 2:

Py; = Py,/cos 49.11°
= 15.28 kips ... tension

Resolving forces at node 1:

P, = V,/5in60°

= 11.55 kips ... compression
P; = Vi/tan60°

= 5.77 kips... tension

(b) Method of sections

This method uses the concept of a free body diagram to determine the member
forces in the members of a specific panel of a truss. The method consists of
first determining the support reactions acting on the truss. Then, a free body
diagram is selected so as to cut through the panel; the forces acting on the
free body consist of the applied loads, support reactions, and forces in the cut
members. These forces constitute a coplanar system of forces in equilibrium;
by applying the equilibrium equations XM = 0, ¥XH = 0 and XV = 0, the

unknown forces in a maximum of three members may be determined.

For the truss shown in Figure 2.10, the support reactions V; and Vo, caused
by the applied load W;;, are first determined. To determine the forces in

(i) Applied loads

Figure 2.10

(ii) Free body diagram
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members 68, 57, and 58 of the truss, the structure is cut at section A-A, and
the right-hand portion separated as shown at (ii).
Resolving forces vertically gives the force in member 58 as:
Psg = Vy/sinf ... tension
Taking moments about node 8 gives the force in member 57 as:
Ps; = aVy/bh ... tension
Taking moments about node 5 gives the force in member 68 as:
Py = 2aVy/bh ... compression
This technique may be applied to any truss configuration and is suitable when
the forces in selected members of the truss are required. For the case of a truss

with non-parallel chords, by taking moments about the point of intersection of
two of the cut members the force in the third cut member may be obtained.

Example 2.2

Determine the forces produced by the applied loads in members 46, 56 and 57
of the sawtooth truss shown in Figure 2.11.

60° 79.11°

10 kips '\é\ﬁ 10 kips
————» V, = 10 kips
8 ft 8 ft Bt S 4 f
(i) Applied loads (ii) Free body diagram
Figure 2.11
Solution

The support reactions are calculated and the truss cut at section A-A as shown.
The directions of the member forces on the right-hand free body diagram are
assumed as indicated in (ii).
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Taking moments about node 7 gives the force in member 56 as:

Ps, =0/6.93
=0
Taking moments about node 5 gives the force in member 46 as:
=8X10/4

= 20 kips ... compression

Taking moments about node 6 gives the force in member 57 as:

=6X10/3.46
= 17.32 kips ... tension

(c) Method of force coefficients

This is an adaptation of the method of sections, which simplifies the solution
of trusses with parallel chords and with web members inclined at a constant
angle. The forces in chord members are determined from the magnitude of
the moment of external forces about the nodes of a truss. The forces in
web members are obtained from knowledge of the shear force acting on a
truss. The method constitutes a routine procedure for applying the method of
sections.

The shear force diagram for the truss shown in Figure 2.12 is obtained by
plotting at any section the cumulative vertical force produced by the applied
loads on one side of the section. The force in a vertical web member is given
directly, by the method of sections, as the magnitude of the shear force at the
location of the member. Thus, the force in member 12 is equal to the shear
force at node 1 and:

P, =V

= 3W ... compression
The force in member 34 is equal to the shear force at node 3 and:

Py, =V, —2W

= W ... compression

The force in member 56, by inspection of node 6, is:
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Applied loads

A

3w
Y w
-Ww
Shear force —3W
diagram
3Wa 4Wa
Bending moment
diagram
Figure 2.12

The force in a diagonal web member is given directly, by the method of sec-
tions, as the magnitude of the shear force in the corresponding panel multi-
plied by the coefficient I/h. Thus, the force in member 23 is equal to the shear
force in the first panel multiplied by //h and:

Py =V, Xl
= 3W X /b ... tension

The force in member 45 is equal to the shear force in the second panel mul-

tiplied by I/h and:

= W X I/h ... tension
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The bending moment diagram for the truss shown in Figure 2.12 is obtained
by plotting at each node the cumulative moment produced by the applied loads
on one side of the node. The force in the bottom chord of a particular panel
is given directly, by the method of sections, as the magnitude of the moment
at the point of intersection of the top chord and the diagonal member in the
panel multiplied by the coefficient 1/h. Thus, the force in member 13 is equal
to the bending moment at node 2 multiplied by 1/h and:

=0

The force in member 35 is equal to the bending moment at node 4 multi-

plied by 1/h and:

=V, Xax1/h
= 3Walh ... tension

The force in the top chord of a particular panel is given directly, by the
method of sections, as the magnitude of the moment at the point of intersec-
tion of the bottom chord and the diagonal member in the panel multiplied
by the coefficient 1/h. Thus, the force in member 24 is equal to the bending
moment at node 3 multiplied by 1/ and:

=V, Xax1/bh

= 3Walb ... compression

The force in member 46 is equal to the bending moment at node 5 multi-

plied by 1/h and:

=(Vy X2a—2W Xa)X1/h

= 4Walb ... compression

This technique may be applied to any truss with parallel chords and
with web members at a constant angle of inclination. It may be used
when the forces in all members or in selected members of the truss are
required.
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Example 2.3

Determine the forces produced by the applied loads in the members of the
truss shown in Figure 2.13.

10 ft

W3 = 10kips W5 = 10kips W, = 10 kips

10 ft 10 ft 10 ft 10 ft
|||
Figure 2.13

Solution

The support reactions are calculated as shown. By inspection, the force in the
vertical web members is obtained directly. Thus, the force in member 23 is
given as:

Py =W
=10 kips ... tension

The force in the diagonal web member 12 is given by the magnitude of the
shear force in the first panel multiplied by the coefficient I/h. Thus, the force in
member 12 is:

P, =V, X llh
=15 X 14.14/10

= 21.21 kips ... compression

The force in the diagonal web member 25 is given by the magnitude of the
shear force in the second panel multiplied by the coefficient I/h. Thus, the force
in member 235 is:

Pys = (Vy = W;) X Uih
= 5 Xx14.14/10
= 7.07 kips ... tension



Statically determinate pin-jointed frames 31

The force in the bottom chord member 13 is given by the magnitude of the
moment at node 2 multiplied by the coefficient 1/h. Thus, the force in member
13 is:

=V, Xax1/h
=150 X 1/10

= 15 kips ... tension

Similarly, the force in the bottom chord member 35 is given by the magni-
tude of the moment at node 2 multiplied by the coefficient 1/h. Thus, the force
in member 335 is:

Py = M, X 1/h
=V, Xax1h
=150X1/10

= 15 kips ... tension

The force in the top chord member 24 is given as the magnitude of the
moment at node 5 multiplied by the coefficient 1/h. Thus, the force in member
24 is:

P, = M5 X 1/h
=(V, X2a—W; Xa)x1/h
= (300 —100) X 1/10

= 20 kips ... compression

(d) Method of substitution of members

A complex truss, as shown in Figure 2.14 (i), has three or more connecting
members at a node, all with unknown member forces. This precludes the
use of the method of sections or the method of resolution at the nodes as a
means of determining the forces in the truss. The technique consists of remov-
ing one of the existing members at a node so that only two members with
unknown forces remain and substituting another member so as to maintain
the truss in stable equilibrium.

The forces in members 45 and 59 are obtained by resolution of forces
at node 5. However, at nodes 4 and 9, three unknown member forces
remain, and these cannot be determined by resolution or by the method of
sections. As shown at (ii), member 39 is removed, leaving only two unknown
forces at node 9, which may be determined. To maintain stable equilibrium,
a substitute member 38 is added to create a modified truss, and the origi-
nal applied loads are applied to the modified truss. The forces P’ in all the
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2 3 4

(i) Complex truss with applied load

lw

/
APy

(ii) Modified truss with applied load

(iii) Modified truss with unit virtual load

Figure 2.14

remaining members of the modified truss may now be determined. The force
in member 38 is Pjg.

The applied loads are now removed, and unit virtual loads are applied to the
modified truss along the line of action of the original member 39, as shown at (iii).
The forces u in the modified truss are determined; the force in member 38 is —#33.
Multiplying the forces in system (iii) by Pjg/us5 and adding them to the forces in
system (ii) gives the force in member 38 as:

Pyg = Py + (tusg)Pyglusg
=0

In effect, the substitute member 38 has been eliminated from the truss.
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Hence, by applying the principle of superposition, the final forces in the
original truss are obtained from the expression:

where tensile forces are positive and compressive forces are negative. The final
force in member 39 is:

Pyg = 1X Pyglusg

J— !
= Pigluzg

Example 2.4

Determine the forces produced by the applied loads in members 49, 39, and 89
of the complex truss shown in Figure 2.15.

4 ft

6 ft

4 ft 4 ft 4 ft 4 ft 4 ft 4 ft 4 ft 4 ft

Figure 2.15

Solution

The modified truss shown in Figure 2.16 is created by removing member
39, adding the substitute member 38, and applying the 20 kips load. The
member forces in the modified truss may now be determined; the values
obtained are:

P, = 7.51kips... tension

Py

P

—13.98 kips ... compression

21.54 kips ... tension

The 20 kips load is removed from the modified truss, and unit virtual loads
are applied at nodes 3 and 9 in the direction of the line of action of the force in
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20 kips

Figure 2.16

member 39. The member forces for this loading condition may now be deter-
mined; the values obtained are:

uye = —0.81kips ... compression
ugg = —0.50 kips ... compression
usg = —1.93 kips ... compression

Figure 2.17

The multiplying ratio is given by:

Py luzg = 21.54/1.93
=11.16

The final member forces in the original truss are:

P49

7.51+11.16(—0.81)

—1.53 kips ... compression
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P89

—13.98 +11.16(—0.50)

—19.56 kips ... compression

Py = Piglusg
= 11.16 kips ... tension

Supplementary problems

$2.1 Determine in Figure S2.1 the reactions at the supports of the roof truss
shown and the forces in members 34, 38, and 78 caused by the applied loads.

6 ft

6 ft 6 ft 6 ft 6 ft
o B e R

Figure S2.1

$2.2 For the pin-jointed truss shown in Figure S2.2 determine the forces in
members 45, 411, and 1011 caused by the applied loads.

10

5ft

10 ft

N A A A
10 kips 10 kips 10 kips 10 kips 10 kips

a 1
10 ft 10 ft 10 ft 10 ft 10 ft 10 ft
B = B T e =

Figure S2.2
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$2.3 For the roof truss shown in Figure 52.3 determine the forces in members
23,27 and 67 caused by the applied loads.

Figure 52.3

$2.4 For the pin-jointed truss shown in Figure S2.4 determine the forces in all
members caused by the applied loads.

12 kips 12 kips

4 Sl 6 7l 8

5 ft

5 ft 5 ft 5 ft 5ft

| oy o | et oy |
T T T

Figure S2.4
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$2.5 For the roof truss shown in Figure S2.5 determine the forces in all mem-
bers due to the applied loads.

4 kips

3 ft

3 ft

Figure S2.5

$2.6 For the truss shown in Figure S2.6 determine the forces in members 12,
114, 110, 23, 310, 315, 1014, and 1415 caused by the applied loads.

S5ft

51t

(R AR A R S LR

10kips 10kips 10kips 10kips 10kips 10kips 10 kips

S5t 5ft S5t 5ft S5t 5ft S5t 5ft

Figure S2.6
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$2.7 For the roof truss shown in Figure 52.7 determine the forces in members
23,27,37,78, and 67 caused by the applied loads.

5 kips 5 kips

3 ft

6 ft

Figure S2.7

$2.8 For the roof truss shown in Figure S2.8 determine the forces in all mem-
bers due to the applied loads.

2 kips

6 ft

6 ft

8 ft 8 ft

Figure S2.8
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$2.9 For the roof truss shown in Figure 52.9 determine the forces in members
23,26,27,67,and 37 caused by the applied loads.

10 kips

4 ft

8 ft

%1

8 ft 8 ft 8 ft 8 ft |

jf———m - |-
Figure S2.9

$2.10 For the roof truss shown in Figure S2.10 determine the force in members
49, 59, 89, and 78 due to the applied loads.

10 kips 10 kips

6 ft

6 ft

Figure S2.10
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3 Elements in flexure

Notation

rise of an arch

force

horizontal force, support reaction
height of a rigid frame

length of span

bending moment

axial force in a member

shear force in a member
support reaction

vertical force, support reaction
concentrated load

distributed load

displacement

rotation

3.1 Load intensity, shear force, and bending moment
diagrams

A uniformly distributed load of magnitude —w is applied to a simply sup-
ported beam as shown in Figure 3.1 (i). The sign convention adopted is that
forces acting upward are defined as positive. The support reaction at end 1 of
the beam is obtained by considering moment equilibrium about end 2. Hence:

IV, + (~w)I2/2

and:

V, = wll2
Similarly:

V, =wll2

The load intensity diagram is shown at (ii) and consists of a horizontal line of
magnitude —w.

The shear force acting on any section A-A at a distance x from end 1 is
defined as the cumulative sum of the vertical forces acting on one side of the
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@ 11314 #5# Y VYV V¥ ¥ ¥y Appliedloading

Vi TA Va

(ii) | t Wy | -w Load intensity diagram
(i) v,
O,
FL,| V, Shear force diagram
@iv) M, Moy Bending moment diagram
Figure 3.1

section. The vertical forces consist of the applied loads and support reactions.
Considering the segment of the beam on the left of section A-A; the shear force
is given by:

Qx = Vl + (w)x
=V, —wx

where (—wx) represents the area of the load intensity diagram on the left of
section A-A from x = 0 to x = x. In general, the change in shear force between
two sections of a beam equals the area of the load intensity diagram between
the same two sections.

The variation of shear force along the length of the beam may be illus-
trated by plotting a shear force diagram as shown at (iii). The sign convention
adopted is that resultant shear force upward on the left of a section is positive.
The maximum shear force occurs at the location of zero load intensity, which
is at the ends of the beam.

The bending moment acting on any section A-A at a distance x from end 1
is defined as the cumulative sum of the moments acting on one side of the sec-
tion. Considering the segment of the beam on the left of section A-A, the bend-
ing moment is given by:

M, =Vix + (~w)x?/2
=Vix +(Q, —V;)x/2
=(V, + O, )x/2
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where (V; + Q,)x/2 represents the area of the shear force diagram on the left
of section A-A from x = 0 to x = x. In general, the change in bending moment
between two sections of a beam equals the area of the shear force diagram
between the same two sections.

The variation of bending moment along the length of the beam may be illus-
trated by plotting a bending moment diagram as shown at (iv). The sign con-
vention adopted is that a bending moment producing tension in the bottom
fibers of the beam is positive. The maximum bending moment occurs at the
location of zero shear force in the beam.

Example 3.1

For the simply supported beam shown in Figure 3.2 (i) draw the load intensity,
shear force, and bending moment diagrams.

12 kips/ft
) 20 kips
Q) m l Applied loading

TVO TV
12 ft 6 ft 6 ft #

—12 Kips/ft )

(ii) ’/ Load intensity diagram
—20 kips
53 kips —19 kips )
(1ii) Shear force diagram
o .
10.30 ft I\‘—\— —39 kips
[¢————————
234 kip-ft
@iv) Bending moment diagram

364 kip-ft - 348 kip-ft

Figure 3.2

Solution

The intensity of loading diagram is shown at (ii) and consists of triangularly
shaped sections varying from zero to —12kips/ft over the left half of the beam
and a concentrated force of —20kips acting at x = 18 ft.

The support reaction at the left end of the beam is derived by taking
moments about the right end of the beam to give:

M4 =0
=24V, + (12/3 + 12)(-12 X 12/2) + (=20 X 6)
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and:
Vy, = 53 kips
V24 = 72 + 20_V0
= 39kips

The ordinate of the shear force diagram at x = 0 equals the support reaction at
the left end of the beam. The change in shear force between x = 0 and x = 12ft
equals the area of the load intensity diagram over the initial 12 ft of the beam.
Hence, the ordinate of the shear force diagram at x = 12 ft is given by:

le = VO —12 X 12/2
=53-72
= —19kips

The shear force diagram crosses the base line at a distance x from the end of
the beam given by:

O, =0
=V, —w,x/2
=53—x2/2
and:
x2 =106
x=10.30ft

Between x = 12ft and x = 18ft the ordinate of the shear force diagram
remains constant at a value of —19 kips since the load intensity is zero over
this segment of the beam. At x = 18 ft, the location of the concentrated load of
20 kips, the ordinate of the shear force diagram reduces to the value:

= —39kips

Between x = 18ft and x = 24ft the ordinate of the shear force diagram
remains constant at a value of —39 kips. At x = 24 ft the ordinate of the shear
force diagram changes to the value:

Q24 =-39+39
= Okips

The bending moment ordinates at each end of the beam are zero. Between
x = 0 and x = 12ft the ordinate of the bending moment diagram is given by:

M, =Vyx — (w,x/2)(x/3)
=53x — x3/6
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The maximum bending moment over this length occurs when:

dM,/dx =0
=53—x2/2
and:
x=10.30ft

This is the same location at which the shear force diagram crosses the base
line, and the maximum bending moment is:

M, =53%10.30 — (10.30)3/6
=546 — 182
= 364 kip-ft

At x = 12ft the bending moment is:

M, =53 %12 —123/6
=636 — 288
= 348 kip-ft

At x = 18ft the bending moment is:

— 348 — 114
= 234 kip-ft

and the bending moment decreases linearly between x = 12 ft and x = 18 ft.
At x = 24ft the bending moment is:

M,, = Mg +(=39) X6
=234-234
=0 kip-ft

and the bending moment decreases linearly between x = 18 ft and x = 24 ft.

3.2 Relationships among loading, shear force, and
bending moment

A small element of the beam shown in Figure 3.1 is taken at a distance x from

end 1. The forces acting on the element are shown in Figure 3.3. Resolving
forces vertically gives the expression:

O =(0+dQ)+wbx
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Q

M M + M

Q+60

ox

fe—

Figure 3.3

and:
00/bx = —w
The limiting condition is:
dQ/dx =—w
which indicates that the slope of the shear force diagram, at any section, equals
the intensity of loading at that section. This also indicates that the shear force

reaches a maximum or a minimum value where the load intensity diagram
crosses the base line. Alternatively, since:

dO=-w dx
f dQ = f —w dx
X
Q, _lef —w dx

1
where Q; = shear force in the beam at x = x{, Q, = shear force in the beam
at x = x,, and the change in shear force between the two sections equals the
area of the load intensity diagram between the two sections.

Taking moments about the lower right corner of the element gives the
expression:

M=(M + M) — Q dx + w (8x)>/2
Neglecting the small value (6x)? gives:
dM/éx = Q
The limiting condition is:

dM/dx = O
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which indicates that the slope of the bending moment diagram at any sec-
tion equals the force at that section. In addition, it indicates that the bending
moment reaches a maximum or a minimum value where the shear force dia-
gram crosses the base line. Alternatively, since:

dM = Q dx

[dM = [0 dx
M, - M, = [CQdx
=M= [70
where M; = bending moment in the beam at x = x;, M, = bending moment

in the beam at x = x,, and the change in bending moment between the two
sections equals the area of the shear force diagram between the two sections.

Example 3.2

For the simply supported beam shown in Figure 3.2 use the load-shear-moment
relationships to draw the shear force and bending moment diagrams.

Solution

The support reactions were determined in Example 3.1:

V, = 53 kips
V24 = 39 klpS

The change in shear force between x = 0 and x = 12 ft is:

12
2
:fol —12x/12 dx

= folz —x dx
= [-x2/2]}?
= —72 kips
and:
=—19 kips

At intermediate sections between x = 0 and x = 12ft, the ordinates of the
shear force diagram are given by:

O, =V, —wx/2
=53-x2/2

which is the equation of a parabola.
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The shear force diagram crosses the base line at a distance x from the end of
the beam, given by:

0,=0
=V, — wx/2
=53—x2/2
and:
=106
x=10.30 ft

Between x = 12ft and x = 18 ft the load intensity is zero, and the shear force
diagram is a horizontal line. At x = 18ft, a concentrated load of 20 kips is
applied to the beam; this constitutes an infinite load intensity and produces a
vertical step of —20kips in the ordinate of the shear force diagram. The ordi-
nate of the shear force diagram is given by:

O =V, =20
=-19-20
=—39 kips

The ordinate of the shear force diagram remains constant at a value of —39
kips to the end of the beam.
The change in bending moment between x = 0 and x = 12 ft is:

M, — My =f12de
= f — wx/2) dx
- fol (53 — x2/2) dx
=[53x — x3/6]}?

=636 — 288
= 348kip-ft

At intermediate sections between x = 0 and x = 12ft, the ordinates of the
bending moment diagram are given by:

M, = Vyx — (wx/2)(x/3)
=53x — x3/6

which is the equation of a cubic parabola.
The maximum bending moment occurs when:

dM,/dx =0
=53 —x2%/2
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and:
x=10.30 ft
The change in bending moment between x = 12 ft and x = 18 ft is:
18
Mg — My, :flz O dx
18
= f —19 dx
12
=[-19x]1§
=-19X6
= —114kip-ft
Hence:
M,; =348 - 114
— 234kip-ft

The bending moment decreases linearly between x = 12 ft and x = 18 ft.
At x = 18ft a concentrated load of 20 kips is applied, and the change in
bending moment between x = 18 ft and x = 24 ft is:

4
=/ | 39 dx

= [—39x]%§‘

-39X6
= —234 kip-ft

Hence:
M,, =234 — 234
=0 kip-ft

3.3 Statical determinacy

A statically determinate beam or rigid frame is one in which all member forces
and external reactions may be determined by applying the equations of equili-
brium. In a beam or rigid frame external reactions are provided by either hinge
or roller supports or by a fixed end, as shown in Figure 3.4. The roller support

Roller support Hinge support Fixed end

M

.
]

»
/
Vv

Figure 3.4
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provides only one degree of restraint, in the vertical direction, and both hori-
zontal and rotational displacements can occur. The hinge support provides
two degrees of restraint, in the vertical and horizontal directions, and only
rotational displacement can occur. The fixed end provides three degrees of
restraint, vertical, horizontal, and rotational. Identifying whether a structure is
determinate depends on the configuration of the structure.

(a) Beam or rigid frame with no internal hinges

In a rigid frame with j nodes, including the supports, 3;j equations of equili-
brium may be obtained since, at each node:

S>H=0

V=0
and:

>M=0

Each member of the rigid frame is subjected to an unknown axial and shear
force and bending moment. If the rigid frame has # members and 7 external
restraints, the number of unknowns is (37 + r). Thus, a beam or frame is
determinate when the number of unknowns equals the number of equilibrium
equations or:

n+r=3j
A beam is statically indeterminate, as shown in Figure 3.5, when:

3n+r>3j

Figure 3.5

In this case:
3j=3%X2
=6
and:

In+r=3xX1+4
=7
> 3j
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A rigid frame is unstable, as shown in Figure 3.6, when:

3n+r<3j

—

Figure 3.6

In this case:

3j=3x3
=9

and:

In+r=3%xX2+2
=38
<3j

(b) Beam or rigid frame with internal hinges or rollers

The introduction of an internal hinge in a beam or rigid frame provides an
additional equation of equilibrium at the hinge of M = 0. In effect, a moment
release has been introduced in the member.

The introduction of a horizontal, internal roller provides two additional
equations of equilibrium at the roller of M = 0 and H = 0. In effect, a moment
release and a release of horizontal restraint have been introduced in the mem-
ber. Thus, a beam or frame with internal hinges or rollers is determinate when:

Im+r=3+h+2s

where 7 is the number of members, ; is the number of nodes in the rigid frame
before the introduction of hinges, r is the number of external restraints, b is
the number of internal hinges, and s is the number of rollers introduced.

The compound beam shown in Figure 3.7 is determinate since:

3n+r=3X3+5
=14
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1 2 3 4

% % %

Figure 3.7

and:

3j+h+2s=3X4+2+0
=14
=3n+r

(c) Rigid frame with internal hinges at a node

The introduction of a hinge into i of the # members meeting at a node in a
rigid frame produces i releases. The introduction of a hinge into all # members
produces (7 — 1) releases.

Thus, a rigid frame with hinges at the nodes is determinate when:

3n+r=3+c

where 7 is the number of members, j is the number of nodes in the rigid frame, »
is the number of external restraints, and c is the number of releases introduced.
As shown in Figure 3.8, for four members meeting at a rigid node there are three
unknown moments. The introduction of a hinge into one of the members produces
one release, the introduction of a hinge into two members produces two releases,
and the introduction of a hinge into all four members produces three releases.

M, + M, M,

Figure 3.8

The rigid frame shown in Figure 3.9 is determinate since:

3n+r=3X3+4
=13

and:

3j+c=3x4+1
=13
=3n+r
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Figure 3.9

3.4 Beams

Beams are normally subject to transverse loads only, and roller and hinge
supports are typically represented by vertical arrows. Typical examples of
beams are shown in Figure 3.10. Beams may be analyzed using the equations
of static equilibrium and the method of sections, as illustrated in Section 3.1.
Alternatively, the principle of virtual work may be utilized to provide a simple
and convenient solution.

! T ! !

Simply supported Beam with overhangs

P P

Cantilever Compound beam

NN\

Figure 3.10

The principle of virtual work may be defined as follows: If a structure in
equilibrium under a system of applied forces is subjected to a system of dis-
placements compatible with the external restraints and the geometry of the
structure, the total work done by the applied forces during these external dis-
placements equals the work done by the internal forces, corresponding to the
applied forces, during the internal deformations corresponding to the external
displacements.

The expression “virtual work” signifies that the work done is the product
of a real loading system and imaginary displacements or an imaginary loading
system and real displacements.

For the simply supported beam shown in Figure 3.11 (i), the support reac-
tion V,, caused by the applied load W, may be determined by the principle of
virtual work. As shown at (ii), a unit virtual displacement of § = 1 is imposed
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(i)

M Y2
(iif) D hL ib
0

(iv)

Figure 3.11

on end 2 in the direction of V, and the internal work done equated to the
external work done. Then:

V, X1=W X a/l
and:
V, = Wal/l

Similarly, as shown at (iii), the bending moment produced at point 3 by the
applied load may be determined by cutting the beam at 3 and imposing a unit
virtual angular discontinuity of § = 1. Equating internal work done to external
work done gives:

M; X 1=V, Xb
and:

Alternatively, after cutting the beam at 3 and imposing a unit virtual angu-
lar discontinuity, the ends may be clamped together to produce the deformed
shape shown in (iv). Equating internal work done to external work done gives:

M;(cla + c/b)=W X ¢

and:
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Example 3.3

Use the virtual work method to determine the support reactions and significant
bending moments for the compound beam shown in Figure 3.12 due to the
applied loads indicated. Hence, draw the shear force and the bending moment
diagrams for the beam.

50 ft 50ft  20ft 50ft 50ft  20ft 50 ft 50 ft

Wy = 40 kips W = 40 kips W5 = 40 kips

) ! ‘ 2 i 3 ¢ 4
f f ! T

¢/50 /50

. Shear force

. 16 kips 20 kips 24 kips diagram

(vi)
24 Kips 20 kips 16 kips
i 1000 kip-ft .
800 kip-fi p .
e 800 kip-t Bending moment
(vii) diagram
400 kip-ft 400 kip-ft
Figure 3.12
Solution

As shown at (ii), a unit virtual displacement of § = 1 is imposed on end 1 in
the direction of Vi and the internal work done equated to the external work
done. Then:
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and:

V, = 40 X 0.4
=16 kips

As shown at (iii), a unit virtual displacement of § = 1 is imposed at support 2
in the direction of V, and the internal work done equated to the external work
done. Then:

V, X 1=W; X 0.5+ W, X 0.6

and:

V, =40 x 1.1
= 44 kips

As shown at (iv), the beam is cut at 2 and a unit virtual angular discontinuity
of 6 = 1 is imposed. The internal work done is equated to the external work
done to give:

M, X1=W; X 50—V, X100
and:

M, =40 X 50 — 16 X 100
= 400 kip-ft ... tension in the top fibers

As shown at (v), the beam is cut at 5, and a unit virtual angular discontinuity
of # = 1 is imposed. The internal work done is equated to the external work
done to give:

M;(c/50 + ¢/50) = Ws X ¢— W, X0.2¢c

and:
Mg = 25X 40X 0.8
=800 kip-ft ... tension in the bottom fibers
Similarly:
M, =25 X 40
=1000 kip-ft ... tension in the bottom fibers

The shear force and bending moment diagrams are shown at (vi) and (vii). The
bending moment is drawn on the compression side of the beam.

3.5 Rigid frames

The support reactions of rigid frame structures may be determined using the
equations of static equilibrium, and the internal forces in the members from a
free body diagram of the individual members. The internal forces on a member
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are most conveniently indicated as acting from the node on the member: i.e.,
as support reactions at the node.

The vertical reaction at support 4 of the frame shown in Figure 3.13 is
obtained by considering moment equilibrium about support 1. Hence:

and:

V, = Wh/l ... upward

Resolving forces vertically gives:

= —Wh/l ... downward

Resolving forces horizontally gives:

H, = =W ... to the left

and the support reactions are shown at (ii). The deformed shape of the frame
is shown at (iii).

w w
2 3
h
1 4 H =W
-
, lvl _— T V, = Whil
e
(i) Applied loads (ii) Support reactions (iii) Deformed shape
Figure 3.13

The internal forces in member 12 are determined from a free body diagram
of the member, as shown in Figure 3.14. Resolving forces vertically gives the
internal force acting at node 2 as:
Vz = _Vl
= Wh/l ... upward

Considering moment equilibrium about node 2 gives the internal moment at
node 2 as:

M,, =-hH,
= Wb ... counter-clockwise



58 Structural Analysis: In Theory and Practice

2 T V, = Whil
w w Wh
My, = Wh
1 w
-
i V, = Whil
(i) Member 12 (ii) Shear force (iii) Bending moment
diagram diagram
Figure 3.14

Hence, member 12 is subject to a tensile force of P, = Wh/L, the shear force
diagram is shown at (ii) and the bending moment diagram at (iii) with the
moment drawn on the compression side of the member.

The internal forces in member 34 are determined from a free body diagram
of the member, as shown in Figure 3.15. Resolving forces vertically gives the
internal force acting at node 3 as:

=—-Wh/l ... downward

* Vy = Wil

4
? V, = Whil

Member 34

Figure 3.15

Considering moment equilibrium about node 3 gives the internal moment at
node 3 as:
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Resolving forces horizontally gives the internal force acting at node 3 as:

Hence, member 34 is subject to a compressive force of P34 = Wh/l, and both
the shear force and the bending moment are zero.

The internal forces in member 23 are determined from a free body diagram
of the member, as shown in Figure 3.16. Resolving forces vertically gives the
internal force acting at node 2 as:

Vz = _V3
=—-Wh/l ... downward

V, = Whil
3

2 | | whit

Mo = Wh T Vs = Wil

(i) Member 23 (ii) Shear force diagram

Wh

(iii) Bending moment diagram

Figure 3.16

Considering moment equilibrium about node 2 gives the internal moment at
node 2 as:

M23 = _lV3
=—Wb ... clockwise

Resolving forces horizontally gives the internal force acting at node 2 as:

Hence, member 23 has no axial force. The shear force diagram is shown at (ii)
and the bending moment diagram at (iii), with the moment drawn on the com-
pression side of the member.

Example 3.4

Determine the support reactions and member forces in the rigid frame shown
in Figure 3.17 due to the applied loads indicated. Hence, draw the shear force
and the bending moment diagrams for the members.
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w = 5 Kips/ft 5 kips/ft
W= 20kins 4 b 20 kipg { P4
2 3
._S“:;
I
~=
1 4 Hl =20 kipS
7 =104 A T;I:S Kips T V, = 45 kips
e
(i) Applied loads (ii) Support reactions

Figure 3.17

Solution
The vertical reaction at support 4 of the frame is obtained by considering
moment equilibrium about support 1. Hence:
M, =0
=1V, —Wh — wl?/2
=10V, —20 X 10 — 5 X 100/2

and:

V, =45 kips ... upward

Resolving forces vertically gives:

=—45+5x%x10
= 5kips ... upward

Resolving forces horizontally gives:

H =-W
= 20kips ... to the left

and the support reactions are shown at (ii).

The internal forces in member 12 are determined from a free body diagram
of the member, as shown in Figure 3.18. Resolving forces vertically gives the
internal force acting at node 2 as:

V2 = _Vl
= —5kips ... downward
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, i V, = 5 kips 20 kips 200 kip-ft
—
20 kips
My, = 200 kip-ft
1 H, = 20 kips
-
T Vi = 5Skips
(i) Member 12 (ii) Shear force (iii) Bending moment
diagram diagram
Figure 3.18

Considering moment equilibrium about node 2 gives the internal moment at
node 2 as:

M,, =—hH,
=-10Xx-20
= 200kip-ft... counter-clockwise

Hence, member 12 is subject to a compressive force of P{, = Skips. The
shear force diagram is shown at (ii) and the bending moment diagram at (iii),
with the moment drawn on the compression side of the member.

The internal forces in member 34 are determined from a free body diagram
of the member, as shown in Figure 3.19. Resolving forces vertically gives the
internal force acting at node 3 as:

V3 = _V4
= —45kips ... downward

¢ V, = 45 kips
3

? V, = 45 kips
Member 34

Figure 3.19
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Considering moment equilibrium about node 3 gives the internal moment at
node 3 as:

M, =0
Resolving forces horizontally gives the internal force acting at node 3 as:
Hy; =0

Hence, member 34 is subject to a compressive force of P3;, = 45kips, and
both the shear force and the bending moment are zero.

The internal forces in member 23 are determined from a free body diagram
of the member, as shown in Figure 3.20. Resolving forces vertically gives the
internal force acting at node 2 as:

V2 = _V3 + WI
=—45+5x10
= 5Skips ... upward

5 kips/ft

2 bbb bbb 5 2

= 5kips 4 # ?
E ? Ma3 = 200 kip-ft ] |T? 45 ki
V; = 45 kips t 1ps
(i) Member 23 (ii) Shear force

diagram

M, = 202.5 kip-ft

200
kip-ft

-

1ft

(iii) Bending moment diagram

Figure 3.20

Considering moment equilibrium about node 2 gives the internal moment at
node 2 as:

M23 = _1V3 + w12/2
=-10X45+5X100/2
= =200 kip-ft ... clockwise
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Resolving forces horizontally gives the internal force acting at node 2 as:

Hence, member 23 has no axial force. The shear force diagram is shown at
(ii) and the bending moment diagram at (iii), with the moment drawn on the
compression side of the member.

3.6 Three-hinged arch

The three-hinged arch has hinged supports at each abutment that provide four
external restraints. The introduction of another hinge in the arch member pro-
vides a moment release. The extra hinge provides an additional equation of
equilibrium that, together with the three basic equations of equilibrium, makes
the solution of the arch possible. Typical examples of three-hinged arches are
shown in Figure 3.21.

Symmetrical Unsymmetrical

Spandrel braced Compound

Figure 3.21

For a three-hinged arch subjected to vertical loads only, the horizontal sup-
port reactions at the arch springings are equal and opposite and act inward.
The vertical support reactions at the arch springings are equal to those of a
simply supported beam of identical length with identical loads.

For the symmetrical three-hinged arch shown in Figure 3.22 with a vertical
applied load W, the unknown horizontal thrust at the springings is H, and the
unknown vertical reactions are V; and V,. The vertical reaction at support 2 is
obtained by considering moment equilibrium about support 1. Hence:

M, =0
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and:
VZ = Wa/l
Resolving forces vertically gives:

=Wl —all)

These values for V| and V, are identical to the reactions of a simply sup-
ported beam of the same span as the arch with the same applied load W.

1
]

a

Va
3

|
oW (ii)
I H
C
H 1 2 H 2 H
v V, Vv,
Wa(l — a)ll
(iii) (iv) He )

] 2 2
|-
I

L

Figure 3.22

The horizontal thrust at the springings is determined from a free body dia-
gram of the right half of the arch, as shown at (ii). Considering moment equi-
librium about the crown hinge at 3:

M, =0
= le/z - HC
and:
H=1V,/2¢

This value for H is identical to the bending moment at the center of a simply
supported beam of the same length with the same applied load W multiplied
by 1/c.
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The bending moment in the arch at any point a distance x from the left sup-
port is given by the expressions:

M,=Vix—Hy..forx =a
=V,(I-x)—Hy ...fora<x =1

where y is the height of the arch a distance x from the left support.
Atx = 1/2,y = ¢, and the bending moment at the crown hinge is:

My, =0

The expressions for bending moment may be considered as the superposition
of the bending moment of a simply supported beam of the same span with the
same applied load W plus the bending moment due to the horizontal thrust H.
The bending moment due to the applied load on a simply supported beam is
shown at (iii) and the bending moment due to the horizontal thrust is shown at
(iv); this is identical to the shape of the arch. Since the bending moment is zero
at the crown hinge, the combined bending moment for the arch is obtained
by adjusting the scale of the free bending moment to give an ordinate of mag-
nitude ¢ at x = l/2 and superimposing this on a drawing of the arch. This is
shown at (v), drawn on the compression side of the arch. In the case of a three-
hinged parabolic arch with a uniformly distributed applied load, no bending
moment is produced in the arch rib.

Example 3.5

Determine the support reactions in the parabolic unsymmetrical three-hinged
arch shown in Figure 3.23 due to the applied load indicated. Hence, draw the
bending moment diagram for the arch.

Solution

The equation of the arch rib is:
y=x(l — x)/l

The reactions at support 2 are obtained by considering moment equilibrium
about support 1. Hence:

=15V, + 3.75H, — 5 X 40 sin 45° — 3.75 X 40 cos 45°

and:

=15V, + 3.75H, —247.49



66 Structural Analysis: In Theory and Practice

® (i)
40 kips

Figure 3.23

Resolving forces vertically gives:
0=V, +V, — 40 sin 45°
=V, +V, —28.28
Resolving forces horizontally gives:
0=H,; — H, + 40 cos 45°
—H, — H, +28.28

Considering moment equilibrium about the crown hinge at 3 for the free
body diagram of section 23 of the arch shown at (ii) gives:
= 5V, —1.25H,

Solving these equations simultaneously gives:

H,=4.72
H, = 33.00
V, =20.03
V, =8.25

The maximum moment occurs at the location of the applied load and is:

M, =10V,
=10 X 8.25
=82.50 kip-ft
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The bending moment is shown at (iii), drawn on the compression side of the
arch.

Supplementary problems

$3.1 Determine whether the beams shown in Figure S3.1 are determinate, inde-
terminate, or unstable.

® (i)

1 2 1 2 3 4
2 oo %L o) oy
(iii) (iv)
1 2 k 1 2 3
% N2 2 \

Figure S3.1

$3.2 Determine whether the rigid frames shown in Figure S3.2 are determinate,
indeterminate, or unstable.

@ (i) (iii)
2 3 2 3 2
1

| |

(iv) v
5

3
4
(v)
3
l ;

—_
—

._.
~
_

Figure §3.2
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$3.3 Determine whether the arch structures shown in Figure S3.3 are determi-
nate, indeterminate or unstable.

(i)

(@

(iii) (iv)

Figure S3.3

$3.4 For the beam shown in Figure S3.4, determine the support reactions and
draw the shear force and bending moment diagrams.

100 kips
10 kips/ft

P 5N\ L

4 ft 4 ft 8 ft

[ T |
Figure S3.4

$3.5 For the beam shown in Figure S3.5, determine the support reactions and
draw the shear force and bending moment diagrams.

10 kips/ft

1gg##HHHMHHHHHHHHi 4
2 : %

5 ft 5 ft 5ft

I e S
Figure S3.5

$3.6 For the beam shown in Figure S3.6, determine the support reactions and
draw the shear force and bending moment diagrams.
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10 kips/ft
' 2XVIIIYYIIIIIIIIeY 3
g %
6 ft 6 ft

T

¥

Figure S3.6

$3.7 For the frame shown in Figure S3.7, determine the support reactions and
draw the shear force and bending moment diagrams.

| 8 ft |

10 kips/ft

20Kips_ yPPIIIIIIIIIeLLY 3
2 e

1
77877 —-—

Figure S3.7

$3.8 For the frame shown in Figure S3.8, determine the support reactions and
draw the shear force and bending moment diagrams.

LSft o Sft
| | |
20 kips 2 l 40kips 4
3
5 ft
5 ¥
5 ft
1
7777 -
Figure S3.8

$3.9 For the frame shown in Figure S3.9, determine the support reactions and
draw the shear force and bending moment diagrams.
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4 ft
3
) /\ )
8 ft
1 7
77R77 77R77
Figure S3.9

$3.10 For the three-hinged arch shown in Figure $3.10, determine the support
reactions and the bending moment in the arch rib at the location x = 8 ft.

10 kips/ft

M A 11T

16 ft 16 ft

Figure S$3.10
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4 Elastic deformations

Notation

PR 28 8 <% ®OORTEEI ~~"ITOoTmmAOS >

cross—sectional area of a member

rise of an arch

constant of integration

modulus of elasticity

force

modulus of torsional rigidity

height of a rigid frame

horizontal force

moment of inertia

length of member

bending moment in a member due to a unit virtual load
bending moment in a member due to the applied loads
bending moment in a conjugate member due to the elastic load
axial force in a member due to the applied load

shear force in a member due to a unit virtual load

shear force in a member due to the applied load

shear force in a conjugate member due to the elastic load
redundant force in a member, radius of curvature

axial force in a member due to a unit virtual load

vertical force

intensity of applied distributed load on a member

intensity of elastic load on a conjugate member, expressed as M/EI
concentrated load, applied load on a member, expressed as [wdx
elastic load on a conjugate member, expressed as [M dx/EI
horizontal deflection

vertical deflection

deflection due to the applied load

element of length of a member

relative rotation between two sections in a member due to the applied
loads

rotation due to the applied loads

form factor in shear
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4.1 Deflection of beams

(a) Macaulay's method

Macaulay's method provides a simple and convenient method for determining
the deflection of beams. It may be used to obtain an expression for the entire
elastic curve over the whole length of a beam.

A small element 8s of a beam is shown in Figure 4.1 and is assumed to be
bent in the shape of an arc of a circle of radius R. The slope of the elastic curve

Elastic curve

Initial position of beam axis

/

0

Figure 4.1

at one end of the element is . The change in slope of the elastic curve over the
length of the element is 66, and the curvature, or rate of change of slope, over
the element is:

80/3s = 1/R
=~ 30/8x ... positive as shown

The slope of the beam is positive as shown and for small displacements is
given by:

0 =~ tan6
~ 8y/dx

In the limit:

df/dx = 1/R
0 = dy/dx

and:

df/dx = d/dx(dy/dx)
= d2y/dx?
= 1/R
= M/EI
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and:
EI d2y/dx? = M

Hence, by setting up an expression for M in terms of the applied loads on a
beam and x and integrating this expression twice, an equation is obtained for
the deflection of the beam.

Thus, the curvature of the elastic curve is given by the expression:

d?y/dx? = 1/R
= M(x)/EI

The slope of the elastic curve is given by the expression:

dy/dx = 6
= f M(x)/EI + C,

The deflection of the elastic curve is given by the expression:

y=26
= M(x)/EI + C;x + C
/I :

where:
C, = constant of integration
C, = constant of integration
M(x) = bending moment at any point in the beam in terms of x

R = radius of curvature

The expression for the bending moment at any point in the cantilever shown
in Figure 4.2 is:

Eld2y/dx? = M
—W(l — x) ... tension in the top fiber of the cantilever
—WI + Wx

Integrating this expression with respect to x gives:
EIdy/dx = —Wix + Wx2/2 + C;
where:

C, = constant of integration
=0
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Figure 4.2

since:
dy/dx =0atx =0
Hence, the slope of the elastic curve is given by the expression:
Eldy/dx = —Wix + Wx?2/2
Integrating this expression with respect to x gives

Ely = —Wix2/2 + Wx3/6 + C,

where:
C, = constant of integration
=0
since:
y=0atx=0

Hence, the deflection of the elastic curve is given by the expression:
Ely = —Wix?/2 + Wx3/6
At x = [ the deflection of the cantilever is:

= —WI3/2EI + WI3/6EI
= —WI3/3EI ... downward

<2
|

The expression for the bending moment at any point in the cantilever shown
in Figure 4.3 is:

EI d?y/dx?> = M
=—W(a — x)— W[x — a]
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Figure 4.3

The term [x — 4] is valid only when positive: i.e., when x > a.
Hence:

EI d?y/dx?2 =—Wa + Wx — W[x — a]

Integrating this expression with respect to x for the terms outside the brack-
ets and with respect to (x — a) for the term in brackets gives:

EI dy/dx =—Wax + Wx?/2 — W[x — a?/2 + C,

where:

C, = constant of integration
=0

since:
dy/dx =0 at x =0
Hence, the slope of the elastic curve is given by the expression:
Eldy/dx = —Wax + Wx2/2 — W[x — a]*/2
Integrating this expression gives:
Ely = —Wax?/2 + Wx3/6 — W[x — al’/6 + C,
where:

C, = constant of integration
=0

since:

y=0at x=0
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Hence, the deflection of the elastic curve is given by the expression:

Ely = —Wax?/2 + Wx3/6 — W[x — al?/6

At x = a the deflection of the cantilever is:

= —Wa3/2EI + Wa3/6EI
—~Wa3/3EI... downward

2
|

At x = [ the deflection of the cantilever is:

y = —Wal?/2EI + WI3/6EI — W(l — a)’/6EI
=— Wal?/2EI + WI3/6EI — W(I3 — 3al?> + 3a%] — a3)/6EI
=— Wa?(3l — a)/6EI ... downward

Example 4.1

For the simply supported beam shown in Figure 4.4, determine the maxi-
mum deflection due to the applied load. The flexural rigidity of the beam is
EI = 7 X 10° kip in?.

Solution

The expression for the bending moment at any point in the beam shown in
Figure 4.4 is:

EI d?y/dx? = Vix — W[x — 4]
= 20x — 60[x — 12]

oy lW—60kips

2

1 - -

i
Vl =20 klpS X T V2 =40 klps

a= 121t b=06ft

=18 ft

Figure 4.4
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Integrating this expression with respect to x for the terms outside the brack-
ets and with respect to (x — a) for the term in brackets gives an expression for
the slope of the elastic curve of:

EI dy/dx = 10x% — 30[x — 12]* + C,
where:
C, = constant of integration

Integrating this expression gives an expression for the deflection of the elas-
tic curve of:

Ely = 10x3/3 = 10[x — 12P + C;x + C,
where:

C, = constant of integration

At
x=0,y=
and
C, =0
At
x=18ft,y =0
and:

0=10x18%/3-10(18 —-12) +C, x 18

then

C, =— 960 kip ft?

Hence, the deflection of the elastic curve is given by the expression:

Ely = 10x3/3 = 10[x — 12]® — 960x
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The maximum deflection occurs where the slope of the elastic curve is
zero and:

EI dy/dx = 0
= 10x% — 960
and:
x = 9.80 ft

The maximum deflection is given by:

Ely,,. = 10Xx9.83/3-960x%9.8
—6273

= —6273 X 144/(7 X 10°)
—-0.129 ft

—1.55in... downward

ymax

(b) Virtual work method

The virtual work, or unit-load, method may be used to obtain the displace-
ment of a single point in a beam. The principle may be defined as follows: if a
structure in equilibrium under a system of applied forces is subjected to a sys-
tem of displacements compatible with the external restraints and the geometry
of the structure, the total work done by the applied forces during these exter-
nal displacements equals the work done by the internal forces, corresponding
to the applied forces, during the internal deformations, corresponding to the
external displacements. The expression “virtual work” signifies that the work
done is the product of a real loading system and imaginary displacements or
an imaginary loading system and real displacements.

To the cantilever shown in Figure 4.5 (i), the external loads W are gradually
applied. This results in the deflection of any point 3 a distance 6, while each
load moves a distance vy in its line of action. The loading produces a bending
moment M and a relative rotation 86 to the ends of the element shown at (ii).
From the principle of conservation of energy and ignoring the effects of axial
and shear forces, the external work done during the application of the loads

must equal the internal energy stored in the beam.
Then:

STWy2 = ST Ms0/2... (1)

To the unloaded structure a unit virtual load is applied at 3 in the direction
of 6 as shown at (iii). This results in a bending moment #z in the element.
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@

(i)

(iii)

@iv)

Figure 4.5

Now, while the virtual load is still in position, the real loads W are gradually
applied to the structure. Again equating external work and internal energy:

DWyl2 +1X 6 =2 Mb0/2 + X mdh... (2)
Subtracting expression (1) from expression (2):
1X6=>3mbl

= > mbx/R
= > mdx/EI
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In the limit:
1X6 = medx/EI

If it becomes necessary to include the deflection due to shear, the expression
becomes:

1X6= medx/EI + sz/dx/uAG

where M and V are the bending moment and shear force at any section
due to the applied loads, and I, G, and A are the second moment of area,
the rigidity modulus, and the area of the section; p is the form factor; and m
and v are the bending moment and shear force at any section due to the unit
virtual load.

In a similar manner, the rotation 6 of any point 3 of the structure may be
obtained by applying a unit virtual bending moment at 3 in the direction of 6,
as shown at (iv).

Then:

1x0= [Mmdx/El + [Vodx/pAG

where m and v are the bending moment and shear force at any section due to
the unit virtual moment.

For a beam, moments produced by the virtual load or moment are con-
sidered positive, and moments produced by the applied loads, which are of
opposite sense, are considered negative. A positive value for the displacement
indicates that the displacement is in the same direction as the virtual force or
moment.

The deflection and slope at the free end of the cantilever shown in Figure 4.6
may be obtained by the virtual work method. Taking the origin of coordinates
at point 3, the expression for the bending moment due to the applied load is
obtained from Figure 4.6 (ii) as:

M = Wx

A unit vertical load is applied at the end of the cantilever and the function m
derived from (iii) as:

m=[—a+x
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X

X

®

!
(iii)

Figure 4.6

1
1 3 Zl

(i)

Wa

1
(iv)

The vertical deflection at 2 is given by:

1X6 = fO“Mm dx/EI
= Wj:x(l—cH—x) dx/EI

= W[x2l/2 — x2a/2 + x3/3J4 /EI
= W(a2l/2 — a312 + a3/13)/EI

= Wa?(3] — a)/6EI ... downward

To determine the slope at the end of the cantilever, a unit clockwise rotation
is applied at the end of the cantilever and the function m derived from (iv) as:

m=1
The slope at 2 is given by:
10 = [ Mmdx/EI
0

= Wfaxdx/El
0
= Wa2/2EI ... clockwise

Example 4.2

For the simply supported beam shown in Figure 4.7, determine the deflec-
tion at the location of the applied load. The flexural rigidity of the beam is

EI = 7 x 10 kip in?.
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=18 ft

» a=121ft L b=06ft o
< - -
W = 60 kips
X X
| . 3 l -2
[
V, = 20 kips V, = 40 kips
M 240 kip-ft
®
1 kip
X X
| -2
[ [
1/3 2/3

4 kip-ft

(i)

Figure 4.7

Solution

Taking the origin of coordinates at end 1 and end 2 in turn, the expressions for
the bending moment due to the applied load are obtained from Figure 4.7(i) as:

M = le
= 20x
and:
M = sz
= 40x

A unit vertical load is applied at 3 and the corresponding functions for m
derived from (ii) as:

m = x/3
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and:
m = 2x/3

The vertical deflection at 3 is given by:

a b
1X6 = fo Mmdx/EI + fo Mmdx/EI

b
=20 fo “x2 dx/3EI + 80 fo x2 dx/3EI

— 20[x3/9EI12 + 80[x3/9EITS
= 3840/EI + 1920/EI

= 5760 X 144/(7 X 106)
=0.118 ft

=1.422 in... downward

As an alternative to evaluating the integrals in the virtual work method,
advantage may be taken of the volume integration method. For a straight pris-
matic member:

f Mmdx/EI = f Mmdx X 1/EI.

The function #1 is always either constant along the length of the member or
varies linearly. The function M may vary linearly for real concentrated loads
or parabolically for real distributed loads. Thus, [Mmdx may be regarded
as the volume of a solid with a cross-section defined by the function M and
a height defined by the function 7. The volume of this solid is given by the
area of cross-section multiplied by the height of the solid at the centroid of the
cross-section.

Commonly occurring values of [Mmdx are provided in Part 2, Chapter 2,
Table 2.3 for various types of functions M and .

Example 4.3

Determine the slope at the free end of the cantilever shown in Figure 4.8 using
the volume integration method.

Solution

The functions M and m derived from Figure 4.8 (i) and (ii) and the solid
defined by these functions are shown at (iii). The slope at the end of the canti-
lever is given by the volume of this solid X 1/EI, which is:

0 =WaXal2d X1X1/EI
= Wa2/2EI
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@

(i)

(iii)
Figure 4.8

Alternatively, the value of [Mmdx/EI may be obtained directly from Part 2,
Table 2.3, and is given by:

0 =ax1XWal2EI
= Wa?/2EI

4.2 Deflection of rigid frames

(a) Virtual work method

The virtual work method may be applied to rigid frames to obtain the dis-
placement at a specific point on the frame. Integration is carried out over
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all members of the frame and the values summed to provide the required
displacement.

To determine the horizontal deflection of node 2 for the frame shown in
Figure 4.9 (i), use is made of the bending moment diagrams produced by the
applied load and by a unit virtual horizontal load at node 2. These are shown
at (ii) and (iv). Member 34 has zero bending moment under both loading cases.

o ' ' (ii)

(iii) (iv)

Figure 4.9

With the origin of coordinates as indicated, expressions for the bending
moment produced by the applied load are obtained from Figure 4.9 (ii) as:

M = Wx ... member 12
and:
M = Whx/l ... member 23

A unit horizontal load is applied at node 2, as shown at (iii), and the corre-
sponding functions for # derived from (iv) as:

m = x ... member 12
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and:

m = bhx/l ... member 23

The horizontal deflection at node 2 is obtained by summing the values for
members 12 and 23 to give:

h !
1X6 = fo Mm dx/EI + fOMm dx/EI
b /
=W j;) x2 dx/EI + Wj;) b2x2 dx/I2EI

= W[x3/3EI}; + W[h*x3/312EI},
— W(h3/3EI + h2I/3EI)

Example 4.4

Determine the horizontal deflection of node 2 for the frame shown in Figure
4.10. The flexural rigidity of the members is EI = 30 X 10° kip in?.

w = 5 kips/ft 200 Kio-ft A
ip-
W=20kips Y4 EEadibEid -
2 3 -
X
=1
=
Il
=
Ix
1 4 H; = 20 kips
77577 o -
1=10ft | T
) ) (if) V, = 45 kips
- f
1 kip lo‘klp_fiv
2 3 \ -
X
X
1 4 1 kip<_ 1

775777 ;%
T 1 kip
(i) @iv)

Figure 4.10
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Solution

The bending moments produced in the members of the frame by the applied
loads shown in Figure 4.10 (i) are obtained from (ii). With the origin of coor-
dinates as indicated, the expressions for the moments are:

M = H,x ... member 12
= 20x

and:

M = V,x — wx?/2 ... member 23
= 45x — 5x?/2

A unit horizontal load is applied at node 2, as shown at (iii), and the corre-
sponding functions for 7 derived from (iv) as:

m = x ... member 12
and:

m = hx/l ... member 23
=x

No moments are produced in member 34, and the horizontal deflection at
node 2 is obtained by summing the values for members 12 and 23 to give:

1x6 = fO'”Mmdx/EHfO’Mmdx/EI

_ 10 0., 5
20 fo x2dx/EI + 5 fo (9x2 — x3/2)dx/EI
= 20[x3/3EINL0 + S[3x3/EI — x*/8EI1}°

= 15,417 X 144/(30 X 106)

= 0.074 ft
= 0.89 in

(b) Conjugate beam method

The conjugate beam method may be used to obtain an expression for the entire
elastic curve over the whole of a rigid frame or beam.

The beam shown in Figure 4.11 (i) is subjected to a distributed applied load
of intensity w, positive when acting upward as indicated. The shear force at
any section is given by the area under the load intensity curve as:

Q=fu/dx
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Real beam Conjugate beam

fy

Loadmg11131?11111ff¢ffff¢112 ITMHTH W

@ )

Shear force
diagram ’ B B ’

(i) (vi)

Bending moment

diagram +

(iii)

(vii)

Elastic curve

Figure 4.11

with shear force upward on the left of a section regarded as positive. The shear
force diagram is shown at (ii) and is negative at end 1 and positive at end 2.

The bending moment at any section is given by the area under the shear
force curve as:

szde

= ffwas

with bending moment producing tension in the bottom fiber regarded as
positive. The bending moment diagram is shown at (iii) and is negative as
indicated.

In addition, the curvature of the elastic curve at any section is given by:

d?y/dx? = df/dx
= 1/R
= M/EI
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and the slope and deflection at any section are given by:

dy/dx = 6
= f Mdx/EI
y=294

:f9dx
:ffde/El

with x positive to the right and y positive upward. The elastic curve is shown
at (iv) with deflections positive (i.e., upward) as indicated and with a positive
slope (i.e., counterclockwise rotation) at end 1 and a negative slope (i.e., clock-
wise rotation) at end 2.

An analogous beam known as the conjugate beam and of the same length as
the real beam, as shown in Figure 4.11 (v), is subjected to an applied loading
of intensity:

w' = M/EI

where M is the bending moment in the actual beam at any section and [ M dx/
EI is known as the elastic load, W’. The elastic load acts in a positive direction
(upward) when the bending moment in the real beam is positive. The loading
diagram is shown at (v) and is negative as indicated.

Then, the shear at any section in the conjugate beam is given by:

o= fw'dx
= [ Mdx/ET
=40

where 6 is the slope at the corresponding section in the real beam. The shear
force diagram is shown at (vi) and is positive at end 1 and negative at end 2.
Hence, as shown at (iv), the slope of the elastic curve is positive at end 1 and
negative at end 2.

The bending moment at any section in the conjugate beam is given by:

where ¢ is the deflection at the corresponding section in the real beam. The
bending moment diagram is shown at (vii) and is positive as indicated. Hence,
as shown at (iv), the deflection of the elastic curve is positive.
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Thus, the slope and deflection at any section in the real beam are given by
the shear and bending moment at the corresponding section in the conjugate
beam, and the elastic curve of the real beam is given by the bending moment
diagram of the conjugate beam. The end slope and end deflection of the real
beam are given by the end reaction and end moment of the conjugate beam.
The maximum deflection in the real beam occurs at the position of zero shear
in the conjugate beam.

In the case of frames, the elastic load applied to the conjugate frame is posi-
tive (i.e., acts vertically upward) when the outside fiber of the real frame is in
compression. Then, the displacement of the real frame at any section is perpen-
dicular to the lever arm used to determine the moment in the conjugate frame
and is outward when a positive bending moment occurs at the corresponding
section of the conjugate frame.

The restraints of the conjugate structure must be consistent with the dis-
placements of the real structure. Details of the necessary restraints in the con-
jugate structure are provided in Part 2, Chapter 4, Table 4.1.

At a simple end support in a real structure, there is a rotation but no deflec-
tion. Thus, the corresponding restraints in the conjugate structure must be a
shear force and a zero moment, which are produced by a simple end support
in the conjugate structure.

At a fixed end in a real structure, there is neither a rotation nor a deflection.
Thus, there must be no restraint at the corresponding point in the conjugate
structure, which must be a free end.

At a free end in a real structure, there is both a rotation and a deflection.
Thus, the corresponding restraints in the conjugate structure are a shear force
and a bending moment, which are produced at a fixed end.

At an interior support in a real structure, there is no deflection and a smooth
change in slope. Thus, there can be no moment and no reaction at the cor-
responding point in the conjugate structure, which must be an unsupported
hinge.

At an interior hinge in a real structure, there is a deflection and an
abrupt change of slope. Thus, the corresponding restraints in the conjugate
structure are a moment and a reaction, which are produced by an interior
support.

Example 4.5

Determine the rotation of nodes 1 and 4 and the horizontal deflection of node
2 for the frame shown in Figure 4.12. The flexural rigidity of the members is
EI = 30 X 10° kip in?.
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Real frame:
Loads + reactions

5 kips/ft

20 kips HZHHHHHW

Conjugate frame:
loads + reactions

Real frame:
Bending moments

10 ft

vi)

62.5 Kip-ft
&
NS

o

(vii)

Figure 4.12

@) 10 ft
9,
1 4
5 kips
45 kips
10 ft 200
20 kips kip-ft
9,
20 kips 20 kips
20 kips
(i) (iv)
5 kips/ft
9,
1
25 kips
25 kips
(iii) v)
Solution

It is convenient to utilize the principle of superposition and consider the dis-
tributed load and the lateral load separately.

The lateral load is applied to the frame at (ii), which results in the bending
moment diagram, drawn on the compression side of the members, shown at (iv).
The elastic loads are applied to the conjugate frame at (vi) and are given by:

W =W,
= 0.5 X 10 X 200/EI
= 1000/EI ... upward
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Since the vertical deflection at 4 is zero, the bending moment at 4’ about
axis 3’4’ is zero. Hence, the rotation at 1 is obtained by taking moments in the
conjugate frame about axis 3’4’ and is given by:

6, = —(20/3 X W} +10 X W/)/10
= —1667/EI ... clockwise

The rotation at 4 is obtained by resolving forces vertically in the conjugate
frame and is given by:

Oy =-W5 —W; -6
= —333/EI ... clockwise

The horizontal deflection at 2 is given by the bending moment at 2’ in the
conjugate frame about axis 2'3’, which is:

6, = =106, —10/3 X W}
13,336/EI ... to the right

The distributed load is applied to the frame at (iii), which results in the bend-
ing moment diagram, drawn on the compression side of the members, shown
at (v). The elastic load is applied to the conjugate frame at (vii) and is given by:

W, =0.667 X 10 X 62.5/EI
= 416.9/EI ... upward

Since the vertical deflection at 4 is zero, the bending moment at 4’ about
axis 3’4’ is zero. Hence, the rotation at 1 is obtained by taking moments in the
conjugate frame about axis 3’4" and is given by:

6, = —(10/2 X W%)/10
= —208.4/EI ... clockwise

The rotation at 4 is obtained by resolving forces vertically in the conjugate
frame and is given by:

= —208.4/EI ... clockwise

The horizontal deflection at 2 is given by the bending moment in the conju-
gate frame about axis 2'3’, which is:

= 2084/EI ... to the right
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The total horizontal deflection at 2 is obtained by summing the individual
values calculated for the lateral load and the distributed load and is given by:

6, = 13,336/EI + 2084/EI
= 15420 X 144/(30 X 10°)
=0.074 ft
= 0.89 in ... to the right

The total rotation at 1 is obtained by summing the individual values for the
lateral load and the distributed load and is given by:

0, = —1667/EI — 208.4/EI
=—1875.4 X 144/(30 X 10°)
=—0.0090 rad ... clockwise

The total rotation at 4 is obtained by summing the individual values for the
lateral load and the distributed load and is given by:

6, =—333/EI — 208.4/EI
=—541.4 X 144/(30 X 10°)
=—0.00260 rad ... clockwise

4.3 Deflection of pin-jointed frames

The virtual work method may be applied to pin-jointed frames to obtain the
displacement at a node on the frame.

To the pin-jointed frame shown in Figure 4.13 (i), the external loads W
are gradually applied. This results in the deflection of any node 3 a distance 6,

3
Forces P

Forces u

] (ii)

Figure 4.13
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while each load moves a distance y in its line of action. The loading produces
an internal force P and an extension 8/ in any member of the frame. The exter-
nal work done during the application of the loads must equal the internal
energy stored in the structure, from the principle of conservation of energy.
Then:

S Wyl2 =3Po2 ... (1)

To the unloaded structure a unit virtual load is applied at node 3 in the
direction of 8, as shown in Figure 4.13 (ii). This results in a force # in any
member.

Now, while the virtual load is still in position, the real loads W are gradually
applied to the structure. Again equating external work and internal energy:

SWy2+1X6=XPol2+>ulbl ... (2)
Subtracting expression (1) from expression (2):

1X6§=>u?dl
= > Pul/AE

where P is the internal force in a member due to the applied loads and I, A and
E are its length, area, and modulus of elasticity, and # is the internal force in a
member due to the unit virtual load.

For a pin-jointed frame, tensile forces are considered positive and compres-
sive forces negative. Increase in the length of a member is considered positive
and decrease in length negative. The unit virtual load is applied to the frame in
the anticipated direction of the deflection. If the assumed direction is correct,
the deflection obtained will have a positive value. The deflection obtained will
be negative when the unit virtual load has been applied in the opposite direc-
tion to the actual deflection.

Example 4.6

Determine the vertical deflection of node 5 for the pin-jointed frame shown
in Figure 4.14. All members of the frame have a constant value for AE of
100,000 kips.
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10 ft

15 kips

A

10 kips 10 kips 10 kips
10 ft 10 ft 10 ft 10 ft
Figure 4.14

Solution

Because of the symmetry in the structure and loading, only half of the mem-
bers need be considered. The member forces P due to the applied loads and u
due to the unit virtual load are tabulated in Table 4.1.

Table 4.1 Determination of forces and displacements in

Example 4.6
Member P ) u Pul
12 —-21.21 14.14 —-0.707 212
23 10.00 10.00 0 0
13 15.00 10.00 0.500 75
45 0.00 10.00 0 0
24 —20.00 10.00 —1.000 200
25 7.07 14.14 0.707 71
35 15.00 10.00 0.500 75
Total 633

The vertical deflection is given by:

6s = > Pul/AE
=2 X633x%x12/100,000
= 0.15 in downward

Supplementary problems

S4.1 Determine the rotations at nodes 1 and 2 and the deflection at node 3 of
the uniform beam shown in Figure S4.1.
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10 kips/ft
CAI Y 4
22 ’ %
, 5 fi , 5 fi , 5 fi ,
Figure $4.1

S4.2 Determine the deflection at node 2 of the uniform beam shown in
Figure $4.2.

10 kips/ft
' 2RI 5
Z 2
, 6 fit , 6 fi ,
Figure $4.2

S$4.3 Determine the rotation at node 1 and the deflection at node 2 of the uni-
form beam shown in Figure $4.3.

, 5 ft , 5 ft ,
I T 1
i 40 kips
20 kips 2 ¥ p 4 -
3
5 ft
5 I
5t
1
7775777 +
Figure S4.3

$4.4 Determine the equation of the elastic curve for the uniform beam shown in
Figure S4.4. Determine the location of the maximum deflection in span 12 and
the magnitude of the maximum deflection. Determine the deflection at node 3.

10 kips

Y
1 2 3

| 12 ft , 6 ft .
I T 1

Figure S4.4
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S$4.5 Determine the deflection at node 3 of the uniform beam shown in
Figure S4.5.

W = 60 kips
4
w = 2 kips/ft
AR EEREEAE AR AR EEEEEEAEE )
Vv, =58 kips* - 3 V, = 38 kips
6 fi , 12 fit
[ =18 ft
Figure $4.5

$4.6 Determine the deflection at node 3 of the pin-jointed truss shown in
Figure S4.6.

39

6 ft

6 ft

Figure 4.6

$4.7 Determine the deflection at node 4 of the pin-jointed truss shown in
Figure S4.7.

10
&
v
&
2
Iz I3 I4 I5 IG 7
10 kips 10 kips 10 kips 10 kips 10 kips
. 10 ft 10 ft 10 ft 10 ft 10 ft ) 10 ft

Figure S4.7
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$4.8 Determine the deflection at node 2 of the pin-jointed truss shown in
Figure S4.8.

12 kips 12 kips
4 5 6 7 8
5ft
1 2 3
| 5ft ) 5ft ) 5ft ) 5ft |
I T T T 1
Figure $S4.8

$4.9 Determine the deflection at node 3 of the pin-jointed truss shown in
Figure 54.9.

4 kips

6 ft 6 ft 6 ft

Figure $4.9
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$4.10 Determine the deflection at node 2 of the pin-jointed truss shown in
Figure $4.10.

2 kips

Figure $4.10
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5 Influence lines

Notation

cross-sectional area of a member

modulus of elasticity

second moment of area of a member

length of a member

bending moment in a member due to the applied loads
axial force in a member due to the applied loads
shear force in a member due to the applied loads
vertical reaction

applied load

deflection

rotation

%mg<@ﬁ§“~m>

5.1 Introduction

J Roof truss

Trolley

\V Crane gantry girder w

klﬁl—»

ottt

® (i)

Figure 5.1

The maximum design force in a member of a structure subjected to a system
of stationary loads is readily determined. The static loads are applied to
the structure as shown in Figure 5.1 (i) and the member forces calculated.
However, a member such as a bridge girder or a crane gantry girder are sub-
jected to moving loads, and the maximum design force in the member depends
on the location of the moving load. As shown in Figure 5.1 (ii), this involves
the trial and error positioning of the crane loads on the girder to determine
the most critical location. Alternatively, an influence line may be utilized to
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determine the location of the moving load that produces the maximum design
force in a member.

5.2 Construction of influence lines

An influence line for a member is a graph representing the variation in shear,
moment or force in the member due to a unit load traversing a structure. The
construction of an influence line may be obtained by the application of Miiller-
Breslau’s principle.

() (iii)

Figure 5.2

In accordance with Miiller-Breslau’s principle, the influence line for any con-
straint in a structure is the elastic curve produced by the corresponding unit
virtual displacement applied at the point of application of the restraint. The
term “displacement” is used in its general sense, and the displacement corre-
sponding to a moment is a rotation and to a force is a linear deflection. The
displacement is applied in the same direction as the restraint. To obtain the
influence line for the support reaction at end 1 of the simply supported beam
shown in Figure 5.2 (i), a unit virtual displacement is applied in the line of
action of V. This results in the elastic curve shown at (ii). A unit load is
applied to the beam at any point 3, as shown at (iii), and the unit displacement
applied to end 1. The displacement produced at point 3 is 83, as shown at (iv).
Then, applying the virtual work principle:

ViX(=1)=(W=1)Xé
Vi =4

and the elastic curve is the influence line for V;.
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(i)

(98]
—
(3]

(iii)

abll

Figure 5.3

Beam

Influence line
for Q4

Influence line
for M,

Similarly, as shown in Figure 5.3 (ii), the influence line for shear at point 3
is obtained by cutting the beam at 3 and displacing the cut ends a unit distance
apart. The influence line for bending moment at 3 is produced by cutting the
beam at 3 and imposing a unit virtual rotation, as shown at (iii).

5.3 Maximum effects

(a) Single concentrated load

A concentrated load W produces the maximum positive shear at point 3 in the
beam shown in Figure 5.3 (i) when the load is located just to the right of 3.

The shear is given by:

Omax = W X influence line ordinate to the right of point 3

= Wb/l
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As shown in Figure 5.3 (ii), the maximum negative shear at point 3 occurs
when the load is located just to the left of 3 and is given by:

Ommin = W X influence line ordinate to the left of point 3
= Wa/l

As shown in Figure 5.3 (iii), the maximum moment at point 3 occurs when
the load is located at 3 and is given by:

M,... = W X influence line ordinate at point 3
= Wabll

Example 5.1

Determine the maximum shear force and maximum moment at point 3 in the sim-
ply supported beam shown in Figure 5.4 due to a concentrated load of 10 kips.

a=10ft b =30 ft
R e —
| lW: 10 kips
1 T 3 Tz
Figure 5.4

Solution

The influence line for shear is shown in Figure 5.3 (ii), and the maximum shear
at point 3 occurs when the 10 kip load is immediately to the right of 3. The
maximum shear is;

O = Wb/l
=10 X 30/40
= 7.5 kips

The influence line for moment is shown in Figure 5.3 (iii), and the maxi-
mum moment at point 3 occurs when the 10 kip load is at 3. The maximum
moment is;

M = Wabl/l
=10 X 10 X 30/40
= 75 kip-ft
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(b) Uniformly distributed load

c

<~

"y {3+¢+++

b/lI\‘
(ii)

}ai

T
1? 3 ?2

b/lI
(iv)

T~

Figure 5.5

A uniformly distributed load w of length ¢ is applied to the beam, as shown in
Figure 5.5(i). This produces the maximum positive shear at point 3 when the
distributed load is located just to the right of 3. As shown in (ii), the shear is
given by;

Opmax = w X area under the influence line

As shown at (iii) and (iv), the maximum negative shear at point 3 is
given by;

Omin = w X area under the influence line

Example 5.2

Determine the maximum shear force at point 3 in the simply supported beam
shown in Figure 5.6 due to a distributed load of 2 kips/ft over a length of 10 ft.
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Solution
| a=10ft | b =301t - -
[ [ | w = 2 Kips/ft
11122211
G 1 T 3 fz

y c=101t
ALLALLAL
o 1 1

(iii) } 025

Figure 5.6

The influence line for shear is shown in Figure 5.6 (iii), and the maximum
shear at point 3 occurs when the distributed load is immediately to the right of
3, as shown at (ii). The maximum shear is;

Omax = w X area under the influence line
= 2X10(0.75 + 0.5)/2
= 12.5 kips

a

| -l >

0) v B ith
1 TYVYYYYYY distriboted load
3

(ii) r\‘ Influence line
for M5

Figure 5.7

The maximum moment at point 3 is produced when point 3 divides the dis-
tributed load in the same ratio as it divides the span. As shown in Figure 5.7 (i),
this occurs when:

Cl/Cz = a/b
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As shown at (ii), the maximum moment at point 3 is given by:
M.« = w X area under the influence line

Example 5.3

Determine the maximum bending moment at point 3 in the simply supported
beam shown in Figure 5.8 due to a distributed load of 2 kips/ft over a length
of 10ft.

a =101t b =301t

c=10ft

¢ =251t

v =151t

w = 2 kips/ft

) Beam with
1 TITYITITY disributed load
3

7.5 5.63

(i)

Influence line
for M5

K

Figure 5.8

Solution

The maximum moment at point 3 is produced when point 3 divides the dis-
tributed load in the same ratio as it divides the span. As shown in Figure 5.8
(i), this occurs when:

cley, = alb
=10/30

and: ¢ = 2.5t

C = 7.5 ft

As shown at (ii), the maximum moment at point 3 is given by:

M, = w X area under the influence line
= 2[2.5(5.63 + 7.5)/2 + 7.5(5.63 + 7.5)/2]
=2 X10(5.63 +7.5)/2
= 131 kip-ft
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(c) Train of wheel loads

- ={= > o
-
) IT 3 Tz € 6 ¢
2y
(ii) * ‘ ‘ *
1 3 Tz
=2y
(iif) ‘ * ‘ ‘
1 3 Tz
£ ey
TR RN
1 3 Tz
Figure 5.9

A train of wheel loads is applied to the beam, as shown in Figure 5.9 (i). This
produces the maximum positive shear at point 3 when the first load is located
just to the right of 3, as shown in (ii), provided that:

Wlc, > X Wil

where: > W = total weight of the wheel loads
I = span length

The maximum positive shear at point 3 occurs when the second load is
located just to the right of 3, as shown in (iii), provided that:

Wylc, > X Wil

The maximum positive shear at point 3 occurs when the third load is located
just to the right of 3, as shown in (iv), provided that:

Wyles > S Wil

and so on.

Example 5.4

Determine the maximum shear at point 3 in the simply supported beam shown
in Figure 5.10 due to the train of wheel loads indicated.
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Influence lines

5.5ft
Centroid of
&  wheel loads
» B4 o
& 22 =
1=40ft S ce 2
- > 1 T
o o
a=10ft b=30ft N =5 5

®

—_

R
W

[\

28.5 ft

3 ft

Iy

(=4t

c3 =41t

C
(%)

le— 2 Kips
lee— 10 kips

|

4 ft
3 ft
4 ft

le— 10 kips
le— 2 kips

(ii)

X

—0.15

0.75
0.675
0.575

(iii)

/

Figure 5.10
Solution
The ratio of total weight of wheel loads to span length is:

> Wil = 24/40
= 0.6 kips/ft

Placing the first wheel at point 3 gives:

W,/c, = 2/4
= 0.5 <0.6

Placing the second wheel at point 3, as shown in (ii), gives:

WZ/CZ = 10/3
= 3.3--- >0.6, governs

Hence, the maximum shear occurs at point 3 when the second load is
located immediately to the right of 3; the ordinates of the influence line
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diagram at the positions of the wheel loads is shown at (iii). The shear at 3 is
given by:

0; = —2%0.15+10 X 0.75 + 10 X 0.675 + 2 X 0.575
= 15.1 kips

Alternatively, the shear at 3 may be determined by resolving forces vertically.
The support reaction at end 1 is:

V, = 24 X 28.5/40
= 17.1 kips

The shear at 3 is given by:

0O; =171-2
= 15.1 kips

@by T 3 Tz
Figure 5.11

A train of wheel loads is applied to the beam, as shown in Figure 5.11 (i).
This produces the maximum bending moment at a specific point 3 when a
specified load is located at 3, as shown in (ii), such that if the load is moved
to the left of 3, the intensity of loading on section 13 is greater than on section
23, but if it moves to the right of point 3, the intensity of loading on section 23
is greater than on section 13. The first requirement is shown at (ii) and is:

S Wila > > Wilb

where: SWo =W, + W,
W =W, + W,
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The second requirement is shown at (iii) and is:
S Wrlb > W, la

where: YW, = W,
ZWR - WZ +W3 +W4

Example 5.5

Determine the maximum bending moment at point 3 in the simply supported
beam shown in Figure 5.12 due to the train of wheel loads indicated.

B 1= 40 ft N
5.5 ft
a=10ft, b=30ft = b Centroid of
B o - &  wheel loads
g & s &4 o«
& 55 & LEEE
S22 3 w223
1 | | o I
EoEE oy £ oEEE
AR BER
] | s 5
{ b2 e
£ = &
8 8 « <+ o <
& 33 S o
S22 3 Pl
|| Il
— o, o <t
= e R
(i) 1T 3 2
5 28.5 ft R
= !
S 28 &
Z S35 =2
A = = &
1 | I |
EEEE
(iii) IT 3 TZ
P
= 4= =
<+ o <
v (2w
(iv) R =

Figure 5.12
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Solution

Placing the second wheel on the left of point 3, as shown at (i), gives an inten-
sity of loading on section 23 of:

> Welb = (W + W,)/b
= 12/30
= 0.4

and an intensity of loading on section 13 of:

YW la = (W, + W,)la
= 12/10
=1.2
> 0.4

Placing the second wheel on the right of point 3, as shown at (ii), gives an
intensity of loading on section 23 of:

X Wy lb = (W, + W, + W,)/b
= 22/30
= 0.733

and an intensity of loading on section 13 of:

> Wila = (W;)la
= 2/10
=0.2
<0.733

Hence the maximum bending moment occurs at point 3 when the second wheel
load is located at point 3, as shown at (iii). The influence line for bending moment
at 3 is shown at (iv), and the maximum bending moment at 3 is given by:

M; =2X45+10X7.5+10X 6.75 +2 X 5.75
= 163 kip-ft

Alternatively, the bending moment at 3 may be determined by resolving
forces vertically. The support reaction at end 1 is:

V, = 24 X 28.5/40
= 17.1 kips
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The moment at 3 is given by:

M; =171X10—-2X4
= 163 kip-ft

¢ Span

Location of

maximum moment Centroid of wheel loads

* Wi W, ¢W3 ¢ W,
() i
— - Xd Equal | Equal T
-~ |
12 12
[ -l -l
[ i 1
Influence line for
bending moment at
d(l—a)ll r=d
(i)
Figure 5.13

The maximum bending moment produced by a train of wheel loads in a
simply supported beam always occurs under one of the wheels and does
not necessarily occur at midspan. As shown in Figure 5.13 (i), a train of wheel
loads produces the maximum possible bending moment in a simply supported
beam under one of the wheels when the center of the span bisects the distance
between this wheel and the centroid of the train. The maximum moment usu-
ally occurs under one of the wheels adjacent to the centroid of the train. The
influence line for bending moment at the location of the maximum moment is
shown at (ii).

Example 5.6

Determine the maximum possible bending moment in the simply supported
beam shown in Figure 5.14 due to the train of wheel loads indicated.
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5.5ft
Centroid of

&  wheel loads

[ =40ft

W, = 2 kips
W, = 10 kips
W5 = 10 kips

W, = 2 kips

-]

B

. g, g, . €«
& e = & N
= = & - = o
I — i — N — & o
[ [ I [ oo e
3 S =
I
(ii) * * L ¢ ¢
4 ft ! 1.5 ft 4 ft
d="19.25ft

(iii)

Figure 5.14

Solution

Placing the train of wheel loads as indicated in Figure 5.14 (ii) produces the
maximum bending moment under the second wheel load. Hence, the maxi-
mum bending moment occurs under the second wheel load when it is located
at a distance of 0.75 ft left of midspan, as shown at (ii). The influence line for
bending moment at the location of the second wheel load is shown at (iii), and
the maximum bending moment at this location is given by:

M, =2X7.911+10 X 9.986 + 10 X 8.542 + 2 X 6.617
= 214.336 kip-ft

Alternatively, the bending moment may be determined by resolving forces
vertically. The support reaction at end 1 is:

Vi, =24 X19.25/40
= 11.55 kips
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The maximum moment is given by:

M. =11.55%x19.25 2% 4
= 214.338 kip-ft

Because of symmetry in the train of wheel loads, this moment also occurs
under the third wheel load when it is located at a distance of 0.75 ft right of
midspan.

When the second or third wheel load is located at midspan, the moment at
midspan is:

M = 214.00 kip-ft

and this is the maximum bending moment that occurs at midspan.

(d) Envelope of maximum effects

To design a member, it is necessary to determine the maximum bending
moment and shear force that can occur at all sections of the member. Diagrams
indicating maximum values are known as envelope diagrams and are deter-
mined using influence lines at selected points along the member.

Example 5.7

Construct the maximum possible bending moment envelope in the simply sup-
ported beam shown in Figure 5.15 due to a concentrated load of 100 kips.

[ =40 ft

T
¥

W = 100 kips

®

- T

X

960 1000
840 i
640

360

(ii) Y 1 1 1 1
0 4 8 12 16 20 24 28 32 36 40

Figure 5.15
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Table 5.1
x ft  Influence line ordinate Mimax
4 4 X 36/40 = 3.6 360
8 8 X 32/40 = 6.4 640
12 12 X 28/40 = 8.4 840
16 16 X 24/40 = 9.6 960
20 20 X 20/40 = 10.0 1000

Solution

The maximum bending moment occurs at any section when the concentrated
load is located at the section. Values of the moment are calculated in Table 5.1,
and the bending moment envelope is shown in Figure 5.15 (ii).

5.4 Pin-jointed truss

(a) Stringers and cross beams

Wheel
loads
‘) k Train of wheel loads

L Deck — {{{

-—— Stringer —>|
Cross girder

T~ Top chord
Web members
«— Bottom chord — N

Figure 5.16

As moving loads traverse a pin-jointed truss, the loads are transferred to the
truss panel points by a system of stringers and cross beams. This is shown in
Figure 5.16 for a deck bridge with the loads applied to the top chord of the
truss. The moving load is transferred from one panel point to the next as the
load moves across the stringer. Hence, the influence line for axial force in a
member is completed by connecting the influence line ordinates at the panel
points on either side of a panel with a straight line.
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(b) Influence lines for a Warren truss

1/sin 6

(i)

1/sin 6

(iii)

mn/hl
(iv)

Influence line
for P,

Influence line

for P35

Influence line
for Poy

Figure 5.17

Figure 5.17 (i) shows a Warren truss with the loads from the stringers applied
to the bottom panel points. The influence lines for axial force in members 34,
35, and 24 are obtained by taking a section through these three members and
considering the relevant free body diagrams.

The influence line for axial force in web member 34 is obtained by multiply-
ing the influence line for shear force in panel 34 by 1/sin 6 and is shown at (ii).
Positive sense of the influence line indicates tension in member 34. Because of
the effect of the stringers, the influence line between nodes 3 and 5 is obtained
by connecting the ordinates at 3 and 5 with a straight line.

The influence line for axial force in bottom chord member 35 is obtained
by multiplying the influence line for moment at node 4 by 1/bh and is shown at
(iii). The influence line is positive, indicating tension in member 35.
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The influence line for axial force in top chord member 24 is obtained by
multiplying the influence line for moment at node 3 by 1/h.

(c) Influence lines for a Pratt truss

h
()
o
£ e
(i) - P Influence line
i - for Psg
< s
ablhl Influence line
for Ps;

(iii)

Figure 5.18

Figure 5.18 (i) shows a Pratt truss with the loads from the stringers applied
to the bottom panel points. The influence line for axial force in web member
58 is obtained by multiplying the influence line for shear force in panel 58 by
1/sin 6 and is shown at (ii). Positive sense of the influence line indicates tension
in member 58. The influence line for axial force in member 78 is identical in
shape and of opposite sign.

The influence line for axial force in bottom chord member 57 is obtained by
multiplying the influence line for moment at node 8 by 1/h and is shown at (iii).
The influence line is positive, indicating tension in member 57.

The influence line for axial force in top chord member 810 is obtained by
multiplying the influence line for moment at node 7 by 1/h. This influence line
is identical in shape to the influence line for Ps; and of opposite sign.
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(d) Influence lines for a bowstring truss

S@m =1

A

\i

®

(m + q/5)lp
Influence line
for Pgq
q/p

m
(i) -
Y

1/n
_ 4/5
" Influence line

for Pg;q

(iii)

s slr
3s/5r (I Influence line
. for Pqg
(iv) J
s(l — s)llr L (- )5

Figure 5.19

Figure 5.19 (i) shows a bowstring truss with the loads from the string-
ers applied to the bottom panel points. The influence lines for axial force in
members 89, 810, and 79 are obtained by taking a section through these three
members and considering the relevant free body diagrams.

The influence line for axial force in web member 89 is obtained by multiply-
ing the influence line for moment at point 12 by 1/p, where p is the perpen-
dicular from point 12 to the line of action of member 89. The influence line
for Pgg is shown at (ii).
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The influence line for axial force in top chord member 810 is obtained by mul-
tiplying the influence line for moment at node 9 by 1/n, where # is the perpen-

dicular from node 9 to member 810. The influence line for Py is shown at (iii).

The influence line for axial force in bottom chord member 79 is obtained by
multiplying the influence line for moment at node 8 by 1/r, where r is the perpen-

dicular from node 8 to member 79. The influence line for P59 is shown at (iv).

5.5 Three-hinged arch

®

(i)

(iii)

(i)

(V)

12 12

lf4c

ab/l Irl4c

lcos aldc

_____________ —sin a

sin

cosa

—Cos

Figure 5.20

Influence line
for H

Influence line
for M,

Influence line
for P,

Influence line
for Q,

The horizontal thrust at the springings of a three-hinged arch is equal to
the bending moment at the center of a simply supported beam of the same
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length multiplied by 1/c. Hence, the influence line for horizontal thrust is the
influence line for the free bending moment multiplied by 1/c and is shown in
Figure 5.20 (ii).

The influence line for bending moment at point 4 is the influence line for free
bending moment at 4 minus the horizontal thrust multiplied by 7 and is given by:

M, = (M,), — Hr

The influence line is shown at (iii).
The influence line for thrust at point 4 is given by:

P, = Hcosa —V, sina... unit load from 1 to 4
= Hcosa +V, sina... unit load from 4 to 2

The influence line is shown at (iv).
The influence line for shear at point 4 is given by:

Q4 = —Hsina —V, cos ... unit load from 1 to 4
= —Hsina +V, cos ... unit load from 4 to 2

The influence line is shown at (v).

Supplementary problems

$5.1 Construct the influence lines for V, and M, for the beam shown in Figure
$5.1. Determine the maximum value of M, due to a distributed load of 2 kips/
ft over a length of 60 ft.

1 2 5 6 3 4
100 ft 20 ft 100 ft 20 ft 100 ft
Figure S5.1

$5.2 Construct the influence line for V, for the beam shown in Figure S5.2.
Determine the maximum value of V, due to distributed load of 10 kips/ft over
a length of 6 ft.

;

SIS

S5ft S5t 5ft

Y
Y
A
v
A
v

Figure S5.2
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$5.3 Construct the influence line for V, for the beam shown in Figure S5.3.
Determine the maximum value of V4 due to a train of three wheel loads each

of 3 kips at 2 ft on center.

-«— 3 Kips
-+— 3 Kips
-+— 3 Kips

8 ft 4 ft 8 ft

Figure S5.3

$5.4 Figure S5.4 shows a truss with the loads from the stringers applied to the
bottom panel points. Construct the influence line for axial force in member 24.
Determine the maximum value of P,4 due to a concentrated load of 5 kips.

10 ft

10ft  10ft ., 10ft , 10ft
[ I |

Figure S5.4

S$5.5 Figure S5.5 shows a truss with the loads from the stringers applied to the
bottom panel points. Construct the influence line for axial force in member 45.
Determine the maximum value of P45 due to concentrated load of 10 kips.

10

10 ft

10 ft 10 ft 10 ft 10 ft 10 ft 10 ft

Figure S5.5
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$5.6 Figure S5.6 shows a truss with the loads from the stringers applied to the
bottom panel points. Construct the influence line for axial force in member 1718.
Determine the maximum value of P73 due to concentrated load of 20 kips.

14 15 16 17 18

5ft

5 ft

5 ft 5 ft 5 ft 5 ft 5ft 5ft 5 ft 5 ft
B L

Figure S5.6
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6 Space frames

Notation

force

force component along the x-axis
force component along the y-axis

force component along the z-axis

angle in a triangle opposite side F;
horizontal force

length of member

bending moment

bending moment about the x-axis
bending moment about the y-axis
bending moment about the z-axis
axial force in a member

support reaction

vertical force

concentrated live load

pr. distributed dead load

angle of inclination

b3

N2

<mSEEEzETETEmmT

)
> 5

6.1 Introduction

The design of a building is generally accomplished by considering the structure
as an assemblage of planar frames, each of which is designed as an independ-
ent two-dimensional frame. In some instances, however, it is necessary to con-
sider the building as a whole and design it as a three-dimensional structure.

The sign convention shown in Figure 6.1 may be adopted for a three-
dimensional structure acted on by a generalized system of forces. A space
structure is illustrated in Figure 6.2 (i). The plan view of the structure is in the xz
plane, as shown in Figure 6.2 (ii), and the elevation of the structure is in the xy
plane, as shown in Figure 6.2 (iii).

Displacements in a space structure may occur in six directions, a displace-
ment in the x, y, and z directions and a rotation about the x-, y-, and z-axes.
The sign convention for displacements is shown in Figure 6.3 (i). A total of six
displacement components define the restraint conditions at support 1 of the
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Figure 6.1

(i) Structure (ii) Plan (iii) Elevation

Figure 6.2

(i) Displacements (ii) Forces

Figure 6.3

structure shown in Figure 6.2. The arrows indicate the positive directions of
the displacement components, and, using the right-hand screw system, rota-
tions are considered positive when acting clockwise as viewed from the origin.
Similarly, a total of six force components, as shown in Figure 6.3 (ii), define
the support reactions at support 1 of the structure in Figure 6.2.
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6.2 Conditions of equilibrium

For a three-dimensional structure, six conditions of static equilibrium may be
obtained at any point in the structure and at each support. These six equations
of statics are:

SE =0, %F =0, XF =0
SM, =0, XM, =0, _M, =

A three-dimensional structure is externally determinate when six external
restraints are applied to the structure, since these restraints may be determined
by the available six equations of static equilibrium.

The cranked cantilever of Figure 6.4 (i) has an applied load W at the free
end that has the components W,, W), and W, as shown. The magnitude of W
is given by:

W = (W2 + W} + Wz2)>

and the three direction cosines of the applied load are given by:

cosf, =W /W
cos 0, = W, /W
cosf, = W, /W
Y M M
zl Q 74
;I ’/Rzl X 2 Fya '/Fz . 2
xl G Mx4 G 4
fR b
t Wy¢ My4o¢
Myl 3 <_Wx Wy <_Wx
3
A M
(i) Structure (ii) Free-body diagram
Figure 6.4

As shown in Figure 6.4 (i), the cranked cantilever is statically determinate
since six restraints are provided at the fixed end.

Similarly, six member stresses may be determined at a section cut through
the structure, at any point 4, as shown by the free-body diagram shown in
Figure 6.4 (i1).
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Example 6.1

The cranked cantilever shown in Figure 6.4 (i) has an applied load at the free
end with components W, = —10kips, W, = —15kips, and W, = —20kips.
The relevant lengths of the cantilever are [, = 12 feet and L5 = 6 feet.
Determine the magnitude of the reactions at support 1.

Solution

Applying the equilibrium equations, with the origin of the coordinates at sup-
port 1, gives:
Resolving along the x-axis:

R, ,+W,=0
Rxl = _Wx
=10 kips

Resolving along the y-axis:

R, +W, =0
Ry =W,
= 15 kips

Resolving along the z-axis:

R,+W,=0
Rzl = _Wz

= 20 kips
Taking moments about the x-axis:

My + Wl =0

M, = -W,];
—15X6
—90 kip-ft

x1

Taking moments about the y-axis:

M, + Wl + W1, =0
Myl = =Wl =W,
10X 6 —20X12
—180 kip-ft
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Taking moments about the z-axis:

M, + Wyl12 =0
M, = _Wylll
=15X12
= 180 kip-ft

6.3 Pin-jointed space frames

In a pin-jointed three-dimensional space frame with j nodes, including the sup-
ports, 3j equations of equilibrium may be derived, since each node provides
the relationships:

SF, =0, LE=0, XF =0

If the frame has #» members and r external restraints, the number of
unknowns is (# + 7). In a pin-jointed three-dimensional space frame the frame
is statically determinate when:

(m+7r)=3j
The frame is indeterminate when:

(m+7r)>3j

Example 6.2

The pin-jointed space frame shown in Figure 6.5 consists of nine members. The
supports consist of a fixed pin at node 1, providing three restraints as shown,
and rollers at nodes 2, 3, and 4, providing only vertical restraint. Determine if
the structure is statically determinate.

Solution

The total number of external restraints is:

r=3+3X%X1
=6

Hence, the structure is stable and determinate externally.
The total number of members is:

n=9
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Figure 6.5

The total number of nodes is

j=3
m+r)=9+6
=15
3j=3X5
=15
Hence:
(m+7r)=35 ..

and the structure is statically determinate.

6.4 Member forces

The member forces in a pin-jointed space frame may be obtained by resolu-
tion of forces at the nodes. Figure 6.6 shows a total of i members, 01, 02 ... 0:
with a common node 0. The force in member 0: is Py;, and the three direction
cosines of member 0i are cosf.,, cosfy;, and cosb,;. The force components of
member 07 along the three coordinate axes are:

Py = Ly cosby,
Pin = Py coseym

Py = PBycosby,
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Figure 6.6

The length of member 0i is [y, and the projections of member 0i along the
three coordinate axes are:

xo; = lo;icosty;
Yoi = loi C059y0i
zg; = lpicosty,

Assuming that no external force is applied at node 0, resolving along the
three coordinate axes gives:

ZPin :0
ZPin =0
and

Poilly; = Pyoilxo; = Pin/in = P;lzyi

Example 6.3

The pin-jointed space frame shown in Figure 6.7 consists of three members.
The supports consist of fixed pins at nodes 1, 2, and 3, each providing three
restraints as shown. Determine the member forces produced by the 100 kip
vertical load applied at node 4.

Solution
The total number of external restraints is:

r=3X3
=9
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/ Wy4 = —100 kips

4 (40, 20, 0)

1(0, 0, 10)

s

z1

R

Figure 6.7

Hence, the structure is stable.
The total number of members is:

n=3
The total number of nodes is:
j=4
m+r)=3+9
=12
3j=3%x4
=12
Hence:

(n +r) = 3j ... the structure is statically determinate

And the structure is statically determinate.
The lengths of the members are:

ha = (xfy + 3y +21,)°
= (402 + 202 + 102)05
=45.83 ft

Ly = 45.83 ft

Ly = (63, + 34 +23,)
= (402 + 202 + 02)0.5
= 44.72 ft
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The direction cosines are:

cos b1y = X14/liy

= 40/45.83

= 0.873
cosf, = yia/ly

= 20/45.83

= 0.436
€080,y = z14/hy
—10/45.83
—0.218
€08 0,34 = X34/l

= 40/44.72

= 0.894
cos b3y = y34/l3y

= —20/44.72
—0.447
€08 034 = z34/L3

= 0/44.72

=0

Because of the symmetry of the structure and the loading, the forces in mem-
bers 14 and 24 are identical. Hence:

Py =Py
Resolving along the x-axis at node 4 gives:

2Py4 + B3y =0
2P, cos0,4 + Pyycos0,5, =0
1.746P, +0.894P;, =0

Resolving along the y-axis at node 4 gives:

2Py + Pyy = —Wyy
2P, 080,14 + Pyycosb 3y = —Wy
0.872P,, — 0.447P;, = 100 kips

Hence:

P;, = —111.86 kips ... tension
P4, = +57.21 kips ... compression
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Supplementary problems

$6.1 The cranked cantilever shown in Figure S6.1 has a load of 100 kips
applied at the free end. Determine the magnitude of the reactions at support 1.

10’

Figure S6.1

$6.2 The pin-jointed space frame shown in Figure S6.2 consists of three mem-
bers. The supports consist of fixed pins at nodes 1, 2, and 3, each providing
three restraints as shown. Determine the member forces produced by the 100
kip vertical load applied at node 4.

2(0,0,6)

R22

4(8,—10,0)

Ry *%
1(0, —10,0)

R / ¢ —100 kips

zl

Figure $6.2
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$6.3 The pin-jointed space frame shown in Figure S6.3 consists of three mem-
bers. The supports consist of fixed pins at nodes 1, 2, and 3, each providing
three restraints. Determine the member forces produced by the 100 kip vertical
load applied at node 4.

4 (20, 10, 0)
¢ —100 kips

2(0,0,-5)

3(10,0,0)

1(0,0,5)

Figure $6.3

$6.4 The pin-jointed space frame shown in Figure S6.4 consists of three mem-
bers. The supports consist of fixed pins at nodes 1, 2, and 3, each providing
three restraints. Determine the member forces produced by the 100 kip vertical
load applied at node 4.

2(0,0, —5)

4 (10,0, 0)

1(0,0,5)

3(0, —10,0)

Figure S6.4



Answers to supplementary
problems part 1

Chapter 1
$1.1  V; = 14kips
H; = 10kips
M; = 100kip-ft
V4 = 6kips
H, = Okips
§1.2  V; = -4.8kips ... downward

$1.3

S1.4

S1.5

S1.6

V, = 28.8kips ... upward
M, = 480kip-ft ... producing tension in the top fiber of the girder

Vi = Skips
H; = Skips
Mj3, = 100kip-ft ... producing tension in the top fiber of the member
V, = Skips
H,; = Skips
Vi = 25kips
H; = 25kips
V, = 75kips
H, = 25kips

P53 = 35.33kips ... tension
Py3 = 79.04kips ... compression

Vl = 10klpS
H1 = 10klpS
V4 = 10klpS
H, = Okips

Pi3 = 14.14Kkips ... tension

Vi = 11.67kips

H; = 10kips
V, = 8.33kips
H,; = Okips

M3, = 166.6kips ... producing tension in the bottom fiber of the member
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$1.7  V; = 30kips

H; = 10kips
Vs = 50kips
Hg = Okips
$1.8 V; = 10kips
H; = 10kips
V3 = 10kips
H; = 10kips
P, = 14.14kips ... compression

P,3 = 10kips ... compression

$1.9  V; = Okips
H; = 10.5kips
M, = 147 kip-ft

$1.10 V; = 4kips
H; = Okips
M, = 24kip-ft
P34 = 7.2kips ... tension
P,4 = 6.0kips ... compression

Chapter 2

2.1 V; = 2.24kips
H,; = 3.57kips
Vs = 4.92kips

P34 = 5.37kips ... compression
P33 = 5.0kips ... tension
P53 = 4.0Kkips ... tension

$2.2 P45 = 32kips ... tension
P41 = 3.2kips ... compression
P1o11 = 30.93kips ... compression

$2.3  P,3 = 17.78kips ... tension
P,7 = 21.89kips ... tension
Pg7 = 33.33kips ... compression

$2.4 Py, = 12kips ... tension
P14 = Oklps
Pis = 16.97kips ... compression
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S2.5

$2.6

S2.7

§2.8

§2.9

$2.10

P45 = OklpS
Ps¢ = 12kips ... compression
P25 = OklpS
P26 = OklpS

P, = 9kips ... tension

Pis = 10.82kips ... compression
P,3 = 6kips ... tension

Pss = 9.02kips ... compression
P,s = 3.35kips ... compression
Pys = 3.35kips ... tension

Py, = Skips ... tension

Pi14 = 30Kkips ... compression
Pi1p = 7.07kips ... compression
P,; = 5kips ... tension

P39 = 35.35kips ... tension
P315s = 10Kkips ... compression
Pio14 = 42.43kips ... tension
Pi415 = 30Kkips ... compression

P,3 = 6.67Kkips ... tension

P,7 = 2.10Kkips ... compression
P37 = Okips

P-g = 6.67Kkips ... compression
Ps7; = 6.72Kkips ... compression

Pi, = 3.35kips ... tension

P14 = 5.41kips ... compression
P4 = 1.12Kkips ... compression
P4s = 3.60kips ... compression
P,5s = 4kips ... tension

P,3 = 13.34kips ... tension

Pys = 2.5kips ... compression
P,5 = 3kips ... tension

Pg7; = 16.77kips ... compression
P37 = OklpS

P49 = Oklps

Pso = 28.28kips ... compression
Pgo = 22.36kips ... compression
P5g = 20kips ... compression
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Chapter 3
$3.1 1) Determinate
ii) Indeterminate
iii) Unstable

iv) Indeterminate

(
(
(
(

$3.2 (i) Indeterminate
(ii) Indeterminate
(iii) Indeterminate
(iv) Determinate
(v) Determinate
$3.3

i) Indeterminate
ii) Unstable

ii1) Determinate
iv) Indeterminate

(
(
(
(

S$3.4  Support reactions:
Vi = 73.03kips
H, = —70.71kips
V4 = 77.68kips

Shears:

Q51 = 73.03kips
Q23 = 2.321(11)8
Q32 = 2.321(11)8
Q34 = 2.321(11)8
Q43 = —77.68 klpS

Moments:

M, = 292.12kip-ft ... compression in top fiber
M;, = 301.40kip-ft ... compression in top fiber
M = 301.67kip-ft ... at x = 8.23 ft

§$3.5  Support reactions:

Vi = Okips

H, = Okips

V, = 100kips

V, = Okips
Shears:

Q21 = -50 klpS

Q23 =50 klpS

Q3 = Okips
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$3.6

$3.7

$3.8

O34 = Okips

Q43 = Okips
Moments:

M21 = 125klp'ft eee

M32 = Oklp-ft

M34 = Oklp-ft
Support reactions:

V, = 30kips

H; = Okips

M; = 180kip-ft

V3 = 30kips
Shears:

0,1 = 30kips

Q23 =30 klpS

O3, = —30kips
Moments:

M12 = 180k1p"ft .

M21 = Oklp-ft
M32 = Oklp-ft

M, = 4Skip-ft ...

Support reactions:

Vi = 20kips
H; = —20kips
M, = Okip-ft
V3 = 60kips
Shears:
Q1 = 20kips
Q5,1 = 20kips
Q,3 = 20kips
Q32 = —60 klpS
Moments:

My, = 160kip-f ..
M23 = 160klp-ft ..

M32 Oklp-ft

M., = 180kip-ft ..

Support reactions:

V, = Okips
H, = —20kips
M, = Okip-ft

compression in bottom fiber

. compression in bottom fiber

at x = 9 ft, compression in top fiber

. compression in outer fiber
. compression in top fiber

. at x = 2 ft, compression in top fiber
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Vs = 40kips
Hs = Okips
Shears:
Q12 = 20 klpS
Q21 = 20 klpS
Q23 = Oklps
Q3 = Okips
Q34 = _40k1pS
Q43 = _40k1pS
Q45 = Okips
Qs = Okips
Moments:

M,; = 200kip-ft ... compression in outer fiber
M,; = 200kip-ft ... compression in top fiber
M3, = 200kip-ft ... compression in top fiber
M3, = 200kip-ft ... compression in top fiber

M43 = Oklp-ft
Mys = Okip-ft
Ms, = Okip-ft
$3.9  Support reactions:
Vl = _10klp5
H; = 3.33kips
M1 = Oklp-ft
V7 = _10klp5
H, = —3.33kips
Shears:
O, = —3.33kips
01 = —3.33kips
Q23 =745 klpS

Q32 =745 klpS
Q34 = —1.49Kkips
Q43 = —1.49 klpS

Moments:

M, = 26.64kip-ft ... compression in inner fiber
M,; = 26.64kip-ft ... compression in bottom fiber
M3, = 6.70kip-ft ... compression in top fiber

M3, = 6.70kip-ft ... compression in top fiber

M43 = Oklp-ft

$3.10 Support reactions:
V, = —160kips
H; = 160kips
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M1 = Oklp-ft
V3 = —160kips
H; = —160kips
MZ = Oklp-ft
At x = 8 ft the bending moment in the arch rib is
M = Okip-ft
Chapter 4

S4.1 0, = S2/El rad
0, = 156/EI rad
y; = 1560/EI ft

$4.2  y, = 2160/EI ft

$4.3 0, = 1917/El rad
x, = 15837/EI ft

S$4.4  The equation of the elastic curve is
y = —2.5x%3EI + 2.5[x — 12]° + 120x
The location of the maximum deflection in span 12 is
x =693 1t
The maximum deflection in span 12 is
y = 554/EI ft
The deflection at node 3 is
y3 = —21S8/EI

S4.5 y; = 8136/El ft
$4.6 y; = 247/EA ft
$4.7  y, = 3062/EA ft
S4.8 y, = 410/EA ft
$4.9 y;=317/EAft

$4.10 y, = 199/EA ft

Chapter 5

$5.1 M, = 1800kip-ft
§5.2  V, = 96kips
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144
$5.3 V3= 6.75kips
$5.4  P,4 = Skips ... compression
$5.5 P45 = 10.67kips ... tension
§$5.6  Py73 = 15kips ... compression
Chapter 6
$6.1 M, = 400kip-ft

M, = 1000kip-ft

R,; = 100kips
$6.2 P4 = 80kips

P24 =70.71 klpS

P34 =70.71 klpS
$6.3 Py = 114.55kips

P24 = 114.55 l(lpS

P34 = 282.80kips
$6.4 P4 = 55.90kips

P24 = 55901(1[35
P34 = 141.40kips
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6 Space frames

Notation

force

force component along the x-axis
force component along the y-axis

force component along the z-axis

angle in a triangle opposite side F;
horizontal force

length of member

bending moment

bending moment about the x-axis
bending moment about the y-axis
bending moment about the z-axis
axial force in a member

support reaction

vertical force

concentrated live load

pr. distributed dead load

angle of inclination

b3

N2

<mSEEEzETETEmmT

)
> 5

6.1 Introduction

The design of a building is generally accomplished by considering the structure
as an assemblage of planar frames, each of which is designed as an independ-
ent two-dimensional frame. In some instances, however, it is necessary to con-
sider the building as a whole and design it as a three-dimensional structure.

The sign convention shown in Figure 6.1 may be adopted for a three-
dimensional structure acted on by a generalized system of forces. A space
structure is illustrated in Figure 6.2 (i). The plan view of the structure is in the xz
plane, as shown in Figure 6.2 (ii), and the elevation of the structure is in the xy
plane, as shown in Figure 6.2 (iii).

Displacements in a space structure may occur in six directions, a displace-
ment in the x, y, and z directions and a rotation about the x-, y-, and z-axes.
The sign convention for displacements is shown in Figure 6.3 (i). A total of six
displacement components define the restraint conditions at support 1 of the
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Figure 6.1

(i) Structure (ii) Plan (iii) Elevation

Figure 6.2

(i) Displacements (ii) Forces

Figure 6.3

structure shown in Figure 6.2. The arrows indicate the positive directions of
the displacement components, and, using the right-hand screw system, rota-
tions are considered positive when acting clockwise as viewed from the origin.
Similarly, a total of six force components, as shown in Figure 6.3 (ii), define
the support reactions at support 1 of the structure in Figure 6.2.
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6.2 Conditions of equilibrium

For a three-dimensional structure, six conditions of static equilibrium may be
obtained at any point in the structure and at each support. These six equations
of statics are:

SE =0, %F =0, XF =0
SM, =0, XM, =0, _M, =

A three-dimensional structure is externally determinate when six external
restraints are applied to the structure, since these restraints may be determined
by the available six equations of static equilibrium.

The cranked cantilever of Figure 6.4 (i) has an applied load W at the free
end that has the components W,, W), and W, as shown. The magnitude of W
is given by:

W = (W2 + W} + Wz2)>

and the three direction cosines of the applied load are given by:

cosf, =W /W
cos 0, = W, /W
cosf, = W, /W
Y M M
zl Q 74
;I ’/Rzl X 2 Fya '/Fz . 2
xl G Mx4 G 4
fR b
t Wy¢ My4o¢
Myl 3 <_Wx Wy <_Wx
3
A M
(i) Structure (ii) Free-body diagram
Figure 6.4

As shown in Figure 6.4 (i), the cranked cantilever is statically determinate
since six restraints are provided at the fixed end.

Similarly, six member stresses may be determined at a section cut through
the structure, at any point 4, as shown by the free-body diagram shown in
Figure 6.4 (i1).
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Example 6.1

The cranked cantilever shown in Figure 6.4 (i) has an applied load at the free
end with components W, = —10kips, W, = —15kips, and W, = —20kips.
The relevant lengths of the cantilever are [, = 12 feet and L5 = 6 feet.
Determine the magnitude of the reactions at support 1.

Solution

Applying the equilibrium equations, with the origin of the coordinates at sup-
port 1, gives:
Resolving along the x-axis:

R, ,+W,=0
Rxl = _Wx
=10 kips

Resolving along the y-axis:

R, +W, =0
Ry =W,
= 15 kips

Resolving along the z-axis:

R,+W,=0
Rzl = _Wz

= 20 kips
Taking moments about the x-axis:

My + Wl =0

M, = -W,];
—15X6
—90 kip-ft

x1

Taking moments about the y-axis:

M, + Wl + W1, =0
Myl = =Wl =W,
10X 6 —20X12
—180 kip-ft
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Taking moments about the z-axis:

M, + Wyl12 =0
M, = _Wylll
=15X12
= 180 kip-ft

6.3 Pin-jointed space frames

In a pin-jointed three-dimensional space frame with j nodes, including the sup-
ports, 3j equations of equilibrium may be derived, since each node provides
the relationships:

SF, =0, LE=0, XF =0

If the frame has #» members and r external restraints, the number of
unknowns is (# + 7). In a pin-jointed three-dimensional space frame the frame
is statically determinate when:

(m+7r)=3j
The frame is indeterminate when:

(m+7r)>3j

Example 6.2

The pin-jointed space frame shown in Figure 6.5 consists of nine members. The
supports consist of a fixed pin at node 1, providing three restraints as shown,
and rollers at nodes 2, 3, and 4, providing only vertical restraint. Determine if
the structure is statically determinate.

Solution

The total number of external restraints is:

r=3+3X%X1
=6

Hence, the structure is stable and determinate externally.
The total number of members is:

n=9
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Figure 6.5

The total number of nodes is

j=3
m+r)=9+6
=15
3j=3X5
=15
Hence:
(m+7r)=35 ..

and the structure is statically determinate.

6.4 Member forces

The member forces in a pin-jointed space frame may be obtained by resolu-
tion of forces at the nodes. Figure 6.6 shows a total of i members, 01, 02 ... 0:
with a common node 0. The force in member 0: is Py;, and the three direction
cosines of member 0i are cosf.,, cosfy;, and cosb,;. The force components of
member 07 along the three coordinate axes are:

Py = Ly cosby,
Pin = Py coseym

Py = PBycosby,
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Figure 6.6

The length of member 0i is [y, and the projections of member 0i along the
three coordinate axes are:

xo; = lo;icosty;
Yoi = loi C059y0i
zg; = lpicosty,

Assuming that no external force is applied at node 0, resolving along the
three coordinate axes gives:

ZPin :0
ZPin =0
and

Poilly; = Pyoilxo; = Pin/in = P;lzyi

Example 6.3

The pin-jointed space frame shown in Figure 6.7 consists of three members.
The supports consist of fixed pins at nodes 1, 2, and 3, each providing three
restraints as shown. Determine the member forces produced by the 100 kip
vertical load applied at node 4.

Solution
The total number of external restraints is:

r=3X3
=9
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/ Wy4 = —100 kips

4 (40, 20, 0)

1(0, 0, 10)

s

z1

R

Figure 6.7

Hence, the structure is stable.
The total number of members is:

n=3
The total number of nodes is:
j=4
m+r)=3+9
=12
3j=3%x4
=12
Hence:

(n +r) = 3j ... the structure is statically determinate

And the structure is statically determinate.
The lengths of the members are:

ha = (xfy + 3y +21,)°
= (402 + 202 + 102)05
=45.83 ft

Ly = 45.83 ft

Ly = (63, + 34 +23,)
= (402 + 202 + 02)0.5
= 44.72 ft
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The direction cosines are:

cos b1y = X14/liy

= 40/45.83

= 0.873
cosf, = yia/ly

= 20/45.83

= 0.436
€080,y = z14/hy
—10/45.83
—0.218
€08 0,34 = X34/l

= 40/44.72

= 0.894
cos b3y = y34/l3y

= —20/44.72
—0.447
€08 034 = z34/L3

= 0/44.72

=0

Because of the symmetry of the structure and the loading, the forces in mem-
bers 14 and 24 are identical. Hence:

Py =Py
Resolving along the x-axis at node 4 gives:

2Py4 + B3y =0
2P, cos0,4 + Pyycos0,5, =0
1.746P, +0.894P;, =0

Resolving along the y-axis at node 4 gives:

2Py + Pyy = —Wyy
2P, 080,14 + Pyycosb 3y = —Wy
0.872P,, — 0.447P;, = 100 kips

Hence:

P;, = —111.86 kips ... tension
P4, = +57.21 kips ... compression
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Supplementary problems

$6.1 The cranked cantilever shown in Figure S6.1 has a load of 100 kips
applied at the free end. Determine the magnitude of the reactions at support 1.

10’

Figure S6.1

$6.2 The pin-jointed space frame shown in Figure S6.2 consists of three mem-
bers. The supports consist of fixed pins at nodes 1, 2, and 3, each providing
three restraints as shown. Determine the member forces produced by the 100
kip vertical load applied at node 4.

2(0,0,6)

R22

4(8,—10,0)

Ry *%
1(0, —10,0)

R / ¢ —100 kips

zl

Figure $6.2
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$6.3 The pin-jointed space frame shown in Figure S6.3 consists of three mem-
bers. The supports consist of fixed pins at nodes 1, 2, and 3, each providing
three restraints. Determine the member forces produced by the 100 kip vertical
load applied at node 4.

4 (20, 10, 0)
¢ —100 kips

2(0,0,-5)

3(10,0,0)

1(0,0,5)

Figure $6.3

$6.4 The pin-jointed space frame shown in Figure S6.4 consists of three mem-
bers. The supports consist of fixed pins at nodes 1, 2, and 3, each providing
three restraints. Determine the member forces produced by the 100 kip vertical
load applied at node 4.

2(0,0, —5)

4 (10,0, 0)

1(0,0,5)

3(0, —10,0)

Figure S6.4



Answers to supplementary
problems part 1

Chapter 1
$1.1  V; = 14kips
H; = 10kips
M; = 100kip-ft
V4 = 6kips
H, = Okips
§1.2  V; = -4.8kips ... downward

$1.3

S1.4

S1.5

S1.6

V, = 28.8kips ... upward
M, = 480kip-ft ... producing tension in the top fiber of the girder

Vi = Skips
H; = Skips
Mj3, = 100kip-ft ... producing tension in the top fiber of the member
V, = Skips
H,; = Skips
Vi = 25kips
H; = 25kips
V, = 75kips
H, = 25kips

P53 = 35.33kips ... tension
Py3 = 79.04kips ... compression

Vl = 10klpS
H1 = 10klpS
V4 = 10klpS
H, = Okips

Pi3 = 14.14Kkips ... tension

Vi = 11.67kips

H; = 10kips
V, = 8.33kips
H,; = Okips

M3, = 166.6kips ... producing tension in the bottom fiber of the member
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$1.7  V; = 30kips

H; = 10kips
Vs = 50kips
Hg = Okips
$1.8 V; = 10kips
H; = 10kips
V3 = 10kips
H; = 10kips
P, = 14.14kips ... compression

P,3 = 10kips ... compression

$1.9  V; = Okips
H; = 10.5kips
M, = 147 kip-ft

$1.10 V; = 4kips
H; = Okips
M, = 24kip-ft
P34 = 7.2kips ... tension
P,4 = 6.0kips ... compression

Chapter 2

2.1 V; = 2.24kips
H,; = 3.57kips
Vs = 4.92kips

P34 = 5.37kips ... compression
P33 = 5.0kips ... tension
P53 = 4.0Kkips ... tension

$2.2 P45 = 32kips ... tension
P41 = 3.2kips ... compression
P1o11 = 30.93kips ... compression

$2.3  P,3 = 17.78kips ... tension
P,7 = 21.89kips ... tension
Pg7 = 33.33kips ... compression

$2.4 Py, = 12kips ... tension
P14 = Oklps
Pis = 16.97kips ... compression
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S2.5

$2.6

S2.7

§2.8

§2.9

$2.10

P45 = OklpS
Ps¢ = 12kips ... compression
P25 = OklpS
P26 = OklpS

P, = 9kips ... tension

Pis = 10.82kips ... compression
P,3 = 6kips ... tension

Pss = 9.02kips ... compression
P,s = 3.35kips ... compression
Pys = 3.35kips ... tension

Py, = Skips ... tension

Pi14 = 30Kkips ... compression
Pi1p = 7.07kips ... compression
P,; = 5kips ... tension

P39 = 35.35kips ... tension
P315s = 10Kkips ... compression
Pio14 = 42.43kips ... tension
Pi415 = 30Kkips ... compression

P,3 = 6.67Kkips ... tension

P,7 = 2.10Kkips ... compression
P37 = Okips

P-g = 6.67Kkips ... compression
Ps7; = 6.72Kkips ... compression

Pi, = 3.35kips ... tension

P14 = 5.41kips ... compression
P4 = 1.12Kkips ... compression
P4s = 3.60kips ... compression
P,5s = 4kips ... tension

P,3 = 13.34kips ... tension

Pys = 2.5kips ... compression
P,5 = 3kips ... tension

Pg7; = 16.77kips ... compression
P37 = OklpS

P49 = Oklps

Pso = 28.28kips ... compression
Pgo = 22.36kips ... compression
P5g = 20kips ... compression
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Chapter 3
$3.1 1) Determinate
ii) Indeterminate
iii) Unstable

iv) Indeterminate

(
(
(
(

$3.2 (i) Indeterminate
(ii) Indeterminate
(iii) Indeterminate
(iv) Determinate
(v) Determinate
$3.3

i) Indeterminate
ii) Unstable

ii1) Determinate
iv) Indeterminate

(
(
(
(

S$3.4  Support reactions:
Vi = 73.03kips
H, = —70.71kips
V4 = 77.68kips

Shears:

Q51 = 73.03kips
Q23 = 2.321(11)8
Q32 = 2.321(11)8
Q34 = 2.321(11)8
Q43 = —77.68 klpS

Moments:

M, = 292.12kip-ft ... compression in top fiber
M;, = 301.40kip-ft ... compression in top fiber
M = 301.67kip-ft ... at x = 8.23 ft

§$3.5  Support reactions:

Vi = Okips

H, = Okips

V, = 100kips

V, = Okips
Shears:

Q21 = -50 klpS

Q23 =50 klpS

Q3 = Okips



Answers to supplementary problems part 1 141

$3.6

$3.7

$3.8

O34 = Okips

Q43 = Okips
Moments:

M21 = 125klp'ft eee

M32 = Oklp-ft

M34 = Oklp-ft
Support reactions:

V, = 30kips

H; = Okips

M; = 180kip-ft

V3 = 30kips
Shears:

0,1 = 30kips

Q23 =30 klpS

O3, = —30kips
Moments:

M12 = 180k1p"ft .

M21 = Oklp-ft
M32 = Oklp-ft

M, = 4Skip-ft ...

Support reactions:

Vi = 20kips
H; = —20kips
M, = Okip-ft
V3 = 60kips
Shears:
Q1 = 20kips
Q5,1 = 20kips
Q,3 = 20kips
Q32 = —60 klpS
Moments:

My, = 160kip-f ..
M23 = 160klp-ft ..

M32 Oklp-ft

M., = 180kip-ft ..

Support reactions:

V, = Okips
H, = —20kips
M, = Okip-ft

compression in bottom fiber

. compression in bottom fiber

at x = 9 ft, compression in top fiber

. compression in outer fiber
. compression in top fiber

. at x = 2 ft, compression in top fiber
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Vs = 40kips
Hs = Okips
Shears:
Q12 = 20 klpS
Q21 = 20 klpS
Q23 = Oklps
Q3 = Okips
Q34 = _40k1pS
Q43 = _40k1pS
Q45 = Okips
Qs = Okips
Moments:

M,; = 200kip-ft ... compression in outer fiber
M,; = 200kip-ft ... compression in top fiber
M3, = 200kip-ft ... compression in top fiber
M3, = 200kip-ft ... compression in top fiber

M43 = Oklp-ft
Mys = Okip-ft
Ms, = Okip-ft
$3.9  Support reactions:
Vl = _10klp5
H; = 3.33kips
M1 = Oklp-ft
V7 = _10klp5
H, = —3.33kips
Shears:
O, = —3.33kips
01 = —3.33kips
Q23 =745 klpS

Q32 =745 klpS
Q34 = —1.49Kkips
Q43 = —1.49 klpS

Moments:

M, = 26.64kip-ft ... compression in inner fiber
M,; = 26.64kip-ft ... compression in bottom fiber
M3, = 6.70kip-ft ... compression in top fiber

M3, = 6.70kip-ft ... compression in top fiber

M43 = Oklp-ft

$3.10 Support reactions:
V, = —160kips
H; = 160kips
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M1 = Oklp-ft
V3 = —160kips
H; = —160kips
MZ = Oklp-ft
At x = 8 ft the bending moment in the arch rib is
M = Okip-ft
Chapter 4

S4.1 0, = S2/El rad
0, = 156/EI rad
y; = 1560/EI ft

$4.2  y, = 2160/EI ft

$4.3 0, = 1917/El rad
x, = 15837/EI ft

S$4.4  The equation of the elastic curve is
y = —2.5x%3EI + 2.5[x — 12]° + 120x
The location of the maximum deflection in span 12 is
x =693 1t
The maximum deflection in span 12 is
y = 554/EI ft
The deflection at node 3 is
y3 = —21S8/EI

S4.5 y; = 8136/El ft
$4.6 y; = 247/EA ft
$4.7  y, = 3062/EA ft
S4.8 y, = 410/EA ft
$4.9 y;=317/EAft

$4.10 y, = 199/EA ft

Chapter 5

$5.1 M, = 1800kip-ft
§5.2  V, = 96kips
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$5.3 V3= 6.75kips
$5.4  P,4 = Skips ... compression
$5.5 P45 = 10.67kips ... tension
§$5.6  Py73 = 15kips ... compression
Chapter 6
$6.1 M, = 400kip-ft

M, = 1000kip-ft

R,; = 100kips
$6.2 P4 = 80kips

P24 =70.71 klpS

P34 =70.71 klpS
$6.3 Py = 114.55kips

P24 = 114.55 l(lpS

P34 = 282.80kips
$6.4 P4 = 55.90kips

P24 = 55901(1[35
P34 = 141.40kips
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Part Two

Analysis of Indeterminate
Structures



1 Statical indeterminacy

Notation

number of releases introduced in a structure

degree of indeterminacy

number of internal hinges introduced in a structure
horizontal reaction

number of joints

bending moment

number of members

number of external restraints

number of internal rollers introduced in a structure
vertical reaction

<33z pESTan

1.1 Introduction

A structure is in equilibrium with a system of applied loads when the resultant
force in any direction and the resultant moment about any point are zero. For
a two-dimensional plane structure, three equations of static equilibrium may
be obtained:

YH=0
V=0
XM=0

where H and V are the resolved components in the horizontal and vertical
directions of all forces and M is the resultant moment about any point.

A statically determinate structure is one in which all member forces and
external reactions may be determined by applying the equations of equilibrium.

An indeterminate or redundant structure is one that possesses more
unknown member forces and reactions than available equations of equilib-
rium. To determine the member forces and reactions, additional equations
must be obtained from conditions of geometrical compatibility. The number of
unknowns, in excess of the available equations of equilibrium, is the degree of
indeterminacy, and the unknown forces and reactions are the redundants. The
redundants may be removed from the structure, leaving a stable, determinate
structure, which is known as the cut-back structure. External redundants are
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redundants that exist among the external reactions. Internal redundants are
redundants that exist among the member forces.

Several methods have been proposed!™ for evaluating the indeterminacy of
a structure.

1.2 Indeterminacy in pin-jointed frames

In a pin-jointed frame, external reactions are provided by either roller supports
or hinge supports, as shown in Figure 1.1 (i) and (ii). The roller support pro-
vides only one degree of restraint in the vertical direction, and both horizon-
tal and rotational displacements can occur. The hinge support provides two
degrees of restraint in the vertical and horizontal directions, and only rota-
tional displacement can occur. The magnitudes of the external restraints may
be obtained from the three equations of equilibrium. Thus, a structure is exter-
nally indeterminate when it possesses more than three external restraints and
unstable when it possesses fewer than three.

(i)

Figure 1.1

Figure 1.2 (i) and (ii) shows pin-jointed frames that have three degrees of
restraint and are stable and determinate. Figure 1.3 (i) shows a pin-jointed
frame that has four degrees of restraint and is one degree indeterminate. The

F

(i)

Figure 1.2
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ARA!

(i)

Figure 1.3

cut-back structure is shown in Figure 1.3 (ii). Figure 1.4 (i) shows a pin-jointed
frame that is two degrees indeterminate; the cut-back structure is shown in
Figure 1.4 (i1).

@

(ii)
Figure 1.4
In a pin-jointed frame with j joints, including the supports, 2j equations of
equilibrium may be obtained, since at each joint:
YH=0 and XV =0

Each member of the frame is subjected to an axial force, and if the frame has
n members and r external restraints, the number of unknowns is (z + 7). Thus,
the degree of indeterminacy is:

D=n+r—-2j

Figure 1.5 (i) and (ii) shows pin-jointed frames that are determinate. For
frame (i):

D=5+3-2%X4)=0
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@ (ii)
Figure 1.5
and for (ii):
D=2+4-(2X3)=0

Figure 1.6 (i) and (ii) shows pin-jointed frames that are indeterminate. For
frame (i)

D=10+3-2%6) =1
and for (ii):

D=11+4—-(2%X6) =3

(i)

Figure 1.6
1.3 Indeterminacy in rigid frames

In addition to roller and hinge supports a rigid frame may be provided with a
rigid support, shown in Figure 1.7, which provides three degrees of restraint.

s

M /\H
AT

Figure 1.7
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In a rigid frame with j joints, including the supports, 3j equations of equilib-
rium may be obtained, since at each joint:

YH=0, YW=0, YM=0

Each member of the frame is subjected to three forces, axial and shear forces
and a moment, and the number of unknowns is (3 + 7). Thus, the degree of
indeterminacy is:

D=3n+r—3j

The degree of indeterminacy of the arches shown in Figure 1.8 is

arch(i) D=3+4-3%X2)=1
arch(ii) D=3+4-3X2)=1
arch (iii) D=3+5-(3X%x2)=2
arch(iv) D=3+6—-(3X2)=3

( ( )=0

arch(v) D=3+3—-(3X2

and arch (v) is the cut-back structure for (i), (ii), (iii), and (iv).

Lo LN

® (i) (iif)

(iv) m

Figure 1.8

The degree of indeterminacy of the portal frame shown in Figure 1.9 (i) is:
D=(3X3)+6-(3x4) =3

and the cut-back structure is obtained by introducing three releases, as at (ii),

(iiif), or (iv).

® (i) (iii) (iv) )

Figure 1.9
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The redundants in the portal frame may also be regarded as the axial
and shear forces and the moment in the beam, and the cut-back structure is
obtained by cutting the beam as shown at (v). Similarly in a multibay, multi-
story frame the degree of indeterminacy equals 3 X the number of beams.

For the rigid frame shown in Figure 1.10, the degree of indeterminacy is:

D=3X6
=18

77777 77777

Figure 1.10

1.4 Indeterminacy in rigid frames with internal hinges

(a) Hinges within a member

The introduction of an internal hinge in a rigid frame provides an additional
equation of equilibrium at the hinge of M = 0. In effect, a moment release has
been introduced in the member.

The introduction of a horizontal, internal roller provides two additional
equations of equilibrium at the roller of M = 0 and H = 0. In effect, a moment
release and a release of horizontal restraint have been introduced in the mem-
ber. Thus, the degree of indeterminacy is:

D=3n+r—-3—h—2s

where 7 is the number of members, j is the number of joints in the rigid frame
before the introduction of hinges, 7 is the number of external restraints, » is
the number of internal hinges, and s is the number of rollers introduced.

The degree of indeterminacy of the frames shown in Figure 1.11 is:

() D=(3X3)+4-(3x4-1=0

(i) D=(3X1)+4-(3x2)—-1=0

(i) D=(3X7)+12—(3X8) —3=6

The degree of indeterminacy of beam 15, which has a hinge and a roller
introduced in span 34, as shown in Figure 1.12, is:

D=(3X4+6-(3X5-2%x1)—1=0
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® (i) (iif)

Figure 1.11

4
1 2 3
; ;= o e

Figure 1.12

(b) Hinges at a joint
For two members meeting at a rigid joint there is one unknown moment, as
shown in Figure 1.13, and the introduction of a hinge is equivalent to produc-

ing one release.
M
M \F

Figure 1.13

For three members meeting at a rigid joint there are two unknown moments,
as shown in Figure 1.14, and the introduction of a hinge into one of the mem-
bers produces one release; the introduction of a hinge into all three members

produces two releases.

M, M
M,
M, + M, M
Figure 1.14

For four members meeting at a rigid joint there are three unknown moments,
as shown in Figure 1.15; the introduction of a hinge into one of the members
produces one release, the introduction of a hinge into two members produces



154 Structural Analysis: In Theory and Practice

Figure 1.15

two releases, and the introduction of a hinge into all four members produces
three releases.

In general, the introduction of hinges into i of the # members meeting at a
rigid joint produces i releases. The introduction of a hinge into all # members
produces (7 — 1) releases.

Thus, the degree of indeterminacy is given by:

D=3n+r—-3—c

where ¢ is the number of releases introduced.
The degree of indeterminacy of the frames shown in Figure 1.16 is:

i) D=(3XS)+3-3x4-5=1
(i) D=(3X6)+3—-3x6 —-2=1
(i) D=(3%X2)+3—-(3x2)—-2=1
(iv) D=(3X5)+9—-(3x6)—1=
(v) D=(3X4) +5—(3x4)—4=

® (i) (iii)

(iv) (v)

Figure 1.16
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Supplementary problems

$1.1 Determine the degree of indeterminacy of the braced beam shown in
Figure S1.1.

Figure S1.1

$1.2 Determine the degree of indeterminacy of the tied arch shown in
Figure S1.2.

Figure S1.2

$1.3 Determine the degree of indeterminacy of the rigid-jointed frame shown
in Figure S1.3.

INN\\N

Figure 1.3
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$1.4 Determine the degree of indeterminacy of the open spandrel arch shown
in Figure S1.4.

Figure S1.4

$1.5 Determine the degree of indeterminacy of the frames shown in

Figure S1.5.

@ (ii)

Figure S1.5

$1.6 Determine the degree of indeterminacy of the gable frames shown in
Figure S1.6.

[0 10

(i) (iii) (iv)
Figure S1.6
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$1.7 Determine the degree of indeterminacy of the bridge structures shown in
Figure S1.7.

® (i)

v
Vo

(iii)

/
v
/

) <

)
Figure $S1.7
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2 Virtual work methods

Notation

>R g<I O VI TSUIOme

>

S =

2.1

cross—sectional area of a member

Young's modulus

modulus of torsional rigidity

horizontal reaction

second moment of area of a member

second moment of area of an arch at its crown

length of a member

bending moment in a member due to a unit virtual load
bending moment in a member due to the applied loads
axial force in a member due to the applied loads

shear force in a member due to a unit virtual load
shear force in a member due to the applied loads

axial force in a member due to a unit virtual load
vertical reaction

applied load

horizontal deflection

displacement of an applied load in its line of action; vertical deflection
deflection due to the applied load

extension of a member, lack of fit of a member

element of length of a member

relative rotation between two sections in a member due to the applied
loads

rotation due to the applied loads

form factor in shear

shear deformation due to the applied loads

Introduction

The principle of virtual work provides the most useful means of obtaining the
displacement of a single point in a structure. In conjunction with the principles
of superposition and geometrical compatibility, the values of the redundants in
indeterminate structures may then be evaluated.

The principle may be defined as follows: if a structure in equilibrium under
a system of applied forces is subjected to a system of displacements compatible
with the external restraints and the geometry of the structure, the total work
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done by the applied forces during these external displacements equals the work
done by the internal forces, corresponding to the applied forces, during the inter-
nal deformations, corresponding to the external displacements. The expression
“virtual work” signifies that the work done is the product of a real loading sys-
tem and imaginary displacements or an imaginary loading system and real dis-
placements. Thus, in Chapters 2 and 3 and Sections 6.2, 6.4, 6.5, 9.8, and 10.3
displacements are obtained by considering virtual forces undergoing real dis-
placements, while in Sections 7.8-7.14, 9.5-9.8, and 11.3 equilibrium relation-
ships are obtained by considering real forces undergoing virtual displacements.

A rigorous proof of the principle based on equations of equilibrium has been
given by Di Maggio!. A derivation of the virtual-work expressions for linear
structures is given in the following section.

2.2 Virtual-work relationships

860 =dx/R
=MO3Jx/EI

S
S

3 2 3 2
1 1
—— ®
4 4
1 1
(i) 777777 (iii) 777777

Figure 2.1
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To the structure 123 shown in Figure 2.1 (i), the external loads W are gradu-
ally applied. This results in the deflection of any point 4 a distance § while
each load moves a distance y in its line of action. The loading produces an
internal force P and an extension 6/ in any element of the structure, a bending
moment M and a relative rotation 86 to the ends of any element, a shear force
Q, and a shear strain ¢. The external work done during the application of the
loads must equal the internal energy stored in the structure from the principle

of conservation of energy.
Then:

SWyl2 = S PsI/2 + S M0/2 + X O dx/2 (1)

To the unloaded structure a unit virtual load is applied at 4 in the direction of
6 as shown in Figure 2.1 (ii). This results in a force #, a bending moment 1,
and a shear force g in any element.

Now, while the virtual load is still in position, the real loads W are gradually
applied to the structure. Again, equating external work and internal energy:

SWyR +1X 86 =P 3dl2+ S M0+ 00 dx/2 + X uldl
+ Y m 30 + Y qo dx (2)

Subtracting expression (1) from expression (2):

1X6=2udl+>Xmdl+ > qe dx

For pin-jointed frameworks, with the loading applied at the joints, only the
first term on the right-hand side of the expression is applicable.
Then:

1X6=>udl
= Y Pul/AE

where P is the internal force in a member due to the applied loads and /; A and
E are its length, area, and modulus of elasticity; and # is the internal force in a
member due to the unit virtual load.

For rigid frames, only the last two terms on the right-hand side of the
expression are significant.

Then:

1X6=Ymd0+>q¢p dx
= [ Mm dx/EI + [ Qq dx/pAG
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where M and Q are the bending moment and shear force at any section due to
the applied loads and I, G and A are the second moment of area, the rigidity
modulus, and the area of the section; u is the form factor; and m and g are the
bending moment and shear force at any section due to the unit virtual load.

Usually the term representing the deflection due to shear can be neglected,
and the expression reduces to:

1><5=medx/E1

In a similar manner, the rotation 6 of any point 4 of the structure may be
obtained by applying a unit virtual bending moment at 4 in the direction of 6.
Then:

10 = [ Mm dx/EI + [ Qq dx/uAG

where m and g are the bending moment and shear force at any section due to
the unit virtual moment.

2.3 Sign convention

For a pin-jointed frame, tensile forces are considered positive and compressive
forces negative. Increase in the length of a member is considered positive and
decrease in length negative. The unit virtual load is applied to the frame in the
anticipated direction of the deflection. If the assumed direction is correct, the
deflection obtained will have a positive value. The deflection obtained will be
negative when the unit virtual load has been applied in the opposite direction
to the actual deflection.

For a rigid frame, moments produced by the virtual load or moment are
considered positive, and moments produced by the applied loads, which are of
opposite sense, are considered negative. A positive value for the displacement
indicates that the displacement is in the same direction as the virtual force or
moment.

2.4 Illustrative examples

Example 2.1

Determine the horizontal and vertical deflection of point 4 of the pin-jointed
frame shown in Figure 2.2. All members have a cross-sectional area of 8in?
and a modulus of elasticity of 29,000 kips/in?.
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lk
—
1k
8
S
(] (ii)
Figure 2.2
Solution

Member forces #; due to a vertical unit load at 4 are obtained from (i) and are
tabulated in Table 2.1. The stresses in each member, P/A, due to the real load
of 16kips are given by:

PIA = 16u, X 118

Member forces #, due to a horizontal unit load at 4 are obtained from (ii)
and are tabulated in Table 2.1.

Table 2.1 Determination of forces and displacements in Example 2.1

Member P/A l uq Uy Pull/A Puzl/A
12 2.0 12 1.00 —2.67 24.00 —64.0
23 2.5 15 1.25 —1.67 46.88 —62.5
34 1.5 9 0.75 —1.00 10.12 —13.5
45 -2.5 15 —-1.25 0 46.88 0

56 —4.0 12 —2.00 1.33 96.00 —64.0
53 =2.0 12 -1.00 1.33 24.00 —-32.0
52 -1.5 9 -0.75 0 10.12 0

26 0 15 0 1.67 0 0

Total 258.0 ~236.0

The vertical deflection is given by:

v = S Pul/AE
=258 X%12/29,000
= 0.107 in downward
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The horizontal deflection is given by:

b = S Pu,l/AE
= —236 X 12/29,000
= 0.098 in to the right

Example 2.2

Determine the deflection at the free end of the cantilever shown in Figure 2.3.
The cross-section is shown at (i), the modulus of elasticity is 29,000 kips/in?,
the modulus of rigidity is 11,200kips/in?, and the shear stress may be assumed
to be uniformly distributed over the web area.

3K 3k 1k
4 EERPT I 4 !
2 3 2 3
A 8 4 ] 2 x‘-‘
)
#, 0 4
(i) (i) (iii)
Figure 2.3
Solution

The origin of coordinates is taken at 2 and the functions M and Q derived
from (ii) as:
M = 3x
and Q =3
A unit vertical load is applied at 3 and the functions m and g derived from
(i11) as:
m=4+x
and g = 1.
The moment of inertia and the area of the web are given by:
I=6X(14)P3/12—-5.6 X (12.6)3/12
= 440in*
A =0.4014 — 1.4)
= 5.04in?
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Since M and Q are zero over the length 23, the vertical deflection at 3 is
given by:

1x68 = fOSMm dx/EI + fOSQq dx/AG
= 3x123 ] *l4x + x2) dx/(29,000 X 440)

8
+3 % 12]0 dx/(11,200 X 5.04)

= 0.121 + 0.005
= 0.1261in

Example 2.3

Determine the vertical deflection of point 4 of the pin-jointed frame shown in
Figure 2.2 if members 12 and 23 are made 0.1 in too short and members 56
and 53 are made 0.1 in too long.

Solution
Member forces #; due to a vertical downward unit load at 4 have already been

determined in Example 2.1 and are tabulated in Table 2.2.

Table 2.2 Determination of forces and
displacements in Example 2.3

Member ol uy 116/
12 -0.1 1.0 -0.1
23 -0.1 1.25 -0.125
53 0.1 -1.0 -0.1
56 0.1 -2.0 -0.2
Total -0.525

The vertical deflection is given by:

v =2 udl
=-0.525
= 0.525 in upward

Example 2.4

Determine the deflection at the free end of the cantilever shown in Figure 2.4.
The moment of inertia has a constant value I over the length 23 and increases
linearly from I at 2 to 2I at 1.
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x 4_| ®

X 4_| (iii) X 4_| (ii)

Figure 2.4

Solution
The origin of coordinates is taken at 2 and the function M derived from (i) as:
M = Wx.
A unit vertical load is applied at 3 and the function # derived from (ii) as:
m =1+ x.
The moment of inertia is given by:

I, =1+ Ix/l.

Since the value of M is zero over the length 23, the vertical deflection at 3 is
given by:

1x6 = fO’Mm dx/El
i
= fo Wx(l + x) dx/EI(1 + x /1)

= W‘/;)l Ix dx/EI
= WI32EI

2.5 Volume integration

For straight prismatic members, | Mm dx/EI = | Mm dx X 1/EI. The func-
tion m is always either constant along the length of the member or varies
linearly. The function M may vary linearly for real concentrated loads or para-
bolically for real distributed loads. Thus, f Mm dx may be regarded as the
volume of a solid with a cross-section defined by the function M and a height
defined by the function 7. The volume of this solid is given by the area of cross-
section multiplied by the height of the solid at the centroid of the cross-section.

The value of | Mm dx has been tabulated? for various types of functions
M and m, and common cases are given in Table 2.3.
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Example 2.5

Determine the deflection at the free end of the cantilever shown in Figure 2.5.

4 lW {4 - V"
7 | | 4 o

®

;

(i)

4

[ . i)

Figure 2.5

Solution

The origin of coordinates is taken at the free end and the functions M and m
derived from (i) and (ii) as:

M = Wx

and m = x

The deflection at the free end is given by:

!
1><6=f0Mmdx/EI

I
= Wj;) x2 dx/EI
= WI3/3EI

Alternatively, the solid defined by the functions M and #2 is shown at (iii); its
volume is:

WI2/2 X 213 = WI3/3
and the deflection at the free end is given by:

8 = WI3/3EI.
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Alternatively, from Table 2.3, the value of f Mm dx/EI is given by:

6 = lac/3EI
= WI3/3
Example 2.6

Determine the rotation at the free end of the cantilever shown in Figure 2.6.

w 1b/in w Ib/in
A AT
A 7]

X
| I N -
T 1
NS M
2

1

(iii) (ii)

Figure 2.6

Solution

The functions M and m are derived from (i) and (ii) as:

M = wx?2/2

and m =1

The rotation at the free end is given by:

!
1><9=f0Mmdx/E1

I
_ 2
wj;) x% dx/2EI
wl3/6EI.

Alternatively, the solid defined by these functions is shown at (iii); its volume is:

W2 X Il6 = wi3/6
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and the rotation at the free end is given by:
0 = wl3/6EI.
From Table 2.3, the value of me dx/EI is given by:

0 =1Ilc+4d + e)/6EI
= lwl?2 + wil?/2 + 0)/6EI
wl3/6EI

2.6 Solution of indeterminate structures

The principle of superposition may be defined as follows: the total displace-
ments and internal stresses in a linear structure corresponding to a system of
applied forces are the sum of the displacements and stresses corresponding to
each load applied separately.

The principle of geometrical compatibility may be defined as follows: the
displacement of any point in a structure due to a system of applied forces must
be compatible with the deformations of the individual members.

The two above principles may be used to evaluate the redundants in indetermi-
nate structures. The first stage in the analysis is to cut back the structure to a deter-
minate condition and apply the external loads. The displacements corresponding
to and at the point of application of the removed redundants may be determined
by the virtual-work relations. To the unloaded cut-back structure, each redundant
force is applied in turn and the displacements again determined. The total displace-
ment at each point is the sum of the displacements due to the applied loads and
the redundants and must be compatible with the deformations of the individual
members. Thus, a series of compatibility equations is obtained equal in number
to the number of redundants. These equations are solved simultaneously to obtain
the redundants and the remaining forces obtained from equations of equilibrium.

Example 2.7

Determine the reaction in the prop of the propped cantilever shown in Figure
2.7 (a) when the prop is firm and rigid, (b) when the prop is rigid and settles
an amount y, and (c) when the prop is elastic.

w Ib/in w 1b/in
[T = AT + VX

A
: 2 v x‘_| x«?]

"

31/4 m

21/3

() (ii)

—wi22
[ ]
N

Figure 2.7
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Solution

(a) The structure is one degree redundant, and the reaction in the prop is selected as
the redundant and removed as shown at (i). The deflection of the free end of the
cantilever in the line of action of V is:

8, = —wl’l6 X 3I/4EI
= —wl*/8E1

To the cut-back structure, the redundant V is applied as shown at (ii). The deflec-
tion of the free end of the cantilever in the line of action of V is:

8 = VI2/2 X 2I3EI
= VIB/3EI

The total deflection of 2 in the original structure is:

5, =6, + 6}
=0

Thus:
—wI*/8EI + VI3/3EI = 0
and
V = 3wll8
(b) The total deflection of 2 in the original structure is:

5, = 8 +6)
=~y

Thus:
—wI4BEI + VI33EI = —y
and
V = 3wl/8 — 3EIy/I?
(c) The total deflection of 2 in the original structure is:

5, = 8 +6)
= —VLJAE

where L, A, and E are the length, cross-section, and modulus of elasticity of the prop.
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Thus:
—wl*/8EI + VI3/3EI = —VL/AE

and

V = wl*/8EI(I3/3EI + L/AE)

Example 2.8

The parabolic arch shown in Figure 2.8 has a second moment of area that var-
ies directly as the secant of the slope of the arch rib. The value of the thrust
required to restore the arch to its original span is Hj, and the value of the
thrust required to reduce the deflection of 2 to zero is H,. Determine the ratio
of H, to Hy, neglecting the effects of axial and shearing forces.

w
+ H X
@
1 1
w72 w72
w
+ H, X
(i)
! 1
wi2 wi2
Figure 2.8

Solution

The equation of the arch axis, taking the origin of coordinates at 1, is:
y = x(I — x)l
The second moment of area at any section is given by:

I =1, seca

=1, ds/dx

where I, is the second moment of area at the crown.
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The horizontal deflection at 3 due to W is obtained by considering a virtual
unit load applied horizontally inwards at 3. Then from (i) the deflection due to
W is obtained by integrating over the length of the arch:

1x x4 = [ Mm ds/EI
= [ Mm dx/EI,
12
= —Zfo Waxy dx/2EI,
10
= W [ (x2 — %) dwlIEL
= —SWI3N192EI,

The horizontal deflection at 3 due to Hj is:

12
IxXxl=2 fo H,y* dx/EI,

- 2H, [ P 12x2 — 20x3 + x%) dxlI2EL

— H,I3/30EI,
The total horizontal deflection of 3 in the original structure is:

xy = x} + xf
=0

Thus,

H, = 25W/32

The vertical deflection of 2 due to W is obtained by considering a virtual
unit load applied vertically upwards at 2. Then, from (ii):

I/
15y} = =2 " Wx? dvAEI

I/

-w [ X2 dx12EI
0

= —WI3/48

The vertical deflection at 2 due to H, is:

I
15y =2 [ Hyxy dulEI

/
= sz/;)/z(lx2 — x3) dx/I*EI,
= SH,3/192EI,



174 Structural Analysis: In Theory and Practice

The total vertical deflection of 2 in the original structure is:
Y2 =y, ¥ =0

Thus,
H, = 4W/5

and

H,/H, = 128/125
= 1.024

Example 2.9

The parabolic arch shown in Figure 2.9 has a second moment of area that var-
ies directly as the secant of the slope of the arch rib. Determine the bending
moment at 2, neglecting the effects of axial and shearing forces.

+_V

+><

® (i) (ii)
Figure 2.9

Solution

The redundant forces consist of the reactions H and V at 3, and the cut-back
structure is a curved cantilever.
The equation of the arch axis is:

y = ax(l — x)

The horizontal deflection of 3 due to condition (i) is obtained by considering
a virtual-unit load applied horizontally inwards at 3. Then, over the span from
x=0tox =1/2:

m =y
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and
M = Wi2 — Wx
Thus the horizontal deflection at 3 is:

=W 112 - x)y dxlIEL

I
— Wa [ (P2 = 31212 + %) duEL,
— Wal‘l64EI,

The horizontal deflection of 3 due to condition (ii) is:

!
xf = Hﬁ) y? dx/EI,

i
= Ha? fo (I2x? — 2Ix3 + x*) dx/EI,
= HaIS/30EI,

The horizontal deflection of 3 due to condition (iii) is:

/
xy'= —Vj;) xy dx/EI,

I
=—Va fo (Ix2 — x3) dx/EI,
= Val*N2EI,

The total horizontal deflection of 3 in the original structure is:

x, = x5 +xf+x=0
Thus:
W/32 —V/6 + Halll5 =0 (1)

The vertical deflection of 3 due to condition (i) is obtained by considering
a virtual-unit load applied vertically upwards at 3. Then, over the span from
x=0tox =12:
m=1-x

and

M = Wx — Wij2
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Thus, the vertical deflection of 3 is:

v = W [ = 12)(0 — x) dxlEL,

!
— W [ (212 = 3012 + x2) dulEL,
— —SWI3/48EI

The vertical deflection of 3 due to condition (ii) is:

/
yy = —Hj; yx dx/EI,
— —Hal*/12EI,

The vertical deflection of 3 due to condition (iii) is:

!
vy = Vj;) x? dx/EI,
— VBEL

The total vertical deflection of 3 in the original structure is:
Yo =¥3+y3+y3'=0
Thus,
—5W/16 +V — Hall4 =0 2)
Solving (1) and (2) simultaneously:
H = 5W/6al
and
V = 25W/48
Thus, the bending moment at 2 is:

M, = VI/2 — Hal?/4
= 5Wi/96
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Supplementary problems

$2.1 Determine the deflection at the free end of the cantilever shown in Figure S2.1.

w 1b/in
[ oI 2
"t ol b -
- >l =
-t ! -
Figure S2.1

§2.2 Determine the vertical deflection at the center of the pin-jointed truss
shown in Figure S2.2 if the top chord members are all 0.1 percent in excess of
the required length.

—

10@12" = 120’

Y
v

Figure S2.2

$2.3 The pin-jointed truss shown in Figure S2.3 has a vertical load of 20kips
applied at panel point 2. Determine the resulting vertical deflection at panel
points 2 and 3. What additional vertical load W must be applied at panel point
3 to increase the deflection at panel point 2 by 50 percent? All members have a
cross-sectional area of 2in? and a modulus of elasticity of 29,000 kips/in.

g

I 20
8’ 8’ 8’
Figure S2.3

$2.4 A cantilever circular arch rib with a uniform section is shown in Figure S2.4.
A horizontal force H is applied to the free end of the rib so that end 2 can deflect
only vertically when the vertical load V is applied at 2. Determine the ratio of H/V.

Figure S2.4
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$2.5 The frame shown in Figure S2.5 has a vertical load of 10kips applied
at 5. Determine the resulting vertical deflection at node 4. The cross-sectional
areas of the members are 13 = 10in%, 24 = Sin?, and 34 = 4in%. The second
moment of areas of the members are 13 = 90in* and 24 = 50in*. The modu-
lus of elasticity of all members is 29,000 kips/in?.

6'

4’ 4’
Figure S2.5

$2.6 The two-story, single-bay frame shown in Figure S2.6 has the relative sec-
ond moments of area indicated. The cross-sectional area of the columns is A.
The modulus of elasticity of all members is E, and the modulus of rigidity is G.
Determine the bending moments and shear forces in the members and calculate
the horizontal deflection of node 3 due to the load of 4kips.

10’

Figure S2.6
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$2.7 The parabolic arch shown in Figure S2.7 has a second moment of area
that varies directly as the secant of the slope of the arch rib and a temperature
coefficient of thermal expansion of « per °FE. Neglecting the effects of axial and
shearing forces, determine the support reactions at the fixed end produced by
a temperature rise of ¢ °F.

al’/4
1 2
b ! >

Figure S2.7
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3 Indeterminate pin-jointed frames

Notation

cross-sectional area of a member
cross-sectional area of the tie of a tied arch
Young's modulus

horizontal reaction

second moment of area of a member

second moment of area of an arch at its crown
length of a member; span of an arch

I TaT DT

cut-back structure

=

cut-back structure

P axial force in a member due to the external loads applied to the cut-back
structure

R redundant force in a member

t  change in temperature

u  axial force in a member due to a unit virtual load applied to the cut-back
structure

V  vertical reaction

y  settlement of a support

«  temperature coefficient of expansion

6  deflection

ol lack of fit

dx  spread of arch abutments

3.1 Introduction

bending moment in a member due to a unit virtual load applied to the

bending moment in a member due to the external loads applied to the

The solution of indeterminate pin-jointed frames and two-hinged arches may
be readily obtained using the principles of superposition and compatibility.
In the case of polygonal two-hinged arches, the preferred solution is by the

method of column analogy and is dealt with in Section 6.3.

3.2 Frames one degree redundant

The pin-jointed frame shown in Figure 3.1 contains one redundant member
12 with its unknown force R, assumed tensile. The indeterminate frame can be

replaced by system (i) plus R X system (ii).
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7577
® (i)
Figure 3.1

The relative inward movement of the points of application of R in system (i)
may be determined by the virtual work method by considering R replaced by
virtual unit loads. The relative movement is:

8, = Y Pul/AE

where P and u# are the member forces in the cut-back structure due to the
applied loads and the virtual unit loads, respectively.

The relative inward movement of the points of application of R in system
(i) is:

87, = Yull/AE

The relative movement of the points of application of R in the actual struc-
ture is outward and consists of the extension in member 12, which is:

6, = —RIH/ALE,
= &), + RoY,

Thus:  R(l;,/AEp, + S uPl/AE) = — S PullAE

If the summations are considered to extend over all the members of the
actual structure with Py, = 0 and #;, = 1, we obtain:

R = — (X PullAE)/(>" u*l/AE)

and the value obtained for R is positive if tensile and negative if compressive.
The actual force in any member is given by (P + uR).
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The horizontal deflection of joint 1 of the actual structure may be deter-
mined by considering a virtual unit load applied horizontally at 1 in systems (i)
and (ii). The horizontal deflection is:

6, =&, + R&",
= > PullAE + RYuu,l/AE
= > (P + uR)ul/AE

where #; is the force in any member of the cut-back structure due to the hor-
izontal virtual unit load, (P + uR) is the force in any member of the actual
structure, and the summation extends over all members of the cut-back struc-
ture. In general, to determine the deflection of an indeterminate structure, the
unit virtual load may be applied to any cut-back structure that can support it.

Initial inaccuracies in the lengths of members of an indeterminate frame pro-
duce forces in the members when they are forced into position. If the member
12 in Figure 3.2 is made too short by an amount —/, a tensile force, R, is pro-
duced in it on forcing it into position.

747 7R7
Figure 3.2

Then, the relative movement of points 1 and 2 in the actual structure con-
sists of the extension in member 12 and the initial lack of fit, and:

615 = —RIl,/ALE, + (=8])

There are no applied loads on the structure, thus ¢§,=0 and
81, = X u*l/AE as before.
Thus:

b, = 6}, + R,
and:

RUy,/ApE,, + Sutl/AE) = =3l
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If the summation is considered to extend over all the members of the actual
structure with #;, = 1, we obtain:

R = —8l/(X u2l/AE)

where 8/ is the lack of fit of the member and is positive if too long and negative
if too short, and the value obtained for R is positive if tensile and negative if
compressive.

The remaining member forces are given by the expression #R.

Example 3.1

All members of the frame shown in Figure 3.3 have a constant value for AE
of 10,000kips. Determine (a) the forces in the members due to the applied
load of 10kips, (b) the horizontal deflection of point 2 due to the applied
load of 10kips, (c) the force in member 24 due to member 24 being 0.1%
too long.

= + R X

@ (ii)

(iii)

Figure 3.3

Solution

(a) The force R in member 24 is chosen as the redundant, and member forces P and «
are obtained from (i) and (ii) and are tabulated in Table 3.1.
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Table 3.1 Determination of forces and displacements in Example 3.1

Member P I u Pul w?l P+ uR "y u1l(P + uR)
12 0.0 10.0 -0.707 0.0 5.0 5.56 0.0 0.0
23 -10.0 10.0 -0.707 70.7 5.0 —4.44 -1.0 44 .4
34 -10.0 10.0 -0.707 70.7 5.0 —4.44 -1.0 44.4
13 14.14 14.14 1.0 200.0 14.14 6.26 1.414 125.2
24 0.0 14.14 1.0 0.0 14.14 -7.88 0.0 0.0
Total 341.4 43.28 214.0

Thus the force in member 24 is:

R =—=2Pull Y u?l
= —341.4/43.28
= 7.88 kips compression

The remaining member forces are given by the expression (P + uR).

(b) The forces u; in the cut-back structure due to a virtual unit load applied horizon-
tally at 2 are obtained from (iii) and are tabulated in Table 3.1. The horizontal
deflection of 2 is:

6, = 2(P + uR)ul/AE
214 X 12/10,000

=0.257 in

(c) The force R in member 24 due to the lack of fit is:

R = —3l/(X ul/AE)
= —141.4/43.28
= 3.27 kips compression

Example 3.2

Determine the forces in the members of the structure shown in Figure 3.4. All
members have the same cross-sectional area and modulus of elasticity.

Solution

The force R in member 13 is chosen as the redundant, and member forces P
and u are obtained from (i) and (ii) and are tabulated in Table 3.2.
Thus the force in member 13 is:

R = =X Pull > u?l
—44.7/21.03
2.13 kips compression
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‘10k

() (ii)
Figure 3.4

Table 3.2 Determination of forces in Example 3.2

Member P 1 u Pul u?l P+ uR
12 10 10 —0.447 —44.7 2.0 10.95
23 0 S —0.447 0 1.0 0.95
34 —-20 5 —-0.894 89.4 4.0 —18.10
24 0 7.07 0.632 0 2.83 -1.35
13 0 11.2 1.000 0 11.2 -2.13
Total 44.7 21.03

The remaining member forces are given by the expression (P + uR).

3.3 Frames two degrees redundant

The pin-jointed frame shown in Figure 3.5 contains the two redundant mem-
bers 12 and 34, with unknown forces Ry and R, assumed tensile. The inde-
terminate frame can be replaced by system (i) plus Ry X system (ii) plus
R, X system (iii).

_ + R, X 1| +Ryx

77 757 %7
® (i) (iii)

Figure 3.5
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The relative movement of points 1 and 2 in the actual structure consists of
the extension in member 12 and is:

b1 = ~Rpplin/ApEy
The relative inward movement of points 1 and 2 in systems (i), (ii), and (iii) is:
8,y + 81, + 81 = SPuIAE + S 12l/AE + X uyu,l/AE

where the summations extend over all the members of the cut-back structure.
Since:

by = 01y T RO}, + RyOY,
then:

0 = X Pul/AE + R X u?l/AE + R, Y uyu,l/AE (1)
where the summations extend over all the members of the actual structure,
P = 0 for both redundant members, #; = 1 for member 12 and 0 for member
34, and u, = 1 for member 34 and 0 for member 12.

Similarly, by considering the relative movement of points 3 and 4 we obtain:

0 = X Pu,l/AE + Ry X uyu,I/AE + R, X u3l/AE 2)

Equations (1) and (2) may be solved simultaneously to obtain the value of
the redundant forces R and R,. The actual force in any member is given by
the expression (P + u#R; + u,R)).

Frames with more than two redundants are best solved by the flexibility
matrix method given in Section 10.3.

3.4 Frames redundant externally

The reactions V; and V, may be considered the external redundants of the
frame shown in Figure 3.6. The displacements corresponding to and in the line
of action of V; and V, are:

8, = L PulIAE + V, S 12l/AE + V, X u,u, I AE
and:
8, = X Pu,lIAE + V; Zuu, lIAE + V, S u3l/AE

where P, u;, and u, are the member forces in the cut-back structure due to the
applied loads, the virtual unit load corresponding to Vy, and the virtual unit
load corresponding to V,, respectively.

In the case of rigid supports, §; = 6, = 0, and the two equations may be
solved simultaneously to obtain V; and V,.
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®

+V, X
(i) fl

+V, X

(i) i

Figure 3.6

In the case of settlement of the supports by amounts y; at support 1 and y,
at support 2, §; = —y; and 6, = —y,. Again, the two equations obtained may
be solved for V; and V.

An alternative method of solving the problem is to consider members 34 and
56 as internal redundants. The values of the redundants may be obtained by
the method of Section 3.3.

3.5 Frames with axial forces and bending moments

When the loading on pin-jointed frames is applied between the panel points as
shown in Figure 3.7, bending moments are produced in some members in addi-
tion to axial forces. The force R in member 12 is regarded as the redundant,
and the inward movement of the points of application of R in system (i) is:

8, = SPul/AE + X[ Mm dx/EI
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where M and m are the bending moments at any point in a member of the cut-
back structure due to the applied loads and the virtual unit loads correspond-
ing to R, respectively.

The inward movement of the points of application of R in system (ii) is:

81, = SulAE+ X[ m?dx/EI

The inward movement of the points of application of R in the actual struc-
ture is:
b1y = —RIj/AEyy
=681, T ROY,

Thus R u2IAE + Y f m? dx/EI) = Y PullAE + Y f Mmdx/EI
where the summations extend over all the members of the actual structure

with P, =0 and uq; = 1. In the particular structure shown in Figure 3.7,
SMmdx/EI = 0 for all members, and [#*dx/EI is applicable only to member 23.

® (i)

Figure 3.7

Example 3.3

Determine the tension in the member 13 that connects the cantilever to the bracket
234 as shown in Figure 3.8. The cross-sectional areas, second moment of areas,
and modulus of elasticity of the members are A3 =1 in?, Ay = Ay; =2 in?,
112 = 1440 il’l4, ElZ = 10,000k1ps/1n2, and E13 = E23 = E34 = 30,000k1ps/1n2.

Solution

The force in member 13 is considered as the redundant, and the actual struc-
ture is replaced by system (i) plus R X system (ii).

In system (i), member 12 is subjected to a bending moment, and there are no
axial forces in the members. Then, over the cantilever from x = 0 to x = 8.66 ft:

M= —-15x
and:
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Figure 3.8

and the relative inward movement of 1 and 3 is:
2
85 = [ Mmdx/EI

= —15f x2 dx/EI

= —15(8.66) X (12)*/ (3 X 10,000 X 1440)
=—3247 X1073 ft

In system (ii), member 12 is subjected to a bending moment, and members 23 and
34 are subjected to axial forces, and the relative inward movement of 1 and 3 is:

8y = [ m*dxl E1+ SullAE

) 66 2 dx/EL + 2 X (1) X 10 X 122 /AE

= (8.66)% X (12)2/(3 X 10,000 X 1440) + 2 X 10/(2 X 30,000)
=(2.17 +0.33) x 1073
=2.50x1073 ft

The extension in member 13 in the actual structure is:

0,3 = —R X 5(1 X 30,000)
—R X 0.167 X 1073 ft

Thus:

—0.167R = —32.47 + 2.50R
and:

R = 12.18 kips
Example 3.4

Determine the maximum bending moment in the braced beam shown in Figure
3.9. The cross-section areas of the members are Ay, = 10 in%, A3, =5 in?,
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Figure 3.9

Ay = Ay, = 2.5 in?. The second moment of area of member 12 is 1440 in*,
and the modulus of elasticity is constant for all members.

Solution

The force in member 43 is considered the redundant, and the actual structure
is replaced by system (i) plus R X system (ii).

IMmdx/EI and [m?dx/EI are applicable only to member 12 with M = 3x
and m = x/2, YPul/AE = 0 and Yu?l/AE is applicable to all members:

[ ® M dx/EI = 2 % 3 [ " 2 dx2ET
1 0

= 1000 X 124/1440E
=100 X 122/E
f2m2 dx/EI = 2f10x2 dx/4EI
1 0
=16.7 X 122/ E
S ull/AE = 2 X (2.55)%> X 10.2 X 122/2.5E + (2.50)*> X 20
X 122/10E +1 X 2 X 122/5E
=(53+12.5+0.4) X 122/E
=65.9X 122/ E

Thus:

—R(16.7 +65.9) = 100
and:

R = 1.21 kips compression

The vertical component of the tensile force in member 14 is 0.605 kips.
Thus, the maximum bending moment in the beam at 3 is:
M, = (3—0.605) X 10
= 23.95 kip ft

Example 3.5

Determine the force in member 56 of the frame shown in Figure 3.10. All
members have the same cross-sectional area, modulus of elasticity, and second
moment of area.
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Figure 3.10

Solution

The tensile force in member 56 is considered the redundant, and the actual

structure is replaced by system (i) plus R X system (ii). [Mmdx/EI is appli-

cable only to member 34, with M = —(WI/6 + Wx/2) and m = h. [m*dx/EI

is applicable to member 34 and also to members 53 and 64, with m = x.

YPul/AE = 0, and Su*l/AE is applicable only to members 34 and 56 with z = 1.
Then:

/]
I *Mm dx/EI = —2Wh I " (U6 + x12)dx/EI
— _SWhI2/72E]
mez dx/EI = f:mz dx/EI + ijmz dx/EI

13 h
— 1.2 2
=h fo dx/EI + zfo x2 dx/EI

= h2l/3EI + 2h3/3EI
Y u?l/AE = 2 X 1 X I/3AE
= 2l/3AE

Thus:
R(bh2I/3EI + 2b3/3EI + 2I/3AE) = 5Whi*/72EI

3.6 Two-hinged arch

The two-hinged arch shown in Figure 3.11 is one degree indeterminate, with
the horizontal reaction H considered the external redundant. The value of H
may be determined from system (i) and system (ii) by considering the effects of

Figure 3.11
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moments, axial thrust, and shear on the arch rib. Usually the arch axis closely
follows the funicular polygon for the applied loads, and shear effects are small
and may be neglected.

The inward movement of 1 in system (i) is:

% = [ Mmds/EI + [ Puds/AE

where P and u are the axial thrusts in the cut-back structure due to the applied
loads and the virtual unit loads, respectively, and M and 7z are the moments in the
cut-back structure due to the applied loads and the virtual unit loads, respectively.

Thus:

Xy = fMyds/EI + stinacosads/AE
~ fMyds/EI
The inward movement of 1 in system (ii) is:
x| = [m2ds/EI + [ ds/AE
= fyz ds/EI + fcoszads/AE

= fyz ds/EI + fcosudx/AE
= [y*ds/EI + I/AE

where [ is the arch span and « is the slope of the arch axis.
When the arch abutments are rigid, the movement of 1 in the actual struc-
ture is:

x; =0
and:
x, = x| + Hx
Thus:
H = — [ Myds/EI/( [ y? ds/EI + IAE)

When the rise to span ratio of the arch exceeds 0.2, the rib-shortening effects
may be neglected and:

H = — [ Myds/Ell [ y? ds/EI
In the case of spread of the abutments by an amount 8x:
x| = —ox
and:

H = ~(@x + [ Myds/EI)/ [ y* ds/EI
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A change in temperature from that at which the arch was erected causes
a change in H. For a rise in temperature of °F and a coefficient of thermal
expansion o:

xy = —otl + fMyds/EI
and:
H = —(atl + f Myds/EI)/ f y2 ds/EI

where t is positive for a rise in temperature and negative for a fall in
temperature.

In the case of reinforced-concrete arch ribs, the shrinkage of the concrete
has a similar effect to a fall in temperature. For concrete with an ultimate
shrinkage strain of 300 X 107° in/in and a coefficient of thermal expansion of
6 X 107° in/in/°F, the shrinkage is equivalent to a fall in temperature of 50°F.

The axial thrust, shear, and bending moment at any section 3 of the arch
may be obtained from Figure 3.12 as:

P = Hcosa + Vsina — Wsina
O = Hsina — Vcosa + Wcosa
M = —Hy + Vx — Wx3,

Figure 3.12

Example 3.6

The parabolic arch shown in Figure 3.13 has a second moment of area that
varies directly as the secant of the slope of the arch rib. Neglecting the effects
of axial and shear forces, determine the horizontal thrust at the supports and
the bending moment at a point 20 ft from the left-hand support.

Solution

The equation of the arch axis, taking the origin at 1, is:

y = x(80 — x)/160
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Figure 3.13

The second moment of area at any section is given by:

I =1 seca
= [, ds/dx

where I is the second moment of area at the crown.
Thus:

H

— [ Myds/El/ [ y? ds/EI
—fMydx/fy2 dx
_ 40 ) _ 40 3
2 fo (x2/2 — 40)ydx/2 fo y2 dx
_ 40 _~4 3 _ 2 40 4 _ 3
16of0 (—x*/2 + 80x3 — 3200x )dx/fo (x4 — 160x
+ 6400x2)dx

= 80 kips
Atx = 20 ft, y = 7.5 ft, and the bending moment in the rib is:

M = 60X 20— 80X 7.5—2 X (202/2
= 200 kip-ft with tension on the inside of the arch

3.7 The tied arch

The two-hinged tied arch shown in Figure 3.14 is one degree indeterminate,
and the tension in the tie may be considered as the redundant.

e WL

(ii)
Figure 3.14
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The inward movement of 1 in system (i) is:
% = [ Myds/El

The inward movement of 1 in system (ii), allowing for rib shortening, is:
xi = [y*ds/EI + IAE

The movement of 1 in the actual structure is outward and consists of the
extension in the tie, which is given by:

x, = —HI/AE

where A, is the cross-sectional area of the tie.
Then:

Xy = xy +x]
and:

H = — [ Myds/El/( [ y* ds/EI + I/AE + I/AE)

Example 3.7

The two parabolic arches shown in Figure 3.15 have second movement of
areas that vary directly as the secant of the slope of the arch ribs and have the
same value at the crown. Neglecting the effects of axial and shear forces, deter-
mine the horizontal component of the axial forces in the arches.

5K 5K

Figure 3.15

Solution

For the upper arch:

y = 3x(80 — x)/160
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and:
2 3
[ Myds/ET = 2 fl Mydx/EI, + 2 f2 My dx/EI,
30 40
=2 fo Sxydx/EI, — 2 f3 , 150y dx/EL,
= —185,000/EI,
H [y2ds/ET = 2H |/ 2 dxiEL
= 38,400H/EI,

For the tie, y = x(80 — x)/160, and the extension is:

40
H [y*ds/EI = 2H fo y2 dx/EI,
= 4270H/EI,
Thus:

H = 185,000/(38,400 + 4270)
— 4.35 kips

3.8 Spandrel braced arch

The two-hinged spandrel braced arch shown in Figure 3.16 is one degree inde-
terminate, and the horizontal reaction at the hinges may be regarded as an
external redundant. Allowing for a rise in temperature °F and a spread of the
abutments by an amount 8x, the reaction is:

H = (atl — dx — X Pul/ AE)/(X u?l/AE)

Figure 3.16

An alternative procedure is to regard member 12 as an internal redundant
and obtain a solution by the method of Section 3.2.
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Example 3.8

Determine the member forces in the two-hinged spandrel braced arch shown
in Figure 3.17. All members have the same cross-sectional area and the same
modulus of elasticity.

6k 4k

0 (ii)
Figure 3.17

Solution

The force R in member 54 is chosen as the redundant, and member forces P
and u are obtained from (i) and (ii) and are tabulated in Table 3.3.

Table 3.3 Determination of forces in Example 3.8

Member P ) u Pul u?l P+ uR
12 —6.94 11.56 —-0.85 68.2 8.36 —4.30
23 —3.47 3.44 —-1.10 13.1 4.16 —0.05
34 —5.53 11.56 —-0.85 54.3 8.36 —2.89
51 1.06 11.05 1.0 11.7 11.05 —-2.06
53 1.06 2.55 1.0 2.7 2.55 —-2.06
52 0 2.55 1.0 0.0 2.55 —-3.11
54 0 11.05 1.0 0.0 11.05 —-3.11
Total 150.0 48.08

Thus:
R = — X Pull> u?l

=—-150/48.08

3.11 kips compression

The remaining member forces are given by the expression (P + uR).



Indeterminate pin-jointed frames 199

Supplementary problems

$3.1 All members of the pin-jointed frame shown in Figure S3.1 have a con-
stant value for AE of 60,000 kips. Member 24 is fabricated 1/8 in too long.
Determine the resultant force in member 24 due to the lack of fit and the
applied load of 20 kips.

| 8’ <y

4 5
Figure S3.1

$3.2 All members of the pin-jointed frame shown in Figure S3.2 have a con-
stant value for AE of 60,000 kips. Member 26 is fabricated 1/20 in too long.
Determine the resultant force in members 24 and 26 due to the lack of fit.

2

Figure §3.2

$3.3 All members of the frame shown in Figure S3.3 are of uniform section.
Determine the force in member 13 due to the applied load W.

al2 al2
[

lw
20 53

A~

Figure S3.3
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$3.4 The trussed beam shown in Figure S3.4 is constructed with a wood beam
12 and strut 34 and 1 in diameter steel tie rods 41 and 42. The cross-sectional
area and second moment of area of the beam are 86 in? and 952 in*. The
cross-sectional area of the strut is 26 in%, and the ratio of the modulus of elas-
ticity of steel and wood is 18. Calculate the force in the strut caused by a uni-
formly distributed load of 1 kip/ft over the beam.

1%/t
1 I T I]]] [ I I T TT]]

4

Figure S3.4

$3.5 The tied parabolic arch shown in Figure S3.5 has a flexural rigidity that
varies directly as the secant of the slope of the arch rib and has a value of EI,
at the crown. The area and modulus of elasticity of the tie rod are A, and E,,
and the ratio EI/AE, = 2.5 ft?. Determine the force in the tie rod caused by
the 100 kip concentrated load at the crown.

40

100%

IS,

Figure S3.5

$3.6 The two parabolic arches shown in Figure $3.6 have second movement of
areas that vary directly as the secant of the slope of the arch ribs and have the
same value at the crown. Neglecting the effects of axial and shear forces, deter-
mine the horizontal component of the axial force in the arches.

| 80’ >

100K

Figure S3.6
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$3.7 The two-hinged arch shown in Figure $3.7 has a uniform cross-section
throughout. Neglecting the effects of axial and shear forces, determine the hor-
izontal thrust at the supports caused by the 10 kip load located as indicated.

8’ 4 10’ 8’

[

N

Figure S3.7

$3.8 The parabolic arch rib shown in Figure S3.8 has a flexural rigidity that
varies directly as the secant of the slope of the arch rib and has a value of EI,
at the crown. The flexural rigidity of both columns also has a value of EI,.
Determine the horizontal thrust at the supports caused by the concentrated
load W at the crown. Neglect the effects of axial and shear force.

2a
*W

al2

Figure S3.8
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$3.9 The cable-stayed bridge shown in Figure S3.9 consists of a continuous
main girder 12, supported on rollers where it crosses the rigid piers, and two
cables that are continuous over frictionless saddles at the tops of the towers.
The modulus of elasticity, cross-sectional areas, and second moments of area
of the members are given in the Table. Determine the force T in the cables pro-
duced by a uniform load of 1 kip/ft over the girder.

Member E I A
kips/in? in* in?
Cable 30,000 - 20
Tower 3000 - 100
Girder 3000 100,000 1000
2
L ]
1 2
30’ 30’ 30’ 30’ 30’

et

Figure S3.9
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4 Conjugate beam methods

Notation

cross-sectional area of a member

Young's modulus

second moment of area of a member

length of a member

bending moment in a member due to the applied load
bending moment in a conjugate member due to the elastic load
axial force in a member due to the applied load

shear force in a member due to the applied load

shear force in a conjugate member due to the elastic load
redundant force in a member

intensity of applied load on a member

intensity of elastic load on a conjugate member, M/EI
applied load on a member, [w dx

elastic load on a conjugate member, [M dx/EI
horizontal deflection

vertical deflection

deflection due to the applied load

deflection at 7 due to a unit load applied at j

extension produced in member 12 by the applied load
angle change at joint 2 of a triangular frame due to the applied load
strain produced in member 12 by the applied load
rotation due to the applied load

TR ROONEE T E >

> > >R R
S ] E

SN
[N

4.1 Introduction

The conjugate beam method may be used to obtain an expression for the
entire deflection curve over the whole of a structure. This, in combination with
Miiller-Breslau’s principle, may then be used to obtain influence lines for the
structure.

The method may also be used to determine fixed-end moments and support
reactions in continuous beams and frames, though generally the column anal-
ogy and moment distribution methods are preferred methods of solution.
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4.2 Derivation of the method

The simply supported beam shown in Figure 4.1 is subjected to an applied
loading of intensity w, positive when acting upward. The shear force at any
section is given by the area under the load intensity curve as:

Q=fwdx

.

—

w
LTI
A A

Figure 4.1

with shear force upward on the left of a section regarded as positive. The bend-
ing moment at any section is given by the area under the shear force curve as:

M=dex

with the bending moment producing tension in the bottom fiber regarded as
positive. In addition, the curvature at any section is given by:

d?y/dx? =1/R
= M/EI

and the slope and deflection at any section are given by:

dy/dx =6
= f M dx/EI
y=26

:ffM dx/EI

with x positive to the right and y positive upward.
An analogous beam, known as the conjugate beam, shown in Figure 4.2, is
subjected to an applied loading of intensity:

w'=M/EI

where M is the bending moment in the actual beam at any section, and fM/EI
is known as the elastic load.
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w' = M/EI

Figure 4.2

The shear and bending moment at any section in the conjugate beam are
given by:

o =fw’ dx
=fM dx/EI
=9

fQ’ dx

f M dx/EI

=6

M/

where 0 and 6 are the slope and deflection at any section in the real beam.

Thus, the slope and deflection at any section in the real beam are given by the
shear and bending moment at that section in the conjugate beam, and the elas-
tic curve of the real beam is given by the bending moment diagram of the con-
jugate beam. The end slope and end deflection of the real beam are given by the
end reaction and end moment of the conjugate beam. The maximum deflection
in the real beam occurs at the position of zero shear in the conjugate beam.

4.3 Sign convention

The conjugate structure consists of the centerlines of the real structure and is
placed in a horizontal plane.

In the case of beams, the elastic load applied to the conjugate beam is posi-
tive (i.e., acts vertically upward) when the bending moment in the real beam is
positive (i.e., tension in the bottom fiber). The deflection of the real beam at
any section is positive (i.e., upward) when a positive bending moment occurs
at the corresponding section of the conjugate beam. The slope of the real beam
is positive when a positive shear force occurs at the corresponding section of
the conjugate beam.

In the case of frames, the elastic load applied to the conjugate frame is posi-
tive (i.e., acts vertically upward) when the outside fiber of the real frame is in
compression. The displacement of the real frame at any section is perpendicu-
lar to the lever arm used to determine the moment in the conjugate frame and
outward when a positive bending moment occurs at the corresponding section
of the conjugate frame.
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4.4 Support conditions

The restraints of the conjugate structure must be consistent with the displace-
ments of the real structure.

At a simple end support in the real structure, shown in Table 4.1 (i), there is
a rotation but no deflection. Thus, the corresponding restraints in the conju-
gate structure must be a shear force and a zero moment, which are produced
by a simple end support in the conjugate structure. The elastic load on the
conjugate beam is upward and is expressed as W' = WI?/8EI. The slope of the
real beam at 1 and the deflection at 3 are:

0, =—W'/2

—WI2/16EI ... clockwise
0,12 + W'lj12
=—WI3/48EI ... downward

b3

At a fixed end in the real structure, shown in Table 4.1 (ii), there is neither a
rotation nor a deflection. Thus, there must be no restraint at the corresponding
point in the conjugate structure, which must be a free end. The elastic loads on
the conjugate beam consist of a downward load due to the fixing moments
of Wi = —MI/EI and an upward load due to the free bending moment of
W', = WI2/8EI . For equilibrium of the conjugate beam, W/ = —-W/ and
M = WI/8, with tension in the top fiber as shown.

At a free end in the real structure, shown in Table 4.1 (iii), there is both a
rotation and a deflection. Thus, the corresponding restraints in the conjugate
structure are a shear force and a bending moment, which are produced at the
fixed end. The elastic load on the conjugate beam is downward and is expressed
as W' = —WI?/2EI The slope and deflection of the real beam at 2 are:

6, =W’
=WI2/2EI ... clockwise
8, =2W'l/3

=—WI3/3EI ... downward

At an interior support in the real structure, shown in Table 4.1 (iv), there
is no deflection and a smooth change in slope. Thus, there can be no moment
and no reaction at the corresponding point in the conjugate structure, which
must be an unsupported hinge. The elastic loads on the conjugate structure
consist of downward loads due to the fixing moment of W{ = —MI/2EI and
upward loads due to the free bending moments of W', = WI?/8EI. The slope
of the real beam at 1 is:

0, =—W; — W,
= MI/2EI — WI2/8EI
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Table 4.1

(i)

(iii)

(iv)

)

(vi)
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Taking moments about 2’ for member 1'2':
0=10, +IW}/3+IW},/2

And:
M =3WI/16... with tension in the top fiber as shown.

At an interior hinge in the real structure, shown in Table 4.1 (v), there is a
deflection and an abrupt change of slope. Thus, the corresponding restraints in the
conjugate structure are a moment and a reaction, which are produced by an inte-
rior support. The elastic loads on the conjugate structure are downward and are
expressed as W' = —WI%/8EI The slope and deflection of the real beam at 2 are:

0, = —2W'
=WI2/4EI

8, =SIW'/6
=—SWI3/48EI

The outside fibers of both members of the real frame, shown in Table 4.1
(vi), are in tension throughout. Thus, the elastic loads on both members of
the conjugate frame are downward and are expressed as W| = —WhI/EI and
W, = —WI2/2EI, respectively. The vertical deflection of the real frame at 1 is:

yr = 2W
=Wix) + W]
=—WhI?/EI —WI3/3EI

and is inward (downward) since the bending moment at 1’ produces tension in
the top fiber. The horizontal deflection of the real frame at 1 is:

xl — ZW/y/
=Wiy
=—Wh2/2EI

The sense of this deflection is obtained by considering the deflection of the
real frame at 2. The bending moment at 2’ produces tension in the top fiber,
and thus the deflection of 2 is inward (to the right) and the deflection of 1
must also be to the right.

4.5 Illustrative examples

Example 4.1

Determine the deflection and rotation at the free end of the cantilever shown
in Figure 4.3 (i) and derive the equation of the elastic curve.
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@ (ii)

Figure 4.3

Solution

For the real beam, the intensity of loading is:
w =—2Wx/I?
the shear is:
O = —Wx2/I?
and the moment is:
M = —Wx3/3]>
For the conjugate beam, the intensity of loading is:
w' = —Wx3/3EII?

and the rotation at 1 is given by:

I
= fo W3 dx/3EII2
= WI2/12EI ... anticlockwise

and the deflection at 1 is given by:
5, =W'x
=- j;) lw’x dx
= — [ W dx/3E1I2
=—WI3/15EI ... downward

The slope at any section in the real beam is:

o'=0 + fw'dx
= WI2/12EI — f Wa3 dx/3EII2
= W(I* — x*)/12EI2
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The deflection at any section in the real beam is:

=6 + fQ’ dx
=—-WI3/15EI + \X/f(l4 —x*) dx/12EII?
=-—W(4l —5l*x + x°)/60EII?

Example 4.2

A simply supported steel beam of 20ft effective span carries a uniformly
distributed load of 20 kips. Flange plates are added to the central 10ft of
the beam in order to limit the deflection to 1/480 of the span. Determine
the second moment of area required for the central portion if the second
moment of area of the plain beam is 200 in* and the modulus of elasticity is
29,000 kips/in?.

1'l0] 3 ezlz' _ l W—{-Tli”' l

(1)

[ s | 100 |.5 ]

r T T 1 12 S/Ell
T \‘ 37.5/E1,
e
W3 1875’
(ii) —>| <2—5
+
Wi
| e
¢ 37.5/El
(iii) I 12.5/E1,
Figure 4.4
Solution

The loading on the conjugate beam is shown in Figure 4.4, which can be
replaced by the three loading conditions (i), (ii), and (iii) where I; and I, are
the second moment of areas of the plain beam and the plated beam, respec-
tively, and the bending moment at the center of the real beam is 50 kip-ft.
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Thus, the elastic loads are:

and:

The central deflection of the real beam is:

W' =0.67 X 10 X S0/EI,
= 333/EI,

W/, =—0.67 X 5 X 12.5/EI,

—42/EI,

—5 X 37.5/EI,

~187/EI,

W/, = 0.67 X 5 X 12.5/EI,
= 42/EI,

Wi =5 x 37.5/EI,
=187/EI,

=
Il

b=—W, - W, — W, — W, — W,

= —104/EI, — 229/EI,

85 = (10 X ) + (3.75X W) + (1.87S X W) + (2.5 X W'})
+(1.875 X W',) + (2.5 X W)

=—339/El, — 1745/EI,

1745/1, =20 X 29,000/(480 X 144)—339/200

=-20/480
Thus:
and:
I, =260 in*
Example 4.3

Determine the horizontal displacement of the roller 1 of the rigid frame shown
in Figure 4.5. All the members of the frame have the same second moment of

area and the same modulus of elasticity.

Solution

The bending moment diagram, drawn on the compression side of the mem-
bers, is shown at (i), and the elastic load on the conjugate frame is shown at
(ii). The elastic loads are:

W/ =0.5 X 15 X 30W/EI
= 225WIEI

W, =9 x 30W/EI
= 270W/EI
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Figure 4.5

W’ =0.5 X 6 X 6W/EI
= 18W/EI

W, =6 X 24W/EI
= 144W/EI

W’ = 0.5 X 18 X 18W/EI
= 162WI/EI

The horizontal displacement at 1 is:
X, = ZW’yi
=24W + 24W), +22W' + 21W/, + 12W
=17,244W/EI

and is outward since the moment at 1’ produces tension in the bottom fiber.

Example 4.4

Determine the bending moments in the continuous beam shown in Figure 4.6.
Flange plates are added to the 24 ft portion of the beam between the applied
loads so as to double the second moment of area.
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(i) Wi
Figure 4.6

Solution

The bending moment diagram is shown at (i), where —M| and —Mj3 are the
fixed-end moments and —M, is the support moment.

The elastic loads on the conjugate beam are shown at (ii), where EI = 1 over
the central portion of the beam and EI = % over the end 12 ft portions. The
elastic loads are:

Wi =144

W, =72

W, =6(M, —M,)
W, =—-12(M; + M,)
W’ ==3(M, — M,)

W, =-12 M,

W, ==3(M; —M,)
Wy =—12(M; + M,)
Wy =—6(M; —M,)
Wi, =288

For equilibrium of the conjugate beam:

QW+ W, + Wiy + W, + W, + W, +2W, + W, + W, + W) =0
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and:
216 —=7M, —10M, —=7M; =0 (1)
Taking moments about 2’ for member 1'2":
16W) + 8W), + 20W, + 18W/, + 8W + 6W, =0
and:
40—-5M, -2M, =0 - (2)
Taking moments about 2’ for member 2'3":

80—5M;—2M, =0 .. (3)
Solving equations (1), (2), and (3) simultaneously:

M, = 3.63 kip-ft
M, =10.83 kip-ft
M, =11.63 kip-ft

Example 4.5

The grid shown in Figure 4.7 is simply supported at the four corners and con-
sists of members of uniform section pinned together at their intersections.
Determine the distribution of bending moment in each member.

Solution

The deflections produced at the interconnections are indicated at (i). The inter-
nal reactions at the interconnections may be considered as the redundants and
are indicated at (ii). Along the diagonals, these reactions are zero due to the
symmetry of the structure and applied loading. The applied loads and deflec-
tions of beams 11, 22, and 33 are indicated at (iii), (iv), and (v).

Let

6;j = deflection at i due to a unit load at ;.

Then, the values of §;, may be obtained from (vi) and (vii) as:

Opp, = My,
=—7a3%/8 + 3a3/24
—3a%/4
oy = My
—1043/8 + 243/6
=—1143/12
= 6176
= 6dc
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Figure 4.7
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6db == Md’
=—5a3/8 + a3/24
=—-7a3/12
where:
ElI=1

The values of §;. may be obtained from (viii) and (ix) as:

o, =M,
=243 +243/3
=—443/3
where:
EI =1

The deflections of beam 11 are obtained from (iii) as:

01 = Ry(bpp + Opa) + Ry,
= —16R1a3/12— 11R2a3/12 .. (1)

62 = Rl((scb + 6511') + RZ(SCC
=—22R,a’*/12—-4R,a%/3 ... (2)

The deflections of beam 22 are obtained from (iv) as:

(63 - 61) = R36cc
= —4R,@33 .. (3)

The deflections of beam 33 are obtained from (v) as:

= 4R,a3/3— 11Wad/24 (4

Equation (2) — equation (1) = equation (3) — equation (4). Thus:
12R; +10R, —64R; +11W =0 ... (5)
Considering the equilibrium of beams 11 and 22:

2R, + R, —=W/4 =0 .. (6)
and:

2R, ~Ry =0 ...(7)
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Solving equations (5), (6) and (7) simultaneously, we obtain:

R, =0.1W
R, =0.05W
Ry = 0.2W

and the bending moments in the members are shown at (x), (xi), and (xii).
When the number of internal reactions exceeds three, the matrix method
given by Stanek? is a preferred method of solution.

4.6 Pin-jointed frames
The change in slope for a member of a rigid structure is given by:
dé = Mdx/EI

and constitutes the load on a small element dx of the conjugate beam.

The change in slope of a pin-jointed frame is concentrated at the pins and is
known as the angle change. Thus, the deflections at the panel points of a pin-
jointed frame are given by the bending moments at the corresponding points in
a conjugate beam loaded with the total angle change at the panel points.

In the pin-jointed frame shown in Figure 4.8, the applied load produces a
force in each member and a change in the length of each member. Due to these
changes in length, all angles in the frame change. The total angle changes at
the bottom chord panel points are XA,, YAz, BA,, YA;, and A4 and are
the applied loads on the conjugate beam at (i), with a decrease of angle giving
a positive load. The deflections of panel points 2, 3, 4, 5, and 6 are given by
the bending moments at 2', 3', 4’, 5’, and 6’ and are positive when the corre-
sponding conjugate beam moment produces tension in the bottom fiber of the
conjugate beam.

1 2 3;[ 4 5 6 7T
W
1" 2 3 4 5 6’ 74
) fmz TZA3 } A, } TAs fmc

Figure 4.8
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The member forces, P, due to the applied loads in a basic triangle of a pin-
jointed frame shown in Figure 4.9(i) produce extensions in the members of 6;,,
6,3, 631. The angle change at 1 is given by:

A, = Y Pul/AE

/145
h 52
111}, 111}, 1 2
(ii) Forces u (i) Forces P

Figure 4.9

where u is the force in a member due to a unit couple applied to 1 and 3, as
shown at (ii).
Thus:
A = uyybyy Fuy3by5 +usibs
u, = —cot L2/,
us = —cot £3/1l5;
uy3 =1/p
= (cot £3 + cot L2)/l,,

Hence:

Al = cot 42(623/123 _(512/112) + cot 13((523/123 _(513/113)
= cot £2(ey3 — &) + cot L3(e33 — €13)

where ¢ is the strain produced in a member by the applied loads on the pin-
jointed frame with tensile strain positive. Similarly:

Ay = cot £L3(gg3 —€53) + cot L1(gy3 —€45)

A3 = cot 41(512 - 513) + cot 42(512 - 523)

A comprehensive review of the method has been given by Lee?.

Example 4.6

Determine the deflections at the panel points of the pin-jointed frame shown in
Figure 4.10. All members of the frame have the same length, area, and modu-
lus of elasticity.
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Figure 4.10

Solution

The member forces due to the applied load are indicated on the figure, where
o = 1/3/3. The total angle changes at the panel points are:

YA, ={4+4+4+2)+(4+4+4—4)+ (4+6—4—4)a/AE|3

2A3:(iﬁw+4+4)+(8+4+8+2)+(2+2+z+7)}a/AEJ3
ZA4z{s(i§+7—2—2)+(6—2+6+2)+(2+2+2+5)}a/AE\/3
ZA5z{z(ig—2—2+5)+(4—2+4+2)+(2+2+2+3)}a/AE\/3
ZA6zi(gﬁz—2—2+3)+(2—2+2+2)+(2+2+2+1)}a/AE/3

where 8 = 1/9AE. The loads on the conjugate beam are shown at (i).
The panel point deflections are given by the bending moments at the corre-
sponding points in the conjugate beam:

8, =M, =67.313
8, =M, = 118.713

8, =M,
—117.0I3
8s =M,
=91.313
66 - M6
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Supplementary problems

Use the conjugate beam method to solve the following problems.
S4.1 Determine the support moment at the end 1 of the fixed-ended beam
shown in Figure S4.1.

A

\

r" 2

Figure S4.1

ASSNNNY
—_

177777

$4.2 For the non-uniform beam shown in Figure $4.2, determine the rotation
produced at support 1 and the deflection produced at point 3 by the concen-
trated load W. The relative EI values are shown ringed.

/4 12 1/4
w
BENONENCONE & olE
i i
12
Figure $4.2

$4.3 Determine the deflection at the free end of the cantilever shown in Figure
S4.3. A uniformly distributed load w is applied over a length a from the
support.

Figure $4.3

$4.4 Determine the fixed-end moments produced by the application of the
moment M at point 3 in the non-prismatic beam shown in Figure S4.4. The
relative EI values are shown ringed.



Conjugate beam methods 221

1 ® 3y O 2

M

Figure S4.4

$4.5 Determine the fixed-end moments produced by the applied load indicated
in the non-prismatic beam shown in Figure S$4.5. The relative EI values are
shown ringed.

10 10 10
e
1/t
i 9  mmm © N2
G N
Figure $4.5

$4.6 Determine the fixed-end moments produced by the applied loads indi-
cated in the non-prismatic beam shown in Figure S4.6. The relative EI values
are shown ringed.

4’ 12/ 4’
| e

Lo "0 .,
1 l—§

Figure S4.6

$4.7 Determine the fixed-end moments produced by the applied loads indi-
cated in the non-prismatic beam shown in Figure S4.7. The relative EI values
are shown ringed.

k k
1%/t 6 12
L T T T Y T T I T T T T TTN 2
I pa— R

@ @ @ N

Figure S4.7
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$4.8 Determine the fixed-end moments produced by the applied loads indicated
in the prismatic beam shown in Figure $4.8.

Figure $S4.8

$4.9 Determine the fixed-end moment produced by the applied load indicated
in the propped cantilever shown in Figure $4.9.

Figure $4.9

$4.10 Determine the fixed-end moments produced by the load of 10 kips
applied at point 3 as indicated in the non-prismatic beam shown in Figure
$4.10. The relative EI values are shown ringed.

4’ g’

L0 {0 )
I

Figure $4.10
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5 Influence lines

Notation

cross—sectional area of a member

modulus of elasticity

second moment of area of a member

length of a member

bending moment in a member due to the applied loads
bending moment in the conjugate beam

axial force in a member due to the applied loads

shear force in a member due to the applied loads

shear force in the conjugate beam

redundant force in a member due to the applied loads
vertical reaction

intensity of loading on the conjugate beam

applied load

elastic load on the conjugate beam, M dx/EI

deflection at i due to a unit load at j

element of length of a member

relative rotation between two sections in a member due to the
applied loads

rotation

Lgrgss <mQOYEE "~ m>

>

5.1 Introduction

An influence line for a structure is a curve showing the variation in shear,
moment, member force, or external reaction due to a load traversing the struc-
ture. Influence lines for statically indeterminate structures may be obtained
by the applications of Miiller-Breslau's principle and Maxwell's reciprocal
theorem.

Influence lines for arches and multibay frames may be obtained by the
methods given in Sections 6.4 and 7.14. A comprehensive treatment of the
determination of influence lines for indeterminate structures has been given by
Larnach!.
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5.2 General principles

(a) Miiller-Breslau's principle

The influence line for any restraint in a structure is the elastic curve produced
by the corresponding unit virtual displacement applied at the point of applica-
tion of the restraint. The term “displacement” is used in its general sense, the
displacement corresponding to a moment is a rotation and to a force, a linear
deflection. The displacement is applied in the same direction as the restraint.

To obtain the influence line for reaction in the prop of the propped canti-
lever shown in Figure 5.1, a unit virtual displacement is applied in the line of
action of V. The displacement produced under a unit load at any point 7 is §;.
Then, applying the virtual work principle:

VX(@E=1)=(W=1)x5

that is: V=24

and the elastic curve is the influence line for V.

ANNNN
.
=
Il

ANNAN
0

ot

Figure 5.1

To obtain the influence line for moment at the fixed end of the propped can-
tilever shown in Figure 5.2, the cantilever is cut at the fixed end and a unit

N o
1

0=1

ok !

Figure 5.2
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virtual rotation is imposed in the line of action of M. The deflection produced
under a unit load at any point i is é;. Then, applying the virtual work principle:

MX (=1

I
S
I
=
X
>

that is: M = ¢,

and the elastic curve is the influence line for M.

Example 5.1

Obtain the influence lines for V; and M, for the propped cantilever shown in
Figure 5.3.

< [ o
I |
W
@]: \Y\/\l 0,
= (@
2’ x Iy
e o0=1
Figure 5.3

Solution

A unit upward displacement is applied to 1 and produces a moment M at the
fixed end 2. The elastic load on the conjugate beam is shown at (i); taking
moments about 1':

2W'I3 =1
Thus:
M = 3El/I?
The intensity of loading on the conjugate beam is:

w' = 3/12 — 3x/I3
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The shear is:
Q= fw’ dx
= 3x/1> — 3x2/213
The moment is:
W= [0 dx
= 3x2/21%2 — x3/213

and this is the equation of the elastic curve of the real beam.
Substituting x = #l, the expression for the influence line for V is:

V, = 3n?/2 —n’/2
The expression for the influence line for M, is:
M2 = nl - Vll
= ln — 3n2/2 + n3/2)
Example 5.2

Obtain the influence line for My, for the fixed-ended beam shown in Figure 5.4.

(i)

Figure 5.4
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Solution

The beam is cut at 1 and a unit clockwise rotation imposed. This requires a clock-
wise moment of My, = 4EI/l and induces a clockwise moment of M,; = 2EI/], as
shown at (i).

The intensity of loading on the conjugate beam at (ii) is:

w' = 2x/12 — 4/] + 4x/1?
= 6x/12 — 4/1

The shear is:

O = 3x2/1> — 4x/l + 1
The moment is:

M = X317 = 2x2/1 + x

and this is the equation of the elastic curve of the real beam.
Substituting x = #l, the expression for the influence line for M¥:

ME, = nl(n — 1)

The values of the influence line ordinates, at intervals of 0.2 X I, are given in
Table 5.1.

Table 5.1 Influence line ordinates for Example 5.2

n 0.2 0.4 0.6 0.8

MFE, < 1/ 0.128 0.144 0.096 0.032

M x 11 —0.032  —0.09%  —0.144  —0.128
Example 5.3

A non-prismatic beam deflects in the form of a sine wave when it is simply
supported and displaced vertically at its center. The beam is then supported at
its center to form a two-span continuous beam. Obtain the influence line for
bending moment for a point midway between one end support and the center
support.
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Solution

The influence line for V, for the two-span beam shown in Figure 5.5 is:
V, = sin(mx/l)

X /4

<~ S

Figure 5.5

For unit load to the left of section 4 the influence line for M, is:
M4 = V3l/4
= {x/l — (%) X sin(nx/])} X /4
= x/4 — (I/8) X sin(nx/l)

For unit load to the right of section 4 the influence line for My is:

M, = 3V,l/4 + V,l/4
= 3(I — x)/4 — I8 X sin(mx/])

The influence line may be plotted as shown at (i).

(b) Maxwell's reciprocal theorem

Figure 5.6

The displacement produced at any point 7 in a linear structure due to a force
applied at another point j equals the displacement produced at j due to the same
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force applied at i. The displacement is measured in the line of action of the
applied force; the displacement corresponding to an applied moment is a rota-
tion and to a force, a linear deflection.

Referring to Figure 5.6, the deflection at i due to a unit load at j is:

8; = | Mom dx/ET
= f m;m; dx/EI

where m; and m; are the bending moments produced at any section due to a

unit load applied at i and j, respectively.
Similarly, the deflection at j due to a unit load at i is:

8; = [ Mm dx/EI
= fmimi dx/EI

Thus, the influence line for deflection at i is the elastic curve produced by a
unit load applied at i.

Figure 5.7

Referring to Figure 5.7, the rotation at i due to a unit load at j is:

0, = [ Mm dx/EI
= f m,;m; dx/El
where ; is the bending moment at any section due to a unit load at j and 7 is

the bending moment at any section due to a unit moment at i.
Similarly, the deflection at j due to a unit moment at i is:

S.

; me dx/EI

= fml-ml- dx/EI
=,

Thus, the influence line for rotation at i is the elastic curve produced by a
unit moment applied at i.
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A general procedure for obtaining the influence lines for any restraint in a
structure is to apply a unit force to the structure in place of and corresponding
to the restraint. The elastic curve produced is the influence line for displace-
ment corresponding to the restraint. Dividing the ordinates of this elastic curve
by the displacement occurring at the point of application of the unit force gives
the influence line for the required restraint.

The influence line for relative rotation, 80, between two sections in a struc-
ture a distance dx apart is the elastic curve produced by equal and opposite
unit moments applied to the two sections. From Figure 2.1:

00 = dx/R
= M ox/EI
Example 5.4

Obtain the influence line for V; for the propped cantilever shown in Figure 5.8.
The second moment of area varies linearly from a value of I at end 1 to 21
atend 2.

Figure 5.8

Solution

The second moment of area at any section is:

I, =12 - x/l)

The reaction V; is replaced by a unit load acting vertically upward, and the
elastic load on the conjugate beam is shown at (i). The intensity of loading on
the conjugate beam is:

w' = M,/EI,
= (I — x)/EI(2] — x)
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The shear is:

O = fw’dx
= {Ix + 1, log(2] — x)}/EI — (I? log 21)/El
= {Ix + [ log(1 — x/2])}/EI

The moment is:

M = [Qdx
= {Ix2/2 + I2(x — 2I) X log(1 — x/21) — [2x}/EI

and this is the equation of the elastic curve of the real beam for unit load at 1.
At x = [ the deflection of the real beam is:

5 = M,
= —13(1+ 2 log )/2EI
= 0.19323/EI

The expression for the influence line for V; is:

V, = M6,
= (Ix2/2 + I2(x — 21) X log(1 — x/21) — 2x}/0.193213

Example 5.5

Obtain the influence line for V; as unit load crosses the beam of the rectangu-
lar frame shown in Figure 5.9. The beam has a second moment of area three
times that of each column.

2/

15’

30

p! '

30’

Figure 5.9
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Solution

For each column EI = 1, and for the beam EI = 3.
The reaction V; is replaced by a unit load acting vertically upward; the elas-
tic loads on the conjugate frame are shown at (i) and are given by:
W) = 450
W, =150

The rotation and vertical deflection at 1 are:

6, = —600
8, = 30W + 20W}
= 16,500

The deflection of the real frame, due to unit load at 1 at any point a distance
x from 2 is:

5, = M.
= &, + x0, + (10x2/60) X (x/3)
— 16,500 — 600x + x3/18

The expression for the influence line for V is:

V, = 6,16,
=1 6x/165 + x3/297,000

5.3 Moment distribution applications

- _ @

M, M,

S FAN S A

(i)

Figure 5.10
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To obtain the influence line for moment M; at the support 1 of the continuous
beam shown in Figure 5.10, the beam is cut at 1 and a unit virtual rotation
imposed at 1 with end 2 clamped as shown at (i). The moment required to pro-
duce the unit rotation is derived in Section 6.7 as:

where [ is the span length 12 and the moment induced at 2 is:
€281, = 2EI/

The cut ends at 1 are clamped together to maintain the unit rotation between
the members meeting at 1, and these initial moments are distributed through-
out the beam to produce the final moments shown at (ii). The elastic curve of
the structure, due to these final moments, is, from Miiller-Breslau's principle,
the influence line for M.

F F
M M21

N T

./ N
Figure 5.11

The elastic curve of the structure may be obtained from the values of fixed-
end moments tabulated in Table 5.1. Thus, referring to Figure 5.11, the elastic
curve of member 12 due to a unit rotation at 1 is the influence line for the
fixed-end moment at 1. For any other rotation, the elastic curve is obtained
as the product of the rotation and the influence line ordinate for M, at the
corresponding section. When a rotation also occurs at 2, the elastic curve is
obtained as the algebraic sum of the two products. Thus, the elastic curve ordi-
nate, y, at any section as shown is:

y = 912M1F2 + 921M§1

where clockwise rotations and clockwise fixed-end moments are positive.
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4E10,,/1

23 Hl

2EI0,,/1

4EI19,,/1

Figure 5.12

The rotations of the structure at the supports may be obtained from the final
support moments as shown in Figure 5.12. Thus:

M,, = 4EI0,,/l + 2EIb,,/l
M,, = 4EI6,,/l + 2EI6,, /I

where clockwise rotations and moments are positive.

The method may be readily extended to structures with non—prismatic mem-
bers using stiffness factors, carry-over factors and fixed-end moments that have
been tabulated* for a large variety of non-prismatic members.

Example 5.6

Determine the influence line ordinates for M, over the central span of the con-
tinuous beam shown in Figure 5.13. The second moment of area of span 34 is
twice that of spans 12 and 23.
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Figure 5.13

Solution

The beam is cut at 2 and clamped at 3. A rotation 6,3 is produced by applying
a clockwise moment of M,3; = 400 units; this induces a clockwise moment of
M3, = 200 units. These initial moments are distributed in Table 5.2.

The final rotations at 2 and 3 are:

0,5 = (330 — 55)/600

= 0.46 radians clockwise

65, = (110 — 165)/600
= —0.09 radians anticlockwise

Table 5.2 Distribution of moments in Example 5.6

Member 21 23 32 34
Relative EI/I 4 4 4 8
Modified stiffness 3 4 4 6
Distribution factor 3/7 4/7 2/5 3/5
— 1/2
Carry-over factor 172 —
Initial moments 400 200
Distribution —228 -80
Carry-over —40 —-114
Distribution 23 46
Carry-over 23 12
Distribution -13 -5
Carry-over -2 -6
Distribution 1 2
Carry-over 1 0
Final moments 165 55

The influence line ordinates, at intervals of 0.2/ are obtained in Table 5.3
from:

M, = 0.46ME, — 0.09ME,
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Table 5.3 Influence line ordinates for Example 5.6

n 0.2 0.4 0.6 0.8

ME, X 1/] 0.128 0.144 0.096 0.032

ME, x 1/1 —0.032 —0.096 —0.144 —0.128

ML, x 0.46 x 1/1 0.059 0.066 0.044 0.014

M, X —0.09 x 1/1 0.003 0.009 0.013 0.012

Ordinates X 1/I 0.062 0.075 0.057 0.026
Example 5.7

Determine the influence line ordinates for My, over the beam 12, for the frame
shown in Figure 5.14. The second moment of area and modulus of elasticity is
constant for all members.

e

Figure 5.14

Solution

The frame is cut at 1 and clamped at 2. A rotation 6, is produced by applying
a clockwise moment of M, = 400 units; this induces a clockwise moment of
M, = 200 units. These initial moments are distributed in Table 5.4.

The final rotations at 1 and 2 are:

6,, = (686 — 86)/600
= 1.0 radians clockwise
6,, = (172 — 343)/600
—0.285 radians anticlockwise
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The influence line ordinates, at intervals of 0.2/, are obtained in Table 5.5 from:

M, = MF, — 0.285ME,

Table 5.4 Distribution of moments in Example 5.7

Member 12 21 23 32
Relative EI/I 4 4 4 4
Modified stiffness 4 3

Distribution factor 4/7 3/7

Carry-over factor — 172 0 —
Initial moments 400 200

Distribution and carry-over =57 -114 -86

Final moments 343 86 -86 0

Table 5.5 Influence line ordinates for Example 5.7

n 0.2 0.4 0.6 0.8

ME, x 11 0.128 0.144 0.096 0.032
ME, x 11 ~0.032 ~0.096 ~0.144 -0.128
ME, x —0.285 x 1/ 0.009 0.027 0.041 0.037
Ordinates X 1// 0.137 0.171 0.137 0.069

5.4 Non-prismatic members

When tabulated values for stiffness factors, carry-over factors, and fixed-end
moments for non-prismatic members are not available, it is necessary to use
the general procedure for obtaining influence lines for the structure.

To determine the influence line for V; for the two-span continuous beam
shown in Figure 5.15, the beam is divided into short segments of length s. The
second moment of area is regarded as constant over the length of each seg-
ment, as indicated at (i). The reaction V; is replaced by a unit load acting ver-
tically upward, and the bending moment diagram on the cut-back structure is
shown at (ii). The bending moment is regarded as constant over the length of
each segment and has the values indicated. The elastic loads on the conjugate
beam are given by W’ = xs/EI and are considered to be concentrated at the
center of each segment, as shown at (iii). The bending moment in the conju-
gate beam at any section is the ordinate of the elastic curve of the real beam



238 Structural Analysis: In Theory and Practice

(@

X

(i)

RY)
X3
X4

ANN
—
—
—

T e

4

xi8(/EIL

X285/EL,
X383/Ely
XyS4/EL,

5

(iv)

Figure 5.15

at the corresponding section, as shown at (iv), and these values, when divided
by &, are the required influence line ordinates, as shown at (v). The influence
line for any other restraint may now be obtained by the direct application of
statics.
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To determine the influence line for V, for the three-span continuous beam
shown in Figure 5.16, reactions V, and V3 are removed to produce the
cut-back structure. The beam is divided into short segments of length s, and
the second moment of area is regarded as constant over the length of each
segment, as indicated at (i). A unit load is applied vertically upward at 2, as
shown at (ii), and the bending moment at the center of each segment is deter-
mined, as shown at (iii). The bending moment is regarded as constant over
the length of each segment, and the elastic loads on the conjugate beam are
considered to be concentrated at the center of each segment, as shown at (iv).
The ordinates of the elastic curve of the real beam, simply supported at 1 and
4 and with a unit load applied at 2, are given by the bending moments at the
corresponding section in the conjugate beam and are shown at (v).

A correction must be applied to these ordinates to reduce the deflection at
3 to zero since, with Vj in position, there can be no deflection at 3. A unit
load acting vertically downward is applied at 3, as shown at (vi). The ordi-
nates of the elastic curve for this loading condition are obtained by the above
procedure and are shown at (vii). For a symmetrical structure, curve (vii) is the
inverted mirror image of curve (v).

The ordinates of curve (vii) are multiplied by the factor 65,/633 and added
to curve (v) to give curve (viii), which is the elastic curve produced by unit
load at 2 with supports 1, 3, and 4 in position. These ordinates, when divided
throughout by 6,, are the influence line ordinates for V, as shown at (ix).

Similarly, the influence line for V3 may be obtained and, for a symmetrical
structure, is the mirror image of the influence line for V,. The influence line for
any other restraint may now be obtained by the direct application of statics.

When the number of redundants exceeds 2, the flexibility matrix method,
given in Section 10.3, is a preferred method of solution and has been used by
Jenkins>.

Example 5.8

Determine the influence line ordinates for V; and M, for the three-span sym-
metrical beam shown in Figure 5.17. The relative EI values are indicated on
the figure and may be assumed to be constant over the lengths indicated, as
may also the elastic loads on the conjugate beam.

Solution

The cut-back structure is produced by removing V; and V; a vertically upward
load of 0.4 kip is applied at 1. This produces the bending moment diagram
shown at (ii) and the elastic loads on the conjugate beam at (iii).

The bending moment in the conjugate beam at the center of each segment is
given in line (2) of Table 5.6 and represents the ordinate of the elastic curve of
the real beam, simply supported at 2 and 3 and with a load of 0.4 kip applied
at 1. Due to the symmetry of the structure, the ordinates of the elastic curve
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(i)

(iii)

Figure 5.17

Table 5.6 Influence line ordinates for Example 5.8

1 Section 1 N 6 2 7 8 93 10 11 4
2 04kipatl 1455 730 122.5 0 —122.5 -—280 -—-77.50 77.5 310 465
3 0.4kipat4 —465 =310 =77.5 0 77.5 280 122.5 0 —122.5 =730 —1455
4 (3) X 465/1455 —148 —99 —-24.5 0 24.5 90 39.5 0 —39.5 —233 —465
5 (2)+(4) 1307 631 98 0 -98 —-190 —-38 0 38 77 0
6 (5) X 1/1307 1 0.483 0.075 0 —0.075 —0.146 —0.029 0 0.029 0.059 0
7 M, 0 -11 =550 -45 =875 -1750 1.75 3.55 0

due to a vertically downward load of 0.4 kip applied at 4 are as indicated in
line (3). Line (4) gives the values of line (3) multiplied by the factor 465/1455;
it is added to line (2) to give line (5). This represents the ordinates of the elastic
curve produced by a load of 0.4 kip at 1 and with supports 2, 3, and 4 in posi-
tion. Line (5) multiplied by the factor 1/1307 gives the influence line ordinates

for V; which are given in line (6).

For unit load to the right of 2, the influence line ordinates for M, are given by:

M, = 60V,
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For unit load to the left of 2, the influence line ordinates for M, are given by:
M, =60V, — (60 — x)

where x is the distance of the unit load from 1. The values of the influence line
ordinates for M, are given in line (7).

5.5 Pin-jointed frames

(a) Frames redundant internally

@

! (i)
Rx

Figure 5.18

The pin-jointed frame shown in Figure 5.18 contains one redundant member
12, with its unknown force R assumed tensile when unit load is at panel point
3. The indeterminate frame can be replaced by system (i) plus R X system (ii).
The relative inward movement of the points of application of R in system (i) is
6}, and in system (ii) is 67, . The relative movement of the points of applica-
tion of R in the actual structure is outward and consists of the extension §;, in
member 12, given by:

oy = _Rllz/Alelz
= 61, + RéY,
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Thus: R = —61,/(61, + 11,/A;,E,)

From Maxwell’s reciprocal theorem, the displacement ¢},, in system (i) due
to a unit load at 3 equals the vertical displacement of 3 in system (ii) due to
unit load replacing R, and 3 may be any panel point. Thus, all the information
required to obtain the influence line ordinates for R may be obtained from
one Williot-Mohr diagram constructed for system (ii). The vertical deflection
of each lower panel point is measured on the diagram and divided by (67, +
l12/A1,E1,) to give the influence line ordinate at that panel point.

®

+
1
R x (i)
1
+
1
R, x (i)
1
Figure 5.19

The pin-jointed frame shown in Figure 5.19 contains the two redundant
members 12 and 23 with unknown forces Ry and R,, assumed tensile when
unit load is applied at panel point 5. The indeterminate frame can be replaced
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by system (i) plus Ry X system (ii) plus R, X system (iii). The relative move-
ment of points 1 and 2 in the actual structure consists of the extension in mem-
ber 12 and is:

6y = —Ryl,/Ap Ey,
and:

—Rylj, /AL Ep = 61+ Ryd', + Ry67) (1)

where 67, and 67, are the relative inward movement of points 1 and 2 in sys-
tems (ii) and (iii) and ¢}, is the relative inward movement of points 1 and 2 in
system (ii), where 5 may be any panel point.

Similarly, by considering the relative movement of points 3 and 4:

“Ryl34/A34 B3y = 634+ R85, + Ry63, (2)

where 6%, and 6%, are the relative inward movement of points 3 and 4 in sys-
tems (ii) and (iii) and 63, is the relative inward movement of points 3 and 4 in
system (iii), where 5 may be any panel point.

Thus, all the information required to obtain the influence lines for R; and R,
may be obtained from the two Williot-Mohr diagrams constructed for systems
(ii) and (iii). For each panel point in turn, the required deflections are obtained
from the diagrams and substituted in equations (1) and (2), which are solved
simultaneously to give the influence line ordinates for R; and R,.

When the internal redundants exceed two, the flexibility matrix method,
given in Section 10.3, is a preferred method of solution and has been used by
Wang®.

(b) Frames redundant externally

The technique used to obtain the influence line ordinates for the external
reactions in frames with not more than two external redundants is similar to
that used in Section 5.4 for non-prismatic beams. The deflections of the panel
points are most readily obtained using the method of angle changes.

When the external redundants exceed two, the flexibility matrix method,
given in Section 10.3, is a preferred method of solution and has been used by
Wang®.

Example 5.9

Determine the influence line ordinates for Vi, V3, and Vi for the pin-jointed
frame shown in Figure 5.20 and the influence lines for member force in mem-
bers 27, 23, and 39. All members of the frame have the same cross-sectional
area, modulus of elasticity, and length.
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Solution

Reaction Vj is replaced by a vertically upward load of 5/3 units, and the
resulting member forces are shown at (i).
The total angle changes at the bottom chord panel points are:

YA, =(6+6+6+3+6+6+6-6-6—-6—6+9)//3
=24//3

YA =(6+6+6+9+12+6+12+4+4+4+4+10)//3
=83//3

YA, =(-4-4-4+10+8-4+8+4+4+4+4+6)//3
=32//3

YA =(—4-4-4+6+4—4+4+4+4+4+4+2)//3
=16/3

and the relative loads on the conjugate beam are shown at (ii). The deflections at
the bottom chord panel points are given by the bending moments at the corre-
sponding section in the conjugate beam and are shown at (iii). These deflections,
when divided by 146, give the influence line ordinates for V3 as shown at (iv).
Taking moments about 1, the influence line ordinates for Vi are given by:

V, = (x — 2IR;)/SI
where x is the distance of the unit load from 1 and [ is the length of the frame
members. These values are shown at (v).
Resolving vertically, the influence line ordinates for V| are given by:

V,=1-V, -V,

and these values are shown at (vi).
The influence line ordinates for member force P, are given by:

P, =2V,/|3

and these values are shown at (vii).
The influence line ordinates for member force P,3 are given by:

Py = \s’c?)V1 ... for unitload at 3, 4, 5and 6
Py =3V, -1/ /3 ... for unit load at 2

and these values are shown at (viii).
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The influence line ordinates for member force P39 are given by:

Py =2V,//3 ... for unit load at 1, 2 and 3
Py = 2V,//3—2//3 ... for unit load at 4, 5 and 6

and these values are shown at (ix).

Example 5.10

Determine the influence line ordinates for V3 for the three-span pin-jointed
frame shown in Figure 5.21. All members have the same cross-sectional area,
modulus of elasticity, and length.

- 5 2 © =
S z = @ = @)
o ‘ T T (ii)
®
Y
g o o =
‘ i 7 - (iif)
— < >
=) &3 QY 2
L ¥ (iv)
S T )
() NeJ
O v <
: = . 2
—_— |
* * ‘r (v)

Figure 5.21

Solution

Supports V3 and Vs are removed, and a unit load is applied vertically upward
at 3. The deflections of the lower panel points were obtained in Example 4.6,
and the relative values are shown at (i). When unit load is applied vertically
downward at 3, the relative deflections shown at (ii) are produced, and (ii) is
the inverted mirror image of (i) due to the symmetry of the frame.

The ordinates at (ii) are multiplied by 91.3/118.7 to give (iii), which is added
to (i) to give (iv). The ordinates at (iv) are multiplied by 1/48.4 to give (v),
which is the influence line for Vj.
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Supplementary problems

$5.1 The two-span continuous beam shown in Figure S5.1 has a second
moment of area that varies linearly from a maximum value of I at the center
to zero at the ends. Determine the influence line ordinates, at intervals of 0.2,
for the central vertical reaction.

A
A

' > | I
Figure S5.1
$5.2 The relative EI/l values are shown ringed for each member of the struc-

ture shown in Figure S5.2. Determine the influence line ordinates for M, at
intervals of 0.2/ over members 12 and 23.

f———
lK
2 1
@ Ny
X
1K
—
l
®
3 ¥
777 -
Figure S5.2

$5.3 The two-hinged symmetrical polygonal arch shown in Figure S5.3 has a
second moment of area for the beam three times that of the inclined columns.
Determine the influence line ordinates, at intervals of 20 ft, for horizontal
thrust at the hinges as unit load moves from 5 to 7.
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Figure S5.3

S5.4 Determine the influence line ordinates for Ry for the two-span pin-jointed
truss shown in Figure S5.4 as unit load crosses the bottom chord. All members
have the same cross-sectional area, modulus of elasticity, and length.

3 4 T
R, Ry

Figure S5.4
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Elastic center and column
analogy methods

Notation

A elastic area

c12 carry-over factor for a member 12 from the end 1 to the end 2

s modified carry-over factor

e, eccentricity of the elastic load with respect to the x-axis through O

ey eccentricity of the elastic load with respect to the y-axis through O

E Modulus of elasticity

H horizontal reaction

Ho horizontal reaction acting at the elastic center

HF horizontal thrust in a fixed-ended arch due to the applied loads

H?=!  translational stiffness of an arch

H?=!  horizontal thrust induced by a unit rotation at one end of an arch

I second moment of area

I, second moment of area of an arch at its crown

I, second moment of the elastic area about the x-axis through O

L second moment of the elastic area about the y-axis through O

) length of a member, span of an arch

Ly equivalent length of an elastically restrained member 12, [, + 3EIn;;

M bending moment in the cut-back structure

M, actual bending moment at section 1

M, actual bending moment at the crown of an arch

Mo  bending moment acting at the elastic center

M, moment of the elastic load about the x-axis through O

M, moment of the elastic load about the y-axis through O

MF fixed-end moment

MFE fixed-end moment in an elastically restrained member

M?=1  fixed-end moment induced by a unit horizontal translation at one end
of an arch

@) elastic center, centroid of the elastic area

s length of segment

S12 restrained stiffness at the end 1 of a member 12, moment required to
produce a unit rotation at the end 1, end 2 being fixed

S15 modified stiffness

¢ change in temperature

vertical reaction
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Vo  vertical reaction acting at the elastic center

W elastic load

xo  horizontal displacement of elastic center

yo  vertical displacement of elastic center

o) temperature coefficient of expansion

6,  spread of arch abutments

6,  settlement of arch abutment

11,  elastic connection factor at the end 1 of an elastically restrained member 12
0 angle of rotation

#{, relative rotation between an elastically connected beam and column at
the end 1 of beam 12

6.1 Introduction

The elastic center method provides a rapid means for the solution of the two-
hinged polygonal arch and for the determination of influence lines for the
fixed-ended arch. The method is applied here to symmetrical structures only
but may be readily extended to unsymmetrical frames and arches!.

The column analogy method provides the most useful means for the deter-
mination of fixed-end moments, stiffness, and carry-over factors for non-
prismatic members. The method is derived here from the elastic center method,
but may be derived independently? if required.

6.2 Elastic center method

The symmetrical fixed-ended frame shown in Figure 6.1 (i) is three degrees
redundant, and these redundants may be regarded as the restraints M, Hy, V;

L5 oy

|
il
i
'

1EI
El, ™

(M (i)
Figure 6.1
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at end 1. An analogous frame, known as the elastic frame, is shown in Figure
6.1 (ii) and consists of members with a width at any section of 1/EI, where E
and I are the modulus of elasticity and the second moment of area at the cor-
responding section in the real frame. The area of the elastic frame is:

A= f ds/EI

The centroid O of the elastic area is known as the elastic center and must lie
on the vertical axis of symmetry at a distance y from the base, given by:

Ay = fy’ ds/EI

The second moment of the elastic area about the x-axis through O is:
I, = [y ds/EI

The second moment of the elastic area about the y-axis through O is:
I, = [ ds/EI

The symmetrical fixed-ended frame shown in Figure 6.2 may be replaced
by systems (i) and (ii). The cut-back structure is produced by releasing end 1.
An infinitely rigid arm, with its free end at the elastic center, is attached to 1.
Since the arm is infinitely rigid, it has no effect on the flexural properties of
the real frame or on the elastic area, as its [ds/EI value is zero. To the cut-back
structure is applied the external load in system (i) and the redundants Mg, Ho,
Vo in system (ii). Displacement of the elastic center in systems (i) and (ii) is
transferred through the rigid arm and causes a corresponding displacement
at 1. The bending moment at any point in the frame in system (i) is M, with
moment producing tension on the inside of the frame regarded as positive.

® (i)

Figure 6.2
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MIEI

Figure 6.3

The elastic frame is placed in a horizontal plane as shown in Figure 6.3 and
loaded with an elastic load of:

W = fM ds/EI

where M is the bending moment in the cut-back structure at a given section and
E and I are the modulus of elasticity and the second moment of area at the same
section. A positive moment in the cut-back structure produces a vertically down-
ward load on the elastic frame. The moment of W about the x-axis through O is:

M, = My ds/EI
= We,

The moment of W about the y-axis through O is:

M, = [ Mx ds/EI
= We,

The horizontal displacement of the elastic center in system (i) is:
x) = f Mm ds/EI

where m is the bending moment at any section due to a unit virtual load acting
horizontally to the right at O and m = 1 X y.
Thus:

x5 = fMy ds/ET
=M,

The horizontal displacement of the elastic center in system (ii) is:

xt = Mo [y dS/EI = H, [ y* dS/ET = Vg [ xy ds/EI
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In the original structure the displacement of end 1 is zero and thus:
0=x; + x4
Hence:
Hy = M/,
The vertical displacement of the elastic center in system (i) is:

Vo = me ds/EI

where m is the bending moment at any section due to a unit virtual load acting
vertically downward at O and m = 1 X x.

Thus:

Vo = f Mx ds/EI

The vertical displacement of the elastic center in system (ii) is:

~Mo [ x dS/EI — H, [ xy dS/EI = Vo, [ x* dS/EI
~0-0- VoI,

n
Yo

In the original structure the displacement of end 1 is zero and thus:

0=+
Hence:
Vo = My/Iy

The rotation of the elastic center in system (i) is:

06 = [ Mm ds/EI

where 7 is the bending moment at any section due to a unit virtual anticlock-
wise moment acting at O and m = 1.

Thus:

06 = [ M ds/EI
=W
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The rotation of the elastic center in system (ii) is:

06 = —Mo [ds/EI — H, [y dS/EI =V, [ x dsIEI
~MpA —0-0

In the original structure the displacement of end 1 is zero and thus:

0= 0(’) + 96
Hence:

The bending moment at any point in the original structure with coordinates
x and y is given by:

M~ Mo — Hoy = Vox = M — WIA — M/, — M,/I,

Allowing for rib-shortening effects, spread of the abutments, and tempera-
ture rise, the horizontal displacements of the elastic center in the original struc-
ture in system (i) and system (ii) are:

Xo = 6x
where 6, is the spread of the abutments:

x5 = My + ozl

where « is the temperature coefficient of expansion, ¢ is the rise in temperature
and [ is the span of the arch.
And:

xly = —Hol, — Hol/AE

where Hol/AE is the approximate allowance for rib shortening derived in
Section 3.6:

xo = x5 + x4
and:

Hy = (M, + atl — 6,)/(I, + I/AE)
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Allowing for vertical settlement of one abutment, the vertical displacements
of the elastic center in the original structure in system (i) and in system (ii) are:

Yo :63)

where 6, is the settlement of the abutment:

¥o =M,
and:

Yo = _VOIy
Thus:

Vo = (M, —6,)1

Allowing for a clockwise rotation of 6 at end 1 of the frame shown in Figure
6.4, the displacements of the elastic center are:

xo = 0Oy
Yo = —Ox
90 = _0

Figure 6.4

The values of the redundants at the elastic center are, then:
Hy = (M, — 0y)/1,
Vo = (M, + 6x)/1,
Mg = (W + 0)/A
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6.3 Two-hinged polygonal arch

The symmetrical, two-hinged polygonal arch shown in Figure 6.5 (i) is one
degree redundant, the redundant being the horizontal restraint H. The two
hinges have zero stiffness, and the elastic arch has two infinite areas concen-
trated at the foot of the columns, as shown at (ii). The elastic center lies cen-
trally between the two feet, and the elastic area and the second moment of the
elastic area about the y-axis are infinite.

Figure 6.5
Hence:
Vo = Mg
=0
and:
=H

Example 6.1

Determine the horizontal reaction at the hinges of the two-hinged arch shown
in Figure 6.6. The section is uniform throughout, and deformations due to
axial effects and shear may be neglected.

4’

te—=1

Figure 6.6
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Solution

The cut-back structure is produced by replacing one hinge with a roller, and
the elastic load on the elastic arch is shown at (i). The value of 1/EI may be
taken as unity.

Then:

W, =10 X 48/2
= 240

W, = 4% 120/2
=240

W; =10 X 104/2
= 520

W, =10x%x32/2
=160

M, =4X240+6 X760+ 4 X160
= 6160

[, =14X62+2X10X62X1/3
= 744
and
H = M/,
= 8.28 kips

6.4 Influence lines for fixed-ended arches

The influence lines for the restraints at the end of 1 of the fixed-ended symmet-
rical arch shown in Figure 6.7 may be most readily obtained from the influence
lines for Mg, Hp, and Vq. The arch is divided into short segments of length s,
and the second moment of area is regarded as constant over the length of each
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segment, as indicated in the figure. The elastic area and the height of the elastic
center above the base of the arch are given by:

A =3/
¥ = Sy's/I X 1/A

where I is the second moment of area at the center of a given segment and y’ is
its height above the base.

The cut-back structure is produced by introducing a cut in the crown of the
arch to form two identical cantilevers, one of which is shown in Figure 6.8
(). The reactions at the elastic center for the other cantilever are equal and
opposite to those shown. To determine the influence line for Hp, a unit load
is applied in place of Hq, as shown at (ii). The bending moment at the center
of each segment is given by M = —y and is regarded as constant over the

]
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Figure 6.8
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length of each segment. The elastic loads on the conjugate beam are given by
W' = —ys/EI and are considered as concentrated at the center of each segment,
as shown at (iii). The ordinates of the elastic curve of the cut-back structure,
with a unit load applied in place of Hq, are given by bending moments at the
corresponding section in the conjugate beam and are shown at (iv). These ordi-
nates, when divided throughout by the total horizontal displacement between
the two cantilevers at O due to the unit load, are the influence line ordinates
for Hg. The horizontal displacement of O due to the unit load is:

xo = [y* ds/EI
= IX

To determine the influence line for Vo, a unit load is applied in place of Vo,
as shown at (v). The bending moment at the center of each segment is given by
M = x and is regarded as constant over the length of each segment. The elastic
loads on the conjugate beam are given by W' = xs/EI and are considered as
concentrated at the center of each segment, as shown at (vi). The ordinates of
the elastic curve of the cut-back structure are given by the bending moments at
the corresponding section in the conjugate beam and are shown at (vii). These
ordinates, when divided throughout by yo, the total vertical displacement
between the two cantilevers at O, are the influence line ordinates for V. The
influence line for V over the left half of the span is the inverted mirror image
of the influence line over the right half.

To determine the influence line for Mg, a unit moment is applied in place of
Mo, as shown at (viii). The bending moment at the center of each segment is given
by M = 1. The elastic loads on the conjugate beam are given by W' = s/EI and
are considered as concentrated at the center of each segment, as shown at (ix). The
ordinates of the elastic curve of the cut-back structure are given by the bending
moments at the corresponding section in the conjugate beam and are shown at (x).
These ordinates, when divided throughout by 6, the total rotation at O due to the
unit load, are the influence line ordinates for M. The rotation of O is given by:

0o = [ds/EI
=A

The influence line ordinates for H; are given by:

The influence line ordinates for V; are given by:

Vl = _VO vee left half
V; =1- Vg ... right half
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The influence line ordinates for M, are given by:

M, = My — Hy(h — y) with tension in the bottom fiber positive

The influence line ordinates for M; are given by:

M, = My + Hyy + Vpl/2 ... left half
M, = —x" + My + Hyy + Vol/2 ... right half

where x” is the horizontal distance of the unit load from 1, and tension in the
bottom fiber is positive.

Example 6.2

Determine the influence line ordinates for the elastic center reactions, the
springing reactions, and the bending moment at the crown of the arch shown
in Figure 6.9. The equation of the arch is:

y = x —0.0133x?

and the second moment of area varies as indicated in Table 6.1.

s
<
| 75’ .
r >
Figure 6.9
Table 6.1 Properties of elastic arch for Example 6.2
Segment 1 2 3 4 5 2 XX
Length s 8.60 8.60 8.60 8.60 8.60
Relative EI 5.10 3.07 2.03 1.45 1.11
y' 2.95 8.45 13.05 16.50 18.50
s/El 1.69 2.80 4.24 5.94 7.75 44.84
y's/El 5.00 23.70 55.30 98.00 139.50 643.00
y -11.55 -6.05 -1.35 2.15 4.15
y*s/El 225.00 102.50 7.70 27.40 133.60 992.40
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Solution

The properties of the elastic arch are obtained in Table 6.1. The elastic area, the
height of the elastic center, and the second moment of the elastic area about the
x-axis are:

A = 44.84

¥ = 643.0/44.84
= 14.4 ft

I, = 992.4

The influence line ordinates for the elastic center reactions are derived in
Table 6.2 and plotted in Figure 6.10. The influence line ordinates for Vg over
the left half of the span are —1 X the corresponding ordinate over the right
half of the span.

Table 6.2 Influence line ordinates for Example 6.2

1  Segment 1 2 3 4 5 Crown
2y -11.55 —-6.05 -1.35 2.15 4.15 4.35
3 —ys/EI 19.50 16.95 572 —-12.75 -—32.20 -
4 x' 6.60 7.25 7.80 8.40 4.35 -
5 M forHg=1 0 129 393 723 970 957
6 (5)xX1/992.4 = Hg 0 013 040 0.73 0.98 0.97
7 x 3440 27.80 20.55 12.75 4.35 0
8  «xs/EI 58.20 78.00 87.00 75.70  33.70 -
9 M forVg=1 0 384 1372 3122 5632 7082
10 (9) X 1/(2 X 7082) = Vg 0 0.027 0.097 0.221 0.398  0.500
11 s/El 1.69 2.80 4.24 5.94 7.75 -
12 M forMo =1 0 11.20 43.70 112 235 333

13 (12) X 1/44.84 = Mo 0 0.25 0.97 2.50 5.25 7.43
14 M, 0 -032 -0.77 —0.67 0.99 3.08
15V left half 0 0.027 0.097 0.221 0.398  0.500
16 Vjright half 1 0973 0.903 0.779 0.602  0.500
17 M, left half 0 1.11 3.09 4.70 4.35 3.08
18 M, right half -3.10 -6.57 —-6.58 —3.45 1.20 3.08

The influence line ordinates for M, are given by:
M. = My — 4.35 Hg ... tension in the bottom fiber positive
The influence line ordinates for My are given by:

M, = My + 14.4H + 37.5V,, ... left half
M, = —x" + My + 14.4 H,, + 37.5V,, ... right half
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where x” is the horizontal distance of the unit load from 1 and bending
moment producing tension in the bottom fiber is positive.

The influence line ordinates for M., My, and V; are derived in Table 6.2 and
plotted in Figure 6.11.

Figure 6.10

Figure 6.11



Elastic center and column analogy methods 265

6.5 Column analogy method

The fixed-ended beam shown in Figure 6.12 may be replaced by systems (i)
and (ii), the cut-back structure being produced by introducing a moment
release at 1 and 2. For a beam with a straight axis, the elastic center O is on
the beam axis and M, = Hg = 0. Then, the bending moment at any section,
with coordinates x in the original beam is given by:

M — (Mg + Vox) = M — (W/A + We x/1,)
where M is the bending moment in the cut-back structure and the expression

in brackets is the bending moment due to the elastic center reactions, with
bending moment producing tension in the bottom fiber regarded as positive.

w w
(LTI (LTI
1 v :E
X
= + -
2 EI 1
() (ii)
Figure 6.12

The analogous column shown in Figure 6.13 consists of a short column with
a width at any section of 1/EI subjected to an applied knife-edge load W with an
intensity at that section of M/EI, where E and I are the modulus of elasticity and
the second moment of area at the corresponding section in the real beam. That
is, the cross-section of the column consists of the elastic area A, with its centroid
at O, loaded with the elastic load W. A positive moment in the cut-back structure

1/EI

Figure 6.13
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produces a vertically downward load on the analogous column. Then, the stress at
any section, with coordinates x in the analogous column, is given by:

W/A + \’Veyx/Iy

with compressive stress regarded as positive.

This expression for stress in the analogous column is identical to that for
moment in the cut-back structure due to the elastic center reactions. Thus, a
value for the stress at any section in the analogous column is equivalent to the
moment at the corresponding section in the cut-back structure due to the elas-
tic center reactions.

While the column analogy method has been restricted here to straight beams,
it may be readily extended, in the same manner as the elastic center method, to
frames and arches, which may be symmetrical or unsymmetrical.

A vertical displacement 6, of end 1 of the fixed-ended beam shown in Figure

Y
6.14 produces an equal displacement of the elastic center, which is given by:

6, = fo ds/EI
=M,

Figure 6.14

Thus, the effect of a vertical displacement on the real beam is equivalent to
the effect of a bending moment applied to the y-axis of the analogous column.
The displacement produces positive moment at 1 and negative moment at 2,
and the equivalent stresses in the analogous column are tension at 1 and com-
pression at 2. For cases (i) and (ii) the sense of My is as indicated.

A rotation 6 at end 1 of the fixed-ended beam shown in Figure 6.15 pro-

duces a rotation and displacement of the elastic center, which are given by:

b =0
=fMds/E1
- W

Yo = Oe,

= Wey
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Figure 6.15

Thus, the effect of a rotation # at 1 is equivalent to the effect of a concen-
trated load W applied to the analogous column at 1. The rotation produces a
negative moment at 1 and a positive moment at 2, and the equivalent stresses
in the analogous column are compression at 1 and tension at 2. For cases (i)
and (ii) the sense of W is as indicated.

The column analogy method may be readily extended® to the solution of
frames and continuous beams in which there are displacements and rotations
of the supports.

6.6 Fixed-end moments

Example 6.3

Determine the bending moments in the column shown in Figure 6.16. The rela-
tive EI values are shown ringed.

vy
g ,/
S s
2l © ) 4
—_ 2_ W
s N7 + @
N , 50 Il
5 @ . %

ol

Figure 6.16
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Solution

The analogous column is shown at (i), where 1/EI for member 12 is taken as
4 units. The cut-back structure is produced by releasing 3. The intensity of
loading on the analogous column is, then:

5 X 2X 4 = 40 units
and:
W = 400
The properties of the analogous column are:

A=10X4+20X1

=60

X = (40X 25+20X10)/60
=20 ft

I, = 40 Xx100/3 + 20 X 400/3
= 4000

e, = Sft

The moments in the real column are:

My, =10 — (W/A + 10We, /1)
=10 — (400/60 + 20,000/4000)
=10—-6.67 -5
= —1.67 kip-ft ... tension on left side

M,, = 10 — W/A
= 3.33 kip-ft ... tension on right side

0— W/A

—6.67 kip-ft ... tension on left side

My, =0~ (W/A — 20We, /1)
=0 — (400/60 — 40,000/4000)
=0—-6.67+10
= 3.33 kip-ft ... tension on right side

M23

Example 6.4

Determine the fixed-end moments in the non-prismatic beam shown in Figure
6.17. The relative EI values are shown ringed.
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Figure 6.17
Solution

The analogous column is shown at (i), where 1/EI for member 12 is taken as
2 units. The cut-back structure is produced by releasing 5, and the column
loads, eccentricities, and moments about the y-axis are:

W, =40
e =2.67
M, =107
W, =240
e, =7
M, =1680
W; =396
e; =8
M; = 3168

The properties of the analogous column are:
A=20Xx2-8X%1
=32
I, = 40 X 400/12 — 8 X 64/12
= 1290

The fixed-end moments in the real beam are:

M, = —86 — (-W/A — 10We, /1)

—86 — (—676/32 — 10 X 4955/1290)
—26.5 kip-ft ... tension in the top fiber
0— W/A+10We /1))

0—(-676/32 +10 X 4955/1290)
—17.3 kip-ft ... tension in the top fiber

Mg,
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Example 6.5

Determine the fixed-end moments in the non-prismatic beam shown in Figure
6.18. The relative EI values are shown ringed.

I

16k
13—2,_3|II]II]II]II]I[I]]]]]]II]]]1\4
10’ 6’ 16’
1 | 0
Figure 6.18
Solution

The analogous column is shown at (i), where 1/EI for member 12 is taken as
6 units. The cut-back structure is produced by releasing 1, and the column
properties are:

A=60+12+48
=120
% = (60X 5+12 X 13 + 48 X 24)/120
=134 ft
Iy = 60X100/12 + 60 X (8.4)> +12 X 36/12 + 12 X (0.4)* + 48 X

256/12 + 48 X (10.6)2

= 11190

W = 384 X16/3
= 2050

e, = 18.6 — 4
=14.6 ft

The fixed-end moments in the real beam are:

M,;, =0—(-2050/120 + 13.4 X 2050 X 14.6/11,190)
—18.7 kip-ft ... tension in the top fiber

—128 — (=2050/120 — 18.6 X 2050 X 14.6/11,190)
—61.3 kip-ft ... tension in the top fiber

M43

Example 6.6

Determine the fixed-end moments in the non-prismatic beam shown in Figure
6.19 due to support 2 settling a distance 8. The EI values are shown ringed.
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Figure 6.19

Solution

The analogous column is shown at (i), and the settlement of 2 is equivalent to a
moment § acting on the analogous column as shown. The column properties are:

A = 2/EI + 4/EI

= 6/EI
X=(02X4+4x10)/6
=8 ft
Iy = 2/EI X 64/3 + 4/EI X 16/3
= 64/EI

The fixed-end moments in the real beam are:

My, = 0 — 8871,
= —EI4/8 ... tension in the top fiber
My, = 0+ 461,
= EI§/16 ... tension in the bottom fiber

6.7 Stiffness and carry-over factors

(a) Prismatic members

The restrained stiffness s, at the end 1 of a member 12, which is fixed at 2,
as shown in Figure 6.20, is defined as the bending moment required at 1 to
produce a rotation there of one radian. The carry-over factor is defined as the
ratio of the moment induced at 2 to the moment required at 1.

The analogous column is shown at (i), and the unit rotation of 1 is equiv-
alent to a unit load acting on the analogous column as shown. The column
properties are:

A = I/EI
I, = B/12E1
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Figure 6.20

The moments in the real beam are:

My, =0 — (A + [2/41,)

= —4EI/l ... tension in the top fiber
My, =0 — (/A — [2/41,)

= 2EI/I ... tension in the bottom fiber

Thus, the restrained stiffness and carry-over factors are:

s = My
= 4 EI/I ... clockwise positive
¢y = My /My,
=
For a beam hinged at 2, as shown in Figure 6.21, the analogous column is
shown at (i) and has an infinite area concentrated at 2'. The column properties are:

A =00
I, = I3/3EI

Figure 6.21

The moments in the real beam are:

M;, =0~ (1/oo — I*/1)
—3EI/I ... tension in the top fiber
M,, = 0 — (1/00 + 0)

=0
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Thus, the stiffness and carry-over factors are:

si2 = My,

= 3EIl/l ... clockwise positive
¢y = My /My,

=0

(b) Non-prismatic members

Stiffness and carry-over factors have been tabulated for a large range of non-
prismatic beams with parabolic and straight haunches*, and for beams with
discontinuous flanges®. The characteristics of members for which tabulated
values are not available may be obtained by the methods detailed in Examples
6.7 and 6.8.

Example 6.7

Determine the stiffness s,; and the carry-over factor ¢, for the non-prismatic
beam shown in Figure 6.22. The EI values are shown ringed.

I 1/AET Rl -
@ 7 o

8’ | 4!

SN\
77T
&

Figure 6.22

Solution

The analogous column is shown at (i), and the unit rotation of 2 is equivalent
to a unit load acting on the analogous column as shown. The column proper-
ties are:

A = 2/EI + 4/EI
= 6/EI
X=2X4+4x10)/6
=8ft
Iy = 2 X 64/3EI + 4 X 16/3EI
= 64/EI
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The moments in the real beam are:

—5EI/12 ... tension in the top fiber
0— (/A -8X4X1/1)

= EI/3 ... tension in the bottom fiber

M12

Thus the stiffness and carry-over factors are:

sy = My,

= SEI/N2 ... clockwise positive
¢ = My,/My,

= 4/5

Example 6.8

Determine the stiffness, carry-over factor, and influence line for the fixed-end
moment at the end 1 of the steel beam shown in Figure 6.23. The modulus of
elasticity may be taken as 30,000 kips/in?.

33 3 322
11"% 18" Flange
el DTy D
i /
T
- |
=N 1" Web .
N[ 2 0|<7 F=119 — |
o0
w
Il 12 1"5 14

—t

Iy 15X 18" Flange

X5 Xs |

Figure 6.23

Solution

The properties of the analogous column are obtained in Table 6.3 with E = 1
and [ in ft units:

A =27.80

x = 330.5/27.8
=119 ft

I, = 676 +18

=694
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Table 6.3 Properties of analogous column for Example 6.8

Segment 1 2 3 4 5 6 7 8 Y
Length, s, ft 3 3 3 3 2 2 2 2

I, ft* 0.56 0.56 0.5 056 073 116 1.7 2.37

x' 18.50 15.5 125 9.5 7 S 3 1

s/1 5.33 533 533 533 273 173  1.18 0.84 27.8
x's/l 98.6 82.6 66.6 506 19.1 8.7 3.5 0.8 330.5
x —6.60 —3.60 —0.60 24 4.9 6.9 8.9 10.9

x2s/1 232 69 2 31 65 82 94 101 676
x3121 4 4 4 4 1 0.6 0.4 0 18

The influence line for M; is given by the elastic curve produced by a unit
rotation at 1 and is equivalent to a unit load at 1’ on the analogous column.
The bending moment at the center of each segment is given by:

M =0— (I/A + x%/1,)

and is regarded as constant over the length of each segment. The ordinates of
the elastic curve are given by the bending moments at the corresponding sec-
tions in the conjugate beam, and the load on the conjugate beam is:

W' = sM/l

where s is the length of the segment. The influence line ordinates for My are
obtained in Table 6.4 and shown in Figure 6.24.

Table 6.4 Influence line ordinates for Example 6.8

Segment 1 2 3 4 5 6 7 8
M 0.077 0.026 —0.026 -0.077 —-0.120 -0.154 —0.189 —-0.223
w’ 0.415 0.138 —0.138 —-0.415 —-0.322 -0.267 —0.223 —-0.188
Influence 0 1.25 2.9 4.15 4.15 3.51 2.33 0.7
ordinates

2 1

Figure 6.24
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The moments in the real beam due to a unit rotation at 1 are:

My, =0 — (UA + X3/

—(0.036 + 0.204)

—0.240

M,, =0 —(1/A = X(I — )1
= —(0.036 — 0.139)

0.103

y)

Thus, the stiffness and carry-over factors are:

sl, = 0.240F
= 0.240 X 30,000 X 144
= 1360 kip-ft

¢5; = 0.103/0.240
= 0.430

(c) Curved members

In addition to rotational stiffness and carry-over factors, the translational
stiffness of curved members is also required. The translational stiffness is the
horizontal force required to produce unit translation at one end of a curved
member, all other displacements being prevented. The characteristics of a large
range of symmetrical segmental, parabolic, and elliptical members are avail-
able'”. The characteristics of unsymmetrical curved members may be deter-
mined in a similar manner to that detailed in Example 6.2.

Example 6.9

The parabolic arch shown in Figure 6.25 has a second moment of area that
varies directly as the secant of the slope of the arch axis. Determine (i) the
rotational stiffness and carry-over factor, (ii) the translational stiffness, (iii) the
fixed-end moments and thrust due to a unit load at the crown.

Figure 6.25
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The second moment of area of the arch at any section is:

I =1, sec
= I, ds/dx

where I is the second moment of area at the crown.
The equation of the arch axis is:

y = 4hx(l — x)/I?

The properties of the analogous column are:

A

f ds/EI

J daxlEr,
= J/EI,
Ay = [y dsIEI

= foly dx/El,
= 4h [ (xl = x2)dxIPEI,

= 2Ih/3EI,
= 2h/3

I = f (y — y)> ds/EI
— 4EL, [t = 82311 + 1632312 — 4x/3] + 1/9)dx
= 4)21/45EI,

[ = 112ds/EI

= [ — b+ PA4)d/ET

= B3/12EI,

2|

[
Il

(1) The rotational stiffness s, at the end 1 of the arch is the bending moment
required at 1 to produce unit rotation there, as shown in Figure 6.26. This is
equivalent to a unit load acting on the analogous column in the sense indicated
for case (i) and (ii). Using the convention of clockwise moments positive, the
moments in the arch are:

312 = 1/A + )_(Z/Iy + ?Z/Ix
= Elo(1/1 + 3/1 + 5/1)
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Figure 6.26

Thus:
Cip = — 1/ 3
The horizontal thrust associated with the unit rotation is given by Section 6.2 as:

_ i,
— 1SEIy/2h1

and has the sense indicated for case (i) and (ii).

(ii) The translational stiffness H°=! at the end 1 of the arch is the thrust
required at 1 to produce unit translation there, as shown in Figure 6.27 and is
given by Section 6.2 as:

Ho=' = H,
=11,
= 4SEI,/4h?]

and has the sense indicated for case (i) and (ii).

Figure 6.27
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The fixed-end moment associated with the unit translation is given by
Section 6.2 as:

= ¥/,
_ 15Elo/2bl

and has the sense indicated for case (i) and (ii).
(iii) The cut-back structure is shown in Figure 6.28, and the elastic load is:

1/2
W =2 fo M ds/EI

12
= fo x dx/El,
— 12/8EI,

Figure 6.28

The moment of W about a vertical axis through O is:

M, = 0

The moment of W about a horizontal axis through O is:

= 2f (y — y)ds/EI
= 2h fo (2x21 — 2x3 — [2x/3)dx/I?EI,
= hI2/48EI,,

The moments in the arch are:

ML, =ML =0 (W/A - 2hbM,/31,)
—1I/8 + 51/32
= [/32 ... tension in the bottom fiber

The horizontal thrust is given by Section 6.2 as:

HF = HO
= M, /I,
= 151/64b ... inwards
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(d) Elastically restrained members

A bending moment transmitted through a riveted or bolted beam-column con-
nection causes a relative angular displacement between the beam and the col-
umn. A linear relationship may be assumed between the transmitted moment
and the relative rotation and is:

¢ =nM

where 7 is the elastic connection factor. Expressions for determining the value
of 1 have been derived® for a number of different types of connections. For a
fully restrained connection 7 = 0 and for a hinge 7 = <.

The beam 12 shown in Figure 6.29 is attached to columns at 1 and 2 by
means of elastic connections with factors of 7y, and 7,;. The stiffness of the
beam at 1 is the bending moment, s{, required to produce a unit rotation of
the column there, the column at 2 being clamped in position. The relative rota-
tions between the beam and the columns at 1 and 2 are:

! _ i
$12 = M2s12

/ _ / !
$21 = 112512

l ’721"125,12/ 1(1_7712532)
VEI

2/ / l’

Figure 6.29

The analogous column and its loading is shown at (i), and the column prop-
erties are:

A = l/EI
I, = I3/12EI

Using the convention of clockwise moments positive, the moments in the
real beam are:

1y = (1= myp815 + myiciasty ) EINL+ (1= nyy815 — my1615812)3EL/
sty = — (1= myas1y + myycipsiy) EVL+ (1= 15815 — m5¢1581,)3ELI

Thus: s/, = 12EIL,,/(4L;,L,, — I?)
and: ¢f, = 2L,
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where the equivalent lengths of the elastically restrained member are:
L, =+ 3EIn,

When the connection at end 2 is fully rigid:
sl, = 4EI/(l + 4EIn,,)

1
and: ¢/, = )

When the connection at end 2 is hinged:
sl, = 3EI/(l + 3EIy,,)

and: ¢, =0

When the connection at end 1 is fully rigid:
sl, = 4EI(l + 3EIn,,)/I(l + 4EIn,,)

and: ¢{, = I/2(] + 3EIn,,)

and these two values also apply to a column 12 with an elastically restrained
base at 2.

The fixed-end moments due to a unit lateral translation of the end 1 of
column 12 shown in Figure 6.30 may be obtained from the analogous col-
umn shown at (i). Using the convention of clockwise moments positive, the
moments in the real column are:

MIE = —ElIn,MEE/l — 3EIn,MEF/l + 6El/I?

6EI/[(I + 4EIn,,)

MIE = Eln, ME¥/l + 3EIn, MLE/l — 6EI/I?
= 6EI(l + 2EIn,,/I*(I + 4EI7,,)

When lateral loads are applied to a member that is elastically restrained at
its ends, as shown in Figure 6.31, the ends of the member rotate, and this pro-
duces the modified fixed-end moments shown. These may be obtained in any
particular instance from the analogous column shown at (i).
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6.8 Closed rings

The distribution of bending moment in closed rings is readily obtained by the
column analogy method.

Displacements in a closed ring are given by the moment of the elastic load
about an axis through the elastic center parallel to the displacement. Since this
requires the determination of the position of the elastic center, displacements
are more conveniently determined by the conjugate structure method given in
Examples 6.10 and 6.13.

Example 6.10

Determine the distribution of bending moment and the extension of the hori-
zontal diameter for the uniform circular ring shown in Figure 6.32.

Solution

The cut-back structure is shown at (i), and the bending moment at any section
defined by the angle 6 is:

M = PR(1 — cos 0)/2

with moment producing tension on the inside of the ring regarded as positive.
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Figure 6.32

The elastic load on half the analogous column is shown at (ii) and is
given by:

W = 4/EIj:T/2M ds

= 2PR2 [ "2 (1 = cos O)dO/ET
= PR2(7 — 2)/EI

The elastic load is symmetrical and My, = M, = 0.
The area of the analogous column is:

A = 27R/EI

The moments in the ring are:

M, =0-W/A
= —PR(w — 2)27

M, = PR(1 —cos 0)/2 — W/A
= PR(2 — 7 cos 0)/27

M, = PR/2 — W/A
= PR/w
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The extension of diameter 11 is given by 1/EI X the moment of the bending
moment in the real structure about axis 1’1’ in the conjugate structure shown
at (iii). This is:

6= 2EI[" Myy ds
0

/2

= PR3 f sin 0(2 — 7 cos 0)dO/xEI
0

= PR3(4 — m)/27EI

Example 6.11

Determine the distribution of bending moment, thrust, and shear force in the
uniform circular ring shown in Figure 6.33. The ring is subjected to a uni-
formly distributed load of intensity w in plan.

2wR
2wR

@@
hﬂ]]]]]]m:ﬂ]]ll

2wR b

2wR

®

Figure 6.33

Solution

The cut-back structure is shown at (i), and the bending moment at any section
defined by the angle 6 is:

M = wR?(1 — cos 0) — wR2(1 — cos §)2/2
= (wR?/2)sin2

The elastic load is given by:

/2
W = 4]0 M ds/EI

T2

= 2wR3 f sin2 Ad6/EI
0

= TwR3/2EI
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The elastic load is symmetrical and M, = M, = 0.
The area of the analogous column is:

A = 27xR/EI
The moment in the ring is:

My = (
=

wR?/2)sin? § — W/A
wR?/2)sin? 0 — wR2/4
= —(wR?/4)cos(20)

The shear in the ring is:

Qy = sin 8{wR — wR(1 — cos 0)}
wR sin 6 cos 0

The thrust in the ring is:

P, = cos {wR — wR(1 — cos 6)}
wR cos? 0

Example 6.12

The uniform square culvert shown in Figure 6.34 is filled with water of density w
and stands on a rigid foundation. Determine the terminal moments in the culvert.

_ wh?6  wh?6
EANL

- - - - I

"y

- - - = wh?/2 wh?/2

4 S C A | Z_

e -
wh?3  wh?3

®

w2

Figure 6.34
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Solution

The properties of the analogous column, with 1/EI = 1, are:

A = 4h
I = 2(h3/12 + h3/4)
= 23/3

The pressure distribution on the cut-back structure is shown at (i), and the
elastic load on the analogous column is:

h
W =2 fo Mdz

h

=2 fo (—wzh?16 + wz316)dz

= —wh*/12
h

Wz =2 fo Mz dz

h

=2 fo (—wz2h?16 + wz*/6)dz

= —2wh’/45
z = 8h/15
e, = 8h/15 — hi2 = h/30

The elastic load is symmetrical about the y-axis as shown at (ii).
The moments in the culvert are:

M, = 0 — W/A — We_h/21
= wh3/48 + wh3/480
= 11wh3/480

M, =0 — W/A + We_h/2I
= 9wh3/480

Example 6.13

Determine the distribution of bending moment and the extension of the hori-
zontal diameter for the uniform link shown in Figure 6.35.

Solution

The area of the analogous column, with 1/EI = 1, is:
A =27R+4bh

The cut-back structure is shown at (i), and the bending moment at any sec-
tion defined by the angle 6 is:

M = —PR(1 — cos 6)/2
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Figure 6.35

The elastic load on half the analogous column is shown at (ii) and is given by:

W = 4]0”’2Mds

——PR2 . "1~ cos 0)do
— PRX(r—2)

The elastic load is symmetrical, and My = M, = 0.

The moments in the link are:

M, = M,

=0—-W/A

= PR(m — 2)/2(mw + 2)
M, = —PR(1 — cos 0)/2 — W/A
PR/2{cos 6 — 4/(w + 2)}
—2PR/(m + 2)

M;

The extension of the horizontal axis is:

w2
§ = 2RM,/EI +2 fo M,y ds/EI

— PR3(r — 2)/(r + 2)EI + PR3 fo "2 cosO{cosd — 4/(x + 2)}dO/EI
= PR3(m — 2)/(m + 2)EI + PR3 (r2 + 27 — 16)/4(x + 2)EI

= PR3(w? + 6m — 24)/4(m + 2)EI
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Supplementary problems

Use the column analogy method to solve the following problems.

$6.1 Determine the fixed-end moments produced by the application of the
moment M at point 3 in the non-prismatic beam shown in Figure S6.1. The
relative EI values are shown ringed.

2a a

—_ A
©

w /
L

©

)

ARNRNNNRNY
777777777

Figure S6.1

$6.2 Determine the fixed-end moments produced by the applied load indicated
in the non-prismatic beam shown in Figure $6.2. The relative EI values are
shown ringed.

Figure S6.2

$6.3 Determine the bending moment at the base of the column shown in Figure
$6.3. The relative EI values are shown ringed.

-

25k-ft

® 18

7 7

Figure S6.3
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$6.4 Determine the fixed-end moments produced by the applied loads indi-
cated in the non-prismatic beam shown in Figure S6.4. The relative EI values
are shown ringed.

4 12’ 4’

AN
7

Figure 6.4

$6.5 Determine the fixed-end moments produced by the applied loads indi-
cated in the non-prismatic beam shown in Figure S6.5. The relative EI values
are shown ringed.

8’ 8’ 8’
f——— e
0 6" 12
~ 17/ft -
EEERENEERERANREERRNREAARRRNNNEERRIY

A\
77

I e T

@ @ @
Figure S6.5

$6.6 Determine the fixed-end moments produced by the applied load indicated
in the prismatic beam shown in Figure S6.6.

l

\
A

A

-
~

/

[\S)

Figure $6.6

$6.7 Determine the fixed-end moments produced by the applied load indicated
in the propped cantilever shown in Figure S6.7.

[

A
y

—_
AN
e
~
S

Figure S6.7
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$6.8 Determine the stiffness si, and the carry-over factor ¢, for the non-pris-
matic beam shown in Figure S6.8. The relative EI values are shown ringed.
Determine the fixed-end moments produced by the load of 10 kips applied at
point 3 as indicated

T
Y
i
X

Figure S6.8

$6.9 The two-hinged portal frame shown in Figure $6.9 is fabricated from a
uniform section with a second moment of area of 280 in* and a modulus of
elasticity of 29,000 kips/in®. Determine the horizontal force produced at the
hinges if the supports spread apart horizontally by 0.5 in.

| 15'

10’

Figure $6.9
$6.10 The circular pipe shown in Figure S6.10 has two concentrated loads

applied as shown. Determine the bending moments produced at the location of
the loads.

61(

6k

Figure $6.10
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$6.11 Figure S6.11 shows a monolithic reinforced concrete culvert of constant
section. Determine the bending moments produced at sections 1 and 2 by the
lateral earth pressure, assuming that this is equivalent to the pressure of a fluid
having a density of 30 Ib/ft3.

4’

Figure S6.11
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7 Moment distribution methods

Notation
ay flexibility factor at the end 1 of a member 12 = restrained stiffness of the
, member/(ditto + adjacent actual stiffnesses) = s;,/(s;, +>_s& — s3,)
ay  spllsy T2s3, —s5y)
by, ~ moment transmission coefficient, the proportion of the out-of-balance
moment at the joint 1, which is transmitted to the fixed end 2 of a
member when joint 1 is balanced = —ay,¢;,

12  rotation transmission coefficient, equals the proportion of the angle of
rotation imposed at the end 1 of a member 12, which is transmitted to
the end 2 = —a] 2¢;,

c12 carry-over factor for a member 12 from the end 1 to the end 2, = % for
a straight prismatic member

c' modified carry-over factor

Cs left-hand side of sway equation after substituting M® values

CWY  left-hand side of sway equation after substituting MY values

di;  restrained distribution factor at the end 1 of a member 12 = s51,/>sq,

> actual distribution factor at the end 1 of member 12 = s3,/3s3

E Young’s modulus

G modulus of torsional rigidity

h height of a column

H horizontal reaction

Hy, outward thrust exerted at the end 1 by a curved member 12

I second moment of area of a straight prismatic member

I, second moment of area of a curved member at its crown

J torsional inertia

I length of a member 12

M clockwise moment of the applied loads on a structure above a particu-
lar story about the top of the story

M;, moment acting at the end 1 of a member 12

MFE,  fixed-end moment at the end 1 of a member 12

M5 final moments in a structure due to an arbitrary sway displacement

MY final moments in a structure due to the applied loads after a non-sway
distribution

(@) shear force, acting from left to right in a structure, due to all the loads
applied above the base of a particular story

r ratio of distances between bottom of columns and top of columns for a

particular story in a frame with inclined columns
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S12 restrained stiffness at the end 1 of a member 12, moment required to
produce a unit rotation at the end 1, end 2 being fixed, = 4EI/l;, for a
straight prismatic member 12

s modified stiffness

st actual stiffness at the end 1 of a member 12 = moment required to
produce a unit rotation at the end 1, end 2 having its actual stiffness =
s12(1 — azic1a621)

Vv vertical reaction

w applied load

x horizontal sway displacement

y vertical sway displacement

6 deflection

015 angle of rotation at the end 1 of a member 12

¢12  angle of rotation at the end 1 of a member 12 due to sway deformation

Uy rotation at the end 1 of a curved member 12

n elastic connection factor

7.1 Introduction

Since its introduction in 1930! the moment distribution method has become
established as the most useful hand-computational method in the analysis of rigid
frames and continuous beams. Numerous developments have been made to the
original system, and these have been recorded in comprehensive textbooks?3*.

Moment distribution is essentially a relaxation technique where the analysis
proceeds by a series of approximations until the desired degree of accuracy has
been obtained. The method may be considered as an iterative form of the more
recently developed stiffness matrix method. The moment distribution method
provides a quantitative solution to a problem but may also be used to provide
a qualitative understanding of structural behavior. In this way, it may be used
to develop a clearer perception of the relationship between load and deforma-
tion®. Alternative relaxation techniques have been developed on the continent
of Europe®”-® for the analysis of rigid frames. These will not be considered
here, as moment distribution is the customary method employed in English-
speaking countries and has a more extensive literature.

7.2 Sign convention and basic concepts

Bending moments at the ends of a member are shown acting from the sup-
port to the member: i.e., the support reactions are considered. These are posi-
tive when acting in a clockwise direction, as also are clockwise rotations at the
ends of a member. The directions and sense of the terminal moments in a con-
tinuous beam are indicated in Figure 7.1, and it will be noticed that the arrow
heads point towards the face of the member, which is in tension.
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IR A A
N)%@L/Vm\/n

The restrained stiffness at the end 1 of a member 12 that is fixed at 2, as
shown in Figure 7.2, is defined as the bending moment required at 1 to pro-
duce a rotation there of one radian.

512 2EI 4EIN

Figure 7.2

The carry-over factor is defined as the ratio of the moment induced at 2 to

the moment required at 1.
In Section 6.7 the restrained stiffness and carry-over factors for a straight,

prismatic member were obtained as:

1

512—2

Consider the clockwise moment s, applied to the rigid joint O of Figure 7.3,
causing the joint to rotate one radian. Then, s is the stiffness of the joint. Since the

LLLLLL
3
)
So
9
2
’ / .
1 \
n
1
777777

Figure 7.3
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rigid joint maintains fixed angles between the members, each member at 0 rotates
through one radian, and this requires the application of moments sy, g5, €tc.
Hence:

So = So1 TSz T So
S0

The distribution factor for a member is defined as the ratio of the stiffness of
the member to the stiffness of the joint:

do1 = sp1/s0
So1! Xsg,,

and is that proportion of the moment applied at a joint that is absorbed by
the member. It is clear that at any joint:

Sdy, =1

The fixed-end moments for a number of common cases of loading applied to
straight, prismatic members are summarized in Table 7.1. These are readily
obtained by the column analogy method given in Section 6.6. A number of hand-
books!%!! provide a comprehensive list of fixed-end moments.

7.3 Distribution procedure for structures with joint
rotations and specified translations

The first stage in the distribution procedure consists of considering the structure
as a number of fixed-ended members. Each member may then be analyzed indi-
vidually and the fixed-end moments derived as shown in stage (i) of Figure 7.4.
In general, these fixed-end moments will not be in equilibrium at a particular
joint, and the algebraic sum of the fixed-end moments is the support reaction
required there to prevent the rotation of the members. Applying a balancing
moment equal and opposite to this constraint produces equilibrium at the sup-
port and is equivalent to allowing the joint to rotate to a position of temporary
equilibrium, where it is again clamped. The balancing moment is distributed to
each member at the joint in accordance with its distribution factor.

The constraints at each joint are balanced in turn, and, due to the carry-over
of moments to adjacent clamped joints, previously balanced joints become
unbalanced. Hence, several cycles of the balancing procedure are required until
the carry-over moments are of negligible magnitude. The sum of all the required
balancing cycles is then as shown in stage (ii) of Figure 7.4, where the joints
have rotated to their positions of final equilibrium, and the terminal moments
are obtained by summing (i) and (ii).
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Table 7.1 Fixed-end moments

—Wab?/1? Wabl1? —Wi/8 wi/8
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12 12 |
l

—3EI/1? —6EIS/I?

—6EI/N?

The magnitudes of the joint rotations may be readily obtained if required
once distribution is completed but are not an essential part of the procedure.
Figure 7.5 shows prismatic member 12, with a stiffness s, which forms part of
a framework. The final terminal moments are given by:

M,, = Mf, + s, + s6,/2
M,, = M§| + s0, + s6,/2
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Figure 7.5

and hence, 0; and 6, may be obtained. Due regard must be paid to the signs of
the moments and rotations.

Example 7.1

Determine the bending moments in each member of the structure shown in
Figure 7.6. The relative EI/l values are shown ringed alongside the members.
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20k y 20¢
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H |1
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157
130 -

(ii) 270

Figure 7.6

Solution

Both the propped frame and the continuous beam shown in Figure 7.6 are ana-
lyzed in an identical manner. The relative EI/l values are also the relative stiff-
ness values, and the distribution factors at 2 are:

dy, = 2/2 +3)
=2/5

dyy = 312+ 3)
=3/5

and the distribution factors at 3 are:

dy, = 33+ 4)
=3/7

dy, = 413+ 4)
= 4/7
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and the distribution factors at 1 and 4 are:

dy, = 2/0
=0

dy; = 4l0
=0

The fixed-end moments are:

M, =20 % 80/8
= 200 kip-in
= —M;

The distribution procedure is shown in Table 7.2, and the final moments for
the continuous beam are shown at (i) on Figure 7.6.

The reactions at 1 and 4 are obtained by taking moments about 2 and 3 for
members 12 and 43, respectively. Then:

Hy =V, = (M, + My,
=154/80
= 1.93kips
H, =V,
= (Myz + M3y)/l3,
= 235/100
= 2.35kips

and act in the direction shown.

Table 7.2 Distribution of moments in Example 7.1

Joint 1 2 3 4
Member 12 21 23 32 34 43
Relative EI/l 2 2 3 3 4 4
Distribution factor 0 Ys Y5 ¥ Ve 0
Carry-over factor — Ya

— Y Y — Ya —
Fixed-end moments —200 200
Distribution 80 120 —86 —-114
Carry-over 40 —43 60 =57
Distribution 17 26 -26 —34
Carry-over 8 -13 13 -17
Distribution 5 8 -6 =7
Carry-over 3 -3 4 -3
Distribution and carry-over 1 2 -2 -2 -1

Final moments, kip-in 51 103 -103 157 -157 -78
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The bending moment diagram for the continuous beam, drawn on the ten-
sion side of the structure, is shown at (ii) on Figure 7.6 and is obtained by
combining the diagram for the fixing moments and the free moments.

7.4 Abbreviated methods

(a) Hinged ends

When the end 2 of a prismatic member 12 is hinged, it is possible to derive a
modified value for the stiffness at 1 that eliminates the carry-over of moment
to end 2. Referring to Figure 7.7, where the restrained stiffness of 12 is denoted
by s, it is seen that the modified stiffness at 1 is given by:

s, =s(1—¢c?)
4EI/l X 3/4
= 3EI/l

Figure 7.7

Example 7.2

Determine the bending moments in each member of the structure shown in
Figure 7.8. The relative EI/l values are shown ringed alongside the members.
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30"

Solution

‘ 20k

hoe fo
80" 80" 100

Figure 7.8

s

@

1.

The distribution procedure is shown in Table 7.3 and is identical for both the

propped frame and the continuous beam.

Table 7.3 Distribution of moments in Example 7.2

Joint 1 2 3 4

Member 12 21 23 32 34 43

Relative EI/I 2 2 3 3 4 4

Modified stiffness 8 6 12 12 12 16

Distribution factor 1 Y3 ) Ya Ya 1

Carry-over factor Ya — — Ya — Y
— 0 iZ) — 0 —

Fixed-end moments —200 200

Distribution 200 —67 -133

Carry-over 100 —66

Distribution -33 —67 33 33

Carry-over 16 —34

Distribution =5 -11 17 17

Carry-over 9 -6

Distribution -3 -6 3 3

Carry-over 2 -3

Distribution -1 -1 2 1

Final moments, kip-in 0 191 -191 —54 54 0

(b) Cantilevers

The stiffness si,, of a cantilever 12 with the free end 2 not restrained in posi-
tion or direction is clearly zero. Hence, the distribution factor, a;,, is also zero.
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Example 7.3

Determine the bending moments in each member of the propped frame shown
in Figure 7.9. The relative EI/l values are shown ringed alongside the members.

30" 10"

Figure 7.9

Solution

The distribution procedure is shown in Table 7.4.

Table 7.4 Distribution of moments in Example 7.3

Joint 1 2 3 4
Member 12 21 23 32 30 34 43
Relative stiffness 2 2 3 3 0 4 4
Distribution factor 0 s s 3/ 0 Y 0
Carry-over factor — 7]

— 1%} 7 — 7 —
Fixed-end moments —-200 200 —-100
Distribution 80 120 —43 -57
Carry-over 40 —22 60 =29
Distribution 9 13 -26 -34
Carry-over 4 -13 6 -17
Distribution 5 8 -2 —4
Carry-over 3 -1 4 -2
Distribution and 1 0 -2 -2 -1
carry-over
Final moments, 47 95 -95 197 -100 —97 —49

kip-in
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Example 7.4

Determine the bending moments in each member of the continuous beam shown
in Figure 7.10. The relative EI/l values are shown ringed alongside the members.

¢1ok ¢20k

°t o 1, o | e
10" | 80" 80" 100"
A

Figure 7.10

Solution

The stiffness s}, is 3EI/l since 1 is a hinged end. The distribution procedure is

shown in Table 7.5.

Table 7.5 Distribution of moments in Example 7.4

Joint 1 2 4

Member 10 12 21 23 32 34 43

EI/l 2 2 3 3 4 4

Modified stiffness 0 8 6 12 12 12 16

Distribution factor 0 1 Y4 2 Y Y 1

Carry-over factor Ya — — i) — Ya
— 0 %3 — 0 —

Fixed-end moments 100  —200 200

Distribution 100 —67 —133

Carry-over 50 —66

Distribution -17 -33 33 33

Carry-over 16 —16

Distribution =5 -11 8 8

Carry-over 4 -6

Distribution -1 -3 3 3

Carry-over 2 -2

Distribution -1 -1 1 1

Final moments, kip-in 100  —100 159 —-159 45 45 0

(c) Symmetry in structure and applied loading

In a symmetrical structure subjected to symmetrical loading, the bending
moments and rotations at corresponding points in the structure are equal and

of opposite sense.
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For the continuous beam shown at (i) in Figure 7.11, which has an even
number of spans, there is zero rotation at the center support and the members
meeting there can be considered fixed-ended. Hence, distribution is required in
only half the structure, there is no carry-over between the two halves, and the
modified stiffnesses are as shown on the figure.

oA
ﬁ

®

3EI 4El 4E1/l 3EIN
3EIN 4EIN 2EI 4El 3EIN
Figure 7.11

The modified stiffnesses for a continuous beam with an odd number of
spans are shown at (ii) in Figure 7.11. The modified stiffness for the central
span is derived as shown in Figure 7.12 and is given by:

s;, =s(1—¢)
4EI/l X 1/2
= 2EI/I

—s(1—c) s(1—=c)

/ \

Figure 7.12
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Again, distribution is required in only half the structure, there is no carry-
over between the two halves, and the usual values of the initial fixed-end
moments apply in all members.

Example 7.5

A longitudinal beam 11’, which is under the action of a vertical load W applied
at the center 3, lies on five simply supported transverse beams, arranged in
a horizontal plane as shown in Figure 7.13. All the beams have the same

[ RN AN A\ ANy A\ AN A\ AOW

10’

10’

0.34 W 0.34 W

(i) 1.94 W

Figure 7.13
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second moment of area. Draw the bending moment diagram for the longitudi-
nal beam.

Solution

The deflection of the longitudinal beam is shown at (i) in Figure 7.13, and the
relationship between deflection of the transverse beams and support reaction is:

y = VI3/48EI
= S00V/3EI

Due to these deflections, the fixed-end moments for the longitudinal beam are:

ML, = =3El(y, — y,)/25

=-=20(V, — V)
M§3 = Mgz

= —6EI(y; —,)/25

= _40(V3 - Vz)

and the distribution procedure is shown in Table 7.6.
Considering clockwise moments at 2 for member 12:

35V, + 80V, — 200V, +120V; = 0
115V, — 200V, + 120V, = 0

Table 7.6 Distribution of moments in Example 7.5

Joint 2 3

Member 21 23 32

Modified stiffness 3 4 4

Distribution factor 3/ Y, 0

Carry-over factor %) —
Fixed-end moments —-20(V, — V) —40(V5 = V,) —40(V3; — V)
Distribution and 60(2V; — 80(2V; — 40(2V5 —
carry-over V, = V)17 V, = V)I7 V, = V)i7
Final moments 402V, -5 —402V, — 40(—V, +
V, + 3V3)/7 SV, — 3V3)/7 6V, — SV3)I7

Considering clockwise moments at 3 for member 13:

70V, + 35V, — 40V, + 240V, — 200V, = 0
30V, + 275V, — 200V, = 0
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Considering the equilibrium of the longitudinal beam:
2V, 42V, +V, = W

Solving these three equations simultaneously, we obtain:

V, = 0.067W
V, = 0.253W
V, = 0.36W

and the bending moment diagram may be drawn as shown at (ii) in Figure 7.13.

Example 7.6

Determine the bending moments for all the members of the two-story frame
shown in Figure 7.14. The second moments of area of the beams are 160in*
and of the columns 100in*.

3 3’
n
24K
2 [T 2
n
1 1’
777777 77T
l< 24 o
[ o
Figure 7.14

Solution

The fixed-end moments are:

ME, = 24X 24/12
= 48 kip-ft

The distribution procedure for the left half of the frame is shown in Table
7.7, and the final moments in the right half of the frame are equal and of
opposite sense to those obtained for the left half. Because of the symmetry of
the structure and the loading, no relative displacements occur between the ends
of the members and only joint rotations need be considered.
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Table 7.7 Distribution of moments in Example 7.6

Joint 1 2
Member 12 21 22’ 23

3
32

I/ 100/15 100/15 160/24  100/15 100/15

Relative EI/I 1 1 1 1

Modified stiffness 4 4 2 4

Distribution factor 0 Ys Ys Ys
O — «—

Ya Ya

Carry-over factor

1
4
73
7]

—

33’
160/24
1
2
3

Fixed-end moments —48

Distribution and 9 19 10 19
carry-over

Distribution and -3
carry-over

Distribution and 1 1 1 1
carry-over

Final moments, 10 20 —-37 17
kip-ft

(d) Skew symmetry

A symmetrical structure subjected to loading that is of opposite sense at cor-
responding points undergoes skew symmetrical deformation. The bending
moments and rotations at corresponding points in the structure are equal and
of the same sense, and a point of contraflexure, which is equivalent to a hinge,

occurs at the center of the structure.

For a continuous beam with an even number of spans, both members at the
central support can be considered hinged, and the modified stiffnesses are as
shown at (i) in Figure 7.15. For a continuous beam with an odd number of

by : i
T

® 3El 3EIN 3ElI 3EI

e N N S

:
bt Lt

(i) 3EI AEIN 6EIll  6EIl 4EI 3El

Figure 7.15
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spans, the central member can be considered as two hinged members each of
length [/2, which results in the modified stiffness shown at (ii) in Figure 7.15.

As in the case of symmetrical loading, distribution is required in only half
the structure, there is no carry-over between halves, and the usual values of the
fixed-end moments apply in all members.

7.5 Illustrative examples

Example 7.7

Determine the reactions at the support 3 of the rigid frame shown in Figure
7.16. The relative EI values are shown ringed.

10F
: |||||||IP|k||||| 2 4 l 6 2
@ @ @ 77@;7_“_ —106
@ n
® = )
> 1
A H
ol BE Sy -53 ’
TR - ;
V3
| 10’ 15’ 6 4’
10¢ 123 -17 35
() | O o, 4 » o+ 2 4
i J
Figure 7.16

Solution

The fixed-end moments are:

ME,| = —MF, =10 X 120/12

= 100 kip-in

ME, =10 X 4 X 36 x12/100
= 173 kip-in

ML, = —-10 X6 X 16 X 12/100
= —115 kip-in

and the distribution procedure is shown in Table 7.8. Distribution to the
tops of the columns is unnecessary, as the moments there may be obtained
after completion of the distribution by considering the algebraic sum of the
moments at joints 2 and 4. The moment at the foot of column 23 is half the
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Table 7.8 Distribution of moments in Example 7.7
Joint 1 2 4 6
Member 12 21 23 24 42 45 46 64
Relative EI/I 1/10  1/10 3/10 2/15 2/15 6/15 1/10 1/10
Modified 4/10  4/10 12/10 8/15 8/15 18/15 3/10 4/10
stiffness
Distribution 1 961 36/61 16/61 16/61 36/61 9/61 1
factor
Carry-over Ya — Ya — — Vs
factor
— 0 — Y2 0 —
Fixed-end -100 100 —-115 173
moments
Distribution 100 —15 -26 30 17 -173
Carry-over 50 15 -13 —86
Distribution -10 -17 26 15
Carry-over 13 -9
Distribution -2 -3 2 1
Carry-over and 1 -1
distribution
Final moments, 0 123 —-106 -17 35 133 —-168 0

kip-in

moment at the top since the carry-over factor is %2 and there are no sway or
initial fixed-end moments.

The reaction Hj is obtained by taking moments about 2 for member 23, as
shown at (i) in Figure 7.16. Then:

H, = (106 + 53)/120

= 1.33 kips

The reaction Vj is obtained by considering the vertical reaction at 2 due to
the fixing moments on spans 12 and 24, due to the distributed load on span 12
treated as a simply supported beam. Then, referring to (ii) in Figure 7.16, the

vertical reaction is given by:

Vy, =5+123/120 — 18/180

= 5.92 kips

Example 7.8

Determine the slope of the beam at 2 and the final moments in the continuous
beam shown in Figure 7.17 when the support 2 sinks by %2 in and the support
3 sinks by 1in. The second moment of area of the beam is 120in*, and the
modulus of elasticity is 29,000 kips/in?.
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Solution

Due to the applied loading:

ME =12 X6 X16 X12/100
= 138 kip-in

ME, = —12 X4 X 36 X 12/100
= —207 kip-in

Mf, = -Mj;
=10Xx10x12/12
=100 kip-in

Due to the sinking of the supports:

F — F
M12 - M21

= Mz
= —6X29,000 X120 X 1/2 X 1/14,400
= —725 kip-in

The distribution procedure is shown in Table 7.9.

Table 7.9 Distribution of moments in Example 7.8

Joint 1 2 3

Member 12 21 23 32
Relative EI/] 1 1 1 1
Distribution factor 0 %) k%3 0
Carry-over factor — 1 iz —
Fixed-end moments —-932 —-587 —-825 —625
Distribution and 353 706 706 353

carry-over

Final moments, kip-in -579 119 -119 -272
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Since there is no rotation at the fixed ends, we have:

M,, = M§, + 0,
119 = =587 + 60, X 4 X 29,000 X 120/120

and 6, = 0.00609 radians, clockwise

7.6 Secondary effects

Triangulated trusses are normally analyzed as if they are pin-jointed, although
the members are invariably rigidly connected. The direct stresses obtained in
this analysis are referred to as the primary stresses. These direct stresses cause
axial deformations in the members, which produce relative lateral displace-
ments of the ends of each member. The bending moments caused by these lat-
eral displacements produce additional or secondary stresses in the members.
It is customary to neglect the secondary stresses in light trusses with flexible
members, but in heavy trusses the secondary stresses may be considerable.

The procedure of allowing for secondary effects consists of determining the
primary stresses and, from a Williot—-Mohr diagram, the lateral displacements
of the ends of each member. The fixed-end moments due to these displace-
ments are then distributed in the normal way, and the secondary stresses are
obtained from the final moments.

The reactions due to the final moments may be obtained at the ends of each
member. In general, these reactions will not be in equilibrium at a particular joint,
and the algebraic sum of the reactions is equivalent to a constraint required at the
joint to prevent its displacement. Applying a force equal and opposite to the con-
straint produces equilibrium. This causes additional axial forces and deformations
in the members and additional secondary moments. The magnitude of the con-
straints is usually small compared with the applied loads and may be neglected.

Example 7.9

Determine the secondary bending moments in the members of the rigidly jointed
truss shown in Figure 7.18. The second moment of area of members 14, 34, and
24 is 30in*, and that of members 12 and 23 is 40in*. The cross-sectional area
of members 14, 34, and 24 is 4in?, and that of members 12 and 23 is Sin?.

Solution

The primary structure is shown at (i) in Figure 7.18, and the axial forces and
deformations are listed in Table 7.10. The Williot-Mohr diagram is shown at
(iii) in Figure 7.18, and the relative lateral displacement of the ends of mem-
bers 12 and 14 is indicated; no lateral displacement is produced in member 24
due to the symmetry of the structure.



314 Structural Analysis: In Theory and Practice

1, 1
‘ 100" 100”
[
2k
(i)

v
S

v

o0

v

O

Il

=

5K ©

"
0-026¢  0.026F 7‘
(i)
—4.5 \ / 45
K )
0026° 4 0026 | o
\ v
#—1-4 -6 14 L

0-08k 0-16* 0-08%

Figure 7.18

Table 7.10 Determination of forces and displacements in Example 7.9

Member I A I P PI/A 6 X E
12 40 5 116 7 162 584
14 30 4 100 6.07 152 658.5
24 30 4 58 5 72.5 0

Due to these displacements, the fixed-end moments are:

Mf, = M5,
= —6EI§/I?
=—6X40X584/13,300
= —10.5 kip-in

M1F4 = Mfl

—6 X 30 X 658.5/10,000
= —11.8 kip-in
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Due to symmetry, member pairs 21 and 23 and 41 and 43 can be considered
fixed-ended at 2 and 4, respectively; member 24 carries no moment; and the

distribution procedure is shown in Table 7.11.

Table 7.11 Distribution of moments in Example 7.9

Joint 2 1 4
Member 21 14 41
Relative EI/ 346 300

Distribution factor 0 0.535 0.465 0
Carry-over factor — Ya —
Fixed-end moments -10.5 -10.5 -11.8 -11.8
Distribution and carry-over 6 12.1 10.4 5.2
Final moments, kip-in -4.5 -1.4 -6.6

The final moments, together with the forces required to maintain equilib-
rium at the joints, are shown at (ii) in Figure 7.18. These forces are approxi-

mately 3% of the applied loads and may be neglected.

7.7 Non-prismatic members

The methods of obtaining the stiffness, carry-over factors, and fixed-end
moments for non-prismatic members were given in Sections 6.6 and 6.7. In
addition, tabulated functions are available for a large range of non-prismatic

members23H1112,

Example 7.10

Determine the bending moments in the frame shown in Figure 7.19. The sec-
ond moments of area of the members are shown ringed.

24k
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% ®
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1
|« 12' |

Figure 7.19
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Solution

The stiffness and carry-over factors for member 21 have been obtained in
Example 6.7 and are:

sy, = SEIN2
¢y =4/5

The fixed-end moments are:

Mgz = _sza
=24 X12/12
= 24 kip-ft

The distribution procedure is shown in Table 7.12.

Table 7.12 Distribution of moments in Example 7.10

Joint 1 2 3
Member 12 21 23 32
Stiffness SEI/N2 8EI/12

Distribution factor 0 513 8/13 0
Carry-over factor — Ys %3 —
Fixed-end moments —24 24
Distribution and 7.4 9.25 14.75 7.38

carry-over
Final moments, kip-ft 7.4 9.25 -9.25 31.38

7.8 Distribution procedure for structures subjected to
unspecified joint translation

(a) Introduction

All frames subjected to lateral loads and frames unsymmetrical in shape or
loading will deflect laterally, as shown in Figure 7.20. The horizontal displace-
ment, denoted by x in the figure, is termed the side sway. In a similar man-
ner, vertical sway displacements, y, are produced in the structures shown in
Figure 7.21.

The sway produces relative lateral displacement of the ends of some of
the frame members, which causes moments in addition to those due to joint
rotations. The final moments are obtained by superposition, as shown in
Figure 7.22, the magnitude of the sway being obtained from equations of static
equilibrium known as the sway equations.
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(b) The sway equations

The frame shown at (i) in Figure 7.23 may be considered to deform as the
mechanism indicated under the action of the applied loads. Applying the equa-
tion of virtual work to the small displacements involved, the external work
done by the applied loads equals the internal work done by the terminal
moments in the columns rotating through an angle ¢. Due to the sign con-
vention adopted (clockwise moments positive) these terminal moments are all
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negative, and a change of sign must be introduced to satisfy the virtual work

equation. Then:

—(Myy + My)p — (M3y + My3)p = Wiho + Wobyp — Wbz
—My, — My — My — My; = Wby + Wb, — Wih;

and the final terminal moments in the frame must satisfy this sway equation.
Similarly, for the frame shown at (ii) in Figure 7.23, the sway equation is:

—(Myy + My)py — (Msy + Mys)py = Wihio,

Since the sway displacements at the tops of the columns are equal:

and:

by X §y = by X ¢,

—(Myy + Myy) = by (M4 + My3)l by, = Wby

In the case of a frame with inclined columns, as shown in Figure 7.24, the
beam also rotates, and it is necessary to construct the displacement diagram,
shown at (i), to establish the sway equation. Since axial deformations in the
members of the frame are negligible, the points 1, 2, 3, and 4 coincide. A unit
horizontal displacement is imposed on 2, and, as 2 must move perpendicularly
to the original direction of 12, the point 2’ is obtained. Similarly, 3 must move
perpendicularly to 23 and 34, and the point 3’ is obtained. The member rota-

tions are obtained from the diagram as:

¢ =22/,
¢y =231l
¢4 = 3313,

where ¢, is anticlockwise and produces clockwise moments M,3 and M3,.
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Unit sway

Unit sway

(O]
Figure 7.24

The vertical displacement of 5 is 05’ where 5’ divides 2’3" in the ratio §
divides 23. The sway equation is:

—(M;, + My )y + (Myz + M3,)p, — (M3y + My3)p, = Wy X1 =W, X(05)

and the rotations may be eliminated by using the expressions obtained from
the displacement diagram.

The two-story frame shown in Figure 7.25 has two degrees of sway freedom,
as shown at (i) and (ii), corresponding to the different translations possible at
the beam levels. Considering sway (1) and (2) in turn, the sway equations are:

—(Ms; + My;) — (Mys + Mgy) = Wb,
_(M21 + Mlz) - (M56 + M65) = (Wl + Wz)hl

Wy 3 4
< ¢
Wils 5
< @'
1 6
777TTT TTTITT 777777 777777 TTTTTT
@) Sway (1) (ii) Sway (2)
Figure 7.25

and the terminal moments in the frame must satisfy both these equations.
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The two-bay frame shown in Figure 7.26 has the two degrees of sway free-
dom shown at (i) and (ii). The sway equations are:

—(Myy + My)py — (Msy + Mys)p, = Wiphoy
—(Mys + Msy)pq — (Myy + Mys)ds — (Mg + Myg)ps = 0

w2 3
®) ’
—Ps
4 6
¢
1 N é5
1 5
7 777777 777777
77777T 777777
(i) Sway (1) (ii) Sway (2)
FIGURE 7.26

and the rotations may be eliminated by considering the geometry of the
structure.

The ridged portal shown in Figure 7.27 has the two degrees of sway freedom
shown at (i) and (ii). Considering sway (1) and (2) in turn, the sway equations are:

—(Myy + Myy) — (Msy + Mys) = Wil
—(Myy + Myy)py — (Msy + Mys)py — (Mys + Msy)0,
—(Msy + My3)dy — (Mys + M), = Wy X 1= Wyl

and the rotations in the second equation may be eliminated using expressions
obtained from a displacement diagram.

Unit sway 1
<.
P —¢,
¢ ¢ Bz ?
(i) Sway (1) (i) Sway (2)

Figure 7.27
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In all cases, the sway equations can be considered as consisting of a left-
hand side involving moments in the structure and a right-hand side involving
the loads applied to the structure.

(c) Sway procedure

The analysis of structures subjected to sway proceeds in two stages as shown
at (i) and (ii) in Figure 7.28. The first stage consists of a non-sway distribu-
tion with the external loads applied to the structure, which is prevented from
displacing laterally. The fixed-end moments are obtained, and the distribution
proceeds normally to give the final moments M"Y, The second stage consists of
determining the moments produced by a unit sway displacement. The fixed-
end moments due to the unit displacement are obtained, and the distribution
proceeds normally to give the final moments M5. The actual moments in the
structure are:

M = MY + xMS

|‘£’| l l l l *I Unit sway

— —
= + x X
777777
TITITT
@) Non-sway (i) Sway
Figure 7.28

and these moments satisfy the sway equation. Hence, if substituting the
moments MY and M? in the left-hand side of the sway equation produces the
values C¥ and C5, respectively, then:

CY + xCS = right-hand side of sway equation

and the value of x may be obtained.

The analysis of a structure with two degrees of sway freedom proceeds in
three stages as shown at (i), (ii), and (iii) of Figure 7.29. The moments pro-
duced by the non-sway, sway (1), and sway (2) stages are MV, M3, and M2,
and these, when substituted in turn in the left-hand side of sway equation
(1) and sway equation (2), give the values CY¥,C{!,C{? and CY,C5!,C5?
respectively.
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Then CV +x,Cf! + x,C§? = right-hand side of sway equation (1)
and CYV + x,C3' + x,C3? = right-hand side of sway equation (2)

The values of x; and x, are obtained by solving these two equations simulta-
neously, and the actual moments in the structure are:

M= MV + x M5! + x, M52

In a similar fashion, structures having more than two degrees of freedom
may be analyzed.

In practice, it is not necessary to impose unit displacement on the structure;
any arbitrary displacement may be imposed that produces convenient values
for the initial fixed-end moments. The value obtained for x will thus not be
the actual displacement of the structure, but this in any case is generally not
required.

When the external loads are applied to the joints of the structure, the non-
sway distribution is not required, since the loading produces no fixed-end
moments.
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(d) Illustrative examples
Example 7.11

Determine the bending moments in the frame shown in Figure 7.30. The sec-
ond moments of area of the members are shown ringed.

10

©
16

24'

—_

Figure 7.30

Solution

The sway equation is derived in a manner similar to that used for the frame
shown at (ii) in Figure 7.23 and is:
My, + My, + 3(My, + My3)/2 =0

The fixed-end moments due to the applied loads are:

ME, = —10 X 8X 16 X 16 X 12/(24 X 24)
—427 kip-in

10X 16 X 8 X 8 X12/(24 X 24)

= 213 kip-in

F
M32

The fixed-end moments due to an arbitrary sway displacement are:

Mle = M51
—6ES5 X 48/242
—6E6/12
—400x
M§4 = M£3

= —6E6 X 16/162
—6E6/16
= —300x
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The distribution procedure for the sway and non-sway stages is shown in
Table 7.13.

Table 7.13 Distribution of moments in Example 7.11

Joint 1 2 3 4

Member 12 21 23 32 34 43
Relative EI/l 2 2 8 8 1 1
Distribution 0 1/5 4/5 8/9 1/9 0
factor

Carry-over — k) — Y

factor %) — Ya —
MF, sway —400 —400 —300 -300
Distribution 80 320 267 33

Carry-over 40 134 160 16
Distribution -27 -107 —142 -18

Carry-over -14 =71 -54 -9
Distribution 14 57 48 6

Carry-over 7 24 28 3
Distribution -5 -19 -25 -3

Carry-over =2 —-12 -9 -1
Distribution 2 10 8 1

Carry-over 1 4 N

Distribution -1 -3 —4 -1

MS -368 -337 337 282 —282 -291
MF, non-sway —427 213

Distribution 85 342 —-189 —24

Carry-over 42 -95 171 -12
Distribution 19 76 —-152 -19

Carry-over 10 -76 38 -10
Distribution 15 61 -34 —4

Carry-over 8 -17 30 -2
Distribution 3 14 =27 -3

Carry-over 2 -13 7 -2
Distribution 3 10 -6 -1

Carry-over 1 -3 N

Distribution 1 2 -4 -1

MY 63 126 —-126 52 —-52 -26
0.046 x MS -17 -16 16 13 -13 -13
M kip-in 46 110 -110 65 —65 -39

Substituting the final non-sway moments in the left-hand side of the sway
equation gives:

189 —3 X 78/2 =72
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Substituting the final sway moments in the left-hand side of the sway equa-
tion gives:

=705 —3X573/2 = —1565

Then: 72 — 1565x = 0
And: x = 0.046

The actual moments are obtained by adding the final non-sway moments to
x X the final sway moments.

Example 7.12

Determine the position on the beam, for the frame shown in Figure 7.31, at
which a unit load may be applied without causing sway. All the members are
of uniform cross-section.

A
/

10’
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3
X %1&

| 20'
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A

Figure 7.31

Solution

The sway equation is:
My + My + M3y =0

and a sway distribution is not required since there is no sway.
The fixed-end moments due to the applied loads are:

ME, = —ab?/400
ME, = ba?/400

and these are in the ratio —300b:300a.
The distribution procedure is shown in Table 7.14; substituting the final
moments in the sway equation gives:

2796 —125a =0



326 Structural Analysis: In Theory and Practice

Table 7.14 Distribution of moments in Example 7.12

Joint 1 2 3 4
Member 12 21 23 32 34 43
Relative El/I 2 2 1 1 2 2
Modified stiffness 4 2 2 3
Distribution factor 0 2/3 1/3 2/5 3/5 1
Carry-over factor — Ya — Ya

i) — 0 —
MF, non-sway —300b 300a
Distribution 200b 100b —120b —180a
Carry-over 100b —60a 50b
Distribution 40a 20a —20b —30b
Carry-over 20a —10b 10a
Distribution 7b 3b —4a —6a
Carry-over 3b —2a 2b
Distribution a a -b -b
MY 20a 41a —41a 186a —186a 0
+103b +207b —207b +31b -31b
Also:
b+a=20

Solving these equations simultaneously, we obtain:

a=13.8ft

Example 7.13

Determine the bending moments in the frame shown in Figure 7.32. All the
members of the frame have the same second moment of area.

5/(
2k l

2 3

16’

\ 3/
5
o
o
4
T 1’4 r T
23 2
15’ 12/ ‘ 4
(1)

Figure 7.32
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Solution

The displacement diagram, for a horizontal displacement of 4 ft units imposed
at 2 is shown at (i), and the sway equation is:

—~(My, + M,,) X 22'/16 + (M,; + Mj,)
X 2'3'/15 — (Ms, + My3) X 33'/20 = 2 X 22" — 5 X 2'3’
— (My; + M) X 4/16 + (My; + M3;) X 3/15

— (Mg, + M,5) X 5/20=2X 4—5x3

= 5(Myy + Myy) — 4My3 + Ms,) + 5(Msy + Mys) = 140

The fixed-end moments due to the sway displacements are:

M,, = My,

M,; = M;,

—6EI X (22")/162

—6EI X 4/16* = —750x

= 6EI X (2'3")/15%

= 6EI X 3/15?
640x

M, = My;

— —6EI X (32)/202

—6EI X 5/20?
= —600x

Table 7.15 Distribution of moments in Example 7.13

Joint 1 2 3 4
Member 12 21 23 32 34 43
Relative EI/] 1/16 1/16 1/15 1/15 1/20 1/20
Distribution 0 15/31 16/31 4/7 3/7 0
factor
Carry-over factor — %) — Y
% — % —
MS, sway -750 —-750 640 640 —-600 —-600
Distribution 53 57 —24 -16
Carry-over 26 -12 28 -8
Distribution 6 6 —16 -12
Carry-over 3 -8 3 -6
Distribution and 2 4 4 -2 -1 0
carry-over
M3 —-719 —687 687 629 —629 —614
—0.00757 x MS$ 5.4 5.2 -5.2 —4.8 4.8 4.7
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The distribution procedure is shown in Table 7.15, and substituting the final
sway moments in the sway equation gives:

(—7030 — 5264 — 6215)x = 140
x =—0.00757

The final moments are shown in the table.

Example 7.14

Determine the bending moments in the symmetrical ridged portal frame shown
in Figure 7.33, which carries a uniformly distributed load of 1kip/ft on plan.
All the members have the same cross-section.
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Figure 7.33

Solution

Due to symmetry of the structure and the loading only one mode of sway,
shown at (i) in Figure 7.27, is possible. The displacement diagram for a vertical
displacement of 24 ft units imposed at 3 is shown at (i) in Figure 7.33, and the
sway equation is:

(My, + My,) X 10/14 — (M5 + My,) X 26/26 + (My, + M,3) X 26/26
— (Mg + My,) X 10/14 = 48 X 12 X 24/2

Since the bending moments at corresponding points of the symmetrical
frame are equal and of opposite sense, this reduces to:

—5(My, + My;) = 7(Myy + Ms,) = 7 X 24 X 12 X 24/2 = 24,190 kip-in
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The fixed-end moments due to the applied loads are:

F — _MF
M32_ M23

=24 X24%x12/12
= 576 kip-in

The fixed-end moments due to the sway displacement are:

F — F
M12 - M21

= 6EI X 10/14?
= 6EI X 10/196

F = F
M32 - M23

—6EI X 26/26?
—6EI X 1/26
= —196y

The distribution procedure for the sway and non-sway stages is shown
in Table 7.16, where joint 3 is considered fixed and there is no carry-over
between the two halves of the frame. Substituting the final moments for these
two stages in the left-hand side of the sway equation gives:

SX

457 +7 X 425 = 5260

Table 7.16 Distribution of moments in Example 7.14

Joint 1 2 3
Member 12 21 23 32
Relative El/ 1/14 1/14 1/26 1/26
Distribution factor 0 13/20 7120 0
Carry-over factor — %) Ya —
M sway 260 260 -196 -196
Distribution and carry-over =21 —-42 -22 -11
MS 239 218 -218 —207
MF, non-sway —-576 576
Distribution and carry-over 187 374 202 101
MY 187 374 —374 677
4.48 X M5 1065 975 -975 -930
M Kkip-in 1252 1349 —1349 —-253

and: SX561—-7X303=0684

Then: 684 + 5260y = 24,190
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y = 4.48

and the final moments are shown in the table.

Example 7.15

Determine the bending moments in the two bay frame shown in Figure 7.34.
The relative EI/l values are shown ringed.

2
’ 0
¢ ¢ ¢
W ARRNY \
(i) Sway (1) (ii) Sway (2)
Figure 7.34

Solution

The two sway equations are:

sway (1), —(M;, + M,;) — 2(Ms4 + M,;) = 200 kip-ft
sway (2), —(Mjy + My;z) — (Mys + Msy) — (Mg + M) = C

The fixed-end moments due to sway (1) are:

Mf, = Mj,

66 X 4/20
—100x,
Mi; = M,

—686 X 2/10
—100x,

The fixed-end moments due to sway (2) are:

Mj; = M,

= _Mfs
_M§4
—68 X 2/10



Table 7.17 Distribution of moments in Example 7.15

Joint1 1 3 4 6 7 S
Member 12 21 23 32 34 43 45 46 64 67 76 54
Relative El/I 4 4 1 1 2 2 2 1 1 4 4 2
Distribution 0 4/5 1/5 1/3 2/3 2/5 2/5 1/5 1/5 4/5 0 0
factor
Carry-over factor — %) — Ya — Ya — Ya
Y — Y — i) — Y —

173 —
MF, sway (1) —-100 —100 -100 —100
Distribution 80 20 33 67 40 40 20
Carry-over 40 17 10 20 34 10 20
Distribution -13 -4 -10 =20 -13 -13 -8 -2 -8
Carry-over -7 =5 -2 -7 -10 -1 —4 -4 -7
Distribution 4 1 3 6 4 4 3 1 3
Carry-over 2 2 2 3 2 2 2
Distribution -1 -1 -1 -1 -1 -1 -1 -1 -1
M5 -65 =30 -30 33 -33 —43 30 13 6 -6 -2 15
MF, sway (2) 100 100 —100 —200 —200 -100
Distribution -33 —67 0 0 0 40 160
Carry-over -17 —34 20 80
Distribution 14 13 5 5 4
Carry-over 7 2 3 2 3
Distribution -2 -3 -2
M52 7 14 -14  -33 33 71 -95 24 42 -42  —120 -97
1.05 x M5! —-68 =32 32 35 -35 —45 31 14 6 -6 -2 16
0.26 x M%? 2 4 -4 -9 9 18 —24 6 11 11 -31 -25
M kip-ft —-66 —28 28 26 -26 =27 7 20 17 -17 -33 -9

SPOYIaUI UOTINQLISIP JUIWOTA
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M£7 = M7F6
—66 X 4/10

The distribution procedure for the two sway stages is shown in Table 7.17.
Substituting the final sway (1) and sway (2) moments in the left-hand side
of sway equation (1) gives 247 and — 229, respectively. Substituting the final
sway (1) and sway (2) moments in the left-hand side of sway equation (2) gives
-113 and 458, respectively. Then:

247x, — 229x, = 200
and:  —113x, + 458x, = 0

Solving these two equations simultaneously, we obtain:

x, =026

and the actual moments are obtained as shown in the table.

7.9 Symmetrical multi-story frames with vertical columns

The analysis of a single bay frame with lateral loads at the joints and vertical
loads on the beams proceeds in two stages, as shown at (i) and (ii) in Figure 7.35.

The first stage consists of a symmetrically loaded frame, which is readily
analyzed as there is no sway. Only the left half of the frame need be consid-
ered, with a modified stiffness of 2EI/l applied to the beams and no carry-over
between the two halves. The final moments in the right half are equal and of
opposite sense to the corresponding moments in the left half.

The second stage consists of a skew symmetrical distribution. Again, only
the left half of the frame need be considered, with a modified stiffness of 6EI/]
applied to the beams and no carry-over between the two halves. In addition, it
is possible to impose initial lateral displacements causing fixed-end moments in
the columns, which satisfy the sway equations for each story, and to use modi-
fied stiffness and carry-over factors for the columns, which will ensure that the
sway equations remain balanced throughout the distribution. Since the struc-
ture is symmetrical, the sway equation for the second story is:

—2(M,, + My,) = W, +2W, )b,

For symmetrical columns, the fixed-end moments produced by a sway dis-
placement are equal at the top and bottom of each column. Then, the initial
fixed-end moments required to satisfy the sway equation are:

M1Fz = M§1
—(2W; + 2W, )b, /4



Moment distribution methods 333

2W, VW A lW lW W, /A lw W,y
wh
2W. W. W. W | W
ZVIIIIIIIIIII 2 T 2 22 2 i
= +
2w, W, W, Wi 1 1" | W,
0
T ARNNY
) (ii)
Figure 7.35

The out of balance moment at joint 1 is distributed while allowing joint 2 to
translate laterally without rotation so that the sway equation remains satisfied.
Then, the distribution and carry-over moments in column 12 must sum to zero.

From Figure 7.36, where s’ and ¢’ refer to the modified stiffness of 12 and
the modified carry-over factor from 1 to 2:

s+scd =0

=

s(1 + ¢)l
[
= X
I
s(1 + ¢)/l
Figure 7.36
and
¢ =-1
s'=s—xs(1+ )l
s'c = —s'

= sc— xs(1+¢)/l
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Hence: x = 1/2

and: s’ =s—s(1+¢)/2
s/4 = EI/

for a straight prismatic column. Similarly, the modified stiffness of 21 and the
modified carry-over factor from 2 to 1 are EI/l and —1, respectively.

In the bottom story the stiffness and carry-over factor from 1 to 0 are El/I
and —1, as before, but there is no carry-over from 0 to 1.

Should the column feet be hinged at the foundation, the initial fixed-end
moment required to satisfy the sway equation is:

ME, = —(2W; + 2W, + 2W, )b, /2

For the sway equation to remain satisfied, there can be no distribution to
member 10, and the modified stiffness of member 10 is zero.

Any lateral loads applied to the columns in the skew symmetrical case, as
shown in Figure 7.37, will produce fixed-end moments in the columns. The
initial fixed-end moments due to sway must now be adjusted so that, when
added to the fixed-end moments due to the applied loading, the combined
fixed-end moments in the columns satisfy the sway equations for each story.

— e
— -
777777 777777

Figure 7.37

The Vierendeel girder, shown in Figure 7.38, in which the top and bottom
chords in each panel are parallel and of equal stiffness, may be analyzed in a simi-
lar manner. For the skew symmetrical distribution, the stiffness of the vertical posts
is 6El/l, and the stiffnesses and carry-over factors for the chords are EI/l and —1,
respectively. The sway equations are derived as shown at (i), (ii), and (iii) and are:

2(M,;, + My,) = —2WI
—2(My; + M;,) = Wi
2(Mzy + Mys) = wi

for panels 1, 2, and 3, respectively.
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(iii)

Multi-bay frames of the type shown in Figure 7.39 can be replaced by the
two substitute frames at (i) and (ii). The ratio of applied load to member stiff-
ness is the same for frame (i) and frame (ii), and the joint rotations and sway
displacements are identical in frame (i), frame (ii), and the original frame. Such
a frame is said to satisfy the principle of multiples, and the moments obtained
in the analysis of the two substitute frames sum to give the moments in the
original structure.

4 O] 1 ® £ ®
16": ®@ ® ©) O 4’; @@ 12’;@ ® ®
® ® ® ® ® ©)
(i) (i)
Figure 7.39

Example 7.16

Determine the bending moments in the symmetrical frame shown in Figure

7.40. The relative EI/l values are shown ringed.
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Solution

The sway equations and the initial fixed-end moments due to sway are:
top story:
2(My; + M;,) = —2X12X12
M§3 = M§4
= —72 kip-in

third story:

2AMys + My,) = —6 X 12 X 12
M35 = M5,
= —216 kip-in
second story:
2(My, + My;) = —10 X112 X 12
Mf, = Mj,
= —360 kip-in

bottom story:

2X My = —14x12 X 12
M, = —1008 kip-in



Table 7.18 Distribution of moments in Example 7.16

Joint 0 1 2 3 4
Member 1 10 11’ 12 21 22’ 23 32 33’ 34 43 44’
Relative El/I 8 8 3 5 5 2 3 3 2 1 1 1
Modified 24 6 20 10 2 6 6 2 2 2 1
stiffness
Distribution 1 12/25 3/25 2/5 5/9 1/9 1/3 3/5 1/5 1/5 2/3 1/3
factor
Carry-over factor  « 0 — ) — 7] — %)
Y — i) — k) —
MF, non-sway -576 -576 -576 —288
Distribution 276 69 231 320 64 192 346 115 115 192 96
Carry-over 160 115 173 96 96 57
Distribution =77 -19 -64 —160 -32 -96 -116 —-38 -38 -38 -19
Carry-over —80 —-32 —58 —48 -19 -19
Distribution 38 10 32 50 10 30 40 13 14 12 7
Carry-over 25 16 20 15 -6 7
Distribution —-12 -3 -10 -20 -4 —-12 —-12 -5 -4 -4 -3
Carry-over —10 =5 -6 -6 -2 -2
Distribution 5 1 4 6 1 4 4 2 2 1 1
Carry-over 3 2 2 2 1
Distribution -1 -1 -1 -2 -2 -2 -1
MV 0 229 =519 290 290 -537 247 319 —489 170 206 —206
Modified 0 18 5 5 12 3 3 12 1 1 6
stiffness
Distribution 0 18/23 523 1/4 3/5 3/20 3/16 3/4 1/16 1/7 6/7
factor
(Continued)
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Table 7.18 (Continued)

Joint 0 1 2 3 4
Carry-over factor — 0 — -1 — -1 — -1

—1 - -1 - -1 -
MF, sway —1008 -360 —360 -216 -216 =72 =72
Distribution 1070 298 144 346 86 54 216 18 10 62
Carry-over -144  -298 —54 —-86 -10 -18
Distribution 113 31 88 211 53 18 72 6 3 15
Carry-over —88 -31 —18 -53 -3 -6
Distribution 69 19 12 30 7 11 42 3 1 S
Carry-over -12 -19 -11 =7 -1 -3
Distribution 9 3 7 18 5 1 6 1 0 3
Carry-over -7 -3 -1 -5 -1
Distribution 6 1 1 2 1 1 4 0 0 1
MS 0 —-1008 1267 —259  —459 607 —148 —282 340 -58 —86 86
M kip-in 0 -779 748 31 -169 70 99 37 -149 112 120 —120
Member 01’ 1'0’ 1'1 12" 2'1 2'2 2'3' 3'2' 3'3 34 4'3’ 4'4
M kip-in 0 —1237 1786 —549 —749 1144 —-395 —601 829 —228 —292 292

8¢€¢

ad1deIJ pue L1093y ], U SIsA[euy [BINIONNG



Moment distribution methods 339

The fixed-end moments due to the applied loads are:

Mk, =—-12x24Xx12/12
—288 kip-in

Mf; = M3,

ME,,
—24X24Xx12/12
—576 kip-in

The distribution procedure for the non-sway and sway cases is tabulated in
Table 7.18, and the final moments are obtained as shown.

Example 7.17

Determine the bending moments in the Vierendeel girder shown in Figure 7.41.
All the members are of uniform cross-section.

l! 2/ 3! 4/
i
s

1 2 3 4 Y
A 1

40/3% Y10k ¥ 20¢ 50/3k

| 3X 12" =36 N

- ™

Figure 7.41

Solution

The sway equations and the initial fixed-end moments due to sway are:
panel 1:

2(M;, + Myy) = —40X12Xx12/3
Mf, = M3,
= —480 kip-in

panel 2:
2(My5 + M;5,) = —10X12Xx12/3

M53 = M;Fz
= —120 kip-in



Table 7.19 Distribution of moments in Example 7.17

Joint 2 3
Member 11’ 12 21 22’ 23 32 33’ 34 43 44’
Relative EI/l 1 1 1 1 1 1 1 1 1 1
Modified 6 1 1 6 1 1 6 1 1 6
stiffness
Distribution 6/7 1/7 1/8 3/4 1/8 1/8 3/4 1/8 1/7 6/7
factor
Carry-over — -1 — -1 — -1
factor -1 — -1 — -1 —
MF, sway —480 —480 -120 -120 600 600
Distribution 411 69 75 450 75 -60 360 —-60 —86 -514
Carry-over =75 —-69 60 =75 86 60
Distribution 64 11 1 7 1 -1 -9 -1 -9 =51
Carry-over -1 -11 1 -1 9 1
Distribution 1 0 1 8 1 -1 -6 -1 0 -1
M kip-in 476 —476 —483 465 18 —258 —375 633 566 —566
Member 1'1 12’ 2'1 2'2 2'3’ 32/ 3’3 34 4'3’ 4'4
M kip-in 476 —476 —483 465 18 —258 -375 633 566 —566

ore
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panel 3:
2AMy, + My3) = 50X 12 X 12/3
Mfa = M§4
= 600 kip-in

There are no fixed-end moments due to applied loading, and the sway distri-
bution procedure is shown in Table 7.19.

Example 7.18

Determine the bending moments in the symmetrical two-bay frame shown in
Figure 7.42. The relative EI/l values are shown ringed.

k k k k
4k ||||||]|0|||||||||||II(|)||||| ||||||1(|)||||| ||||||l?||||| 4k
) 3 3 3"
ET@ C) 15 15
= [TTTTTTITITT I TITITTIaqaT +
o
{@ @
"
777I 20/ I 20’ I77 T T Yeassd Yeesaa Yeassd Yecsad
' ' ) (ii)
10 10F o o
mm%m:gya:lm:%mﬂ
3 3 @) 3 @
(O) s O O o © @
= IIIIIIIIIIIIIE , 2 2
O] 2 ® ® ®
@) N + @ [/ @) Q@
(iii) (iv) W) (vi)
Figure 7.42

Solution

The original structure and loading are equivalent to the two cases shown at (i)
and (ii). Case (i) consists of a symmetrical structure subjected to symmetrical
loads. The moments at corresponding points are equal and of opposite sign,
and there are no moments in the interior column. This can be replaced by the
two identical substitute frames shown at (iii) and (iv). The fixed-end moments
due to the applied loading are:

M5, = —Mi;,
=10x20x12/12
= 200 kip-in

M5, = —Mj,

15xX20x12/12
= 300 kip-in



Table 7.20 Distribution of moments in Example 7.18

Joint 1 2 3’ 2! 1
Member 12 21 22’ 23 32 33’ 3'3 32’ 2’2 2'3’ 2'1 1'2'
Relative El/I 2 2 3 1 1 2 2
Distribution 0 1/3 1/2 1/6 1/3 2/3 0 0
factor
— Ya — Y
Carry-over factor k) — %) —
Y —
MF, non-sway —300 —200 200 300
Distribution 100 150 50 66 134
Carry-over 50 33 25 67 75
Distribution -11 -17 -5 -8 -17
Carry-over =5 —4 -2 -8 -8
Distribution and 1 2 1 1 1 1
carry-over
MV 45 90 —-165 75 82 —-82 259 0 368 0 0 0
EI/I, substitute 2 2 3 1 1 2
frame
Modified stiffness 0 2 18 1 1 12
Distribution 2/21 6/7 1/21 1/13 12/13
factor
Carry-over factor — -1 — -1
— 1 N
MF, sway =72 =72 —60 —60
Distribution 12 114 6 5 55
Carry-over —-12 =5 -6
Distribution 0 5 0 0 6
MS -84 —-60 119 -59 —61 61 61 —122 119 =118 —120 —168
M kip-in -39 30 —-46 16 21 =21 320 -—122 487 =118 —120 —168
Member 172" 2"1” 2" 2"3" 3" 3”3’ 3’3" 212"
M kip-in —-129 —-150 284 —134 —143 143 —-198 —249

e
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Case (ii) consists of a frame that satisfies the principle of multiples and
is subjected to lateral loading at the joints. This can be replaced by the two
identical substitute frames shown at (v) and (vi). The moments in the interior
columns of the actual frame are equal to twice the moments in the columns
of the substitute frame, and the remaining moments in thes actual frame are
equal and of the same sense as the corresponding moments in the substitute
frames. The sway equations for each substitute frame and the initial fixed-end
moments du to sway are:

top story:
2(Mj; + My3) = =2 X 10 X 12
M;, = Mj;
= —60 kip-in

bottom story:
2M;, + My;) = =2 X 12X 12
M, = M,
= —72 kip-in

The distribution procedure for the non-sway and sway cases is tabulated in
Table 7.20, and the final moments are obtained as shown.

Example 7.19

Determine the sway displacement of the tops of the columns of the multi-bay
frame shown in Figure 7.43.

6W 1 I I
61 121 121 6f | =
L L L
QW i 2W i 2W 1
2 2

Figure 7.43
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Solution

The frame satisfies the principle of multiples and can be replaced by the three
identical substitute frames shown. The sway equation for each substitute frame
and the initial fixed-end moments due to sway are:

2M,, + My,) = —2WL
= Mj,
=-WL/2

=
o
|

The distribution procedure is in Table 7.21.

Table 7.21 Distribution of moments in Example 7.1

Joint 2
Member 21 22’
Relative EI/L 6 1
Modified stiffness 6 6
Distribution factor Y i)
Carry-over factor -1

MF, sway -WL/2 -WL/2

Distribution and carry-over - WL/4 WL/4 WL/4
M —3WL/4 —-WL/4 WL/4

The sway displacement may be obtained from the final moments as shown

at (i) and (ii) in Figure 7.44. Then:

M,, = 24EI0/L — 36EIs /12
=-WL/4

M,, = 12EI0/L — 36EI5/ 12
= —3WL/4

and

= SWI? /144EI

>
|

Example 7.20

Determine the bending moments in the symmetrical frame shown in Figure
7.45. The relative EI/L values are shown ringed.

Solution

The original structure and loading are equivalent to the two cases shown at (i)
and (ii). Case (i) consists of a symmetrical structure subjected to symmetrical
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Figure 7.45

loads and may be replaced by the two identical substitute frames shown at (iii)
and (iv). The fixed-end moments due to the applied loading are:

Mf; = -Mf;,
=25 X25X%X12/12
—625 kip-in
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Case (ii) does not satisfy the principle of multiples, but an approximate solu-
tion may be obtained by means of the two identical substitute frames shown
at (v) and (vi). The sum of the second moments of area for the columns of the
two substitute frames equals the sum of the second moments of area for the
columns of the real frame. The sway equations for each substitute frame and
the initial fixed-end moments due to sway are:

top story:

2M;, + My;) = —3x 10X 12/2

Mj, = M3,
= —45 kip-in

bottom story:

2(My, + Myy) = =3 X 15 %12
ME, = ME, = —135 kip-in

These sway moments are distributed as shown in Table 7.22. The column
moments obtained are multiplied by the ratio (stiffness of actual column)/
(stiffness of substitute column) to give the actual column moments since, if the
columns in the actual structure undergo identical deformations, the moments
must be proportional to the actual column stiffnesses. In this case, the multi-
plying ratio for both the external and interior columns in the top and bottom
stories is 4/3.

The moments at the joints are now unbalanced, as shown in Figure 7.46, and
must be distributed. An approximate solution may be obtained from the pre-
vious substitute frames as shown at (i) and (ii). The unbalanced moments are
equivalent to symmetrical loads on the symmetrical substitute frames, and distri-
bution proceeds as shown in the table with a modified stiffness of 2EI/I for the
beams. The correcting moments so obtained are small, and it is unnecessary to
multiply the correcting moments for the columns by the stiffness ratios.

The final moments in the frame are obtained by adding the non-sway,
proportioned, and correcting moments.

7.10 Symmetrical multi-story frames with
inclined columns

The analysis of a single bay frame, with all beams parallel to the base and
with the two columns in each story of equal stiffness and subjected to lateral
loads at the joints, consists of a skew symmetrical distribution. The frame need
not necessarily satisfy conditions of geometrical symmetry but must be sym-
metrical as regards stiffness of the columns. Only the left half of the frame



Table 7.22 Distribution of moments in Example 7.20

Joint 1 2 3 3’ 2’ 1’
Member 12 21 22’ 23 32 33’ 3'3 32’ 3'3"” 2'2 2'3' 2'1' 2’2" 1’2/
Relative EI/! 5 5 1 3 3 1 1 3 1 1 3 5 1 5
Distribution factor 0 5/9 1/9 1/3 3/4 1/4 0 0
— 1 1 — 15 —
Carry-over factor — k%)
v —
MF, non-sway —625 625
Distribution and 234 469 156 78
carry-over
Distribution and —-65 —130 -26 -78 -39 -13
carry-over
Distribution and 15 29 10 N
carry-over
Distribution and —4 -8 -2 -5 -1 1 -1
carry-over
MY —-69 —138 —-28 166 458 —458 708 0 —708 —-14 0 0 14 0
EI/l, substitute frame 15/4 1 9/4 9/4 1
Modified stiffness 15 24 9 9 24
(skew)
Distribution factor 0 5/16 1/2 3/16 3/11 8/11
— -1 -1 —
Carry-over factor — -1
ME, sway -135 —135 —45 —45
Distribution 56 90 34 12 33
Carry-over -56 -12 -34
Distribution 4 6 2 9 25
Carry-over —4 -9 -2
Distribution 3 4 2 1 1
Carry-over and -3 1 -1 -2 2
distribution

(Continued)



Table 7.22 (Continued)

Joint 1 2 3 3 2! 1
MS —198 -72 101 -29 —-61 61
Proportioned —264 -96 101 -39 —81 61 61 —81 61 101 -39 -96 101 —264
moments
Modified stiffness 15 2 9 9 2
(symm.)
Distribution factor 0 1526 1/13 9126 9111 2/11
— ) — k)
Carry-over factor %) —
Distribution 20 2 12 16 4
Carry-over 10 8 6
Distribution -5 0 -3 -5 -1
Carry-over -3 -3 -1
Distribution and 1 2 1 1
carry-over
Correcting 8 17 2 15 17 3 -3 =35 -3 =2 -30 -33 -2 -16
moments
M kip-in =325 217 75 142 394 -394 766 —-116 —650 85 -69 —129 113 —280
Member 1//21/ 2”1” 21/2/ 21/3” 3//2" 3//3/
M kip-in —187 59 131 —190 —522 522
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is considered, with a modified stiffness of 6EI/l applied to the beams and no
carry-over between the two halves. As in the analysis of frames with vertical
columns, fixed-end moments that satisfy the sway equations are imposed on
the columns, and modified stiffness and carry-over factors are applied to the
columns, which will ensure that the sway equations remain balanced through-
out the distribution.

The sway mechanism for panel 1234 of the frame shown in Figure 7.47
is shown at (i). The displacement diagram, for a horizontal displacement of
@by units imposed at 2, is shown at (ii), and, since 2 must move perpendicu-
larly to the original direction of 12, the point 2’ is obtained. Similarly 4 moves
perpendicularly to 24 and 34, and the point 4’ is obtained. The member rota-
tions are:

¢ =22'11,
=¢
=¢

¢3 = _2,4’/124

_¢(7’lz4 - 124)/124
—(r —1)¢
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Figure 7.47

During the sway displacement, beams 13 and 24 are held infinitely rigid
so that no deformations and no moments occur in them. Hence, as shown in
Figure 7.48, the columns rotate through a sway angle ¢ at their bases and a
sway angle r¢ at their tops, and the frame above 24 rotates through an angle —
(r — 1)¢ and translates a distance ¢b; to the right. The sway equation for panel
1234 is:

—(M;, + Msy)p — r(My; + Mys)p = (W, + W, + W;)oh,
—{W5(hy + by)(r — 1)op + Wby (r — 1)p}

and
M, + My, + r(My; + My3) = M(r — 1) — Qb

where M is the clockwise moment of the external loads above the story about
the top of the story and Q is the shear to the right due to all external forces
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above the bottom of the story. The columns are of equal stiffness, and the ini-
tial fixed-end moments required to satisfy the sway equation are:

2MF, +2rME, = M(r — 1) — Ob,

From Figure 7.48, the fixed-end moments due to an arbitrary rotation ¢ of the
columns, while the beams are maintained infinitely rigid, are:

MEIME] = sp(1 + rc)/ sp(r + ¢)

(r=D¢

—rsce

Figure 7.48

Hence:
2ME A+ ro)/(r + ¢) + 2rME, = M(r — 1) — Ob,
and:

M, = {M(r —1) = Ob}(r +¢)/2(1 + 2r +7?)

M, = (M(r = 1) = Oy 1+ re) 121 + 2rc + 12)
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For straight, prismatic columns these values reduce to:

M, = {M(r = 1) = Qly )2 + 1)/ 4(1 + 7 +2)
Mf, = {M(r —1) = Ob}(1 + 21)/4(1 + 7 + 1)

The out of balance moment at joint 1 is distributed while allowing joint 2 to
translate laterally and maintaining the beams as infinitely rigid. This procedure
is shown in Figure 7.49, where S12 and ¢}, refer to the modified stiffness of
12 and the modified carry-over factor from 1 to 2 required to leave the sway
equation is left undisturbed. Then, substituting in the sway equation with the
right-hand side set at zero:

! ! ! J—
sip trsipep =0

and

¢, =—1r

—s(r+c)ll

—s(1+re)ll

Figure 7.49

From Figure 7.49:

sy =s—xs(l+ro)/l
rs',¢' 1, = —s'|, = rsc —rxs(r + )/l

Hence:
x =11+ re)/(1+ 2rc +7%)

and

s, = sr2(1— )1+ 2rc +12)
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For straight prismatic columns this reduces to:

s'y, = 3EIr* /11 +r +r?)

Expressions for s,; and c¢j; may be obtained by substituting » = 1/7 in the
expressions for sj, and ¢}, .

Then:
sy, = 3EI/I1+7r+7r?)
and
¢y =T

In the bottom story of the frame, the stiffness and carry-over factor at the
top of the column are as above, but there is no carry-over from the fixed base.

Should the column feet be hinged at the foundations, the initial fixed-end
moment required at the top of the column to satisfy the sway equation is:

My = {M(r — 1) — Qhb;}/2r

and the modified stiffness of 10 is zero.

The Vierendeel girder shown in Figure 7.50, which has inclined top chords
and the two chords in any panel of equal stiffness, may be analyzed in a simi-
lar manner. The end panel 012 has a value of infinity for #. Then:

M1Fo = Mgl
= ¢
=0

and

sio = 3EI/I

i \ }

Figure 7.50
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Example 7.21

Determine the bending moments in the frame shown in Figure 7.51. All mem-
bers have the same second moment of area.

e
# =1,
/3
2 2
1 1
< 30° -
= ™|
Figure 7.51
Solution
For the top story:
r=18/6 =3
M(r —1)— Qhb, = 0 — 32
=-32
ME, = =322 + 3)/4(1+ 3 + 9)
= —-3.08
ME, = =32(1 + 6)/4(1+ 3 +9)
=—4.31
chy =—1/3
= —0.333
¢y =-3
shy = 27EINO(1+3+9)
= 0.207EI
sh, = 3EI/10(1+ 3 +9)
= 0.023EI
For the bottom story:
r = 30/18
=1.67
M(r—1)—-0h =32X%X0.67—32
=-10.67
ME, = —10.67 X 3.67/4(1 + 1.67 + 2.80)

=—1.80
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M, = -10.67 X 4.33/4(1 +1.67 + 2.80)

—2.12
—1.67

!
21

sh, = 3EI/10(1 +1.67 + 2.80)

= 0.055EI

For the beams:

siy = 6EI/6
= EI

sh, = 6EI/18
= 0.333El

The distribution procedure and the final moments are shown in Table 7.23.

Table 7.23 Distribution of moments in Example 7.21

Joint 1 2
Member 12 21 22’ 23 32 33’
Modified stiffness 0.055 0.333 0.207 0.023 1
Distribution factor 0 0.092 0.56 0.348 0.023 0.977
Carry-over factor — -1.670 — —3.000
-0.333 —
MF X 100 kip-ft —180 -212 -308 —431
Distribution 48 291 181 10 421
Carry-over —80 -30 —60
Distribution 3 17 10 1 59
Carry-over =5 -3 -3
Distribution 0 2 1 0 3
Carry-over and 0 0 -1 1
distribution
Final moments X —265 —161 310 —149 —484 484
100 kip-ft

7.11 Frames with non-prismatic members subjected to sway

The fixed-end moments produced in non-prismatic members by a unit dis-
placement are determined by the column analogy method given in Section 6.5.
In addition, the stiffness, carry-over factors, and fixed-end moments due to lat-
eral loads on the members are required and are also determined by the column

analogy method.
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Example 7.22

Determine the bending moments in the frame shown in Figure 7.52. The sec-
ond moments of area of the members are shown ringed.

12

Figure 7.52

Solution

The stiffness, carry-over factors, and fixed-end moments due to an arbitrary dis-
placement have been obtained for member 21 in Examples 6.6 and 6.7 and are:

sy, = SEI/12

chy =415

Mt = —EI5/16
= —170x

ME, = —EI5/8
= —340x

The sway equation is:
~M,, — M, = 1440/2
= 720 kip-in
Due to the skew symmetry, the modified stiffness of member 22’ is:
sh, = 6E(2I)/12
= EI

The distribution procedure is shown in Table 7.24, and substituting the final
sway moments in the sway equation gives:

(300 +120)x = 720
x =171

The final moments are shown in Table 7.24.
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Table 7.24 Distribution of moments in Example 7.22

Joint 1 2

Member 12 21 22’
Modified stiffness 5/12 1
Distribution factor 0 5/117 12/17
Carry-over factor — 4/5

ME, sway —340 —-170

Distribution and 40 50 120

carry-over

MS —-300 -120 120
M=1.71x MS -513 -207 207

7.12 Frames with curved members

A single bay frame with the two columns connected by means of a straight
beam has one degree of sway freedom. The single bay frame with a curved
beam, shown in Figure 7.53, has the two degrees of sway freedom shown at
(ii) and (iii), corresponding to the different translations that occur at the top of
each column. The analysis proceeds in the three stages as shown at (i), (ii), and
(iii), and the two sway equations required are obtained by considering a unit

= + x; X + x, X

Nonsway Sway (1) Sway (2)
@ (i) (iii)
Figure 7.53
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horizontal displacement at the top of each column. Considering sway (1) and
(2) in turn, the sway equations are:

—(M;, + M)/, + Hys =W
—(Ms4 + My3)/ 154 —Hs, =0

where H,3; and Hj, are the outward thrusts of the arch at 2 and 3. The out-
ward thrusts are determined by considering the arch to be initially fixed-
end and subjected to the applied loads and translations and allowing for the
change in thrust produced as the ends of the arch rotate to their positions of
final equilibrium. Then:

H,3 = H3,
— HF + H62:1 _ H63:1 + ¢2H02:1 _ 1/J31_103:1

where H is the initial thrust due to the applied loads, H**=!' and H*=! are
the initial thrusts due to unit translations to the right at 2 and 3, H?*=' and
H®=1! are the thrusts produced by unit rotations at 2 and 3, and 1, and 5
are the final clockwise rotations of 2 and 3. The final rotations are given by:

Y, = EM§3 Isy3

and
Py = ZM% Is3;

where $MJ, is the sum of the balancing moments distributed to joint 23 from
its initial to its final equilibrium position and s,3 is the rotational stiffness of
the arch.

Example 7.23

Determine the bending moments in the frame shown in Figure 7.54. The
curved beam is parabolic in shape, and its second moment of area varies
directly as the secant of the slope, with a value at the crown of I,. The second
moment of area of the columns is 21,,.

Solution

The characteristics of the arch, which were determined in Example 6.9, are:

$23 T S32
= EI,/5 kip-ft
€3 T €32

-1/3
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[ =45’

Figure 7.54

H?=! = 15EI, /2h*]
= 0.0167EI, kip/rad

HY=' = 45El, /4h*|
= 0.0025EI, X 1273 kip/in

M?=! = 1SEI, /2hl
0.0167EI, X 1272 kip-in/in

Mj; = —Mj,
=WI/32
= 337 kip-in

HY = 15Wl/64h
= 21.10 kip outward

The stiffness and carry-over factors for the columns are:

S21 = 534
= 4E(21,)/20
= 2EI, /5 kip-ft
€21 = C34
=1/2

The distribution procedure for the non-sway stage is shown in Table 7.25.
The initial fixed-end moments due to sway (1) are:

F — _MF
M23_ M32

= 0.0167EI 6 X 1272
= 0.0167EI 6 X 1272 kip-in
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Mfz = Mgl
—6E(21,)8/(20 X 12)*
0.0300EI,6 X 1272 kip-in

and the corresponding thrust is:
H%=% = 0.0025EI)6 X 1273
= 0.000208EI,6 X 1272 kip

The distribution procedure for the sway (1) stage is shown in Table 7.25. The
distribution procedure for sway (2) is similar, and the final moments are shown
in the table.

Table 7.25 Distribution of moments in Example 7.23

Joint 1 2 3 4

Member 12 21 23 32 34 43

Relative stiffness 2 2 1 1 2 2

Distribution 0 2/3 1/3 1/3 2/3 0

factor

Carry-over factor — %) — 1/3 Ya —
-1/3 —

MF, non-sway 337 —337

Distribution —225 —-112 112 225

Carry-over —-112 -37 37 112

Distribution 25 12 -12 =25

Carry-over 12 4 -4 -12

Distribution and -2 -3 -1 1 3 2

carry-over

MV —-102 -203 203 -203 203 102

> MB —-101 101

MF, sway (1) -300 -300 167 —-167

Distribution 89 44 56 111

Carry-over 44 —-19 -15 56

Distribution 13 6 N 10

Carry-over 6 -2 -2 S

Distribution 1 1 1 1

MS! -250 —-197 197 —-122 122 61

> ME 51 62

M52 61 122 -122 197 -197 —-250

“MB 62 51

Final moments —-213 223 —-223 905 -905 —-1506




Moment distribution methods 361

Substituting the final non-sway, sway (1), and sway (2) moments in sway
equation (1) gives:

CV = —(M,, + My)/ Ly, + (HF + ¢, H2=1 — ¢ HO3=1)
= 305/240 +21.10 — 2 X 5 X 0.0167 X 101/12
=20.97

CS1 = ~(My, + My,)/ 1y, + (HO21 + 4, HO2=1 — o HO3=1)
447/240 +2.08 + 5 X 0.0167(51 — 62)/12
3.86

C$2 = —(My, + M) /1y, + (H3=1 + ¢y HO2=1 — 4 HO3=1)
~183/240 — 2.08 + 5 X 0.0167(62 — 51)/12
~2.76

Then:

20.97 + 3.86x, — 2.76x, = 10

Substituting the final non-sway, sway (1), and sway (2) moments in sway
equation (2) gives:

—20.97 —2.76x; + 3.86x, =0

Solving these two equations simultaneously:

x, = 2.14
x, = 6.95

and the final moments are given by:

MY + x, M5! + x, M52

7.13 Rectangular grids

Rectangular grids, which have a large number of degrees of sway freedom, are
most readily analyzed by a method of successive sway corrections'3.

The load W, applied to the grid shown in Figure 7.55, produces bending
moments and torsion in all the members. The sign convention adopted is that,

in a member parallel to the x-axis, bending moment is positive if clockwise
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6 5 11
104
/)
d w
9§| 4 1 2
NI s/

7 7 3 12T
Figure 7.55

when viewed in the positive direction of the y-axis, and torsion is positive if
clockwise when viewed in the positive direction of the x-axis. Each unsup-
ported node of the grid undergoes a vertical deflection, and sway equations
must be developed for each one. The sway equation for node 1 is obtained by
considering unit vertical deflection of 1 and is:

(M12 + M21)/112 + (M13 + M31)/l13 - (M14 + M41)/l14
—(Mys + Mg)/ L[5 —W =0

Similar equations may be developed for nodes, 2, 3, 4, 5, 6, and 7.

An initial estimate is made of the vertical deflection at each node, and
these deflections are imposed on the grid, with no joint rotations permitted.
The initial fixed-end moments due to all the sway modes applied simultane-
ously are:

Mfz = Mgl
= 6EI(y; — y,) /I, )*
M1Fs = M5F1

= —6EI(y; — y5)/(l;5)*, etc

where y1, ¥2, ¥3,..., are the estimated deflections at nodes 1, 2, 3,....

These initial fixed-end moments are distributed and the resulting moments
substituted in the sway equations. Any residual that is produced means that
the sway equation is not satisfied, as the initial estimate of the deflections was
incorrect and additional sway moments must be applied and distributed. The
procedure continues until all the sway equations are satisfied.

Distribution is required for all beams in the x and y directions, and the
distribution factor at each node must allow for the torsional stiffness of the
cross-members framing into the node from the y and x directions. The tor-
sional stiffness of a member is GJ/I, where G is the modulus of torsional rigid-
ity, ] is the torsional inertia, and [ is the length of the member. The carry-over
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factor for torsion is —1. Any out of balance moment at node 4 that is dis-
tributed to cross-member 46 during the distribution of moments in beam 92,
is carried over to 64 with the sign changed. This produces an out of balance
moment at node 6 during the distribution of moments in beam 1011, which
must be distributed to the three members meeting there. Thus, the distribution
of moments must proceed simultaneously in beams 1011, 92, 812, 67, 53, and
1112, and the balancing operation at any node affects the adjacent nodes on
parallel beams.

When loading is applied between the nodes, the fixed-end moments due
to this loading must be distributed at the same time as the initial fixed-end
moments due to the sway deflections.

Example 7.24

Determine the moments in the grid shown in Figure 7.56. All members are of
uniform section, and the flexural rigidity is twice the torsional rigidity.

100" 100" 100"

Figure 7.56

Solution

Due to the symmetry of the structure and loading, equal deflections occur at
nodes 2 and there is no torsion in members 22. Distribution is required in only
half of beam 11, and the flexural and torsional stiffness of each member is:

flexural stiffness of 12 = 4E[ /!
= 8GJ /Il
flexural stiffness of 22 = 2EI /!
= 4GJ /1

torsional stiffness of 21" = GJ /I
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The sway equation is obtained by considering unit vertical deflection
imposed simultaneously at all nodes 2 and is:

~2(M,, + M,,)/100 — 100 = 0

The initial sway moments are:

MF, = ME, = —6Ely, /1000 = —4000, say
ML, =0

The distribution proceeds as shown in Table 7.26, and the residual is indicated
at several stages. Equal correcting moments M}, and M[, are imposed at
each stage, and the final moments are shown in the table.

Table 7.26 Distribution of moments in Example 7.24

Joint 1 2 Residual
Member 12 21 21’ 22

Relative stiffness 8 1 4
Distribution factor 8/13 1/13 4/13

Carry-over factor — Y -1

MF, sway —4000 —4000

Distribution 2460 310 1230

Carry-over 1230 —690
1st correction —-600 —-600

Distribution 370 45 185

Carry-over 185 — 45
2nd correction —43 —43

Distribution 27 3 13

Carry-over 13 1
Final moments, kip-in -3215 -1786 358 1428

7.14 Direct distribution of moments and deformations

Direct moment distribution was introduced by Lin'* as a means of eliminat-
ing the iteration required in the standard moment distribution procedure.
The parameters required for the direct distribution of fixed-end moments
require considerable preliminary effort, but, once these parameters have been
obtained, alternative loading conditions can be quickly investigated. To assist
in the calculation of these parameters, a number of graphs and charts'>1617
are available. Several alternative methods'®!%?" have been developed for the
direct distribution of moments but will not be considered here.
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The direct distribution of deformation provides the most convenient way of
determining influence lines for rigid frames®!. The basic parameters required
are obtained in a similar manner to the parameters required for the direct dis-
tribution of moments, and both techniques may be readily applied to a par-
ticular structure.

(a) Direct distribution of moment

The actual stiffness at the end 1 of any member 12 of a frame is the moment
s{, required to produce unit rotation at 1, with all members meeting at 1
and 2 having their actual stiffnesses. As indicated in Figure 7.57, this may be
obtained as the sum of the two operations shown at (i) and (ii). In operation
(i), unit rotation is imposed at 1 with 2 clamped. In operation (ii), joint 2 is
released and allowed to rotate to its position of final equilibrium while joint 1
is clamped. The balancing moment required at 2 is —c¢{,s1,, and this is distrib-
uted to each member in accordance with its distribution factor. The stiffness of
21 is the restrained stiffness s,; since joint 1 is clamped, while all the other »
members meeting at 2 have their actual stiffnesses. The distribution factor for

21 is:

— a —_
ayy = sy l(sy + Xs5, — s5)

where s4, is the actual stiffness of member 21.

C12512

R
2

\ fMZI \
Stz 0=1 021 : 0=1

1
Si
@

+

~a21€12021512
= [
2
N
P 2112512

0=1 21

(i)
Figure 7.57

The balancing moment distributed to 21 is —a1c12812, and the moment
transmitted to 1 is:

—ay1€12621512 = by1€1n51n
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Then the actual stiffness at 1 is:
sty = s1a(l = ay1¢1261)

and the actual distribution factor for member 12 is:
dy, = s, [5sf,

The proportion of the out-of-balance moment at joint 2 which is transmitted
to the fixed-end 1 when 2 is balanced, is:

by, = —ayicy

For any member 12, the value of a;, is zero when joint 1 is fixed and unity
when joint 1 is hinged.
The direct distribution procedure may be summarized as:

+  determine the fixed-end moments produced by the applied loads

«  starting with the extreme left-hand-side joint of the frame, transmit the out-of-balance
moments at each joint to the next joint on the right, which is clamped

+  repeat this operation starting at the extreme right-hand-side joint and transmit to
the left with moments transmitted previously not included in the out-of-balance
moments

« at each joint, balance the fixed-end moments and the transmitted moments using
the actual distribution factors

Example 7.25

Determine the bending moments in the members of the frame shown in Figure
7.16. The relative EI values are shown ringed.

Solution
The parameters required are shown in Table 7.27 and are derived as follows:

a, =1

s§, =3(1-1/4)
=2.25
s§, =9
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Table 7.27 Distribution of moments in Example 7.25
Joint 1 6
Member 12 21 42 64
Relative 4EI/] 3 3 4 3
i 2.25 3.74
a 1 0.19 0.26 1
b -0.50 -0.10 -0.13 -0.50
d° 1 0.15 0.25 1
MF, kip-in —100 100 173
Transmission 50 -20 13
LtoR
Transmission -13
RtoL
Distribution 113 -27 56 -173
Final moments 0 123 36 0
and

424 = 4/(4 + 9 + 2.25)

= 0.26

siy = 41— 0.26/4)
= 3.74

sis =9

and

a4 = 3/3+9+3.74)

=0.19

The remaining parameters are readily obtained, and the transmission and dis-

tribution proceeds as shown in the table.

(b) Direct distribution of deformations

The rotation 6,1 produced at the end 2 of member 12 shown in Figure 7.57 is

given by:

e a — da
by = —cip812/(sy; + XS, — s5y)

_ 1/
_b12
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Thus, the final rotation at joint 2 when a rotation 6;, is imposed at 1 is:

__ !/
'921 - 12012

For symmetrical members:

S12 = 21
! —
d = an
! —

1 = by

Using the principles of Section 5.3, the direct distribution of deformation
provides a rapid method of determining influence lines. The influence line for
M,; for the frame shown in Figure 7.58 is obtained by imposing a unit clock-
wise rotation on member 23 with respect to members 20 and 21. The deflected
form of structure is, from Miiller-Breslau's principle, the influence line for
M,;3. The absolute rotation of member 23 is:

br3 = (s5y +s5,)/2s5,

Figure 7.58

The rotation of member 21 is:

by =03 — 1
= _553 /ngn

—Ja
23

These two imposed rotations may be readily transmitted through the structure.
Thus, the final rotations of all the members in the structure are obtained, and
the ordinates of the elastic curve are obtained from tabulated values of fixed-
end moments.

A correction must be applied to these ordinates because of the sway that
occurs in the frame. A unit sway displacement is imposed on the frame, as
shown in Figure 7.59 (i), and the final moments are determined by the direct
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X
Unit sway l‘"' o
wW=1 \

ne \ i
”/ )/ % f4 xXM;

@) (i)

(iii)

Figure 7.59

distribution procedure. The rotations 6% at each joint are readily obtained by
dividing the balancing moment distributed to any member at the joint by its
actual stiffness, and the moment in member 23 is M5, .

A unit horizontal load applied at 1, as shown at (ii), produces a sway dis-
placement x, a vertical deflection of § at any point 4, and a moment in mem-
ber 23 of xMj;. The value of x is determined by substituting the M’ values
obtained in system (i) in the sway equation. Thus:

—x(Mj, + M3,) — xM5, — x(M3, + M§;) = 1

A unit vertical load applied at 4 will, from Maxwell's reciprocal theorem,
produce a sway displacement of 6, as shown at (iii). The moment in member
23, due only to this displacement 8, is §M3;. This value, then, is the sway cor-
rection that must be added to the non-sway moment at 23 due to a unit load
at any point 4. Thus, the corrections are given by the ordinates of the elastic
curve, with rotations at each joint of 5 X xM5;.

The corrections are best applied to the non-sway rotations, and the true
influence line ordinates for M3 are given by the deflected form of the structure
with joint rotations of:

NS S S
0N + 0> X xM>,

where 05 is the rotation at a joint due to the imposed rotation with sway pre-

vented, 6° is the rotation at the same joint due to a unit sway displacement,
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M3, is the moment produced in member 23 due to a unit sway displacement,
and x is the sway displacement produced by a unit horizontal load.

Example 7.26

Determine the influence line ordinates for My over span 46 of the frame
shown in Figure 7.16.

Solution

A unit clockwise rotation is imposed on 46 with respect to members 45 and
42. The absolute rotation of member 42 is then:

04 = —dis
=-0.15

The rotation of 46 is:

O4s =1+ 04,
=0.85

These imposed rotations are transmitted in Table 7.28 to obtain the final rota-
tions shown.

Table 7.28 Distribution of deformations in Example 7.26

Joint 1 2 4 6
Member 12 21 24 42 46 64
b' -0.50 -0.13 -0.50
Imposed -0.15 0.85
deformations
Transmitted —0.00975 0.0195 —-0.425
deformations
Final rotations —0.00975  0.0195 -0.15 0.85 —-0.425

The influence line ordinates, at intervals of 0.2 X the span of 10ft, are
obtainable in Table 7.29 from:

My = 0.85 X ME, —0.425 x MF,
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Table 7.29 Influence line ordinates for Example 7.26

Section 4 4.2 4.4 4.6 4.8 6
M ft units 0 -1.28 —1.44 -0.96 -0.32 0
ME, ft units 0 0.32 0.96 1.44 1.28 0
ME, X 0.85 0 -1.09 -1.22 -0.82 -0.27 0
ME, X —0.425 0 -0.14 —0.41 -0.61 -0.54 0
Ordinates, ft units 0 -1.23 —1.63 —1.43 -0.81 0

7.15 Elastically restrained members

Modified stiffness, carry-over factors, and fixed-end moments are required for
members that are elastically restrained at their ends. These may be obtained by
the methods given in Section 6.7.

Example 7.27

Determine the moments in the uniform beam shown in Figure 7.60. The beam
is elastically restrained at end 1 with a rotation-moment ratio of ny, = I/8EI.

Figure 7.60

Solution

The modified stiffness and carry-over factor for member 21 are:

sy, = 4EI(l + 3EIn,)/ Il + 4Eln,,)
= 11EI/3l

¢b, = 1/2(+ 3EIn,,)
= 4/11
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The initial fixed-end moments are:

Mfz. = _M§2
-Wi/8
—100, say

The distribution proceeds as shown in Table 7.30.

Table 7.30 Distribution of moments in Example 7.27

Joint 1 2 3
Member 12 21 23 32
Modified stiffness 11/3 4
Distribution factor 11/23 12/23

Carry-over factor — 411 172 —
MF —-100 100
Distribution and 17 48 52 26

carry-over
Final moments 17 48 —48 126

Supplementary problems

Use the moment distribution technique to solve the following problems.

$7.1 The continuous beam shown in Figure S7.1 has a second moment of area
for member 34, which is 3 X that for members 12 and 23. Determine the reac-
tions at supports 2, 3, and 4.

2 kips 10 kips 1 kip/ft

| | T

NONE o t @
Figure §7.1

§7.2 Figure S7.2 shows a propped rigid frame with the relative EI/L values
shown ringed alongside the members. Determine the reactions at supports
1 and 4.
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2
)

—_

Figure S7.2

§7.3 The continuous beam shown in Figure S7.3 has a second moment of area
of 376in* and a modulus of elasticity of 29,000 kips/in?. Determine the bend-
ing moments produced in the beam by a settlement of support 1 by 1in, sup-
port 2 by 2 in, and support 3 by 1in.

Figure S7.3

§7.4 Determine the moments produced in the members of the rigidly jointed
frame shown in Figure S7.4 by the indicated load of 10 kips. The second
moment of area of all members is 20in*. The cross-sectional area of all mem-
bers is 2in?. The modulus of elasticity is constant for all members.
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10 kips

9’

12

Figure S7.4

§7.5 Figure S7.5 indicates a sway frame, with pinned supports, with the rela-
tive EI/L values shown ringed alongside the members. Determine the bending
moments at joints 2 and 3 caused by the lateral load.

10kips 2 ® 3

®@ 10’

20"

Figure §7.5

§7.6 Determine the forces produced at the joints of the rigidly jointed frame
shown in Figure S7.6 by the indicated loads. The EI/L value is constant for all
members.
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4k
1 kip i P

20’

—
|t

20" L 16’ L

Figure §7.6

§7.7 Determine the bending moments produced at the joints of the rigidly
jointed frame shown in Figure S7.7 by the indicated loads. The relative EI/L
values are shown ringed alongside the members.

20 kips
IENEEENINEEENEEEEEEE

®
@ @ 1

20"

Figure S7.7

§7.8 The dimensions and loading on a symmetrical, single-bay, two-story
frame are shown in Figure S7.8. The relative second moment of area values are
shown ringed alongside the members. Determine the bending moments, shears,
and axial forces in the members.
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. 3
4 kips >

1 4
7777 7777
10’

Figure 7.8

$7.9 Determine the bending moments produced at the joints of the Vierendeel

girder shown in Figure S7.9 by the indicated loads. The relative EI/L values
are shown ringed alongside the members.

400 kips

6 @ 4y @ 8 ©) 9 ©) 10

¢ |@ ® ® ® ®
® ® ©) ©)

A 2 3 4 54
300 kips 100 kips
(. 4% 10" = 40’ L
- >
Figure §7.9

§7.10 Determine the bending moments produced at the joints of the rigidly

jointed frame shown in Figure S7.10 by the indicated loads. The EI/L value is
constant for all members.
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100 kips

3X 12" =36’

\ ] .
300 kips

A

Figure $7.10

200 kips

§7.11 Determine the bending moments produced in the left-hand columns of
the rigidly jointed frame shown in Figure S7.11 by the indicated loads. The

relative EI/L values are shown ringed alongside the members.

O)

® @ @®

2 kips —wl @ 7 ©) 11
©, ©, @

2 kips —»l 2 @ 6 ©, 10
©, @

5o 5 A7

20’

20’

|

Ny

>l

Figure S7.11

|

12

12

15
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8 Model analysis

Notation

area displaced by a deformed model
cross-sectional area

depth of member

Young’s modulus

stress

gravitational acceleration
modulus of torsional rigidity
horizontal reaction

second moment of area
torsional inertia

scale factor

length of a member
dimension of length

model (used as suffix)
dimension of mass

prototype (used as suffix)
axial force

shear force

radius of gyration of prototype member
thickness of model member
dimension of time

vertical reaction

distributed load

applied load

knife-edge load

influence line ordinate
equals f,/f,,

equals €,/e,,

deflection, displacement imposed on a model
strain

rotation imposed on a model
density

Poisson’s ratio
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8.1 Introduction

A structural model is required to reproduce an actual structure (the prototype)
to some convenient scale and in such a manner that it is possible to predict the
behavior of the prototype subjected to its applied loads from the behavior of
the model subjected to a system of proportional loads. Model analysis may
be employed in the design of a complex structure for which a mathematical
analysis is not possible or may be used to check the validity of a new theoreti-
cal method of analysis. In addition, simple model techniques may be utilized'»?
to develop an appreciation of structural behavior in young engineers. No sim-
plifying approximations are necessary for a model analysis, and all secondary
effects are automatically included in the analysis.

Model analysis may be classified under the headings direct methods and
indirect methods. The loading applied to an indirect model is unrelated to
the applied loading on the prototype. An arbitrary deformation is applied to the
model, and the deflected form obtained represents, to some scale, the influ-
ence line for the force corresponding to the applied deformation. The indirect
method is applicable only to linear structures. The loading applied to a direct
model is similar to the applied loads on the prototype. Strains and deflec-
tions of the model are recorded and stresses and deflections of the prototype
deduced. The direct method is applicable to structures in both the elastic and
inelastic states. For both direct and indirect methods, knowledge of the laws of
similitude is necessary for the correct proportioning of the model and its loads
and the correct interpretation of results.

Methods of constructing and testing models will not be considered here but
may be referred to in several comprehensive textbooks®*-°,

8.2 Structural similitude

The required similitude between model and prototype quantities may be
obtained by the method of dimensional analysis’. The relationship between
the 7 fundamental variables affecting structural behavior can be expressed
as a function of (#n — i) dimensionless products, where 7 is the number of
dimensions involved. The dimensionless products are referred to as the pi
terms.

The variables affecting structural behavior are given in Table 8.1 together
with the exponents of their dimensions of mass, length, and time. Only the
first eight of these variables are fundamental; the remainder have been included
in order to derive their interdependence. The fifteen variables contain three
dimensions, and thus the structural behavior can be expressed as the relation-
ship between twelve pi terms. The pi terms are obtained by considering the
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Table 8.1 Variables involved in structural similitude
Variable e [ I E W p v g @ f w W A G
=
.g M 0 0 1 1 1 O 0 0 1 1 1 0 1
é L o 1 4 -1 1 -3 0 1 1 -1 -1 0o 2 -1
A T 0 0o -2 -2 o o0 -2 0 -2 -2 =20 -2

exponents of the dimensions of the product formed by g, W, I, and one other
variable at a time. Thus:

m, = el*Wbge
— lOW0g0
=€

7, = 11"Wbge
— Il_4WOgO
= I/I*

m; = PE/W

7, = BpglW

Ts = v

g = 611
= SEI/WI3
= 6EA/WI
= 6GJIWI3
= 6GAIWI

7, = fI2IW

g = wl/W

e = WIW

o = All?

my = Ji*

7, = GI2IW

Any number of the dimensionless products may be combined to give a dif-
ferent expression for the pi term, as shown by the five different expressions

given for .

For complete similitude, each variable affecting the behavior of the model
and the prototype must be in a fixed ratio, which is dimensionless and is
referred to as the scale factor. In addition, the pi terms of the model and the
prototype must be in a fixed ratio and establish the relationships between the
scale factors. Thus, for geometrical similarity, lengths on the model must be in
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a fixed ratio to the corresponding lengths on the prototype and to I/, = kj,
the linear scale factor. Considering each pi term in turn:

€,/€, = ke
k; = k}
ky = kpk}
Rk, = ky/k.k}
k, =1
ks = k
= kyk;/kgk;
= kyk/kpky
= kyk/kck]
= kyk/kk,
ki =k, ki
k,, = ky/k}
ky: = ky/k
ky = k?
k; =kt
kg = ky ki

When it is known that some variables have a negligible effect on the behav-
ior of a particular structure, it is unnecessary to fulfill all the above conditions
of similitude, and a distorted model may prove satisfactory and be easier to
construct®.

8.3 Indirect models

(a) Similitude requirements

Indirect model methods make use of the Miiller-Breslau principle presented in
Section 5.2. The influence line for any restraint in a structure is the deformed
shape of the structure produced by a unit displacement replacing the restraint.
The displacement corresponds to and is applied in the same direction as the
restraint. The influence line ordinates obtained are positive when the deforma-
tion produced moves in opposition to the direction of an applied load at any
point. It is impracticable to apply the displacements to the prototype, and a
model is constructed to a suitable linear scale such that the deformations in the
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model and the prototype, due to a given displacement, are in a constant ratio
at all corresponding points. Thus:

8,08,y = ks
= kykilkk,
— kyk/kpk,
= kykjlkck,
= kyhk/lkck,

If only flexural deformations are significant in the prototype, the expression
reduces to:

ks = kygkilkk,

Since loads are not measured or reproduced, the only requirement to be
observed is that the ratio (EI),/(EI),, is maintained constant for all members. It
is not essential for k; = k' or k, = 1. Hence any suitable material may be used
and any shape of cross-section chosen for ease of fabrication and prevention
of buckling. Thus, the model members may be cut from a sheet of material of
uniform thickness such that the ratio (d,,)3/(EI ), is constant for all members.

If only axial deformations are significant in the prototype, the expression
reduces to:

ke = kyk/kpk,

The only requirement to be observed is that the ratio (EA),/(EA),, is main-
tained constant for all members. Thus, the model members may be cut from a
sheet of material of uniform thickness such that the ratio d,,/(EA), is constant
for all members.

If both flexural and axial deformations are significant in the prototype, the
expression reduces to:

ks = kykjlkgk;
= kyklkgk,
and:
ki = ki/k ,

Using rectangular model sections, this reduces to:

d It d3

m=m’TmTm

kP = Ar2IA, X 12t
= 127’5/61,2,Z
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Thus, the model members may be of rectangular section with d,,, = r,(12)*-/k,
and with the thickness adjusted such that the ratio d,,t,,/(EA), is constant for
all members.

If both flexural and shearing deformations are significant in the prototype,
the expression reduces to:

ky = bk},
= kwkl/kaA

using a model material such that k, = 1, kg = kg. Thus k? = k//k4, as in the
case of significant flexural and axial deformations.

If both flexural and torsional deformations are significant in the prototype,
the expression reduces to:

ky = kukilkek,

using a model material such that k, =1, kg = kg. Thus, k; = kj, and the
model and prototype member cross-sections must be geometrically similar.
Using a model material such that k, # 1, the model members may be of any
suitable section such that the ratio kgk;/kgk; is constant for all members.

(b) Testing technique

To determine the reactions Hy, Vi, M of the arch shown in Figure 8.1 (i),
a model is constructed to a suitable linear scale factor, k;, with the necessary
similitude conditions satisfied. A convenient horizontal displacement, 6, is
imposed on the model at 1, as shown at (ii), and the ordinate y and the area
a measured. Had the displacement, 8, been applied to the prototype; the cor-
responding area displaced would have been ak;. The horizontal reaction in the
prototype is given by:

H, = Wy/§ + wak,/5

A convenient vertical displacement, é, is imposed on the model at 1, as shown
at (iii), and the ordinate y and the area a measured. The vertical reaction in the
prototype is given by:

Vi = Wylé + wak,/§

A convenient anticlockwise rotation, 6, is imposed on the model at 1, as
shown at (iv), and the ordinate y and the area a measured. Had the rotation, 6,
been applied to the prototype, the corresponding ordinate and displaced area
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®

(i)

(iv)

Figure 8.1

would have been yk; and ak?, respectively. The moment in the prototype is
given by:

M, = Wyk)/0 — wak}10

To determine the internal forces P, O, M, at the crown of the arch shown
in Figure 8.2 (i), the model must be cut at the crown. A convenient relative
horizontal displacement, &, is imposed on the cut ends, as shown at (ii), and
the ordinate y and the area g measured. The axial thrust in the prototype at
the crown is given by:

P. = Wyl + wak;/é

A convenient relative vertical displacement, 6, is imposed on the cut ends, as
shown at (iii), and the ordinate y and the area a measured. The shear force in
the prototype at the crown is given by:

O, = —Wy/é + wak, /5
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Wk w¥/in

p, [

®

(ii)

(iii)

(iv)

Figure 8.2

A convenient relative rotation, 6, is imposed on the cut ends, as shown at
(iv), and the ordinate y and the area a measured. The internal moment in the
prototype at the crown is given by:

M, = Wyk)/0 — wak; /0

The technique, as described above, may be readily applied to space frames’.

An alternative technique for obtaining internal moments that avoids cut-
ting members involves the use of a moment deformeter®*. However, it may be
applied only to members that are initially straight and prismatic. To determine
the internal moment, M, in the frame shown in Figure 8.3 (i), a model is con-
structed to a suitable linear scale factor with the necessary similitude condi-
tions satisfied. The moment deformeter applies the reaction system shown at
(ii) to the model. This is equivalent to applying equal and opposite moments,
of magnitude, V éx, to two sections in the model a short distance, 6x, apart.
Thus, as shown in Section 5.2(b), the ordinates of the elastic curve produced
by the deformeter represent the value:

V 6x 60 = V(5x)2/R
= VM, (6x)2/E, I,
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/" i I P

Ml\ | /Ml Tzv

® (i) (iii)
Figure 8.3

with the exception of the short length 2 X éx. The deformed shape of
the model is shown at (iii) and the internal moment at 1 in the prototype is
given by:

M, = Wyk,E, 1,,/V(6x)*

This technique may be readily modified'® and used to determine the influ-
ence surface for the bending moment at any point in a slab.

Example 8.1

The value of the horizontal thrust at the springings is required for the two-
hinged arch shown in Figure 8.4 (i). A model is constructed to a suitable scale
and a horizontal displacement of 0.375 in imposed on the end 1 produces the
displacements shown at (ii).

180%
H . 5 H
180/
| > —=lle—5=0375
5 X 1/10
- z -
Figure 8.4

Solution

The linear scale factor is:
k; = 2160/1
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The area displaced on the model is:

a=1{0+2(0.11+0.22 + 0.30 + 0.35) + 0.37}/20
= 0.1165/

The distributed loading on the model is:

w=2/12
= 1/6 kip/in

The horizontal thrust in the prototype is given by:

H = wak/§
= 2160 X 0.1165l/(6] X 0.375)
= 112 kips
Example 8.2

The values of the moments M; and M, are required for the symmetrical
frame shown in Figure 8.5 (i). The column feet are initially hinged; an anti-
clockwise rotation of 0.004 radian imposed at 1 produces the displacements

shown at (ii).

10 15

M M

@

0.00375 rad
(iv)

0.001 rad

0.00025 rad

(iii)

0.001 rad

0.004 rad

(i)

Figure 8.5

Solution

Because of the symmetry of the structure, a clockwise rotation of 0.001
radian imposed at 2 will produce the displacements shown at (iii). Thus, the
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displacements produced by a clockwise rotation of 0.00375 radian at 1 with
end 2 clamped are shown at (iv). The values of the moments are given by:

M, = 10 X% 0.045/0.00375 + 15 x 0.0075/0.00375
150 kip-in
15 % 0.045/0.00375 + 10 X 0.0075/0.00375
= 200 kip-in

M,

8.4 Direct models

A direct model must be true to linear scale and, for complete similitude, must
satisfy all the similitude conditions listed in Section 8.2. The linear scale factor
should not be so large that the internal texture of the model material affects
the results. Where a large linear scale factor is essential, the existence of scale
effects can be distinguished by constructing several models to different lin-
ear scales. As with indirect models, complete geometrical similitude of cross-
sections may often be disregarded, provided that the loading scale factor is
modified. Thus, if only flexural effects are significant:

ks = ky
= ka;/kEkl
And:
Ry + K

Hence, the modified loading scale factor is:
ky = kpk;/k?

If only axial effects are significant:

ks =k
= kyk/kpk,
And:
ky =+ /el2

Hence, the modified loading scale factor is:
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When the self weight of the structure appreciably affects the behavior of the
prototype, an essential condition is:

k, = kylk k?
= kylkky

Thus, the linear scale factor is automatically fixed by the properties of the

model material. When a linear scale factor larger than this is required, the den-

sity of the model material may be artificially increased by suspending weights

from the model, or a centrifuge may be used to provide an increased gravita-
tional field.

When torsional and shearing effects are significant, an essential condition is:
k, =1

To investigate the elastic behavior of flexible structures in which deflections

are large and stress is not proportional to the applied loads, the two essential
conditions are:

k, = kpk?
and:
kp =k /k}
:kE
Then:
ks =k
And:
k=1

The condition ky = kgk} fixes the relationship between applied loads and
elastic critical loads. If this condition is ignored and an arbitrary value is
assigned to kyy, it is possible to magnify model strains and deflections. However,
changes in geometry of the model under load are no longer similar to those in
the prototype, and errors in predicting elastic critical loads are incurred.

To investigate the elastic behavior of linear structures in which deflections
are small, stress is proportional to the applied loads, and the principle of super-
position is valid, arbitrary values may be assigned to ky and kg:

by * kpk?
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Then:

ke = k¢lkg
And:

ks = kek;/kp

since stress is proportional to strain in both model and prototype.

Bem

€m —x
-

“ af;)l

Stress

I

LR

Strain

Figure 8.6

To investigate the plastic behavior of structures in which the deformations at
failure have little influence on the structural behavior, the stress-strain curves
for the prototype and model materials must be related as shown in Figure 8.6.
Then:

ki = o
and:

ke =0
and:

ks = Bk

and changes in geometry of the model under load are not similar to those in
the prototype. In addition, the following scale factors must be observed:

ky = kek}
= ak}
k, = kylk.k}
= alk.k,
k,, = ky/k}

=«
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Stress

Strain

Figure 8.7

To investigate the plastic behavior of structures in which changes in geom-
etry of the prototype under load must be reproduced in the model, the stress-
strain curves for the prototype and model materials must be related as shown
in Figure 8.7. Thus, the strains in prototype and model are equal at corre-
sponding stresses and:

ki = o
and:

k. =1
and:

ks = ky
and:

ky = ak?
and:

k, = alk.k,
and:

k, =«

To investigate composite structures, the model materials used must all have
the same scale factors « and (3. Alternatively, for reinforced and prestressed
concrete structures, it is possible to use steel reinforcement for the model and
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ensure that the scale of forces in the reinforcement is correct!!. Thus, if kg rep-
resents the scale factor for reinforcement areas in the prototype and model:

ok} = kef, /f.,
ksEsem,@/Esﬁm

And:

ks = ak?/p
In addition, it is necessary for the model reinforcement to yield at a strain of
€/, where €g is the strain in the prototype reinforcement at yield.

Example 8.3

A model is constructed of a prototype in which only axial effects are signifi-
cant. The model is constructed from the same material as the prototype, using
the scale factors k; = 20 and k4, = 100. Determine the required scale factor for
loading if geometrical similitude is to be maintained during loading.

Solution
k5 == kl
= kyklkgk,
Thus:
kw = kA
=100
Example 8.4

A model is constructed of a prototype, in which only flexural effects are sig-
nificant, using the scale factors k; = 20 and kyp = 100. The model members
are constructed to a distorted scale so that k; = 1000 and k; = 10. Determine
the scale factors ky, ks and k, if the required scale factor for deflection is
k5 = 10.

Solution
ks = kykjlkpk;
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Thus:
ky =1000/8
=125
kf = kalkd/kI
=25
ke = kslkg
=0.25
Example 8.5

A model is constructed of a prototype, in which both axial and flexural effects
are significant, using the scale factors k; = 20 and kg; = 2 X 10°. Determine
the required scale factors ky and kg, if geometrical similitude is to be main-
tained during loading.

Solution

ks =k
- kaf/kEI
= Ry k;/R 4

Thus:

Rga = kw
= 5000

Example 8.6

A model is constructed of an arch dam using a linear scale factor k; = 40.
Determine the stress scale factor kg if hydrostatic loads are produced in the
model with mercury.

Solution
k, =1/13.6
and:
k, =1
Thus:
ke = by /k?
= k,kgk

= 40/13.6
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Supplementary problems

$8.1 Figure S8.1 shows a symmetrical, rigid frame bridge with a 20 ft wide
deck. The bridge is designed for loading, which consists of a uniformly distrib-
uted load of intensity 220 Ib/ft> of any continuous length, plus a knife-edge
load of 2700 Ib/ft placed anywhere on the deck!?.

1 2 3 4 5 6
20 50
M
40
30

Vo
[ 200 | 30 | 40 |30 |20 |
[ [ [ [ [ |

Figure $8.1

A model is constructed to a scale of 1 in = 2 ft, and the following displace-
ments are imposed:

(i) a vertical displacement of 1 in on column base 40
(i) a vertical displacement of +0.2 in and a clockwise rotation of 0.2 radians on
column base 30

The measured vertical displacements over the central span at intervals of
0.2 X span are shown in the Table S8.1, with upward displacements positive.

Table $8.1 Displacements of the model

Section 3.0 3.2 3.4 3.6 3.8 4.0
Displacements (i) 0.00 0.10 0.35 0.75 0.95 1.00
Displacements (ii) 0.20 0.27 0.26 0.16 0.06 0.00

Determine the maximum value of M3, that can be produced in the prototype
by the applied loading and the value of V3 that occurs simultaneously.

$8.2 A prototype shown in Figure S8.2 (i) consists of an unsymmetrical, fixed-
ended, haunched beam, 12, with a concentrated load of 10 kips located at
point 3 a distance of one-third its length from end 1. A model is constructed
to a scale of 1 in = 1 ft, as shown in Figure S8.2(ii), with hinged ends. The
following displacements are imposed on the model:

(i) a clockwise rotation of 0.1 radians at end 1’, which produces an anticlockwise
rotation of 0.04 radians at end 2’ and a downward deflection of 0.15 in at point 3’
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(i) an anticlockwise rotation of 0.1 radians at end 2’, which produces a clockwise
rotation of 0.05 radians at end 2’ and a downward deflection of 0.12 in at point 3’

Determine the bending moment produced at end 1 in the prototype by the 10
kips load.
10 kips
1 31 2

a ft | 2a ft

ANSANNNNNN W
7777777777~

(&)

1’ 3 2

| ain | 2a in |

Figure S8.2

$8.3 An aluminum model with a modulus of elasticity of 10 X 10° Ib/in? is
constructed of a steel W section with a modulus of elasticity of 29 X 10° Ib/
in?. The second moment of area of the W section is 5900 in* and of the model
is 0.9 in*. The linear scale factor adopted is I/l,, = k; = 10. Determine the
load scale factor, ky, required if geometric similarity is to be maintained after
loading the model (i.e., 6,/6,, = k6 = k).

12 ft

8 ft 8 ft

Figure $8.3
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$8.4 Figure S8.3 shows a pin-jointed frame with a vertical load of 10 kips
applied to node 1. A model is constructed to a linear scale factor of
/L, = ky=10. In the model, member 47 is shortened by 0.5 in and the
vertical displacement of node 1 is 0.43 in. Determine the force in the prototype
in member 47 caused by the 10 kip load.

$8.5 The symmetrical, cable-stayed bridge shown in Figure S8.4 (i) consists of
a continuous main girder, which is supported on rollers where it crosses the
piers. The ties are anchored to the girder and the tops of the towers, and the
dimensions of the prototype structure are indicated. The main girder has a sec-
ond moment of area I, and a modulus of elasticity E,. Each tie has a cross-
sectional area A, and a modulus of elasticity E..

|—>
=)
wv
I 6
’ [Eoxonol
[
®
| 100’ , 100’ , 100’ ) 100’ ) 100’ ,
T T 1
Equivalent ;
cantilever 3
Pin-jointed
5 connecting strut
X~ Pin Pin S !
(i) | 10" ) 10" ) 10" ) 10" ) 10 )
I T T T T 1
Figure S8.4

A model is constructed as shown at (ii). The stiffness of the ties is repre-
sented by equivalent cantilevers'? of length [ in, cut from the same sheet of
Perspex and finished to the same section as the main beam. Axial effects in the
beam and towers and flexural effects in the towers are neglected. The follow-
ing displacements are imposed:

(i) strut 12 is shortened by 1 in, and the vertical displacements y;, of the main girder
are recorded
(ii) strut 34 is shortened by 1 in, and the vertical displacements y34 of the main girder
are recorded
(iii) a vertical displacement of +1 in is imposed at hinge 5 and the vertical displace-
ments ys5 of the main girder are recorded.

The measured vertical displacements, over the left half of the main girder,
at intervals of 5 in, are shown in the Table 8.2, with upward displacements
positive.
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Table S8.2 Displacements of the main girder

x,in 0 5 10 15 20 25

V12,10 0.13 0.06 0 —0.06 —0.13 -0.21
V34,10 —0.05 -0.03 0 0.03 0.04 0.01
¥s,1n —0.36 -0.18 0 0.18 0.37 0.59

Derive the following:

(i) the length of the equivalent cantilever, I, in terms of the properties of the main

beam and ties

(ii) an expression for the bending moment at node 6, the center of the main girder
(iii) the influence line ordinates for bending moment at the center of the main girder
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Plastic analysis and design

Notation

A cross-sectional area of a member

¢’ carry-over factor for plastic moment distribution
D Degree of indeterminacy of a structure

E Young’s modulus

fy yield stress

I second moment of area of a member

m bending moment in a member due to a virtual load
m;  number of independent mechanisms

=~

SxeoN=SSg<Y S ZZZRIREZER

9.1

bending moment in a member due to the applied load

plastic moment of resistance of a member

plastic moment of resistance modified for axial compression
moment at which the extreme fibers of a member yield in flexure
maximum theoretical elastic moment

minimum theoretical elastic moment

residual moment

load factor against collapse due to proportional loading = W,/W
load factor against collapse due to alternating plasticity = W,/W
load factor against incremental collapse equals = W,/W

number of possible hinge positions

axial force in a member

elastic section modulus

vertical reaction

applied load

load producing collapse by alternating plasticity

load producing incremental collapse

ultimate load for proportional loading

plastic section modulus = M,/f,

deflection

relative rotation at a plastic hinge during motion of collapse mechanism
shape factor = Z/S

total rotation at a plastic hinge during loading

Introduction

The plastic method of structural analysis is concerned with determining the
maximum loads that a structure can sustain before collapse. The collapse
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load is known variously as the failure load, the ultimate load, and the limit
load. A number of comprehensive textbooks dealing with plastic design are
available!%3%3,

The plastic method is applicable to structures constructed with an ideal elastic-
plastic material that exhibits the stress-strain relationship shown in Figure 9.1 (i).
The moment-curvature relationship for any section of the structure is assumed
to have the ideal form shown in Figure 9.1 (ii). Thus, on applying a uniform
sagging moment to a member the moment-curvature relationship is linear until
the applied moment reaches the value of M, the plastic moment of resistance of
the section. At this stage, all material above the zero-strain axis of the section
has yielded in compression and all material below has yielded in tension, and a
plastic hinge has formed. Then the section can offer no additional resistance to
deformation, and increase in curvature continues at a constant applied moment.
In addition, in determining the collapse load of a structure, it is assumed that
elastic deformations are negligible and do not affect the geometry of the struc-
ture. Thus, the structure behaves in a rigid-plastic manner with zero deformation
until the formation of sufficient plastic hinges to produce a mechanism.

Plastic range

|y

Stress

Moment
=

}
€ Strain

Curvature ¥
X
, 2]

Jy

® (i)

Figure 9.1

9.2 Formation of plastic hinges

A fixed-ended beam is subjected to a uniformly distributed working load of
total magnitude W, as shown in Figure 9.2. The elastic distribution of bending
moment in the member, drawn on the tension side of the member, is as shown
at (i). The moment at the ends of the beam is twice the moment at the center,
and, if the applied load is increased, at some stage the plastic moment of resist-
ance will be reached simultaneously at both ends of the member; the distribu-
tion of bending moment is as shown at (ii). Further increase in the applied load
causes the two plastic hinges to rotate, while the moment at the ends remains
constant at the value M,. Thus, the system is equivalent to a simply sup-
ported beam with an applied load and restraining end moments of value M,,
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as shown at (iii). Finally, as the applied load is increased still further, a plastic
hinge forms in the center of the beam, and the distribution of bending moment
is as shown at (iv). The beam has now been converted to the unstable collapse
mechanism shown at (v), and collapse is imminent under the ultimate load W,
The ratio of the collapse load to the working load is:

W,/W = N

where N is the load factor. Since the structure is statically determinate at the
point of collapse, the collapse load is readily determined as:

W, = 16M,/I

and this value is unaffected by settlement of the supports or elastically
restrained end connections.

9.3 Plastic moment of resistance

After the formation of a plastic hinge in the section shown in Figure 9.3, the
rectangular stress distribution shown at (i) is produced. Equating horizontal
compressive and tensile forces:

P=P

c

fy/Ac = fyAt
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B
P

c

5y

Figure 9.3

where £, and f; are the yield stresses in tension and compression (which may
be assumed to be equal) and A, and A, are the cross-sectional areas in tension
and compression. Thus, the plastic moment of resistance is:

M, = f,Al,

where [, is the lever arm and equals the distance between the centroids of A,
and A,. Also:

M, = fyZ

where Z is the plastic section modulus. The ratio of the plastic moment of
resistance to the moment producing yield in the extreme fibers is:

M,IM, = f,ZIf,S = ZIS = A

where ) is the shape factor.

An axial force applied to the section shown in Figure 9.4 reduces the value
of the plastic moment of resistance that the section can develop. Assuming the
axial force P is compressive, the rectangular stress distribution shown at (i) is
produced after the formation of a plastic hinge with the cross-sectional area
A! resisting the axial force P. Equating horizontal forces gives:

P=3C-XT
= fy/Ac + fy/Ac/ - fyAt
- f1A!

and:

fy/Ac = fyAt
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Thus, the modified plastic moment of resistance is:

! !
M, = f,Al,
where [ is the distance between the centroids of areas A, and A,.

Example 9.1

Determine the shape factor for the built-up steel beam shown in Figure 9.5.

9"

|
U 4 12" —»U«—

| -—1/2"

o
||

172"

10

1,,
=1

L |

8//
Figure 9.5

Solution

The area of the section is:

A=10X8+2X1—-8.5X7.S
=18.25in?

The height of the centroid is:

y =(80XS5+2X9-63.75X%X5.25)/18.25
= 4.56 in
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The second moment of area of the section is:
I =80X100/12+2 X 4/12 — 63.75 X 72/12 + 80 X 0.462
+2 X 4.462 — 63.75 X 0.712
= 309 in*

The smaller elastic section modulus is:

S =309/5.44
= 56.8 in?

The areas in tension and compression after the formation of a plastic hinge are:

A=A
= 9.125 in?

The zero strain axis is at a height above the base of:
1+2.25=3.251n

The centroid of A, is at a height above the base of:
(8X0.5+1.125X%X2.125)/9.125 = 0.70 in

The centroid of A, is at a height above the base of:

(4X9.754+2X9+3.125 X 6.375)/9.125 = 8.42 in
The lever arm is:

I, =8.42-0.7
=7.721n

The plastic section modulus is:

Z =9.125X7.72
= 70.4 in3

The shape factor is:

A =70.4/56.8
=1.24
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Example 9.2

The T-section shown in Figure 9.6 consists of a material that has a yield stress
in compression 25% greater than the yield stress in tension. Determine the
plastic moment of resistance when the section is subjected to (i) a bending
moment producing tension in the bottom fiber and (ii) a bending moment pro-
ducing tension in the top fiber.

12" 1.25f, ‘f)- _
|<—>| P, [ —
T | 4_:|Zyr P, -
/ "
Xt

« P,
- 1" Y =t Pc
— Ve —_—

1251,

-

® (i)

Figure 9.6

Solution

(i) The stress distribution, after the formation of a plastic hinge, is shown at (i).
Equating horizontal forces:

125% 12y, = 11+12(1—y,)
and:
y. = 0.85in
The position of the centroid of A, is given by:

x, = (11X 5.65 +1.8xX0.075)/12.8
=4.87 in

The lever arm is:

I, = 4.87 +0.425
=5.295in

The plastic moment of resistance is:

M, = 5.295 X 12.8f,
= 67.6f,
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(ii) The stress distribution after the formation of a plastic hinge is shown at (ii). The
depth of the compressive stress block is:

125y, =12 +(11—y,)

and:
y, =10.2 in

The position of the centroid of A, is given by:

x, = (12 xX1.3+0.8x0.4)/12.8
=1.24in

The lever arm is:

I, =1.24+5.1
=6.341n

The plastic moment of resistance is:

M, = 6.34 X 12.8,
= 80f,

9.4 Statical method of design

The statical method may be used to determine the required plastic modulus for
continuous beams.

The continuous beam shown in Figure 9.7 is first cut back to a statically deter-
minate condition and the applied loads multiplied by the load factor as shown
at (i). The statical bending moment diagram for this condition is shown at (ii).
The fixing moment line due to the redundants is now superimposed on the static
moment diagram, as shown at (iii), so that the collapse mechanism, shown at (iv),
is formed. Collapse occurs simultaneously in the two end spans, and the required
plastic modulus is M, = 0.686M. An alternative fixing moment line is shown at
(v) for a non-uniform beam section. Then M,; = 0.5M and M,,, = 0.766M, and
collapse occurs simultaneously in all spans, as shown at (vi).

A similar procedure may be adopted for determining the collapse load
of a given structure. A bending moment distribution is drawn in which the
given value of M, is not exceeded and the collapse load is computed. A pos-
sible moment diagram for the two-span beam of Figure 9.8 is shown at (i), and
the computed collapse load is W, = 4M,/I. This is equivalent to the system
shown at (ii) and is clearly not a collapse mechanism, which indicates that the
assumed moment diagram is safe. An alternative moment diagram is shown at
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(iii) and is equivalent to the collapse mechanism shown at (iv). The computed
collapse load is W, = 6M,/l and is the maximum possible value. Thus, col-
lapse loads computed by the statical method are either equal to or less than the
correct values. That is, the statical method provides a lower bound on the col-
lapse load, and the correct collapse load is that producing a collapse mechanism.

Example 9.3

Determine the required plastic modulus in each span of the continuous beam
shown in Figure 9.9. The collapse loads are indicated, and collapse is to occur
in all spans simultaneously.

lsk 8k 8k
fl [T T LT T T T IT
;] A A
L 16’ L 16’ L 16’ =
Dl LBl [ Bl 1
Lo jwpl L M[)Z s 1”1)3 .
| i U 1
M
P3 Mp3
Mpl Mpl
1”[12
M
pl
(]
G Vi v, Vi 04141 V4
f—]
Figure 9.9

Solution

The collapse moment diagram is shown at (i), and the required plastic moduli are:

M, =8x16x12/8
=192 kip-in

M,; = 0.686 X 8 X 16 X 12/8
= 132 kip-in

M,, = 8% 16 X 12/8 — (192 + 132)/2
= 30 kip-in
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The reactions at collapse may be obtained from the collapse mechanism
shown at (ii) and are:

Vv, =82
= 4.0 kip

V, = 8+ (192 — 132)/(16 X 12)
= 8.31 kip

V; =8-0.31+132/(16 X 12)
= 8.38 kip

V, =4-0.69
= 3.31 kip

9.5 Mechanism method of design

The mechanism, or kinematic, method may be used to determine the plastic
modulus required for the members of rigid frames®” and grids®.

The fixed-ended beam shown in Figure 9.10 is assumed to collapse when the
mechanism shown at (i) has formed. A virtual displacement § is imposed on
the mechanism, as shown at (ii), and the internal work equated to the external
work. Thus:

4AM,0 = W5

1 (vi)

Figure 9.10
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and:

M, = W, I8

The moment diagram for this mechanism is shown at (iii) and is satisfactory,
since M,, is nowhere exceeded.

A similar procedure may be adopted for determining the collapse load of a
given structure. A collapse mechanism is assumed, as shown at (iv), and the
collapse load determined in terms of the plastic moment of resistance of the
members. A virtual displacement is imposed on the mechanism, as shown at
(v), and equating internal and external work gives:

8M,0 = W6
and:
W, = 16M,/I

The moment diagram for this assumed mechanism is shown at (vi) and is unsafe,
since M,, is exceeded over the central portion of the beam. The maximum possi-
ble collapse load corresponds to the correct mechanism shown at (ii) and is:

W, = 8M,/I

Thus, collapse loads computed by the mechanism method are either equal to
or greater than the correct values. That is, the virtual work method provides
an upper bound on the collapse load, and the correct collapse load is that pro-
ducing a moment diagram in which M, is nowhere exceeded.

The correct location of plastic hinges is a prior requirement of the virtual
work method of analysis. Hinges are usually formed at the positions of maxi-
mum moment, which occur at the ends of a member, under a concentrated
load, and at the position of zero shear in a prismatic member subjected to a
distributed load. In the case of two members meeting at a joint, a plastic hinge
forms in the weaker member. In the case of three or more members meeting at
a joint, plastic hinges may form at the ends of each of the members. Possible
locations of plastic hinges are shown in Figure 9.11.

: ‘i‘f

Figure 9.11
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The position of the plastic hinge in a member subjected to a distributed load
depends on the values of the fixing moments M,; and M,, at the ends of the
member, as shown in Figure 9.12. Equating internal and external work for the
virtual displacement shown at (ii):

M, 10 + My, 0x/(1 — x) + M,30l/(1 — x) = W,6/2

and:

)\

u

= 2Mpyl = Mpyx + Mpx + M3l)ix(l — x)
The value of x is such as to make W, a minimum, or 9W,/0x = 0. Thus:

2(My; + M,3) = 2Ix(M,; + M) + x2(M,; — M,,,) = 0

and the value of x may be determined in any particular instance. This value
may also be readily determined by means of charts*. As a first approxima-
tion, the hinge may be assumed in the center of the member and subsequently
adjusted if necessary when the collapse mechanism is known.

il Ox/(l = x) 0

Il
) b/ Mp>\ /Ny B

(ii)

Figure 9.12

The position of the plastic hinge in a non-prismatic member subjected to a
distributed load depends on the variation of the plastic moment M, along the
member in addition to the fixing moments. A fixed-ended beam, in which the
plastic moment of resistance varies linearly with the distance from the end, is
shown in Figure 9.13. The plastic hinge occurs at the point where the static
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moment diagram touches the M, diagram, as shown at (i). Equating internal
and external work for the virtual displacement shown at (ii):

and

M, = M,

+ (M, — Myy)x/l
Thus, substituting for M,,, and equating 9W,/Ox to zero, the value of x may be
obtained.

The different types of independent mechanisms that may cause collapse of
the structure shown in Figure 9.11 are listed in Figure 9.14. These may be clas-
sified as beam mechanisms Bl, B2, B3, B4, B5; sway mechanism S; gable mech-
anism G; and joint mechanisms J1, J2. In addition, collapse may occur through
the combination of any of these independent mechanisms, such as (B4 + J2)
and (B4 + J2 + §). In the mechanism method of design, to determine the
maximum required value for M,, it is necessary to investigate all independ-
ent mechanisms and combinations that eliminate a hinge and thus reduce the
internal work. To ensure that no combination has been overlooked, a bending
moment diagram for the assumed collapse mechanism will show that M, is
nowhere exceeded when the assumed mechanism is the critical one.

An independent mechanism corresponds to a condition of unstable equi-
librium in the structure. A structure that is indeterminate to the degree D
becomes stable and determinate when D plastic hinges have formed and the
formation of one more hinge will produce a collapse mechanism. Thus, in a
structure in which there are p possible hinge positions, the number of inde-
pendent mechanisms is given by:

m; =p—D
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Example 9.4

The propped cantilever shown in Figure 9.15 is fabricated from two 12 in X 1in
flange plates and a thin web plate, which may be neglected in determining the
plastic moment of resistance. The yield stress of the flange plates is 36 kips/in?.
Determine the collapse load.
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Solution

The plastic moments of resistance at end 1, end 2, and at a section a distance x
ft from 1 are:

M, =12 X 12f,
= 144f,

M, = 24 x12f,
= 288f,

M,, = 12f,(12 + 3x/8)
Equating internal and external work for the mechanism shown at (i):

M,,0x/(1 — x) + M, /(] — x) = W,8/2 = W,x6/2

and:

W, = 288f,(32 + 3x)/x(32 — x)

The minimum value of W, is obtained by equating 9W,/0x to zero. Thus:

3x(32 — x) = (32 — 2x)(32 + 3x)
3x2 +64x — 1024 =0
x = 10.67 ft

Then:

W, = 288 X 36 X 64/(10.67 X 12 X 21.33)
= 243 kips
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Example 9.5

The rigid frame shown in Figure 9.16 has columns with a plastic section modu-
lus of 15.8in? and a beam with a plastic section modulus of 30.8in3. The shape
factor of both sections is 1.125, and the yield stress of the steel is S0kips/in.
Neglecting the effects of axial loads and instability, determine the ratio of W to
H for all possible modes of plastic collapse of the frame. Determine the values
of Wand H when W = 1.8 H.

w
E; ¢
2 3
]
1 4
w7
™ |
w
0 0 e 2
20 0 0 260
B 6 s 0 0 B+S) 9
Figure 9.16
Solution

The plastic moment of resistance of the columns is:

Mp =15.8 X 1.125 X 50/12
= 74.1 kip-ft

The plastic moment of resistance of the beam is:

M,;, = 30.8M,/15.8
= 1.95M,

The number of independent collapse mechanisms is:

m;

-D
-3

Il
o

and these are shown in the figure together with the combined mechanism
(B + S). The hinge rotations and displacements of mechanism (B + §) are
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obtained as the sum of the rotations and displacements of mechanism B and
mechanism S. Thus, the hinge at 2 is eliminated since the rotation there is 6
closing in the case of mechanism B and 0 opening in the case of mechanism
S Similarly, the hinge at 3 rotates 26 closing, since the rotation there is 6
closing in the case of mechanism B and 6 closing in the case of mechanism S.
In addition, the external work done is the sum of the external work done in
the mechanism B and mechanism S cases since the displacements of the applied
loads are the sum of the corresponding displacements in the mechanism B and
mechanism § cases.
For mechanism B:

2M, +2 X 1.95M, = 20W
WM, = 0.295

For mechanism S:

4M, = 20H
HIM,, = 0.20

For mechanism (B + S):

4M, +2 X 1.95M, = 20W + 20H
WIM, + HIM, = 0.396

These three expressions may be plotted on the interaction diagram shown in
Figure 9.17. The mode of collapse for a particular ratio of W to H is deter-
mined by plotting a line with a slope equal to this ratio. The mechanism
expression that this line first intersects gives the collapse mode.

WIM,

N
~

0.21

/A

HIM,

Figure 9.17
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When W = 1.8 H, mechanism (B + S) controls and:

W+ H =0.396 X 74.1

= 2.8H
Thus:
H = 10.48 kips
and:
W = 18.85 kips
Example 9.6

The two-bay rigid frame shown in Figure 9.18 is fabricated from members of a
uniform section having a shape factor of 1.15 and a yield stress of 50kips/in?.
Neglecting the effects of axial loads and instability, determine the required plas-
tic section modulus to provide a load factor against collapse of N = 1.75.

1212 6L 6
| T T
21( 4k
2k * *
2 7 3 8 5
N
1 4 6
7 2N 4N
. I
% %]
26 20

S+BlL+J)

(S+B1+J+B2)

Figure 9.18
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Solution

The number of independent collapse mechanisms is:

m;

-D
0—-6

I
A=

and these are shown in the figure together with a number of combined
mechanisms.
For mechanism B1:

4Mp =12 X 2N
M, = 6N kip-ft

For mechanism B2:

4M, = 6 X 4N
M, = 6N kip-ft

For mechanism S:

6M, =12 X 2N
M, = 4N kip-ft

For mechanism J:
3M, =0
For mechanism (B1 + S):

8M, = 24N + 24N
M, = 6N kip-ft

For mechanism (B1 + S + ]):

9M, = 24N + 24N +0
M, = 5.33N kip-ft
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For mechanism (BI + B2 + § + ]):

11M, = 24N + 24N + 24N + 0
M, = 6.55N kip-ft

and this mechanism controls, since M,, is nowhere exceeded in the structure, as
is shown by Example 9.11. The required plastic section modulus is:

S =6.55X1.75%X12/(50 X 1.15)
= 2.4 in?

Example 9.7

The members of the rigid frame shown in Figure 9.19 have the relative plas-
tic moments of resistance shown ringed, and the frame is to collapse under
the loading shown. Assuming as a first approximation that plastic hinges
occur either at the joints or at the mid-span of the members and neglecting the
effects of axial loads and instability, determine the required plastic moments of
resistance.

Solution

The number of independent collapse mechanisms is:

m;

-D
6—9

Il
N =S

and these are shown in the figure together with a number of combined
mechanisms.
For mechanism B1:

4M, =10 % 10/2
M, = 12.5 kip-ft

For mechanism B2 and B3:

8M, = 20 X 10/2
M, = 12.5 kip-ft
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For mechanism S1:

4Mp =3X12
M, =9 kip-f

For mechanism S2:

12M, = 9 X 15
M, = 11.25 kip-ft



Plastic analysis and design 421

For mechanism J1:
SM, =0
For mechanism J2:

7M, =0

For mechanism (S1 + $2 + B2 + J1):

19M, = 36 + 135+ 100 + 0
M, = 14.25 kip-ft

For mechanism (S1 + B1):

6M, = 36 + 50
M, = 14.33 kip-ft

For mechanism (S1 + S2 + B1 + B2 + B3 + J1 + J2):

26M, = 36 + 135 + 50 + 100 + 100
M, = 16.2 kip-ft

and this mechanism controls as the plastic moments of resistance are nowhere
exceeded, as shown by Example 9.12.

Example 9.8

The members of the Vierendeel girder shown in Figure 9.20 have their relative
plastic moments of resistance shown ringed. The shape factor of the section
is 1.15, the yield stress of the steel is SOkips/in?, and the required load factor
against collapse is N = 1.75. Neglecting the effects of axial loads and instabil-
ity, determine the required elastic section moduli.

Solution

The number of independent collapse mechanisms is:

-D
6—9

m;

I
N =S
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and these are shown in the figure together with a

(S1+82+2J)

mechanisms.

For mechanism S1:

S2

0

e

10M, =10 X 10N

M, = 10N kip-ft

For mechanism S2:

8M, =10 X 10N

M, = 12.5N kip-ft

For mechanism S3:

10M, =20 X 10N

M, = 20N kip-ft

For mechanism (S1 + S2 + 2]):

M, = 20N kip-ft

10M, = 100N + 100N + 0

S3

(S3+2J)

number of combined
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For mechanism ($3 + 2J):

10M, = 200N + 0
M, = 20N kip-ft

and this mechanism controls since the plastic moments of resistance are
nowhere exceeded, as shown by Example 9.13.
The required elastic section modulus for the central post members is:

S=20X1.75X12/(50 X 1.15)
= 7.30 in?

Example 9.9

The ridged portal frame shown in Figure 9.21 is fabricated from members
of a uniform section and is to collapse under the loading shown. Neglecting
the effects of axial loads and instability, determine the plastic moment of
resistance.

Solution

The independent and combined mechanisms are shown in the figure. In the
case of the gable mechanism, it is necessary to construct the displacement dia-
gram shown to determine the relative rotations of the members. A rotation 6
is imposed on member 23, and 4 moves a horizontal distance 44’. The point
3 must move perpendicularly to the original directions of 23 and 34, and the
point 3’ is obtained. The rotation of member 45 is:

4411, = 200/20
=0

The rotation of member 34 is:
3/4//134 = 0

Thus, the rotation of the hinge at 4 is 26 and of the hinge at 3 is 26.
For mechanism B:

4AM, =10 X 2W
M, = SW
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For mechanism S:
4Mp =20XW
M, = 5W
For mechanism G:

6M, =10 X 2W +10 X 2W
M, = 6.67W
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For mechanism (G + S):

8M,, = 40W + 20W
M, = 7.5W

For mechanism (G + 2B):
10M, = 40W + 40W
M, = 8W

For mechanism (G + 2B + 35):

16M, = 40W + 40W + 60W
M, = 8.75W

and this mechanism controls since this value of M, is nowhere exceeded.

Example 9.10

The single-bay multi-story frame shown in Figure 9.22 consists of # storys
each of height [. The plastic moment of resistance of each beam is M,, and
the columns are infinitely rigid. A load factor of Ny = 1.75 is required against
collapse due to vertical loads only, and a load factor of N, = 1.4 is required
against collapse involving wind loads. Determine the value of 7, in terms of
W/H, for all the possible modes of collapse of the frame.

Solution

The beam, sway, and combined mechanisms are shown in the figure.
For mechanism B:

4M, = N,WI
M, = N,Wi/4
= 7Wi/16

For mechanism S:

2nM, = NyJH{L+ 2+ -+ (n — 1) + n/2)
= NLIH[(n — D{1 + (n — 1)}/2 + n/2]
= N,IHn?/2

M, = N,l/Hn/4
— 5.6IHn/16



426 Structural Analysis: In Theory and Practice

HI2. ‘W
n
R ﬂ
(n—1)
| w |
|
al |
1

Figure 9.22

For mechanism (B + S):

4nM, = N,Win + N,IHn?/2
M, = N,I2W + Hn)/8
= 2.812W + Hn)/16

Thus, mechanism B controls when n < W/2H; mechanism S controls when
n > 2W/H; and mechanism (B + S) controls when W/2H < n < 2W/H.

9.6 Plastic moment distribution

The plastic moment distribution, or moment balancing, method®'° may be used

to determine the bending moment diagram for an assumed collapse mechanism.
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The assumed mechanism is the critical mechanism when the plastic moment of
resistance is nowhere exceeded in the structure. The method may also be used
as a direct method of designing a structure subjected to several loading combi-
nations’. As the distribution proceeds simultaneously for all loading combina-
tions, suitable plastic moments of resistance may be assigned to each member in
the structure. In addition, the method is particularly suitable for the design of
grids, in both the no-torsion!' and torsion'>!3 cases. An alternative approach
to the design of grids is the yield line analysis technique!#.

¥

® (i)

Figure 9.23

The sign convention adopted for the bending moments in plane frames is
that clockwise end moments acting from the support on the member are posi-
tive and moments within a member that produce tension on the bottom fibers
of the member are positive. Knowledge is required of the equations of equilib-
rium for a structure, and these may be obtained from Figure 9.23. The equi-
librium equation for the beam shown at (i) may be obtained by considering it
to deform as the beam mechanism indicated. Equating internal and external
work, the equilibrium equation is given by:

M,, +2M; — M,, = Wi/2

The equilibrium equation for the frame shown at (ii) is obtained by equating
internal and external work for the sway mechanism indicated and:

M, — My, — My — Mys = Wi

The equilibrium equation for any joint in a structure is that the moments in
the members meeting at the joint must sum to zero.

To determine the bending moment diagram for a particular collapse
mechanism, the known plastic moments of resistance are first inserted at the
hinge positions. The remaining moments are selected arbitrarily to satisfy
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Figure 9.24

the beam and sway equations of equilibrium. In general, these initial moments
will not be in equilibrium at the joints, and the balancing moments required
may be distributed to the members at a joint in any convenient proportions—
the stiffness of the members is immaterial. The carry-over factors employed
must ensure that the beam and sway equations of equilibrium remain satisfied.
The carry-over factors for a beam are derived as shown in Figure 9.24 (i) and
are:

&3 = »
¢ =0
3 = -h
¢, =0

The carry-over factor for a column is derived as shown at (ii) and is:

Alternatively, the carry-over may be made to adjacent columns in any conven-
ient proportions, and the sum of the carry-over moments must equal the distri-
bution moment with change of sign.

The sign convention adopted for the bending moments and torsions in grids
is given in Section 7.13. A sway equation may be developed for each unsup-
ported node, and the initial moments are selected to satisfy these equations
and the hinge positions of the assumed collapse mechanism. The balancing
moment required at any node may be distributed to the members at the node
in any convenient way, and any moment or torque distributed to one end of a
member is carried over to the other end with sign reversed.

Example 9.11

Determine the bending moments at collapse in the rigid frame shown in
Figure 9.18.
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Solution

In Example 9.6 it is shown that mechanism (B + B2 + S + J) controls, and the
required plastic moment of resistance is:

M, = 6.55 X 1.75 X 12
= 138 kip-in
The equilibrium equations are obtained by considering the independent

mechanisms.
For mechanism B1:

~My; +2M, + M, = 12X 2 X 1.75 X 12 = 504
For mechanism B2:
~Myg +2Mg + Mgy = 6 X 4 X 1.75 X 12 = 504
For mechanism S:
~M;, — My, — My, — M,y — Mg, — Mys = 12 X 2 X 1.75 X 12 = 504

The initial moments are:

=138

~M,; = 504 — 3 x 138
=90

~M,; = 504 — 3x 138
=90

Il
X
(e)
=

|
w
X
—
W
0
B
(O8]

These are inserted in Table 9.1, and the distribution proceeds and the final
moments are obtained as shown.
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Table 9.1 Plastic moment distribution in Example 9.11

Joint 1 4 6 2 3 S
Moment 12 43 65 21 23 7 32 34 35 8 53 56
Initial moments —-138 —138 —-138 —30 —-90 138 138 —-30 —-90 138 138 -30
Distribution 120

Sway equilibrium -12 -108
Final moments —138 —138 —138 90 —-90 138 138 —42 —90 138 138 —138
Example 9.12

Determine the bending moments at collapse in the rigid frame shown in

Figure 9.19.

Solution

In Example 9.7 it is shown that mechanism (S1 + S2 + B1 + B2 + B3 + J1 +
J2) controls, and the required plastic moments of resistance are 194 kip-in and

389 kip-in.
For mechanism B1:

~M,, +2M, + M,; = 600

For mechanism B2:

—~M,; + 2M;, + M, = 1200

For mechanism B3:

M, + 2M,, + Mys = 1200
For mechanism §1:

~My; — Mz, — Mys — Mgy = 432
For mechanism S2:

—M,;, — My, — Msq — Mgs — Mg — Mg; = 1620
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The initial moments are:

My = My,

[l I
9 —
HN
A
W
“
—_
©
=
=
(09)

(1620 — 4 X 389)/2

32

—M,s = —Ms;

1200 — 3 X 389
=33

—M;, = 600 — 3 X194
=18

These are inserted in Table 9.2, and the distribution proceeds and the final

moments are obtained as shown.

Table 9.2 Plastic moment distribution in Example 9.12

Joint 1 6 8 3 4
Moment 12 65 87 32 34 9 43 45
Initial moments —389 —389 -389 -79 —18 194 194 —19%4
Distribution 97

Sway equilibrium

Final moments —-389 —-389 —389 18 —18 194 194 —194
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Joint 2 S 7
Moment 21 23 25 10 52 56 54 57 11 75 78

Initial moments —32 -79 —33 389 389 —-32 —80 —33 389 389 —389
Distribution 144
Sway equilibrium -144 -97

Final moments 112 =72 —33 389 389 —-176 —177 —33 389 389 -—-389

Example 9.13

Determine the bending moments at collapse in the Vierendeel girder shown in
Figure 9.20.

Solution

In Example 9.8 it is shown that mechanism (S3 + 2]) controls, and the
required plastic moments of resistance are:
For mechanism S1:

M;, + M,; = 1050
For mechanism S2:

M;, + M,; = 1050
For mechanism §3:

My, + My, = 2100

The initial moments are:

My, = —My,
= —M;
= —840
My, = —Ms;
= —420
M,, =840 — 2100
= —1260
M;, =1050 — 840
=210
Msy = My;
=1050/2

=525
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These are inserted in Table 9.3, and the distribution proceeds and the final
moments are obtained as shown.

Table 9.3 Plastic moment distribution in Example 9.13

Joint 1 2 3 4
Moment 11’ 12 21 22" 23 32 33’ 34 43 44’
Initial moments 840 —840 —1260 420 840 210 420 525 525 -—525
Distribution -840 -315

Sway equilibrium 315 -315

Final moments 840 —840 —1260 420 840 210 —420 210 840 -840

Example 9.14

Determine the bending moments at collapse in the no-torsion grid shown in
Figure 9.25. All the members of the grid are of uniform section, and collapse is
to occur under the loading shown.

Figure 9.25

Solution

The assumed collapse mechanism is shown at (i), and, equating internal and
external work:

4X2M, +2 X 4M, = 100 X 20 X 2
M, = 250 kip-ft

The sway equations are obtained by considering a unit vertical deflection at
nodes 3, 4 and 5.
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For mechanism S1:
Mz, + My3 = M;; =0
For mechanism S§2:
Mys + Msy — Myy —2M34 — 2My5 =0
For mechanism $3:
~M,s — My, = 250

Due to the symmetry of the grid, distribution is required only in beams 14 and
25, and the initial moments are:

My; = Ms,
=-250

M, =250—-250
=0

M;, =0

M;, =250

My, = —-250—- 500+ 500
= —-250

These are inserted in Table 9.4, and the distribution proceeds and the final
moments are obtained as shown.

Table 9.4 Plastic moment distribution in Example 9.14

Beam 14 25

Joint 3 4 4 S
Moment 31 34 43 42 45 54
Initial moments 0 250 —-250 —-250 0 —-250
Distribution —-125 —-125

Sway equilibrium 250

Final moments, kip-ft -125 125 -250 0 0 —250

9.7 Variable repeated loads

The collapse analysis of the preceding sections has been based on the assumption
of proportional applied loads. That is, all the applied loads act simultaneously and
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are continuously increased in a constant ratio until collapse occurs. In practice,
horizontal applied loads due to wind and seismic effects may reverse in direction
and may be applied in a random manner.

W A
"2 3 P o
1 4
21 )
e ()

Figure 9.26

The uniform two-hinged portal frame shown in Figure 9.26 is subjected
to a working load W applied horizontally at the top of the columns. If W is
increased continuously to the value W, the frame collapses as in the mecha-
nism shown at (i). The required plastic moment of resistance is:

M, = W12

and the load factor against collapse is N = W,/W.

When the applied load may act in any direction, as shown in Figure 9.27, and
the frame is subjected to the loading cycle shown at (i), (ii), (iii), and (iv), col-
lapse will occur under a load W,. At this value of the load, yielding has just been
produced in the outer fibers of the frame at sections 2 and 3 at stage (ii) of the
cycle. When the load is reversed, as at stage (iv), yielding is again just produced
at sections 2 and 3 but in the opposite sense. Thus, sections 2 and 3 are subjected
to alternating plasticity, and failure will occur, due to brittle fracture at these sec-
tions, after a sufficient number of loading cycles. The required yield moment is:

M, = W,I12
= M,/

and the load factor against failure due to alternating plasticity is:
N, = W,/W

For the frame to just collapse under an alternating load W, = W, the required
plastic moment of resistance is:

M, = W,I\2

which is greater than that required for proportional loading.
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Figure 9.27

Under a general system of random loads, a plastic hinge may be produced
at a section in the structure at one stage of the loading cycle, and yield in the
opposite sense may be produced at the same section at another stage. The
moment-curvature relationship for these two stages at this section is as shown
by the solid lines in Figure 9.28.

Mmax L
M. L
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M). —+
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2M). M
| Curvature r
I oM
I .
I _‘_ Mmln
i
II /
I // M, —M,)
I M, / i A
/ /
/ /
7 s
7 7
—_— /_ —_—_———_ = -
_Mp
Figure 9.28

Thus, in general, the total range of bending moment that a section can sus-
tain is 2M,. If the maximum theoretical elastic moment applied to the section
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exceeds M, then, on unloading, an elastic change in bending moment will
occur and a residual moment will remain at the section of:

Mr = Mmax — ]\/I{7

where M’ is the residual moment and M™* is the maximum theoretical elastic
moment for the worst loading combination. Hence:

Mmax — Mmin — ZMy
= 2M,/A

where M™" is the minimum elastic moment for the worst loading combination.
For an ideal elastic-plastic material and members with unit shape factor:

Mmax — Mmin — ZMP

The uniform frame subjected to the proportional loading shown in Figure 9.29
will collapse as the mechanism shown at (i), and the required plastic moment
of resistance is:

M, = 0.75W,]

u 20
20

Figure 9.29

When the loads shown in Figure 9.30 are applied in a random manner and reach
full magnitude independently, failure will occur under the loads W, due to alter-
nating plasticity. The magnitudes of the elastic bending moments due to each
load applied independently are shown in Table 9.5, and the maximum range in
moments at sections 2, 3, and 5 are obtained. The sign convention adopted is
that moments producing tension on the inside of the frame are positive.

Thus, at sections 2 and 3:

11W,1/8 = 2M,
= 2M, /A
M, = 11W,I\/16
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Figure 9.30

Table 9.5 Elastic moments for the frame shown in Figure 9.30

Loading M, M; M;

2W, vertical —3W,I/8 SW.I/8 —3W,I/8
W, horizontal W,1/2 0 -W,i2
— W, horizontal -W,1/2 0 W12
Maximum moment W,i/2 SW,I/8 W12
Minimum moment —-7W,1/8 0 —-7W,1/8
Moment range 11W,1/8 SW,1/8 11W,1/8

The loading cycle causing failure at section 2 is shown at (i), (ii), (iii), and (iv).
For the frame to just fail under the random loads W, and 2W, and with a
shape factor of 1.135, the required plastic moment of resistance is:

M, = 12.65W,/16
= 0.79W, ]

which is greater than that required for proportional loading.

In practice, because of the dead weight of the structure, some proportion of
the vertical load must be continuously applied, and this significantly increases
the load factor against failure due to alternating plasticity!>1®17-18, Table 9.6
gives the magnitudes of the elastic bending moments when half of the vertical
load remains permanently in position.

Thus, at sections 2 and 3:

19W, /16 = 2M,
= 2M, /A
The loading cycle causing failure at section 2 is shown in Figure 9.31. For

the frame to just fail under loads of W, and 2W,,, and with a shape factor of
1.15, the required plastic moment of resistance is:

M, = 0.68W,!
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Table 9.6 Elastic moments for the frame shown in Figure 9.30 with
half of the vertical load permanently in position

Loading M, M; M;
W, vertical -3W,l/16 SW.ine —-3W,l/16
W, vertical + W, horizontal SW,i/16 SW,i16 -11W,l/16
W, vertical — W, horizontal -11W,l/16 SW,i/16 SW,l/16
Maximum moment SW.i16 SW,I/8 SW.i16
Minimum moment —7W,I/8 SwW,ii16 —-7W. /16
Moment range 19W, /16 15W,l/16 19W, /16
I 2
%4 W, W
777L7 777L7 1 ¢ | 777L7 7771L7 ‘ | 777L7VL::L7 * | 777L7
(1) (ii) (iii) @iv)
Figure 9.31

Thus, proportional loading is the more critical condition.

When the loads applied to a structure are random but nonreversible, col-
lapse will occur under a load W,. The application of some combination of
the applied load to a magnitude W, results in the formation of plastic hinges
at some sections. However, insufficient hinges are formed to produce a col-
lapse mechanism. The removal of this loading combination produces elastic
changes in the bending moments and a residual bending moment pattern in the
structure. The application of another loading combination to a magnitude W,
results in a moment pattern that, combined with the residual moment pattern,
causes plastic hinges at some sections. Again, insufficient hinges are formed to
produce a collapse mechanism. However, if the hinges produced by the two
loading combinations are such that a collapse mechanism would be produced
if they all occurred simultaneously, repetitions of this loading cycle will pro-
duce eventual collapse as regular increments of plastic yield occur during each
cycle. Thus, the resulting deformed shape is the same as a collapse mechanism,
and the correct mode of incremental collapse may be obtained by investigating
each possible independent and combined mechanism. The application of the
loading combinations to a magnitude less than W, results after a few cycles
in a residual stress pattern such that the applied loading causes purely elastic
changes in the moments and the structure is said to have shaken down. The
load factor against failure due to incremental collapse is:

N, = W,/W
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and the criteria for shake-down to just occur is:

M’ + M™x = M,

M’ + Mmin = —M,

The residual bending moment pattern for any assumed mode of collapse
must satisfy the virtual work equilibrium equations with the external work set
equal to zero, as no applied loads are acting. Thus, for the span 12 of the con-
tinuous beam shown in Figure 9.32 (i):

—M! +2M} — M5 =0
where moments producing tension in the bottom fibers are regarded as posi-
tive. For the frame shown in Figure 9.32 (ii):

—M; +M; — M;+ M, =0

where moments producing tension on the inside of the frame are regarded as
positive.

2 3
AE 4 AU 4
NN
7NN AN FE ps

() (ii)

Figure 9.32

Example 9.15

Determine the plastic moment of resistance required for the uniform frame
shown in Figure 9.33 if incremental collapse is just to occur under the random
loading shown.

Solution

The magnitudes of the elastic bending moments due to each load applied inde-
pendently are shown in Table 9.7, and the maximum range in moments at sec-
tions 2, 3, and 5 are obtained.

For incremental failure in the beam mode shown at (i):

Mj = —M, + 90
Mj = —M, + 210
Mt = M, — 150
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Table 9.7 Elastic moments in Example 9.15

Loading M, M; M;

4 kip vertical -90 150 -90
2 kip horizontal 120 0 -120
Maximum moment 120 150 0
Minimum moment -90 0 —-210

Substituting in the beam equilibrium equation:
90 +2 X150+ 210 = 4Mp
M, = 150 kip-in
For incremental failure in the sway mode shown at (ii):
Mj = M, —120
-M, +210

M;
Substituting in the sway equilibrium equation:
120 +210 = 2M,
M, = 165 kip-in
For incremental failure in the combined mode shown at (iii):
M
M;

—M, +210
M, — 150
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Substituting in the combined equilibrium equation:
2% 210 +2 X 150 = 4M,
M, = 180 kip-in
The critical sections for alternating plasticity are at 2 and 3 and:
210 = ZMy
= 2M,/\
M, = 121 kip-in

Thus, incremental failure in the combined mode controls, and the loading
cycle causing failure is shown in Figure 9.34.

AT 10101

(i) (iii) (iv)

Figure 9.34

Example 9.16

Determine the plastic moment of resistance required for the uniform frame
shown in Figure 9.35 if collapse is just to occur under the random loading
shown. The members of the frame have a shape factor of unity.
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Figure 9.35
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The magnitude of the elastic bending moments due to each load applied
independently are shown in Table 9.8, and the maximum range in moments at
sections 1, 2, 3, 4, and 5 are obtained.

Table 9.8 Elastic moments in Example 9.16

Loading M1 Mz M5 M3 M4

1 kip distributed 5.63 —-11.25 11.25 —-11.25 5.63
1 kip to right —-36.00 24.00 0.00 —24.00 36.00
1 kip to left 36.00 -24.00 0.00 24.00 —36.00
Maximum moment 41.63 24.00 11.25 24.00 41.63
Minimum moment —-36.00 —-35.25 0.00 —-35.25 —-36.00
Moment range, kip-in 77.63 59.25 11.25 59.25 77.63

Collapse occurs under proportional loading in the sway mode, and the
required plastic moment of resistance is:

Mp =120/4
= 30 kip-in

For incremental failure in the beam mode:

3525 +2X11.25 +35.25 = 4M,

M, = 23.25 kip-in

For incremental failure in the sway mode:

36 +24+35.25+41.63 = 4M,

M, = 34.22 kip-in

For incremental failure in the combined mode:

36 +2X11.25+2X35.25+41.63 =6M,

The critical sections for alternating plasticity are at 2 and 3 and:

77.63 = 2M, = 2M
M, = 38.82

p

M, = 28.46 kip-in

Thus, failure due to alternating plasticity controls, and the loading cycle
causing failure is shown in Figure 9.35 at (i), (ii), (iii), and (iv).
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9.8 Deflections at ultimate load

The deflections in a structure at incipient collapse may be readily determined.
It is assumed that all sections of the structure have the ideal elastic-plas-
tic moment-curvature relationship shown in Figure 9.1 (ii), that plastic yield
is concentrated at the plastic hinge positions, and that the remaining portion
of each member retains its original flexural rigidity. In addition, it is assumed
that continuous rotation occurs at each hinge at a constant value of the plas-
tic moment of resistance and that the loading is proportional. A conservative
estimate of the deflections at working load may be obtained by dividing the
deflection at incipient collapse by the load factor.

As the applied loading on a structure is progressively increased, plastic hinges
are formed and discontinuities are produced in the structure due to the hinge
rotations, ¢. Eventually the last hinge that is required to produce a mechanism
is formed. Immediately before the mechanism motion begins, the moment at the
last hinge equals the plastic moment of resistance, and there is no discontinuity
there as the hinge rotation equals zero. The required deflection must be calcu-
lated on the assumption that one particular hinge is the last to form. The cal-
culation is then repeated in turn, assuming that the other hinges are the last to
form and the largest value obtained is the correct one. The choice of an incor-
rect hinge as the last to form is equivalent to determining the deflection after
a reversed mechanism motion such that the rotation that has occurred at this
hinge before collapse is just eliminated. Thus, the deflection obtained using an
incorrect assumption is necessarily smaller than the correct value. The deflection
may be computed using slope-deflection!*2?,conjugate beam?!, virtual work!%?2,
or moment distribution?® methods. The virtual work method will be used here,
as it leads to the quickest solution.

The collapse mechanism for the structure is first obtained, and the moments
M in the structure at collapse are determined. Then the deflection at a particu-
lar point is given by:

5= Eme dx/EI + Smo

where ¢ is the total rotation at a hinge during the application of the loads, #z is
the bending moment at any section due to a unit virtual load applied to the struc-
ture at the point in the direction of the required displacement, and the summations
extend over all the hinges and all the members in the structure. It was shown in
Section 3.2 that the unit virtual load may be applied to any cut-back structure that
can support it. Thus, if a cut-back structure that gives a zero value for 2 at all
plastic hinge positions except the last to form is selected, the term Ym1¢ is zero and
it is unnecessary to calculate the hinge rotations. A suitable form of the cut-back
structure may be obtained by inserting frictionless hinges in the actual structure
at all plastic hinge positions except the last to form. The term [M#m dx/EI may be
determined by the method of volume integration, given in Section 2.5 if desired.
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When failure occurs by partial collapse of the structure, plastic hinges addi-
tional to those predicted by the rigid-plastic collapse mechanism may be required
for the elastic-plastic solution. The redundant moments in the frame at collapse
are obtained from the equilibrium equations, and at those sections at which the
plastic moment of resistance is exceeded, an additional plastic hinge is inserted.
The remaining redundant moments are obtained by reapplying the equilibrium
equations. The introduction of the additional plastic hinges does not affect col-
lapse of the structure, as a mechanism is not produced until the last hinge pre-
dicted by the rigid-plastic solution forms. Virtual work equilibrium equations
additional to those derived in Section 9.6 may be required. These are obtained
by applying virtual internal forces, which are in equilibrium with zero external
load, to a cut-back structure with frictionless hinges inserted at the plastic hinge
positions. Thus, the external work and the term Ym¢ are zero and:

0=Yx f M dx/EI

where m is the bending moment at any section due to the applied internal
forces.

Example 9.17

Determine the deflection at incipient collapse at the position of the final hinge
in the propped cantilever shown in Figure 9.36.
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Figure 9.36

Solution

The collapse mechanism is shown at (i), and the ultimate load and reactions are:
W, = 11.66M,/1
V) = 4.83M,/
V, = 6.83M,/1
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The last hinge to form is a distance 0.414/ from the prop, and the unit virtual
load applied to the cut-back structure is shown at (ii). The deflection of 3 at
incipient collapse is:

3 3
5= f1 Mm dx/EI + fz Mm dx/EI
0.4141
= fo (4.83M,x/] — 5.83M,x2/12)0.586x dx/EI

0.5861
+ [ (6.83M, /1 — 5.83M,x?/I> — M, )0.414x dx/EI

= 0.0412M,/2/EI + 0.0472M,/*/EI
= 0.0884M,/2/El

Example 9.18

Determine the horizontal deflection at incipient collapse at joint 2 of the uni-
form frame shown in Figure 9.37.

M
® (ii)
—>|l [
] |- | ] |-
(iii) @iv) (v)
Figure 9.37

Solution

The collapse mechanism and final bending moment diagram are shown at (i)
and (ii). Assuming the hinge at 4 forms last, the unit virtual load is applied to
the cut-back structure shown at (iii). The deflection of 2 at incipient collapse is
then:

>
I

M, [~ 2x/l)x dx/EI
— M,J2/6El
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Assuming the hinge at § forms last, the unit virtual load is applied to the cut-
back structure shown at (iv). The deflection of 2 at incipient collapse is then:

§=-M, f x)dx/IEI + M, f — x/2)dx/IEI
- M, fo (1 = 2x/l)x dx/2EI

M, I2/4EI

Assuming the hinge at 1 forms last, the unit virtual load is applied to the cut-
back structure shown at (v). The deflection of 2 at incipient collapse is then:

l
§ =M, [ x*dx/IEI
= M,J2/3EI

and this value controls.
Example 9.19

Determine the horizontal deflection at incipient collapse at joint 2 of the uni-
form frame shown in Figure 9.38.
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(iii) (iv)

Figure 9.38

Solution

The collapse mechanism and final bending moment diagram are shown at (i)

and (ii) and:

W1 = 4M,/3
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From the sway equilibrium equation, using the convention that positive
moments produce tension on the inside of the frame:

~M, = M, + M, + M, = W, = 4M,/3
~M, + M, = 4M,/3

An additional equilibrium equation is obtained by applying unit virtual
moments to the column feet of the cut-back structure shown at (iii). Then:

0= fol{—Mp + (M, + M)x/l}x dx +j;)l{—Mp + (M, + My)x/l)x dx
M+ M, =M,

Solving these two equations for My and M, gives:

M, =7M,/6
and:
M, =—-M,/6

The plastic moment of resistance is exceeded at 4, and hence a plastic hinge
must be formed there in addition to the hinges predicted by the rigid-plastic
collapse mechanism.

Then:
and
M; = -M,/3

Thus, for the elastic-plastic solution, plastic hinges are required at 2, 3, 4,
and 5, and the deflection at collapse is the maximum value obtained by assum-
ing the rotations at 2, 3, and 5 are zero in turn.

Assuming the hinge at 2 forms last, the unit virtual load is applied to the
cut-back structure shown at (iv). The deflection of 2 at incipient collapse is:

I
§=M, fo (1= 2x/30)x dx/EI
= SM,I2/18EI

and this value controls, as identical values are obtained by assuming the hinges
at 3 and S form last.
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Supplementary problems

$9.1 Figure S9.1 shows a continuous beam of total length / with a uniform
plastic moment of resistance M,, supporting a distributed load w, including its
own weight. Using a load factor of N, determine the ratio of l/a for plastic
hinges to occur simultaneously in each span and at the supports. For this con-
dition, calculate the maximum value of w that may be supported.

Figure $§9.1

§$9.2 A rectangular portal frame of uniform section is hinged at the base and
subjected to the loads shown in Figure $9.2. The shape factor of the section
is 1.15, the yield stress of the steel is 16kips/in®, and the required load fac-
tor is 1.75. Neglecting the effects of axial loads and instability, determine the
required elastic section modulus of the members.

10 4 kips

Y

10

Figure S9.2

$9.3 The rigid frame shown in Figure $9.3 has a uniform plastic moment of
resistance of M,. Determine the ratio of W to H for the three possible modes
of collapse of the frame and plot the relevant interaction diagram.

lW:kH

Figure S9.3
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$9.4 The members of the rigid frame shown in Figure $9.4 have the relative
plastic moments of resistance shown ringed, and the frame is to collapse under
the loading shown. Neglecting the effects of axial loads and instability, deter-
mine the required plastic moments of resistance.

2 kips

¢6 kips ‘ 4 kips

©)

201t

®

N+&

777

®

30ft

@

6

/e
.|
!

A

201t

Figure §9.4

$9.5 The members of the Vierendeel girder shown in Figure S9.5 have the
relative plastic moments of resistance shown ringed, and the frame is to col-
lapse under the loading shown. Determine the required plastic moments of
resistance.

® @ ©) ©)

10ft

@

¥ 20 kips

4 @ 10ft = 40ft

-

Yy

Figure 9.5

$9.6 The ridged portal frame shown in Figure S9.6 is fabricated from mem-
bers of a uniform section and is to collapse in the combined mechanism
(gable + sway) under the loading shown. Neglecting the effects of axial loads
and instability, determine the required plastic moment of resistance. If the last
hinge forms at joint 3, determine the horizontal deflection of joint 2 at collapse.
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21

A

Figure S9.6

$9.7 The right bridge grid shown in Figure $9.7 consists of three simply sup-
ported main beams and five diaphragms. Determine the magnitude of the col-
lapse load W for each of the following three situations.

(i)

(ii)

(iii)

Main beams: plastic moment of resistance in flexure = M,
plastic moment of resistance in torsion = 0

Diaphragms: plastic moment of resistance in flexure = 0.25M,,
plastic moment of resistance in torsion = 0

Main beams: plastic moment of resistance in flexure = M,
plastic moment of resistance in torsion = 0.3M

Diaphragms: plastic moment of resistance in flexure = 0.25M,,
plastic moment of resistance in torsion = 0

Main beams: plastic moment of resistance in flexure = M,
plastic moment of resistance in torsion = 0.15M,,

Diaphragms: plastic moment of resistance in flexure = 0.25M,,
plastic moment of resistance in torsion = 0

Figure 9.7
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$9.8 The members of the right grid shown in Figure $9.8 are of uniform sec-
tion, and the grid is to collapse under the loading shown. The grid is simply
supported at the four corners. Neglecting torsional restraint, determine the
required plastic moment of resistance.

Figure S9.8
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1 O Matrix and computer methods

Notation

A cross-sectional area of a member

12 carry-over factor for a member 12 from the end 1 to the end 2

D degree of indeterminacy

E Young’s modulus

fi element of [F] = displacement produced at point i by a unit force
replacing the redundant force at j

[F] flexibility matrix of the cut-back structure

[E] element of [F] = flexibility sub-matrix for member i

[F] diagonal matrix formed from the sub-matrices [F;]

G modulus of torsional rigidity

H horizontal reaction

{H}  lack of fit vector

I second moment of area of a member

J torsional inertia

/ length of a member

M;, moment produced at the end 1 of a member 12 by the joint displacements

MF,  moment produced at the end 1 of a member 12 by the external loads,
all joints in the structure being clamped

P; element of {P} = equals the total internal force at joint i

P{,  axial force produced at the end 1 of a member 12 by the joint displacements

P, element of {P} = total internal force, acting in the x-direction, produced
at joint 7 by the joint displacements

Py, element of {P} = total internal force, acting in the y-direction, produced
at joint 7 by the joint displacements

Py, element of {P} = total internal moment produced at joint i by the joint
displacements

Pl axial force produced at the end 1 of a member 12 by the external loads,
all joints in the structure being clamped

Pk element of {Pf} = equals the total internal force, acting in the x-direction,
produced at joint i by the external loads, all joints in the structure being
clamped

Py element of {P!} = total internal force, acting in the y-direction, produced
at joint i by the external loads, all joints in the structure being clamped

P} element of {Pf} = total internal moment produced at joint i by the
external loads, all joints in the structure being clamped

PR element of {PF} = force produced in member i by the redundants

applied to the cut-back structure
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element of {PY} equals the force produced in member i by the external
loads acting on the cut-back structure

vector of total internal forces at the joints produced by the joint
displacements

vector of member forces, referred to the member axes, produced by the
joint displacements

vector of member forces at the end 1 of member 12, referred to the
x- and y-axes, produced by the joint displacements

vector of total fixed-end forces at the joints produced by the external loads
vector of member forces, referred to the member axes, produced by the
external loads, all joints in the structure being clamped

vector of support reactions, vector of forces produced in the cut-back
structure by the redundants

vector of forces produced in the cut-back structure by the external loads
shear force produced at the end 1 of a member 12 by the joint displacements

shear force produced at the end 1 of a member 12 by the external
loads, all joints in the structure being clamped

redundant force acting at joint j

vector of redundant forces

restrained stiffness at the end 1 of a member 12

element of [S] = equals the force produced at point i by a unit displace-
ment at point j, all other joints being clamped

stiffness matrix for the whole structure

element of [S] = stiffness sub-matrix of member i, referred to its own axis

diagonal matrix formed from the sub-matrices [S,-’,»]

orthogonal transformation matrix

element of [U] = force produced in member i by unit value of the
redundant R; acting on the cut-back structure

force matrix for unit value of the redundants

element of [V] = force produced in member i by unit value of the exter-
nal load W, acting on the cut-back structure

vertical reaction

force matrix for unit value of the external loads

element of {W} = external load applied at joint k&

element of {W} = external load applied at joint i in the x-direction
element of {W} = external load applied at joint 7 in the y-direction
element of {W} = external moment applied at joint

applied load vector

horizontal displacement

vertical displacement

angle of inclination of member

element of {A}, displacement at joint

displacement vector

displacement vector referred to member axes

initial displacements at the releases due to lack of fit in the members
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{AR}  vector of support displacements, vector of displacements at the releases
produced by the redundants

vector of displacements at the releases produced by the external loads
rotation

equals cos a

equals sin a

= >
5

10.1 Introduction

Matrix algebra is a mathematical notation that simplifies the presentation and
solution of simultaneous equations. It may be used to obtain a concise statement
of a structural problem and to create a mathematical model of the structure. The
solution of the problem by matrix structural analysis techniques">3* then pro-
ceeds in an entirely systematic manner. All types of structures, whether statically
determinate or indeterminate, may be analyzed by matrix methods. In addition,
matrix concepts and techniques, because of their systematic character, form the
basis of the computer analysis and design of structures®®’-%, Highly indeterminate
structures may be easily handled in this way and alternative loading conditions
readily investigated. There are two general approaches to the matrix analysis of
structures: the stiffness matrix method and the flexibility matrix method.

The stiffness method is also known as the displacement or equilibrium
method. It obtains the solution of a structure by determining the displace-
ments at its joints. The number of displacements involved equals the number
of degrees of freedom of the structure. Thus, for a pin-jointed frame with j
joints the solution of 2j equations is required, and for a rigid frame, allowing
for axial effects, the solution of 3j equations is required. If axial effects in rigid
frames are ignored, the number of equations involved reduces to j plus the
number of degrees of sway freedom. Irrespective of the number involved, these
equations may be formulated and solved automatically by computer. The stiff-
ness matrix method is the customary method utilized in computer programs
for the solution of building structures.

The flexibility method is also known as the force or compatibility method. It
obtains the solution of a structure by determining the redundant forces. Thus,
the number of equations involved is equal to the degree of indeterminacy
of the structure. The redundants may be selected in an arbitrary manner, and
their choice is not an automatic procedure. The primary consideration in the
selection of the redundants is that the resulting equations are well conditioned.

10.2 Stiffness matrix method

(a) Introduction

The structure subjected to the applied loads shown in Figure 10.1 may be con-
sidered as the sum of system (i) and system (ii). In system (i) the external loads
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> 4 4 s I B T
-/
— _ J— + 02
~ | —» ——
2
X 1 4
Yorria 77 Nt A
- ! - @ (ii)
Figure 10.1

imposed between the joints are applied to the structure with all joints clamped.
The total fixed-end forces {Pf} at the joints are readily determined. In system
(i) the actual joint displacements {A} are imposed on the structure. These
produce the total internal forces {P} at the joints. The expressions force and
displacement are used in their general sense and imply moment, shear, thrust,
rotation, deflection, and axial deformation. Since the forces at any joint are in
equilibrium, the applied loads at a joint are given by:

(W} = (P} + {PF}
The total internal forces at a joint are given by the principle of superposition as:

P = 8116, + 81,0, +--+ 8,6

n

Py = 8516, + 8320, -+ 8,6,

P, =S,6 +8,,6 +--+8S,0,

n

where the stiffness coefficient §;; is the force produced at point i by a unit dis-

placement at point j, all other joints being clamped, and ¢; is the displacement
atj in the actual structure. Thus:

Pl=1S1 S - S|4
P l=18 S - 85,10
Pn = Snl SnZ Snn 6}1
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or,

where [S] is the complete stiffness matrix for the whole structure. This may
be obtained from the stiffness sub-matrices of the individual members and is
a symmetric matrix since s; = sj; by Maxwell’s reciprocal theorem. Thus:

(W} = [SHA} + (P}

{A} = [STTH{W} — {PF})

The internal forces in any member may now be obtained by back substitu-
tion in the stiffness sub-matrix of the member. The stiffness matrix depends
solely on the geometrical properties of the members of the structure. Thus,
once the stiffness matrix has been inverted, the displacements and internal
forces due to alternative loading conditions may be quickly investigated.

The sign convention and notation used for rectangular frames is shown in
Figure 10.2. The positive sense of the applied loads, joint displacements, fixed-end

WyZ W\'S P§4
- 2
%) J Wazf 0%
L1 ) Yy . AN\
2 Q W,
X5
WGZ‘ | M§4\—/
Woa
1 7
7777 Yz za 77777 7757
() (iii)
Y2 Y3 Py 228 M [0) P
32 32 34
2oy 03f l 0, VL Py l \ /4 l O3y '
o - - R / K - -
P
0 ‘J . ~| - 32 ~ ]
2 My, 23 My,
0,
Yrrrza Yrzrza 757

(ii) (iv)

Figure 10.2
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forces, and internal forces due to the joint displacements are shown at (i), (ii),
(iii), and (iv). Thus, the total fixed-end forces at joint 2 are:

E — OF F
PxZ - QZl + P23
F — pF F
Py, = Py + Qa3
F — F F
P02 - MZl + M23

The total internal forces at joint 2 are:

Py = Oy + Py
P, = Py + 03
Py, = My + My;

r
Yai

® (i)
Figure 10.3

For structures containing inclined members, additional notation is required for
fixed-end forces, joint displacements, and internal forces due to joint displace-
ments referred to the member axes. In Figure 10.3 (i), the positive sense of the
fixed-end forces {P'} acting on an inclined member 12 is shown, referred to
the longitudinal axis of the member. In Figure 10.3 (ii), the positive sense of
the joint displacements, {A’} is shown, referred to the inclined member axis.
In Figure 10.3 (iii), the positive sense of the internal forces {P'} due to the joint
displacements is shown, referred to the inclined member axis.
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(b) Rigid frames and grids

Q,, = —6EI/? Q,, = —6EI/l* Q,, = —12E11° 0,, = 12EII®

r—

— - — 2
M,, = 2EIl M,, = 4EIl M,, = 6EIll

M]2 = 4EI/l M]2 = 2EI/l M12: 6El/lz
Va
1
—
— 2 — 2 — 3 — 3
0,= 6FEI/l 0,= 6EI/l 0,= 12E1/1 0,,= 12E1/1
Figure 10.4

The stiffness matrix for rectangular frames in which axial effects are neglected
may be readily assembled manually®. The elements of the stiffness sub-matrix
for a vertical prismatic member may be obtained by applying unit displace-
ments in turn to the ends of the member, as shown in Figure 10.4. Thus:

M,, 4 2 6 —6|] 6

M,, 2 4 6 6|6,
= El/l

10, 6 6 12 —12||x/

10, -6 —6 —12 12||x,/I

M, = 2Ell

M, = 2EIll - =
21 M, =4Ell ™ 6,=1

Figure 10.5

The elements of the stiffness sub-matrix for a horizontal prismatic member
may be obtained by applying unit rotations to the ends, as shown in Figure 10.5.



462 Structural Analysis: In Theory and Practice

Thus:

4 2],

= El/l

M12
0,

For members that are fixed or hinged to supports, the sub-matrices may be
modified to allow for zero displacements at the fixed end. Thus, for the frame
shown in Figure 10.1, which is of uniform section:

M21 4 _6 02
= El/l
M23 4 2 62
= El/l
M32 4 03
105, -6 —6 12||x,/

The total internal forces at the joints are obtained by selecting the relevant

elements from the sub-matrices.
Thus:

Py, = My; + My,

= EII{(4 + 40, + 20, + 0 — 6x,/l)
Pys = Mj, + My

= EI/I{(260, + (4 + 405 + 20, — 6x,/])
Bpy = My,

= EI/I{0 + 205 + 46, — 6x,/1)

Py + 1P =10, +103,
— EIll{—66, — 60 — 60, + (12 + 12)x,/I)
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or:
By, Wor = B
L3 B Wys — B
I Wys — By
P, +1P5]  [l(W,y, + W5 — P5 — PE)

= El/l

that is:

{P} = (W} = {PF} = [SI{A}

The force vector {{W} — {PF}} is readily obtained, and inversion of the stiffness
matrix gives the values of 6,, 03, 04, x,. The member forces may then be obtained
from the sub-matrices. Thus, the actual moment at end 2 of member 21 is:

ME, + My, = ME, + 4EI0,/l — 6Elx,/I?

NG
=s5,,(1+cip)l

512€12 \ (s 00)/1

—(s),15y, +25,¢1)01°

A

S
sp(1+ep 12
—

(5,801
(512+S2]+2S|2612)/12

Figure 10.6

Similarly, frames with non-prismatic members and curved members may be
analyzed if the stiffness, carry-over factors, and fixed-end forces are known for
each member. The elements of the stiffness sub-matrix for a vertical non-prismatic
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member may be obtained by applying unit displacements in turn to the ends of
the member, as shown in Figure 10.6. Since sy1cy1 = s12¢12, the stiffness sub-
matrix is determined as:

M,
M,,
1Oy,
10,
12 S12612 S;p tspcp —(s12 + $12612)
S12612 Syt S)1 T s (531 + s12612)
= El/l
S12 Tspcn Sy tsiacn s TSy T 2spcn s sy T 2sp56q,)
—(s12 T 512612 (S21 F s12612) s1 F 521t 2s15612)  spp Fsy1 Tt 2sp560)
6,
0,
X
xy/1
x,/1

The values of sj5, s5; and ¢, may be obtained by the methods of Section
6.7(b).

Figure 10.7

The elements of the stiffness sub-matrix for a symmetrical curved member
may be obtained by applying unit displacements in turn to the ends of the
member, as shown in Figure 10.7. Thus:

M, 12 sppcy  METL =ML G
M,, - 512612 s, ML MR G,
le Hezl _H0:1 Hx=1 _Hx=1 X
sz _H(9=1 H6)=1 _Hx=1 Hx=l X,
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The values of s1,, ¢12, H’=!, and H*=! may be determined by the methods of
Section 6.7(c). For a curved member, the carry-over factor is negative, and thus
the term s1,¢q5 is negative.

For hand computational purposes, it is desirable to reduce the order of the
matrix that requires inversion. When the force vector {W — P} contains zero
elements, this may be achieved by partitioning the matrices in the form:

where {A;} are the displacements at the joints subjected to an applied force
and {A,} are the displacements at the remaining joints. Thus:

{Az} = [84]71[53]{A1}

and:
{W} = (PEY} = [[S,1 =[S, 118, TS5 1H{A)

Hence the displacements {A} and {A,} may be obtained.

Support reactions may be determined by considering the equilibrium of the
members at the supports after the internal forces are obtained. Alternatively,
the internal forces at the supports may be included in the force matrix and the
matrices partitioned in the form:

] [1S01151][12)

(PR}~ [1S5111,]]| 0

where {A} and {P} are the displacements and total internal forces at the joints
and {PR} are the internal forces at the supports with zero corresponding
displacements.
Thus:
A} =[8,17'{P)
= [SI7H{W} — {PF}}
{PR} = [S5118, I71{P}

and the reactions are given by:

{PR} + (P}
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For a structure that undergoes settlement at the supports, the internal forces
at the supports that yield must be included in the force matrix and the matrices
partitioned in the form:

Py (IS S0 A

where {PR} are the internal forces at the supports that yield and {AR} are the
corresponding known displacements.
Thus:

{A} =[S, 17 H{P) - [S, ){AR})
and:

(PR} = [S51{A} + [S41{AR)

For a structure resting on flexible supports, the stiffness of the supports may
be incorporated in the complete stiffness matrix as illustrated in Example 10.4.

In the case of symmetrical and skew symmetrical conditions, only half the
structure may be considered and modified stiffness factors adopted for members
that cross the axis of symmetry. Applied loads and the cross-sectional properties
of members that lie along the axis of symmetry must be halved in value.

Figure 10.8

The stiffness sub-matrix for a straight prismatic member that is hinged
at one end may be modified to allow for the hinge. The modified matrix is
obtained from Figure 10.8 as:

MlZ
10,

3 =3[9,

x4/l

= El/l

-3 3
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2

/
/)

PN
—_

Figure 10.9

The stiffness matrix for rectangular grids may be assembled manually from
the sub-matrices for each member!®!!, The sub-matrix for a member paral-
lel to the x-axis of the grid, shown in Figure 10.9, is obtained by applying
unit displacements, in the positive directions shown, in turn to the ends of the
member. The torsional stiffness of the member about the x-axis is GJ/ where
G is the modulus of torsional rigidity, | is the torsional inertia, and [ is the
length of the member. The sub-matrix is given by:

M.1n G] -GJ 0 0 0 0 1[6n
M, -G]  GJ 0 0 0 0 |6,
M, oy 0 0 4EI  2EI  6EI  —6EI ||6,
M, 0 0 2EI  4EI  6EI  —6EI||q,
10,, 0 0 6EI  6EI  12EI —12EI ||/
10, 0 0 —6EI —6EI —12EI  12EI ||z,

Example 10.1

Determine the bending moments at joint 5 in the frame shown in Figure 10.10
for values of W = 8 kips and / = 10 ft. The relevant second moment of area
values are shown ringed.

w2 3 4 s
] @ @
® O~
© e ot
1

Figure 10.10
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Solution

The member fixed-end forces are:

Mjs = M

= —10 kip-ft
ME, =10 kip-ft
QF, = —4 kip

The total fixed-end forces at the joints are:

B, = I},

=0
PL = —10 kip-ft
PL =10+ 10

= 20 kip-ft
Pf. = —4 kips
Pf3 = sz

=0

The applied loads at the joints are:

Wor = W3 = Wy = W5

=0
W., = 8 kips
Wx3 = Wx4
=0

The sub-matrices for members 12, 23, 34, 35, and 56 are:

M,, 4% 42 —6x4/4]] 6,
= Elll
10, —6 X 44 12X 4/8||x,/I
M,, 4x2 2x2][6,
= Elll
M, 2Xx2 4x2||6
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M,, 4 2 -6l 6
M;;, 4x2 2x2|[6
= El/l
Ms;, 2Xx2 4x2||6
M 4 —6|6
*| = Ewi ’
IQSG _6 12 xz/l

My, + My,
M, + Msy + M;
M3
Ms; + Msq
1Qy1 + Q34 + Ose)

L)
L3

= P, =
Bys

I(P,; + P35 + Ps)

0 16

10 4

= 0 = EIll 0

=20 0

10(8 + 4) -6

2
4
-6

Collecting the relevant elements from the stiffness sub-matrices gives:

Wy, = B
Wea_PeI;
W94—P€ﬂ
Wes_Peg
+ W3 + Wes = Ph — P5 = P
0 0 -—-6||6,
2 4 —6|| 6
4 0 -—-6||46,
0 12 —6]| b
-6 —6 30||x,/I

)
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Inverting the stiffness matrix gives:

0, 0.755 0
0, -0.157  0.601 symmetric 10
0, | = I/10EI| 0.433 —0.329 4.109 0
0s 0.174 -0.210 0.591 1.065 =20
x,/1 0.243 -0.019 0.963 0.324 0.636 120

The rotations at joints 3 and 5 are:

6; = 1(0 +0.601 + 0 + 0.420 — 0.228)/EI
= 0.793l/EI

Os = 1/(0 —0.201 + 0 — 2.130 — 3.888)/EI
= 1.548l/EI

The bending moment at joint § is:

ME, + Mg, = 10 + EI(40; + 865/
= 25.556 kip-ft

Example 10.2

Determine the bending moments in the frame shown in Figure 7.52. The sec-
ond moments of area of the members are shown ringed.

Solution

The stiffness and carry-over factors for the non-prismatic columns were given
in Example 7.22 as:

s;, = 14EIl

sy = SEI

621 = 4/5
Thus,

(51 + s12¢12)/1 = 9EI/I?
(512 + $71 + 2512612)/1 = 27EI/13
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Due to the skew symmetry, the modified stiffness of member 22’ is:

sy, = 6EQI)/I
= 12EIl

and:

W,., =10/2
= 5 kips

The sub-matrices for members 12 and 22" are:

= Elll
9 27||xy/l

10,4

[Myy] = EII[12][6,]

Collecting the relevant elements from the stiffness sub-matrices gives:

= El/l

60 9 27||x,/1

lPxZ
Inverting the stiffness matrix gives:

0.0714 0.0238|| 0 1.428

= l/EI
0.0238 0.0450

60 2.700

The bending moment at joint 2 is:
0+ M,, = 12EIb,/I

— 12X 1.428
= 17.14 kip-ft

The bending moment at support 1 is:

—60+17.14 = —42.86 kip-ft

Example 10.3

Determine the bending moments in the arched frame shown in Figure 7.54.
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Solution

The stiffness, carry-over factors, and fixed-end reactions were given in
Example 7.23 as:

¢y =172
s,3 = 9EI /I
¢ = —1/3
H¥=' = 0.1125EI,/I
H9=1 — Mx=1
= 0.75EI, /I
M5 = -Mj,
= 28.125 kip-ft
H§3 = _H3Fz

= 21.09375 kip

where:
[ =45 ft

The sub-matrices for members 23, 21, and 34 are:

M23 9 _3 0.75 _0.75 02
= EI/I
Py 0.75 =075 0.1125 -0.1125||x,
P, ~0.75  0.75 —0.1125  0.1125||x;
M,, 8/20  —12/400](6,
= EI,
0, —12/400  24/800 ||x,
18 —1.35][6,
= EI/I
~1.35  0.135||x,
= EI/I
Q34 _135 0135 x:v)
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Collecting the relevant elements from the sub-matrices gives:

P 28.125
P, —11.09375

P, 21.09375

27 -3 060 —0.75 |[6,
-3 27 —075  —0.60 |[6;
= EL /I
~0.60 —0.75  0.2475 —0.1125||x,

-0.75 —0.60 —0.1125  0.2475||x;

Inverting the stiffness matrix gives:

0, 0.064 —28.125
05 0.031 0.064  symmetric 28.125
= l/EI,
X, 0.469 0.483 9.857 —11.09375
X3 0.483 0.469 7.074 9.857|| 21.09375
4.046
5.477
= l/EI,
40.249
129.063

The bending moments at joints 2 and 3 are:

M,, = 18EI 6,/ — 1.35EI x,/I
= 18.6 kip-ft

M,, = 18EI0;/1 — 1.35EI x,/l
= —75.5 kip-ft
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Example 10.4

Determine the support reactions of the longitudinal beam 11, which is simply
supported on the five transverse beams shown in Figure 7.13. All the beams
are of the same second moment of area.

Solution

The longitudinal beam may be considered as resting on flexible supports that
have a stiffness of:

s = 3E1/413
where:
[ =35 ft.

Due to the symmetry, only half the longitudinal beam need be considered.
There is no rotation at 3, and the applied load and the stiffness of the spring at
3 must be halved.

The stiffness sub-matrices for members 12 and 23 and supports 10, 20, and
30 are:

M,, 2 4 6 6|6
= El/l
M 0 0 0
| = Em :
1Py, 0 0.75||y,/I
M 0 0 0
* = Em ’
1Py, 0 0.75||y,/!
M30 0 O 03
= El/l
IP,, 0 0.375||y/I
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Collecting the relevant elements from the sub-matrices gives:

by 0
By, 0
= o
Byl | o
IPy|  |Wi2

4 2 6 —6 0 6,

28 6 0 —6 6,

= EIll| 6 6 12.75 -12 0 /1

6 0 -12 2475 —12 ||yl

0 -6 0 —-12 12.375]|y;/l

Inverting the stiffness matrix gives:

0, 12.79 0
0, 4.866 6.294 symmetric 0
yi/l| = I10EI|—5.543 —3.806 8.704 0
y,/1 2,938 1.536 3.740 6.210 0
s/l 5209 4541 1.781 6.767 9.572 ||WI/2
2.605
2.271

= WI?/10EI[0.891
3.384

4.786
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The support reactions at 1, 2, and 3 are:

V, = 0.75Ely, /I3

= 0.0665W
V, = 0.75ELy, /I3

= (0.254W

= 0.359W

Example 10.5

Determine the bending moments and support reactions in the continuous beam
shown in Figure 7.17 due to the loading shown and settlements of % in at
support 2 and 1 in at support 3. The second moment of area of the beam is
120in*, and the modulus of elasticity is 29,000 kips/in?.

Solution

The fixed-end reactions due to the applied loads were given in Example 7.8 as:

M}, =138 kip-in
MFE, = —207 kip-in
M§2 = _Mfs

100 kip-in

OF, = —4.225 kips
Of, = =7.775 kips

055 = 0},
= —5 kips

Collecting relevant elements gives:

Fyy = Wy — Pan

0 — (ML, + ML)
—(138 —100)
—38 kip-in
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The sub-matrices for members 12 and 23 are:

M, 2 4 6 -6 o
= Ell
10y, —6 —6 —12  12||y,/l = 0.5/
M, 2 4 6 6|0
= EI/l
10,5 6 6 12 —12|/0.51

Collecting the relevant elements and partitioning the matrices give:

By = —38 8, 0 -6, 2 2 6][ 6,
IPR 0! 24 -121-6 6 —12//0.5/
IPR —61-12 121 0 —6 0|10/

--------- S 2 7/ | P S S | E
PR 21 -6 01 4 0 6/| 0
P 20 6 —6; 0 4 00
IPR 61-12 0! 6 0 12| 0

From Section 10.2(b), for the partitioned matrix:
{A} =[S, 17 H{{P} — [S, HARY

where {P} and {A} are the internal forces and displacements at the supports
that yield, and {AR} are the corresponding known displacements. Thus:

8)(—38I/EI + 6/1)
8)[—38x120/(29,000 X 120) + 6/120]
= 0.006086 rad

6, = (1
=(1

~

From the sub-matrix for member 12, the bending moment in the beam at 2 is:

M,, = ML, + (46, — 3/1)EI/l
= 119 kip-in
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From the partitioned matrix

IP 0 24 —12]fo.sn] | 0
— EI0,/I| |+ EIll =
yR3 -6 —-12 121(1.0/1 391
The vertical reactions at 2 and 3 are:
V, =0-4.225-5.0
= —9.225 kips
V, = 39115
= —1.741 kips
From the partitioned matrix:
PR 2 6 0 ~372
0.5/1
PR | = EI0, /2| + EINl| 6 —6 _|-372
1.0/1
IPR 6 -12 0 ~391

The bending moments at 1 and 3 and the vertical reaction at 1 are:

M,, = M1Fz + Peli
—-207 — 372
= —579 kip-in

M, = M3Fz + Pe%
=100—-372
= —272 kip-in

— OF R
Vi = 12+Pyl

—391/120 - 7.775
= —11.033 kips

Example 10.6

Determine the moments in the grid shown in Figure 10.11: (i) due to a single
load at §, (ii) due to equal loads at 2, 3, 4, and 5. All members are of uniform
section, and the flexural rigidity is twice the torsional rigidity.
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Figure 10.11

Solution

(i) The sub-matrices for members 24, 21, and 41 are:

Mx24 1 O 0 _1 0
M, 0 8 12 0 4
a 0 12 24 0 12
4l _ pa

M, ., -1 0 0 1 0
M, 0 4 12 0 8
aQ,, 0 —-12 -24 0 -12
M., 1 0 0{]46,,

My21 = EI/2a|0 8§ —12 0},2

aQ,, 0 —12  24||z,/a

Mx41 1 0 0 93(4

M| = El/l2al0 8 12 €y4

aQyy 0 12 24||z,/a

-12
—24

-12
24

2,la
0::4
0,

24la

and the sub-matrices for members 35, 13, and 51 are similar.
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The sub-matrices for members, 23, 26, and 36 are:

Mx23
M, s
aQ,;
MxSZ
My32
aQs,

Mx26
M

26

aQs,

Mx36
My36
aQs4

= El/2a

= El/2a

= El/2a

§ 0 —-12 4
0 1 0 0
-12 0 24 -12
4 0 -12 8
0 -1 0 0
12 0 —-24 12
8 0 12]|6,
0 1 00,
12 0 24||z,/a
8 0 —12|6,
0 1 0[]0
12 0  24||z3/a

12

~24
12

24

2sla

and the sub-matrices for members 45, 64, and 56 are similar.
Collecting the relevant elements from the sub-matrices gives:

PHxZ

PHyZ
aP,,
P9x3
By

aP

Pﬁx4
P9y4
ab

P(9x5

P

0yS

aP

z5

= El/2a

18 0
0 18
0 0
4 0
0o -1
12 0
-1 0
0 4
0 -12
0 0
0 0
0 0

96
-12

-24

12
—24

-12
18

oSO o o o o

0 12
-1 0
0 —-24
0 0
18 0
0 96
0 0
0 0
0 0
0 0
4 12
-12 -24

12

-12
-24

o o o o o

96
-12

-24

-12
18

=== =)

-12
-24
12

-24

96

z;5la

0.4
v4
24la
x5
0,5

2sla
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Since the grid is symmetrical, the following relationships are obtained:

y2 0,
v3 =04
Oys = —by3
23 = 2,

Ous = —b,s

and the stiffness matrix may be condensed to:

P, 18 0 4 1 12 0 06,
aP, 0 96 —24 0 —48 0  O0|za
P 4 -12 18 0 0 -1 o]6,
BoTER2a 1 0 0 18 0 -4 -12[0,
aP, 12 -24 0 0 9 —12 —24||z/a
Ps 0 0 -1 —4 -12 18 0|6,
aP,, 0 0 0 —24 —48 0 96)|z5a

Inverting the condensed stiffness matrix gives:

0, 76.35 —8.66 —29.56 —18.06 —19.84 —18.88 —7.22|[ 0
2,la —-17.31 17.86  28.46 1122 15.54 1444 529|| 0
0., -29.56 14.23 8210 13.14 1587 18.06 5.61/| 0
05| = /500EI|~18.06  5.61 13.14 8210 1587 29.56 14.23|| 0
zyla -19.84 7.77 1587 15.87 2315 19.84 7.77|| 0
0, ~18.88 722 18.06 29.56 19.84 7635  8.66/| 0
2sla —14.44 529 1122 2846 1554 1731 17.86||Wa

-7.22

5.29

5.61

= Wa?/500EI| 14.23
7.77
8.66

17.86
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The internal moments in the members, which are identical to the actual moments
since there are no fixed-end moments, are obtained by back substitution in the sub-
matrices and are given by:

M,y = —M,,; = 7.01
M, 5 = —M,,5 = —3.04
M,, =—M_,; =5.56
M5 = =M, 5 = —41.84
M., = —My,;, =—7.01
M,5; = —M,5, = 3.04
M, =-M,, =—45.76
M,s; = —M,5, = —133.36
Moy, = —M,,, = —7.21
M, =M, = 5.61
M, = —M,,, = —5.72
M,y = =M, = 20.60
M,y = —M;, = —14.23
M5, = —M,5, = 8.65
M, =—-M,, = 48.36
M),S1 =-M,_, =145.04
where:
Wa = 1000.

(i) Due to the symmetry of the loading and of the grid:

€y2 =

23 =24 = 2, = s

The stiffness matrix may be condensed to:

13 12
24 48

P9x2 9x2

= EI/2
aP;, !

2,la
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Inverting the condensed matrix gives:

0, 1429 -35.71][ 0
= a/S00EI
ola| 7 —71.43  38.69 ||Wa
~35.71
= Wa2/500EI
38.69

Back-substitution in the sub-matrices gives:

M,,, =0

M,,, = 142.84

M,,, = —35.71

M,,, = —178.60
where:

Wa = 1000.

(c) Automation of procedure

The stiffness sub-matrices for inclined members in a structure must be referred to
the main x- and y-axes before assembling the complete stiffness matrix. This is
readily accomplished!? by using an orthogonal transformation matrix that trans-
fers displacements from the member axes to the x- and y-axes. The elements of
the orthogonal transformation matrix T are the member deformations produced
by unit joint displacements in the x- and y-axes, and have the property:

[TI" = [T

where [T]T is the transpose of [T]. The use of the orthogonal transformation
matrix also provides an automatic means of analyzing a structure by a digital
computer.

The member displacements and internal forces are related to the joint dis-
placements and the total internal forces referred to the x- and y-axes by the
expressions:
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The member internal forces and displacements referred to the member axes
are given by:

S, 0 0 0
_ o s 0 0
0 0 . 0

0 0 0 S,

and Si// is the stiffness sub-matrix for member 7 referred to its own axis.

Thus:

(P} = [SITITIT[SI[TII- {{W} — [T]"{PF'}}
The final member forces are given by:
(P} + (PF)

The orthogonal transformation matrix for the frame shown in Figure 10.1 is
given by:

6>, 1 0 0 O
Y51 0 0 0 1
0,
05
0,|=10 1 0 O
0,
Os4 01 0 0
X
043 0 0 1 0
V4 0 0 0 1
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The matrix [ S ] is given by:

M,, 4 =6 0 0 0 0 0] 6
10}, —6 12 0 0 0 0 0|y,
M,, 0 0 42 0 0 0] 6,
My,|=EIIf 0O 0 2 4 0 0 06,
M, 0 000 4 2 —6| 65
My, 0 00 0 2 4 —6 04
10}, 0 0 0 0 —6 —6 12||yl/l

The joint displacements are given by:

0, 8§ 2 0 —6 W,, — P
0 2 8§ 2 -6 W, — Pf
3 — JEI 1 03 03
Xy -6 —6 —6 24| |(W,, + W, —PL —PE)

and the final member forces are readily obtained.

The stiffness sub-matrix [ §],] for the inclined member 12 shown in Figure
10.3, allowing for axial effects and referred to the inclined member axis, is
given by:

P,| [ EAl 0 0  —EAl 0 0 lx},
0}, 0  12E/P 6ENI> 0  —12EI/® 6EI ||yl
M,, 0 GEII>  4El/ 0  —6EII>  2EIIl |6,
P, | Ean 0 0 EA/l 0 0 ||xf
0}, 0 —12EIP —6EII> 0  12EI/I> —6EI/I2||y},
M,, 0 GEII>  2EI/I 0  —6EIN>  4Ell ||6y,
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The orthogonal transformation matrix [T4,] for the inclined member 12 is
obtained by considering unit joint displacements in the x- and y-axes, as shown
in Figure 10.3 (iv), and is given by:

X5 Ao 0 0 0 O0ffx
Yo| |~ A 0 0 0 Ofn
b, |0 0 1 0o 0 06
x40 0 0 A 0||x,
yiup | 00 0 = X 0|y,
b, |0 0 0 o o 16

where A = cos « and p = sin « and the angle « is measured in the positive
direction of M.

The triple matrix product [T,]"[S{, [[T12], which represents the stiffness
sub-matrix of member 12 referred to the x- and y-axes, is given by:

)] 12l [Zi ] A

{41} =y

X3

{4} =1y,




Matrix and computer methods 487

N EA/l + p212EI/13
[Z1] = | Mu(EA/l —12EA/13)  p?EA/l + M*12EI/I3  symmetric
—u6El/? N6EI/I? 4E1/]

—\2EA/l — p212E1/
[Z12] = | =\uWEA/l = 12EII?)  —p2EA/l — X*12EI/I3  symmetric
UGEI/2 —\GEI/I? 2EII

“NEA/ — 2 12EIP
[Z51] = | =M EA/l = 12E1/13)  —p2EA/l — M212EI/I? symmetric

—u6EI/N? N6EI/I? 2EI/

NEA/l + p212E11
[Z,,] = | M\W(EA/l = 12EI/3) ;i 2EA/l + N*12EI/I>  symmetric
UGEL/I2 —\6EI/I? 4ELI

Similarly, the stiffness sub-matrices of all the members in a structure
may be referred to the x- and y-axes, and these may be readily combined!?
to give the complete stiffness matrix of the structure. Thus, the triple
matrix product [T]T[ S ][T] has been eliminated from the analysis, and this
reduces the computer capacity required and enables larger structures to be
handled.

The complete stiffness matrix of the frame shown in Figure 10.12 is
given by:

)] [BZul 1Zol 1Zsll o0 0 b0 0 0 |14
P |12y Sz, 0 A 0 0 0 ||ty
P [[Zsy] 0 S[Zyll [Zyg] [Zys] O 0 0 ||{ay)
R | 0 Zal (Zol 1NMZyl 0 [ (Zg) 0 0 |4
) |0 0 [zl 0 Nzl (Zel (Z5] 0 ||(4)
B |0 00 N Zal (Zg] [NZgl 0 [Zgl|[14)
{P,) 0 0 0 1 0 [Zsl! 0  SIZyl [Zyl||4)
R Lo 0 0 i 0 0 (Zl 1Zo] SZ)lA
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Figure 10.12

where {P;} and {A;} are the three components of force and displacement at joint

i and [Z;] is a 3 X 3 matrix relating the forces at joint i to the displacements

at joint j. The complete stiffness matrix is square and symmetric, and its size is
p X g where p is the number of rows and g is the number of columns and:

p=q

=d

where d is the number of joint displacements. The number of joint displace-
ments, neglecting the support restraints, is:

d=3nl-

where 7; is the total number of joints in the structure. This provides the com-
plete stiffness matrix of the free structure and may be utilized in the solution
of structures with known support displacements. The number of joint displace-

ments, allowing for the support restraints, is:

d=3n,-—r

where 7 is the total number of support restraints.
For the frame shown in Figure 10.12, the size of the complete stiffness
matrix, neglecting support restraints, is:

pXq = 3n; X3n;

(3X8) X (3X8)
=24X24

The joint displacements are obtained by inverting the stiffness matrix, and
back substituting these values in the stiffness sub-matrix [T,~7~]T[ S,—',—][Tif] for each
member gives the internal forces referred to the x- and y-axes. The shear force
and axial force in each member may then be obtained by resolving forces or by
using the expression:

(B] ) = [T, 1(E})

1
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All internal forces are considered to be acting from the joint on the member.

The complete stiffness matrix of a structure is symmetric and, provided the
joints are numbered in a systematic manner, banded about the leading diago-
nal. The band width of the stiffness matrix is:

b=3j—3i+3

where member 7 is that member with the maximum numerical difference
between the joint numbers at its ends. Advantage may be taken of the banded
form of the matrix to reduce the computer storage space required. Only the
elements within the banded region need be stored in order to define the matrix,
and this produces a condensed rectangular matrix with & columns and d rows
where d is the number of joint displacements. The positions of the elements in
each row are adjusted to bring the elements of the leading diagonal [Z;] to the
left-hand side of the condensed matrix.

Provided the joints are numbered systematically, the band width is depend-
ent on the number of joints across the width of the structure. The narrower the
structure, the smaller the band produced.

For the frame shown in Figure 10.12, the band width is:

b=3j—3i+3
=3X2+3
=9

The number of joint displacements, neglecting the support restraints, is:

d=3n/-
=3X8
=24

The size of the condensed stiffness matrix, neglecting the support restraints, is:

pXqg=dXxXb
=24X9

The condensed stiffness matrix of the frame shown in Figure 10.12 is:

YZy] 2] [Z5]
Y[Zyp]l 0 [Zy]
YZss] [Zss] [Zss]
Y[Zul 0 [Zyl
UZss] [Zsg] [Zs7]

Y[Zl 0 [Zgl
Y7571 [Z7] 0
Y[Zg] 0 0
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The solution of the equilibrium equations using the condensed stiffness
matrix may be achieved with the Gaussian elimination process'®. Since the
band width of the stiffness matrix, rather than the number of joint displace-
ments, determines the time required for the analysis, which is proportional to
the band width squared, this provides a rapid and efficient solution procedure.
In addition, as the elimination proceeds, the reduced rows overwrite the loca-
tions occupied by the original rows, thus conserving computer storage require-
ments. Back substitution, starting from the last row of the reduced matrix,
continues in a similar manner to the elimination process to obtain the values
of the displacements.

When the structure is subjected to several alternative loading conditions,
these may be analyzed simultaneously by replacing the load vector with a load
matrix and the displacement vector with a displacement matrix.

When the available computer capacity limits the order of the matrix that can
be inverted, advantage may also be taken of the banded form of the stiffness
matrix'® by partitioning it as shown to give:

B [Suli[Siel 0 |[{4Ay)

- _————d e~ JH (U | Pepp——

(Pe)| = ISl 1 [Sce] 1 IS | [HAc)

This is equivalent to dividing the structure into two sub-frames with com-
mon joints 4 and 5. Sub-frame 1 consists of members 42, 21, 13, 34, and 35,
while sub-frame 2 consists of members 46, 68, 87, 75, and 56.

Expanding the expression gives:

{A) =[S 7 H{P) — [Sic HACH

{4} =[S iR} — [S:c HACH

{Ac) = [IScc] = [Sci 1811 T Sic ] = [Sca 1S I Sy 117 R )
= [Sci IS TP} = [Sca 1S5 I7HP )

Thus, the number of arithmetic operations is increased but the order of the
matrices requiring inversion is reduced, and this reduces the computer capacity
required.

Example 10.7

Determine the member forces in the frame shown in Figure 7.51, ignoring axial
effects. All members have the same second moment of area.
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Solution

Due to the skew symmetry, only half of the frame need be considered, with
a hinge inserted at the center of both beams. The vertical deflection of both
hinges is zero, and the applied load is:

Wx3 = 4/2
= 2 kips

The member displacement y%, , produced by unit joint displacements x3 and
y3, may be obtained from Figure 10.13 (i) and (ii). Thus:

y5 = 0.8x; +0.6y;

x3=1

N
Vi

@ (i) (iii)
Figure 10.13

The relationship between x3 and y; is obtained from the displacement
diagram at (iii) as:

y; = 0.75x;
Thus:
y:/;z = (0.8 + 0.45)x3
Similarly:
)’53 = y§1
= 1.25x2
And:
I
Y34 =3
= 0.75x;
Yis = V2

= 0.75x,
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The transformation matrix is given by:

6,] [1 0 0 0
vyl 1o 125 0 o0
b 11 0 0 0
vl 10 125 0 0 |[6
0, [0 0 1 0 |[|x,
i "o 0 o0 125 A
0 10 0 1 0 ||x
Yiul 10 0 0 075
bs| |1 0 0 0
Y| 10 075 0 0

Taking the value of EI as 100 kip-ft units, the matrix [ S ] is given by:

M,, 40 -6 0 0 0 0 0 0 0 0][6y,
0}, 612 0 0 0 0 0 0 0 0]y
M, 0 0 40 6 20 -6 0 0 0 0|6y
05, 0 0 6 12 6 —-12 0 0 0 0 ||y
M;, 0 0 20 6 40 -6 0 0 0 0|6
— EIll
0}, 0 0 -6 -12 -6 12 0 0 0 0 ||y
M, 0 0 0 0 0 0 100 333 0 0 |65
Ol 0 0 0 0 0 0 333 11.1 0 0 ||y
M, 00 0 0 0 0 0 0 333 376
0)s 00 0 0 0 0 0 0 37 041y
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The matrix [T]'[ S ][T] is given by:

P92
Px2
P03

Px3

0
0
B 0
2
113.33 0,
2.78 3.98 symmetric | |x,
B 20.00 7.50 140.00 05
—-7.50 —1.88 17.50 8.13]| |x;

The displacements are given by:

0,
X3

05

X3

1.12
1.51 46.52
= 1/100
—0.56 —5.78
2.59 24.57
0.0519
0.4195
B —0.1159
0.6570

symmetric
1.83
-5.79 32.85

b O O O

The member forces, in kip and ft units, are obtained by pre-multiplying the

displacement vector by [ S ][T], since there are no fixed-end forces. Thus:

My | [-1.61
054 0.426
My, |=|—1.48
0}, ~0.632
My, | | —4.84
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03| [0.632
Ms,| |4.84
Ol | |1.61
M,s| |[3.09
Q)| 10.344

Example 10.8

Determine the member forces in the rigidly jointed truss shown in Figure 7.18.
The second moment of area of members 14, 34, and 24 is 30 in* and of mem-
bers 12 and 23 is 40 in*. The cross-sectional area of members 14, 34, and 24 is
4 in? and of members 12 and 23 is § in?.

Solution

Due to the symmetry, 6,, 04, x5, and x4 are zero. Only half of the frame need
be considered, with the applied loads at joints 2 and 4 and the cross-sectional
area of member 24 halved in value.

For member 12, A\ = (3)°%2 and ;= —0.5, and the stiffness sub-matrix
referred to the x- and y-axes is given by:

Py
M,
P
0.75 X 5/116 +0.25 X Xy
12 X 40/(116)3
=E 0.5 X 6 X 40/(116)* 4 X 40/116 symmetric 0,

0.25 X 5/116 + 0.75 X| |y,

B - X ’ -V :
0.433{5/116 — 12 X 40/(116)3} —0.866 X 6 X 40/(116) 12 X 40/(116)°

0.03248 ! X,
|
= E[0.00895 1.3780 ! symmetric||6,

,,,,,,,,,,,,,,,, A | | ==

0.01854 —0.01553 0.011031 ||y,
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For member 14, A = 1 and p = 0 and:

P4 4/100 i X
My, =E| 0 4 X 30/100 E symmetric || 6;
Bal |0 C6X3001007 | 12 % 30/1007 v,
0.04 i X1
=El 0 1.2 E symmetric | | 0,
0 Zoo1s | 000036 | v,

For member 24, A = 0 and i = 1 and:

P 258 —2/58] [y,
Pl  |-2/58 2158 ||y,
0.0345 —0.0345][y,
“E 0034 0.0345 Ve

The complete stiffness matrix of the truss is given by:

2.

0
0
1

S

0.07248

0.00895

0.01854
0

2.57800
—0.01550
—0.01800

The joint displacements are:

X1
6

b)

V4

=1/E

—146.2
8.4
567.7
638.0

symmetric
0.04553
—0.03450 0.03486

X1

b

V4
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The member forces, referred to the x- and y-axes and acting from the joint
on the member, are obtained by back substitution in the sub-matrices for each
member. Thus:

Pp,| [ 5.84
M, | 1.39
Py| | 3.42
Po4| = |-5.84
M| |-1.39
Py| | 0.08
Pyl |-2.42

The axial forces and remaining moments are given by:

P/, = 0.86603P,, — 0.5P,
= 6.82 kips compression

Ply = Py
= —5.84 kips tension
P2,4 = 2Py24

= —4.84 kips tension

M,y = 100P,; + 58P, — My,
= —4.39 kip-in

My = 100P,4 — My,
= —6.61 kip-in

Example 10.9

Determine the member forces in the Vierendeel girder shown in Figure 10.12 for
values of [ = 12 ft and W = 10 kips. All the members are of uniform cross-section.

Solution

Due to the skew symmetry, only the lower half of the frame need be consid-
ered, with a hinge inserted at the center of each post and the applied load at
joint 4 halved in value.

For members 21, 43, 65, and 87, A = 0 and p = —1, and the stiffness sub-
matrix referred to the x- and y-axes is given by:

M,, = [3EI/6)9,
= 720,
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where axial effects are ignored and the value of EI is taken as (12)?
kip-ft? units.
For member 46, A = 1 and u = 0, and the stiffness sub-matrix is given by:

P46 12/ i V4
Mi| gy S A symmeric)o
P4 12/ —6/2 1 12/ Ye
My, 612 2 —6/12 4/1|6,
1 i V4
6 48 E symmetric |6,
I
6 24 -6 43|,

For member 24,y, = 0, A = 1, and p = 0 and:

M,, 48 | symmetric ||6,
I
I
Poy| = _6l: 1 Ya
My,| [241 -6 486,

For member 68, yg = 0, A = 1, and x = 0 and

Py68 1 i Vs
M| =6 48 | symml||o
—_———] e _——— A==
Mg| |6 24 1 48 |6

The complete stiffness matrix of the frame is:

P,] o
Pyl |5
Pl |0
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2

0 168
________1______6_

6 24

0 0

T

Using the partitioning shown:

Vs

M,, = 18.7 kip-ft

2 0
0 168
1.1410
—0.0244
0.0101
0.0305
—0.0014

Mgs =
Mg, =

—14.4 kip-ft
~10.1 kip-ft

e
symmetric E Va4
e
2 Tl
0 168 0,
6 24 §1zo 0,

0.76  —4.18] [0.3 12]]'[ 2.83
418 2362 (12 48| |~17.22
—0.0244 |[ 2.83 3.65
0.0077 ||-17.22|  |~0.20

symmetric 0 0.26

0.5913 9.85| = |5.71

~0.0043  0.0062([26.70 [0.12

My, =24 X026 — 6 X 5.71+ 48 X 0.12

—22.3 kip-ft

Mg = 6 X 3.65 + 48 X —0.20 + 24 X —0.14
= 8.9 kip-ft

10.3 Flexibility matrix method

(a) Introduction

The structure shown in Figure 10.14 is two degrees redundant, and these
redundants may be considered to be the internal moments M, and Mj at joints
2 and 3. The structure is cut back to a statically determinate condition by
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(i) (i)
Figure 10.14

introducing releases corresponding to the redundants. The external loads are
applied in system (i) and the redundant forces applied in system (ii). The actual
structure may be considered as the sum of system (i) and system (ii). The loads
applied in system (i) produce discontinuities {AY} at the releases, and these
discontinuities may be calculated by virtual work or conjugate beam methods.
The redundant forces applied in system (ii) produce discontinuities {AR} at the
releases. Since there are no discontinuities in the original structure at the posi-
tions of the releases:

(AR} = ~av)
The discontinuities produced in system (ii) are given by:

6f = fuRy + fiuRy +...+ fi,R,
{55 = f21R1 + fzsz +.. +f2an

iy

6R = anl + fnZRZ + "'+fnan

n

where the flexibility coefficient f;; is the displacement produced at point i by a
unit force replacing the redundant at j, and R; is the redundant at . Thus:

St o fin || Ry
ok i fan || Ra
65 fnl fnZ fnn Rn

or:

{AR} = [FI{R)
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where [F] is the flexibility matrix of the cut-back structure and {R} is the
redundant force vector. The elements in the flexibility matrix may be deter-
mined by virtual work or conjugate beam methods, and the matrix is symmet-
ric since f;; = f;; by Maxwell’s reciprocal theorem.

Thus:

[FI{R} = —{AV}

and {R} may be determined. The internal forces in any member may now be
obtained by summing the internal forces in system (i) and system (ii).

To ensure that the equations [F]{R} = —{AY} are well conditioned, the ele-
ments on the main diagonal should predominate. This is achieved by choosing
a cut-back structure such that the unit value of each redundant produces its
maximum displacement at its own release.

Lack of fit in the members of a structure is equivalent to initial discontinui-
ties {Al} at the releases.

Thus:

[FI{R} = —{{A"} +{AV}])

The relation between deflections and redundant forces in the cut-back struc-
ture is:

{AR} = [FI{R)

Thus:

{R} = [FI"H{AR}

and the stiffness matrix of the cut-back structure is the inverse of the flexibility
matrix of the cut-back structure.

Example 10.10

Determine the bending moment at the support 1 of the frame shown in
Figure 10.15.

Solution

The cut-back structure with the three redundants Hy, V;, M; is shown at (i),
and the displacements corresponding to the redundants are shown at (ii).

The external load W applied to the cut-back structure produces the bend-
ing moment diagram shown at (iii). The resulting displacements xV, y¥, 6}V
may be determined from the conjugate frame shown at (iv), where the elastic
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w
2 [T 3
W O =
1 4 H, M, x| 6,
77777 / 77777
e v "
@) (i)
O Wi W12/6]2
° o WIh/21,
/7
(iii) YAR! (iv)
° h
L] L]
(v)
I
l
(vii)
I
. I
L] L]
(%) D o, ®

Figure 10.15
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loads are represented by concentrated loads for clarity and E has been taken as
unity. Thus:

O = —WIl/61, + hi2I,)
xV = Wih(/61, + bI4l,)
yW = —WI2(I8I, + h/2I,)

Unit value of H applied to the cut-back structure produces the bending
moment diagram shown at (v). The resulting displacements may be determined
from the conjugate frame shown at (vi) and are given by:

formn = —IbI1, = b*/1,
flel = lh2/12 + 2}]3/3[1
Vi = —12h121, — 1h?/21,

Unit value of V applied to the cut-back structure produces the bending
moment diagram shown at (vii). The resulting displacements may be deter-
mined from the conjugate frame shown at (viii) and are given by:

Fovy = —12b121, — IB2121,
fuvi = PB3L + 2hIL

Unit value of M applied to the cut-back structure produces the bending
moment diagram shown at (ix). The resulting displacements may be deter-
mined from the conjugate frame shown at (x) and are given by:

fern = —IhITy, = b*11,
Fon = 2121, + Db,

Then, the expression:

[FI{R} = —{AV} is

freimn feivi e | [ Hy X}W
fy1H1 fywl fy1M1 Vi :_y}v

f@lHl f&lVl f&lMl Ml 91W
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Substituting b = hI,/I1; this becomes:

Qb+3)h2/3  —(b+1DIb2  —(b+1)b]| [H, —(3b + 2)b/12
—(b+ D2 GBb+1DI213 b+ 3)2| |V, |=WI| (4b+1)l/8
—(b+1)h 2b + 112 2b+1) | |M, (3b + 16

Multiplying the first row by 3/(b + 1)/2h(2b + 3) and adding to the second
row give:

(2b + 3)h2/3 —(b + 1)Ih/2 —(b+1)h H, —(3b + 2)h/12
0 12(15b% +26b + 3)/12 (b2 +2b)l12| |V, | = WI|(5b% + 9b + 1)II8
—(b+ )b 2b + 1)II2 2b+1) | |M, (3b + 1)l/6
Thus:

V,I2(15b% + 26b + 3)/12 + M,l(b + 2b)/2 = WI2(5b? + 9b +1)/8

From symmetry,
VvV, = W72

hence:

M, = WI/12(6b +2)

(b) Automation of procedure

The flexibility matrix [F] of the cut-back structure may be assembled auto-
matically from the flexibility sub-matrices of the individual members. The
sub-matrices for the members shown in Figure 10.16 may be determined by
the conjugate beam method or by inversion of the corresponding stiffness
matrix. For the member 12, fixed-ended at 2 as shown at (i), the sub-matrix is
given by:

x| [VEA 0 0 P,
y.|=| 0  P3EI —I22EI| |Q,,
0, 0 —I22E1  IEI ||M,,
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Q1
‘kg'x' P,zb 2E P,Zb 2174\ ) Py 1 2%

Mz Mz (i) (iii)

Figure 10.16

For the member 12, pinned at each end as shown at (ii), the sub-matrix is
given by:

x| [VEA 0 0 [P,
o,|=1| 0 U3EI ~ —II6EI| |M,,
0, 0 —II6EI  I/3EI | |M,,

For the member 12 of a pin-jointed frame subjected to an axial force only as
shown at (iii), the sub-matrix is given by:

x, = [IEA]P,

A structure containing 7 members, subjected to 7 applied loads and indeter-
minate to the degree D, may be cut back to a determinate condition by remov-
ing D redundants. The force produced in member i by the application of the
redundants to the cut-back structure is:

j=D
R _ R
Pt = Zlul,R,
=

In general,

{PR} = [UNR}

where the element #;;, of the matrix [U] is the force in member i due to a unit
value of the redundant R;, {R} is the column vector of redundants, and {PX} is
the column vector of the member forces produced by the redundants acting on
the cut-back structure. The discontinuity produced at release j by the applica-
tion of all the redundants to the cut-back structure is:

i=n
R
6}{ = .21 ;b
iz
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where f; is the flexibility of member i. In general:

(AR} = [U]'[F]{PR}

= [UJ'[F][U]{R}
where:
[F] 0 0 0
_ 0 [E] 0 0
[F] =

and [F}] is the flexibility sub-matrix for member i. The triple matrix product
[UIT[ E ][U] is equivalent to the flexibility matrix [F] of the cut-back structure.

The force produced in member 7 by the application of the external loads to
the cut-back structure is:

In general:
{PY} = [VI{W)}

where the element v;;, of the matrix [V] is the force in member i due to a unit
value of the applied load Wy, {W} is the column vector of applied loads, and
{PWV} is the column vector of the member forces produced by the applied loads
acting on the cut-back structure. The discontinuity produced at release j by the
application of all the external loads to the cut-back structure is:

i=n
W — w
6,‘ - _Zlui/fipi
i=

In general:

For the case of zero initial discontinuities:

(AR} = —{AV)
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and: {R} = —[[U]"[F][U]]"'[U]"[F][VH{W}
The final member forces in the structure are given by:

(P} + (PR} = [[V] = [UII[UT"[FI[UII" U [EILVII{W)

The deflection produced at the point of application of load W, by all the
external loads acting on the real structure is:

6 = X vaf,(PY + PR
i=1

or, in general:
{A) = [VIT[FI{{PYV} + {PR}}

The discontinuity produced at release j by the final member forces in the
structure is

8 + 68 = X uyf(BY + B)
=0

In general:
[UTT[FI{{PY} + {PR}} = 0

and this may be used as a check on the computation.
The discontinuity produced at release j by lack of fit & of the members, due
to thermal changes or manufacturing errors, is:

" i=n
o = _21 ;b
i
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or: {Al} = [U|'{H)
(AR}
[UT"[FI[UR)

The final member forces in the structure are given by:

{PR} = [UI{R}

—[U]J[UT'[F][UT U] {H]}

The analysis of structures with loads applied between the joints may be
obtained in a similar manner!®. The displacements at the joints in the cut-
back structure due to the loads applied between the joints are used to form the
matrix {H}.

Example 10.11

Determine the forces in the members of the pin-jointed frame shown in Figure
10.17. All members have the same value for EA/I

(iii) @iv)

Figure 10.17
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Solution

The two redundants may be considered to be the tensile forces R; and R,
in members 15 and 24. The matrix [U] is obtained from (i) and (ii) and the
matrix [V] from (iii) and (iv), and these are given by:

Pj
P
P
P
P
P
P
P

R
P24

R
P25

1
Py
Py
P
Psg
Fy
Py
P

W
P24

w
P25

—1/a

0

0

0
—1/a

1

1

0

0
—1/a

—1/a
—1/a
—1/a

—1/a

o o o O

S o o O

0

1

y

y

3

2

where a = (2)° and tensile forces have been considered positive.
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The matrix [ F ] is:

f—
—_

—

symmetric

1

OO O o o o o o o
—_

o O o o o o o o
o O o o o o o —
o O (e o o (e

S O (e o o

o O (e o —_

o O [«

o O

O =

—_

and:

_ -1 0 0 0 -1 a a0 0 -1
[UI'[F] = I/aEA

0 -1 -1 -1 000 a a —1

_ 71
[UJF[F][U] = I/2EA
1 8
_ 8 —1
[[UY[F][U]I"Y = 2EA/551
-1 7
_ -4 -3
[UJ'[F][V] = llaEA
-4 0
-28 —24

[[UTT[EIUT YUY [FI[V] = a/55
—24 3
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28 24
24 -3

24 -3

24 -3

[UI[UTT[FI[UN ' [UTT[F][V] = 1/55 S
—28a —24a

—28a —24a

—24a 3a

—24a 3a

52 21

The final member forces are given by:

pY| [PR 82 31
P¥% | (PR 31 3
pY| |PR 24 3
PY| (PR 24 3
P PR 83
PY| |PX —27a —31a||2
pY| |PR 282 24a
P¥| PR —3la —3a
PY| |PR 242 —3a
PY| (PR 3 -21
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144
37
—18
—18
—131
= 1/55
—89a
76a
—37a

18a

-39

Example 10.12

Determine the support moments of the continuous beam shown in Figure 7.8.
The relative EI/l values are shown ringed.

Solution

The support moments M, and M3 may be considered to be the redundants,
and matrix [U] is obtained from Figure 10.18 (i) and (ii) as:

MR, 1 0
M| -1 oM,
MR Lo 1
MR| |0 -1

The flexibility sub-matrices for members 21 and 23 are:
6,, = [/3EI]M,,

0
» = JEI

~1/6  1/3 ||M;,

932
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Figure 10.18

The matrix [ F ] is:

12 0 00
_ 0 8 —4 0
[F] = 1/72
0 -4 80
0 0 06

The discontinuities produced by the application of the redundants to the cut-
back structure are given by [U]'[ F ][U]{R} and are:

The displacements produced in the cut-back structure by the applied load
are obtained from (iii) as:

o] [~WI2N6EI] [-50
ol 0 0
ol 0 0

o1 0 0
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The discontinuities produced by the applied load are given by [U]T{H]}
and are:

o] [-50

0

03

The support moments are given by —[[U]T[ E ][U]]"'[U]"{H} and are:

M, 17.5 =s|[s0] [191

=12/55

0

M, -5 25 —54

Example 10.13

Determine the forces in the members of the frame shown in Figure 10.19. All
the members are of uniform section.

10~ 1

10

1 4 Ml_:\‘Ml

10 v,

77777 77777

0) (i)
Figure 10.19

Solution

The reactions Hy, Vq, and M; may be considered to be the redundants, and the
matrices [U] and [ V] are obtained from (i) and (ii) as:

o |1 0 0
MRl [0 0 1

H,
of |0 1 0
ME| |10 0 1

Ml

Of| [-1 0 0
MR | |-10 -10 1
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o
My

w
23

M3
o)
MY |o

o o o O

Ignoring axial effects, the flexibility sub-matrix for member 12 is:

Y12 212 =31|| Oy
= J/6EI
200 _30 le
= J/6EI
The matrix [ F ] is:
200
—30 6 symmetric
_ 0 0 200
[F] =
0 0 —-30 6
0 O 0 0 200
0 O 0O 0 —30 6
1000 600 —120
[UIT[F][U] =| 600 800 —90
-120 -90 18
—-100
[UIT[F][V] = |-300
30
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0.5
2.86
— _ —0.429
[UIUT FIIUTUTTFV] =
—2.14

—0.50

2.14

The final member forces, in kips and kip-ft units, are given by:

of| |0 |—3.00
M}’g Mfz —28.60
Of| |o%|_| 429
M% M§3 21.40
ng Q§4 —5.00
Mg’i" M§4 —21.40

(c) Nonprismatic members

When the value of EI varies along the length of a member, the integrals
involved in the application of the flexibility matrix method may be evaluated
by Simpson’s rule. The member is divided into an even number of segments of
equal length, and the integral of the function shown in Figure10.20 is given by:

n

feds = bs(e, +4e, +2e; +4e, +--+2e, 5, +4e, | +e,)3
1

ds

€y ] €3 €4 s €n—1 €n

(n—1) @ ds

A

Figure 10.20
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Example 10.14

Determine the support reactions of the symmetrical, continuous beam shown
in Figure 10.21. The relative EI values are given in Table 10.1.

e = T

W~ o b it

|<—>|<—>|<—>| - )

< 14 M
b/ it

" (i)

1’ *1
b

"3 (iif)

+ M2><

Figure 10.21

Table 10.1 Properties of continuous beam in Example 10.14

x ft 0 20 40 60 80 100 120
EI 1 3 10 3 1 3 10
M kip-ft 0 0 0 -600 —-800 -600 0
m; kip-ft 0 12 1 3/4 12 1/4 0
ms kip-ft 0 0 0 1/4 12 3/4 1
Mm,/EI 0 0 0 -150 —400 —-50 0
m3/EI 0 1/12 1/10 3/16 1/4 1/48 0
mymslEI 0 0 0 1/16 1/4 1/16 0
Solution

Because of the symmetry of the structure and loading, the support reactions at
2 and 3 are equal. The moment M, at these supports is taken as the redundant
and releases introduced at 2 and 3 to produce the cut-back structure.

The external load applied to the cut-back structure produces the distribution
of moment M shown at (i). Unit value of each redundant applied in turn to the
cut-back structure produces the moments 72, and m3 shown at (ii) and (iii).
Values of M, m, and m15 are tabulated in Table 10.1.

The discontinuities produced at the releases 2 and 3 by the external load
applied to the cut-back structure are:

2

oy = v

= [ Mm, ds/EI

2000 —4 X150 —2X%X400—-4Xx50-0)/3
—32,000/3
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The discontinuity produced at release 2 by the application of unit value of
M, in (ii) is:

fro = [m3ds/EI
= 20(0 + 4/12 + 2/10 + 12/16 + 2/4 + 4/48 + 0)/3
=112/9

= f33

where f33 is the discontinuity produced at release 3 by the application of unit
value of M, in (iii).

The discontinuity produced at release 2 by the application of unit value of
M, in (iii) is:

=200+ 4/16 +2/4 + 4/16 + 0)
= 20/3

= fn

where f3, is the discontinuity produced at release 3 by the application of unit
value of M, in (ii).

Since there are no discontinuities in the original structure at the positions of
the releases:

f22 f23 M2 __ey

f32 f33 M2 9;7(/
112/9  20/3 |[M, —32,000/3
203 112/9||M, —32,000/3

and:

M, = 32,000/(37.3 + 20)

= 558 kip-ft
V, = 558/40

= 14 kips --- downward
V, = 54 kips -- upward

(d) Concordant cable profile

The application of the pre-stressing force P, with an eccentricity e, to the con-
tinuous beam shown in Figure 10.22 results in the production of indeterminate
reactions at the supports. The pre-stressing force tends to deflect the beam,
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me_ 1
Ar T T A -4 ¥ ¥ A
1 2 3
Iy @)
+ Mm% '4 S
R A
g (i)
+ omy* '4 S

Figure 10.22

which is restrained against lateral displacement by the supports. This causes sec-
ondary moments in the beam, and the resultant line of thrust no longer coin-
cides with the cable profile, as is the case with a statically determinate beam.
The indeterminate moments M, and Mj at the supports may be considered the
redundants and releases introduced at 2 and 3 to produce the cut-back structure.

The application of the pre-stressing force to the cut-back structure produces
the distribution of moment M = Pe shown at (i). Unit value of each redundant
applied in turn to the cut-back structure produces the moments #1, and 3
shown at (ii) and (iii).

The discontinuities produced at the releases 2 and 3 by the pre-stressing
force applied to the cut-back structure are:

6F = [ Pem, ds/EI
07 = [ Pem; ds/EI

The discontinuities produced at release 2 by unit values of M, and M;
applied in turn to the cut-back structure are:

fo = ['m3} dsIEI
fa3 = fm2m3 ds/EI

The discontinuities produced at release 3 by unit values of M, and M;
applied in turn to the cut-back structure are:

f30 = fm2m3 ds/EI
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Since there are no discontinuities in the original structure at the positions of
the releases:

fm% ds/EI fm2m3 ds/EI

M, [ Pem, ds/EI
fm2m3 ds/EI fm% ds/EI -

M, fPem3 ds/EI

Expanding this expression gives:

[ (Pe + Mym, + Myms)m, ds/EI = 0
[ (Pe + Mym, + Mymy)my ds/EI = 0

The final distribution of moment in the beam due to the pre-stressing force
and secondary effects is:

Pe' = Pe + M,m, + Mjm;

where the effective cable eccentricity is:
e’ = e+ M,m,/P + Mym;/P

and the line of thrust has been displaced by an amount:
M,m, /P + M,m;/P

A cable with an initial eccentricity e’ produces discontinuities at releases 2
and 3 of:

0,

fPe’mz ds/EI
f(Pe + Mym, + Mym;)m, ds/EI
=0

0y = [ Pe'myds/EI
= f(Pe + M,ym, + Msms)m; ds/EI
0

Thus, there are no secondary moments produced on tensioning this concord-
ant cable, and the resultant line of thrust coincides with the cable profile.
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Example 10.15

Determine the distribution of moment produced in the frame shown in Figure
10.23 by the pre-stressing force and secondary effects. The magnitude of the
pre-stressing force in the beam is 500kips and in each column is 100kips.
The pre-stressing cable has zero eccentricity in the left-hand column, and the
eccentricities in the beam and right-hand column are tabulated in Table 10.2
together with the ET values. The effects of axial compression in the frame may
be neglected.

20’

T T e

@ (i) (iii)

Figure 10.23

Solution

The vertical reaction V at support 1 and the horizontal reaction H at support 2
may be considered the redundants and releases introduced at 1 and 2.

The application of the pre-stressing force to the cut-back structure produces
the distribution of moment M shown at (i). Unit values of V and H applied
in turn to the cut-back structure produce the moments 72; and 7, shown at
(i) and (iii). These values are tabulated in Table 10.2 together with values of
Mmy/EL, Mmy/El, m$/El, m3/EI, and mym,/EL

The discontinuities produced at the releases 1 and 2 by the pre-stressing
force are:

W= mel ds/EI

10(0 + 832 + 667)/3 +15(667 + 0 — 2500 + 208 + 0)/3
= —-3128

Y = [ Mm, ds/EI
= 15(-667 + 0 + 5000 — 832 — 667)/3 + 10(111 + 252 + 0)/3
= 15,380



Table 10.2 Properties of prestressed beam in Example 10.15

x; ft 0 10 20 - - - - - - - -
x, ft - - - 0 15 30 45 60 - - -
y ft - - - - - - - - 0 10 20
eft 0 0.25 1.0 1.0 0 -1.0 0.25 2.0 0.5 0.25 0
EI 2 6 15 15 9 4 12 30 9 4 1
M 0 125 500 500 0 —500 125 1000 50 25 0
n, 0 10 20 20 15 10 5 0 0 0 0
", 0 0 0 -20 -20 -20 -20 -20 20 10 0
Mmy/EI 0 208 667 667 0 1250 52 0 0 0 0
Mm,/EI 0 0 0 —667 0 2500 -208 —667 111 63 0
m3IEI 0 17 27 27 25 25 2 0 0 0 0
m3/EI 0 0 0 27 44.4 100 33.3 13.3 44.4 25 0
mumylEI 0 0 0 -27 -33.3 -50 -8.3 0 0 0 0
Pe 0 125 500 500 0 —500 125 1000 50 25 0
Vi, 0 —44 -88 -88 —66 —44 -22 0 0 0 0
M, 0 0 0 118 118 118 118 118 -118 -59 0
Pe’ 0 81 412 530 52 —426 221 1118 —68 —34 0

spoytouwr 1ndwod pue XIne

1c¢
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The discontinuities produced at releases 1 and 2 by the application of unit
value of V are:

fu = [m}dsIEI
= 10(0 + 68 + 27)/3 + 1527 + 100 + 50 + 8 + 0)/3
= 1242

fio = fmlmz ds/EI
=15(-27—-132-100—-32+0)/3
= 1460

The discontinuity produced at release 2 by the application of unit value of
His:

fzz = fm% dS/EI
= 15(27 + 176 + 200 + 132 + 13)/3 + 2 X 10(44 + 100 + 0)/3
= 3700

Since there are no discontinuities in the original structure at the positions of
the releases:

1242 —1460(|V —-3128
—1460 3700(|M 15380
and:
\% 4.42
M 5.90

The final distribution of moment in the frame due to the pre-stressing force
and secondary effects is:

Pe' = Pe + Vi + Mm,
and values of Pe’ are tabulated in Table 10.2.

(e) Interchanging cut-back systems

The vertical reaction V at the support 1 of the propped cantilever shown in
Figure 10.24 is taken as the redundant. The external load applied to the cut-
back structure at (i) produces the distribution of moment M, and unit value of
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& VT l ) Z (i) 1 T

Figure 10.24

V applied to the cut-back structure at (ii) produces the moment ». The actual
moment in the original structure is (M + Vm).

The deflection under the applied load is obtained by applying unit virtual
load, in place of W, to the structure, as shown in Figure 10.25. The moment in
the structure is then (M + Vm)/W. The deflection under the load is given by:

y = [(M+Vm)(M + Vim)ds/ WEI
= [ M(M + Vim)ds/WEI + [ V(M + Vim)ds/ WEI

Figure 10.25

However, to obtain the deflection y, it was shown in Section 3.2 that the
unit virtual load may be applied to any cut-back structure that will support it.
Applying the virtual load to the cut-back structures shown in Figure 10.26
(i) and (ii) produces the moments M/W and M;/W, where M, is the moment
produced in the cut-back structure at (ii) by the applied load W. Thus, the
required deflection y is also given by:

y = f M(M + Vim)ds/WEI

g g
) T (ii) T

Figure 10.26

NN

and:

y = [ My(M + Vim)ds/WEI
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and:

y = [ MM + Vim)ds/WEI + [ Vim(M + Vim)ds/WEI
= f (M, + Vm)(M + Vim)ds/WEI

Thus, the actual moment in the original structure is given by:
(M + V) = (M, + Vm)

and this is equivalent to employing the two cut-back systems shown in Figure
10.27.

This interchanging of the cut-back systems may result in considerable sim-
plification in the flexibility matrix method.

Example 10.16

Wi = Wi +VX g

vt

NN
—
—»

NAN
—

Figure 10.27

Determine the bending moment at the support 1 of the frame shown in Figure
10.28.

Using the cut-back systems shown, the redundants Hs, Vs, and M; are
given by:

fu fia fis||Hs x}X/
fr1 fa sl Vs|=— )’;V
i1 i fa3]|[Ms 0y

fu = [midsIEI

= 213/3E]

fio = fmlmz ds/EI
=0
=fn

fiz = fm1m3 ds/EI
— —2h2/2E],

= f31
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w W
2 [T
5 3
_ M
1P g
™M, 4
77777 77777
N
o
+ Hg X my (i
11
h
'
T B
Vs x " (i)
Ny
+ My % s .
I
7777 7777 E— -

Figure 10.28

fro = fm% ds/EI
= hI2/2EI, + P12EI,
fo3 = fm2m3 ds/EI
=0
=
fm% ds/EI
= 2h/1, + /1,
2 = [ Mm, ds/E
=0
YW = [ Mm, ds/EI
=0
0¥ = [ Mm; ds/EI
= WI2/12EI,

oh
w
I
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Substituting:

b = b1/, gives

2bh2/3 0 —bh |[H, 0
0 (Bl2+12112) 0 0|=- o
—bh 0 (2b + 1)| | M; Wi/12

Expanding this expression gives:

Hgbh—M3b/2 =0
Hbh — My(2b + 1) = Wi/12

and: M; = —Wli/6(b + 2)
H, = 3Ms/2h

The bending moment at support 1 is given by:

M, = M, — hH,
— WIN2(b + 2)

Supplementary problems

Use the stiffness matrix technique to solve the following problems.

$10.1 The continuous beam shown in Figure S10.1 has the relative EI/l val-
ues shown ringed alongside the members. Set up the stiffness matrix for the
beam and determine the bending moments at the supports due to the applied
loading.

20% 20%
4 | Vo
2 ® T 2 ® T 3 ® 4 R
80" 80" 80"

Figure §10.1



Matrix and computer methods 527

$10.2 Figure $10.2 shows a propped frame with members of uniform section
and with a value of 16 kip-ft for WI. Set up the stiffness matrix for the frame
and determine the bending moments at the ends of each member.

l
N
;

77
Figure §10.2

$10.3 Set up the stiffness matrix for the rigid frame shown in Figure $10.3 (i),
in which all the members are of uniform section and there is a fixed support at
1 and a hinged support at 4. The inverse of this matrix is:

6, 0.182 P,

05 -0.023 0.159 symmetric || Py;
= l/EI

0, 0.114 —0.046 0.477 Py

x,/1 0.068 0.023 0.136 0.099]|IP,,

Determine the horizontal displacement of joint 2 and the clockwise rotation
of joint 4 due to a clockwise unit moment applied at support 4. Hence, for the
frame shown in Figure $10.3 (ii), determine the bending moment M, due to
the indicated load H.

(9 2 3 H
_» "‘
X
1 4 My
7777 757 7777 7777
l

® (i)
Figure $10.3
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$10.4 Set up the stiffness matrix for the structure shown in Figure $10.4 and
determine the forces in the members. The relative EA values are shown ringed
alongside the members.

12 312

Figure §10.4

$10.5 Set up the stiffness matrix for the pile group shown in Figure $10.5 and
determine the force in each pile. The piles are end-bearing and may be consid-
ered pin-ended. The pile cap may be assumed to be rigid, and the soil under
the cap carries no load. The value of AE/l is constant for all piles, and it may
be assumed that sina = 1.0 and cos« = 1/4, where a = angle of inclination of
a pile.

2' 2.5’

Figure §10.5

Use the flexibility matrix method to solve the following problems.

$10.6 The cable-stayed bridge shown in Figure S10.6 consists of a continuous
main girder 12, supported on rollers where it crosses the rigid piers, and two
cables, which are continuous over frictionless saddles at the tops of the tow-
ers. The modulus of elasticity, cross-sectional areas, and second moments of
area of the members are given in the table. Consider the force R in the cable
as the redundant and set up the flexibility matrix for the cut-back structure.
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Determine the force R in the cables produced by a uniform load of 1 kip/ft
over the girder.

E I A
Member kips/in® in* in?
Cable 30,000 - 20
Tower 3000 - 100
Girder 3000 100,000 1000
|
1 2

30’ 30’ 30' 30’ 30°

Figure $10.6

$10.7 The symmetrical, two-hinged arch shown in Figure $10.7 has a constant
second moment of area, and the arch axis is defined by the coordinates given
in the table. Determine the value of the horizontal thrust at the supports.

x ft 0 7.5 16.8 27.4 39.0 50.0

y ft 0 9.4 17.0 22.6 26.0 27.2

sft 0 12.0 24.0 36.0 48.0 60.0
25k

27.2'

100’

T

Figure $10.7
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1 1 Elastic instability

Notation

c12  carry-over factor for a member 12 from end 1 to end 2
E Young’s modulus

I second moment of area of a member

j stability function = 2(g + 7) — pn?

7' stability function = ¢’ — pr?

/ length of a member

m stability function = 2(q + r)/j

m stability function = ¢q'/j’

M, moment acting at end 1 of a member 12

MYF,  fixed-end moment at end 1 of a member 12

n stability function = g — m(qg + 7)/2
n' stability function = n{1 — (o/n)?}

o stability function = » — m(q + r)/2
P axial force in a member

Pr  Euler load

P,  total internal force, acting in the x-direction, produced at joint 1 by the
joint displacements

Py total internal moment produced at joint 1 by the joint displacements

P;, axial force produced at end 1 of a member 12 by the joint displace-
ments, referred to the member axis

q stability function = sl/EI = al(sinal — alcos al)/(2 — 2cosal — al sinal)

q stability function = g(1 — ¢?)

QO1, shear force produced at end 1 of a member 12 by the joint
displacements

Q12 shear force produced at end 1 of a member 12 by the joint displace-
ments, referred to the member axis

r stability function = gc = al(al — sinal)/(2 — 2cosal — alsinal)

s;3  restrained stiffness at end 1 of a member 12

[S]  stiffness matrix for the whole structure

t stability function = 6/(q + 7)

W applied load

W, critical load

{W} vector of external loads applied at the joints

x horizontal displacement
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y vertical displacement

a = (P/EI)*?

0 rotation

A = Cos ¢

I = sin ¢

p = P/Pg

T = A+ ptan ¢

0] angle of rotation due to sway
{A}  vector of joint displacements

11.1 Introduction

If the applied loads on a structure are continuously increased, the axial forces
and bending moments in the members increase until collapse eventually occurs
either by plastic yielding, by buckling of the members, or by a combination of
both. When the axial forces are appreciable, the dominant factor is buckling.
In this chapter, attention will be confined to structures in which the stresses
in the members are entirely within the elastic range at collapse and buckling
occurs in the plane of the structure. The load at which the structure collapses
is known as the critical load.

The effect of an axial compression on a member is to reduce its stiffness
and of an axial tension is to increase its stiffness. As the applied loads on a
structure increase, the member forces increase and the overall resistance of the
structure to any random disturbance decreases. At the critical load, the struc-
ture offers no resistance to the disturbance, the configuration of the structure
is not unique, and any displaced position may be maintained without addi-
tional load. An alternative definition of the elastic failure load for structures
subjected to primary bending moments is the load at the transition from sta-
ble to unstable equilibrium. The members of such a structure are subjected to
deformations associated with the buckling mode before failure occurs. The
load-displacement curve reaches a peak at the failure load, with increased dis-
placement being produced by decreasing load.

Several methods are available for determining the critical load. The stiffness
matrix of the structure may be formed and, by trial and error, the critical load
is obtained as the load that produces a singular matrix!2. Alternatively, the
largest latent root of a matrix, derived from the stiffness matrix, may be used
as a criterion®. Moment-distribution methods may be applied to determine the
stiffness offered by the structure to a random disturbance®>®, Alternatively, the
rate of convergence of the moment-distribution technique may be used as a cri-
terion’. An estimate of the critical load may be determined from a mathemati-
cal approximation to the applied load-stiffness relationship of the structure®.
The first method is readily applied to simple structures; for complex structures,
the determinant of the stiffness matrix may be evaluated by computer.
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The analysis here is confined to structures consisting of straight prismatic
members. The critical loads of structures consisting of non-prismatic members
may be obtained similarly with the aid of additional tabulated functions’.

The stability of structures in both the elastic and partially plastic ranges has

been covered by Horne and Merchant!©.

11.2 Effect of axial loading on rigid frames without sway

(a) Modified moment-distribution procedure

The restrained stiffness s of the straight, prismatic member 12 subjected to an
axial force P, as shown in Figure 11.1, is the bending moment required to pro-
duce unit rotation at end 1, end 2 being fixed. The carry-over factor is the
ratio of the moment induced at 2 to the moment required at 1. The bending
moment at any section at distance x from 1 is given by:

—EI d?y/dx? =s—sx(1 + ¢)/l + Py

l(s + sc)ll

Figure 11.1

The general solution of this differential equation is:
y = A cos ax + B sin ax —s/P + sx(1 + ¢)/P!

where o = (P/EI)°3. The constants A and B are determined from the end con-
ditions, y = 0 at x = 0 and at x = [ and:

y =s{cos ax —(cot al + ¢ cosec o) sin ax —1 + x(1 + ¢)/I}/P

The value of ¢ is determined from the end condition, dy/dx = 0 at x = [ and:
¢ = (ol —sin al)/(sin ol — al cos al)

The value of s is determined from the end condition, dy/dx = 1 at x = 0 and:
s =aEI(1—al cot al)/2(tan al/2 — all2)

Values of s and ¢ have been tabulated!"!? and graphed!'®!%!%16, In Table 11.1
the functions ¢ = sl/EI and r = gc have been tabulated in terms of the variable
p = PIPg = o*/n* where Py is the Euler buckling load for a column hinged at
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Table 11.1 Stability functions for frames without sway

p q r q t p q r q' t

40 —oo % 0.00 o 1.3 1.89 269 -1.94 1.310
3.9 -7833 78.57 0.49 24770 12 209 261 -117 1277
3.8 —38.17 38.65 096 12,610 1.1 228 254 —0.53 1245
3.7 —24.68 25.39 142 8555 1.0 247 247  0.00 1.216
3.6 —17.87 18.79 1.89  6.523 0.9 265 241 0.46 1.188
3.5 —13.72 14.85 235 5309 0.8 282 235 086 1.162
34 —1091 12.24 2.83 4497 0.7 298 229 122 1.138
33 —8.86  10.40 333 3916 0.6 3.14 224 1.54  1.115
32 =7.30 9.02 386  3.480 0.5 329 219 1.83  1.093
31 —6.05 7.96 442 3141 04 344 215 210 1.073
3.0 -5.03 7.12 5.05  2.868 0.3 3.59 211 2.35  1.053
2.9 —4.18 6.44 577  2.646 02 373 207 258 1.035
2.8 —3.44 5.88 6.61 2460 0.1 3.87 203 280 1.127
27 -2.81 5.42 7.63 2302 0.0 4.00 2.00  3.00 1.000
26 —225 5.02 8.95 2167 —02 426 194 337 0.969

25 -1.75 4.68 10.75 2.049 -04 450 1.88 3.71  0.940
24 -1.30 4.38 13.47 1946 -0.6 474 1.83 4.03  0.913
23 -0.89 4.13 18.19 1.855 -0.8 496 1.79 431 0.889
22 -0.52 3.90 28.78 1.774 -1.0 518 1.75 4.58 0.867
2.1 —-0.18 3.70 77.83 1.702 -1.5 5.68 1.67 5.19  0.817
2.0 0.14 3.53 —86.86 1.636 —-2.0 6.15 1.60 5.73 0.775
1.9 0.44 3.37 —=25.35 1.577 =2.5 6.58 1.54 6.22  0.738
1.8 0.72 322 -—13.78 1.522 -3.0 6.99 1.50 6.67 0.707

1.7 0.98 3.10 —8.83 1473 -3.5 7.37 146 7.08 0.679
1.6 1.22 2.98 —6.03 1.427 —-4.0 7.74 143 747  0.655
1.5 1.46 2.87 —4.22 1.385 —5.0 8.42 1.38 8.18 0.612
1.4 1.68 2.78 —-2.92 1.346 -7.0 9.62 1.30 9.45 0.549

both ends and is given by Py = 7w?El/I%. Positive values of p indicate that P is
compressive and negative values indicate that P is tensile. For negative values
of p, a is imaginary, and the trigonometrical functions in the expressions for ¢
and s are replaced by their hyperbolic equivalents.

The modified stiffness of the member 12 when the end 2 is hinged is given by:

s =s(1—¢2)

and values of g’ = s'l/EI are tabulated in Table 11.1.

Axial loading in a member also modifies the fixed-end moments in the mem-
ber. The bending moment at any section a distance x from 1, for the uniformly
loaded member shown in Figure 11.2, is given by:

—EId%y/dx? =—MF + Wx/2 —Wx2/2] + Py
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Figure 11.2

The general solution of this differential equation is:
y=Acos ax + Bsin ax + MF/P + W(x? — xI—2/a?)/2P]

where o = (P/EI)%. The constants A and B are determined from the end con-
ditions, y = 0 at x = 0 and dy/dx = 0 at x = /2 and:

dy/dx =(W/l—a2MF)(—sin ax + cos ax tan ad/2)/Pa + Wx/Pl—WI/2P

The value of MF is determined from the end condition, dy/dx = 0 at x = 0
and:

MF =W(2— alcotal/2)/2a2]
= tWi12

where ¢t = 6/(g + r) is a magnification factor to allow for the effect of the axial
load and is tabulated in Table 11.1. Similarly, the fixed-end moments for mem-
bers subjected to concentrated loads may be obtained, and a wide range of val-
ues have been presented'®!*15, The notation adopted in the stability analysis
of frames without sway is shown in Figure 11.3.

A graphical representation of the functions is shown in Figure 11.4.

Example 11.1

Determine the moments in the frame shown in Figure 11.5 for a value of
W = 0.625Pg. All the members are of uniform section.

Solution

Neglecting the axial force in the beam, the stiffness (allowing for symmetry)
and fixed-end moments for the beam are:

s;3 = 2EI/l and Ml = —-0.25WI

For a value of W = 0.625Pf and p = 1.235, the stiffness and carry-over fac-
tors for the columns are obtained from Table 11.1 as:

sy, = qEI/l = 2EI/l
¢y = 1lg = 2.65/2 = 1.325
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tWi/12 tWl/12
w
P T I I I I T R,

Figure 11.3
80
60 - q r
40}

20

720 -

_40 -

—60 F q q

_80 L

Figure 11.4

The distribution factors at joint 2 are 0.5 and the final moments are:

M,, = 0.25WI X 0.5 = 0.125W!
M,, = 0.125WI X 1.325 = 0.166WI
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Figure 11.5

The corresponding values obtained when the axial forces in the columns are
neglected are:

M,, = 0.25WI X 0.67 = 0.167WI
My, = 0.167WI X 0.5 = 0.083W!

(b) Determination of the critical load

Consider the small clockwise moment M applied to the rigid joint o of Figure
11.6, causing the joint to rotate through an angle 6. The stiffness of joint o is:

S, =2'S,,
and

0 =Mis,

Figure 11.6

If axial compressive forces are applied to the # members, their stiffnesses
decrease, s, decreases, and 6 increases. As the axial forces are continuously
increased, s, continues to decrease until eventually, at the critical load, elastic
instability occurs at the joint and 6 becomes infinite. In general, it is unneces-
sary to apply the exciting moment M since initial imperfections in the members
and unavoidable eccentricity of the axial forces produce sufficient disturbance.
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Instability of the propped frame shown in Figure 11.7 occurs in the sym-
metrical mode shown at (i). The applied loads are transferred directly to the
foundations, and there is no axial force in beam 23. The rotation of joint 3
is equal and opposite to the rotation of joint 2, and the critical load may be
determined by considering the stiffness of joint 2 only. Thus:

S) =83 T8y
—2EI/l + g}, Elll

W w W, W,
, , : :
2 3
1 4
77R7 7Y
. ! . @
Figure 11.7

At the critical load:
s, =0
and
9 =2
From Table 11.1:

p=W./Pg
=1.31

and
W. =1.31x2El/I?

For zero applied load, the stiffness of joint 2 is SEI/l. The variation of the stiff-
ness may be determined for different values of p and is plotted in Figure 11.8.

When several joints in a structure are involved, it is necessary to set up the
stiffness matrix of the structure. In section 10.2 it was established that this is
given by:

where {W} is the vector of external loads applied at the joints, {A} is the vector
of joint displacements, and [S] is the stiffness matrix of the whole structure.
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Figure 11.8

As the external loads are continuously increased, the axial forces in the mem-
bers increase and the elements in the stiffness matrix change. At any particular
loading stage, the joint displacements are given by:

{A}=[S]"1{W}
and
[ST7T = adj [S)/IS

where adj [S] is the transpose of the matrix of the cofactors of [S] and IS| is the
determinant of [S]. At the critical load, all joint displacements become infinite
and IS| = 0, i.e., the stiffness matrix is singular.

To determine the critical load for a particular structure, a trial-and-error
procedure is adopted. A trial value is chosen for the load factor, and the axial
forces in the members are estimated. From Table 11.1 the values of the stability
functions are obtained and substituted in the stiffness matrix. The determinant
of the stiffness matrix is now evaluated. Several values of the load factor are
tried until the value producing a singular stiffness matrix is obtained. A lower
bound and an upper bound on the critical load may be obtained by consider-
ing the member with the largest axial force. If this member is pin-ended, insta-
bility will occur at a value of p = 1. If this member is fixed-ended, instability
will occur at a value of p = 4. It is unnecessary to evaluate the determinant for
all trial values, as the condition of the structure may be deduced by inspection
of the stiffness matrix. Thus, if the matrix is dominated by its leading diago-
nal, the structure is stable; and if any element on the leading diagonal is zero
or negative, the structure is unstable and the critical load has been exceeded.

Example 11.2

Determine the value of W at which elastic instability occurs in the rigid frame
shown in Figure 11.9. All the members are of uniform section.
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Figure 11.9

Solution

The stiffness of joint 2 is:

S) = S3 T sy
2E1/21 + g}, ET/l

At the critical load:

52 :0
and

95 =1

pr=1.18

Hence, instability occurs at a value of the applied load of:
W, =1.18P,

where Py is the Euler load for a column.

Example 11.3

Determine the value of W at which elastic instability occurs in the rigid frame
shown in Figure 11.10. All the members are of uniform section.

Solution

Instability occurs in the mode shown at (i), and the rotation of joint 5 is equal
and of the same sense as the rotation of joint 2. Thus, instability at joints 2
and 3 only need be considered.
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Figure 11.10

The axial strains in the columns produce no flexural deformations, and the
stiffness sub-matrices of the members are given by:

= Elll

M 4 2]]6
= Elll

M, 2 4|6

M,, = qEIb,/I
M,, = qEIb,/I

Collecting the relevant terms gives:

Ly (4 +q) 2 0,
= Ell
By 2 B+aq)] |0
For a value of p=2.6, g = —2.25 and the determinant of the stiffness
matrix is:
1.75 2
=2.10
4 5.75
For a value of p = 2.7, g = —2.81 and the determinant is:
1.19 2
=-1.82

4 5.19
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Hence, instability occurs at a value of p = 2.65 and the critical load is:

W, = 2.65P;

Example 11.4

Determine the value of W at which elastic instability occurs in the rigid frame
shown in Figure 11.11. All the members are of uniform section.

w 2w 2W 4
\ Y Y A
2 3 5 7
1 4 6 8
77777 77777 Yza 77777
P 2 | 2 | 2 N
0, 0 —0, —0,
®

Figure 11.11

Solution

Instability occurs in the mode shown at (i), and only joints 2 and 3 need be
considered.

Neglecting the effect of axial strains in the columns, the stiffness sub-
matrices of the members are given by:

= El/l
M35 = E193/1

M;, = q34EI165/]

Collecting the relevant terms gives:
) (2 +ay) 1

1 3+ g34)

= El/l

0, ]
By 05
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For values of py; = 1.3 and p34 = 2.6, g1 = 1.89 and ¢34 = —2.25 and the
determinant of the stiffness matrix is:
3.89 1
=1.92
1 0.75
For values of py; = 1.4 and p34 = 2.8, g1 = 1.68 and ¢34 = —3.44 and the

determinant of the stiffness matrix is:

3.68 1
= —-2.62

1 —0.44

Hence, instability occurs at a value of p,; = 1.34 and the critical load is:

W. =1.34P,

Example 11.5

Determine the value of W at which elastic instability occurs in the rigid truss
shown in Figure 11.12. All the members are the same length and are of uni-
form section.

l w

1 2 5 o wi2\B3 wi2\3 —0,

W WM
3 4 —wh3

Figure 11.12
Instability occurs in the mode shown at (i), there is zero rotation at joint 2,
and only joints 1 and 3 need be considered. The axial forces in the members,
assuming all joints in the truss are pinned, are shown at (i), and the relation-

ships between the P/Pg values are py3 = —p13 = —p34 = 2p12.
The stiffness sub-matrices of the members are given by:
Mi; q13 0y
= El/l
M;, 13 di3 | | 63
M, 34 34 03
= EI/
My 734 934 | | =05
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M;, =q,;3El65/]

Collecting the relevant terms gives:

Py (q12 + q13) n3 6,

= El/l

Fys 13 (@13 T ga3 T @34 —134) | | 05
For a value of P12 = 17, d12 = 098, q13 = 730, qr3 = _1091, q34 = 730,

and r34 = ry3 = 1.47 and the determinant of the stiffness matrix is:

8.28 1.47
=16.22
1.47 2.22

For a value of P12 = 175, d12 = 085, q13 = 737, qr3 = _1372, q34 = 737,
and r34 = 713 = 1.46 and the determinant of the stiffness matrix is:

8.22 1.46
=-=5.75

1.46 —0.44
Hence, instability occurs at a value of p;, = 1.74 and the critical load is:

W, = 2(3)%5 X 1.74P,
= 6.03P,

(c) Effect of primary bending moments

When the loading on a structure is applied only at the joints, the members
remain straight prior to buckling and no bending moments are produced by
the loads. When the loading on a structure is applied within the lengths of
the members, primary bending moments are produced that in general cause
deformations associated with the buckling mode. In the case of a single-bay
frame with loading applied to the beam, the buckling load is lower than the
critical load of an identical frame with the loading system replaced by statically
equivalent loads at the joints!”>!%!°, The buckling load, associated with the
symmetrical mode of instability, is considerably decreased by primary bending
moments, owing to the fact that the axial force in the beam reduces its stiff-
ness. The buckling load, associated with the side-sway mode of instability, is
only slightly decreased by primary bending moments, and the actual loading
system may be replaced by statically equivalent loads at the joints with very
small error.
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Example 11.6

Determine the value of W at which elastic instability occurs in the rigid frame
shown in Figure 11.13. All the members are of uniform section.

w
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Figure 11.13

Solution

The primary moments produce an axial thrust in the beam that is equal to the
horizontal reaction at the base of the columns. Allowing for this axial thrust,
the stiffness of joint 2 and the fixed-end moment at joint 2 due to the distrib-
uted load are:

Sy = Sy1 53
= {q5 +(q23 — 13)/2)El/l

Equating internal and external moments at joint 2:
{d5 +(q23 — 13)I12)EL6, /] — t,5WII6 = 0
The axial thrust in the beam is:

Py=H
=Elb,q,,/I*

Eliminating 6, from these two equations gives:
Py3{ayy +(q23 — 13)/2} — g5, £,3W/6 = 0
Dividing by m?EI/I* gives:
0351 t (93 = 123)/2} = 495, 85301/3 = 0

Values of p,; are assumed, and the corresponding values of p,; are obtained
from this expression by trial and error.
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For a value of py3 = 0.4, (g3 — r23) = 1.29, t,3 = 1.073 and p,; = 0.36,
41 = 2.20.

For a value of py3 = 0.8, (g3 — r23) = 0.47, t,3 = 1.162 and p,; = 0.59,
dy = 1.58.

For a value of py3 = 1.0, (g23 — r23) = 0.00, 3 = 1.216 and py; = 0.617,
d1 = 1.49.

For a value of py3 = 1.2, (g3 — 723) = =0.52, t,3 = 1.277 and p,; = 0.59,
41 = 1.58.

The variation of p,; with p,3 is shown plotted in Figure 11.14. At the origin,
with p,1 and p,3 approaching zero, the gradient of the curve is given by:

pilpy =33+ 2/2)/12
1

S 04+

p

02+

Figure 11.14

The maximum value of W that the frame can sustain is the critical value and
is given by the maximum value of p,;. Hence, instability occurs at a value of
p21 = 0.617, and the critical load is

W, =2 % 0.617P,
=1.234P,

where Py is the Euler load for a column.
This result may be compared with the value of p,; = 1.18 obtained in
Example 11.2 for an identical frame with the loading applied at the joints.

11.3 Effect of axial loading on rigid frames
subjected to sway

(a) Modified moment-distribution procedure

The methods of Sections 7.8 and 7.9 may be readily modified and applied
to the analysis of structures subjected to axial loads. An initial estimate is
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required of the axial forces in the members and the corresponding stiffness
and carry-over factors obtained. In addition, in setting up the sway equations
allowance must be made for the magnification effect of the axial loads. A sub-
sequent analysis may be performed if necessary, using revised values for the
axial forces.

The sway moments produced in the straight, prismatic member 12, shown
in Figure 11.15(i), are:

M, = M5, = OIr2
s(1+ ¢)x/l

Figure 11.15

The application of an axial force P to the member, as shown at (ii), results in
the increased lateral displacement mx, and the sway moments are:
ME, = ME, = mQI/2
s(1 + c)mx/l

where m is the magnification factor. Thus, by establishing a relationship
between P and m, the fixed-end moments in an axially loaded member sub-
jected to sway may be obtained as 7 times the moments in the member with
the axial load neglected. In addition, the lateral displacement of an axially
loaded member subjected to a shear force Q is given by:

6 = mx
mQI%/2s(1 + ¢)



548 Structural Analysis: In Theory and Practice

Taking moments about end 1 for the axially loaded member shown at (ii):

ME + ME, = Ol + Pmx
2s(1 + c)ymx/l = Ql + Pmx

Neglecting the magnification effect and the moment due to P gives:
2s(1+ ¢)x/l = Ol

Thus:
2s(1 + ¢) X (m — 1) = Pmxl = pr?Elmx/l

and:
m = 2(q + r)/(2q + 2r — pn?)

Similarly, when end 1 is hinged, the magnification factor is given by:
m' = q'l(q' — pr?)

The sway equation for the second story of the symmetrical single-bay frame
shown in Figure 11.16 is:

—2(My, + My,) = mhy (W, + W)

W, J W w
| Y

= ]
h3

W3‘ 2 3 \

= 1
h2

Wil 4 \

[
h]

\
77777 77777 T

Figure 11.16
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The initial fixed-end moments required to satisfy the sway equation are:

Mfz = Mgl
=—mh,(W; + W,)/4

The out-of-balance moment at joint 1 is distributed while allowing joint 2 to
translate laterally without rotation so that the sway equation remains satisfied.

From Figure 11.17 where s’ and ¢’ refer to the modified stiffness of 12 and
the modified carry-over factor from 1 to 2:

s =s—mxs(1+ )/l
s'c’ =sc—mxs(1+ )/l

s(1+ )l

+ mx X

s(1+ )l

N s

Figure 11.17

Neglecting the magnification effect, it is shown in Section 7.9 that:

s'=s—s(1+c)2
s'’c"=sc—s(l+c)/2

Allowing for the magnification effect:

s'=s—ms(l+ ¢)/2
=nEl/l
s'c"=sc—ms(1+ ¢)/2
=oEl/l

The modified carry—over factor is:

¢ =oln
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The modified stiffness of the member 12 when end 2 is hinged is given by:

s" = nEI{1— (o/n)2)/l
= w'Elll

Values of 72, n, n’, and o have been tabulated'! and graphed'3 and are pre-
sented in Table 11.2. The notation adopted in the stability analysis of frames
with sway is shown in Figure 11.18.

Table 11.2 Stability functions for frames with sway

’ ’

p m n o n p m n o n

1.50 -1.41 4.51 5.93 —-3.28 0.27 130 —-0.10 -—1.64 26.46
140 —1.82 5.73 6.83 —241 0.25 1.27 0.00 —1.57 el
1.30 -2.50 7.60 840 -—-1.69 023 1.24 0.10 —-1.51 -—23.45
1.20 -3.85 11.13 11.65 -1.06 020 1.21 024 -143 -84
1.10 =790 2132 21.57 -0.51 0.15 1.15 0.45 -130 —3.29
1.02 —-40.33 101.47 101.51 -0.20 0.10 1.09 0.65 —-1.19 —-1.53
1.00 el % el 0.00 0.05 1.04 0.83 —-1.09 —-0.59
0.98 40.73 —98.47 -98.51 0.20  0.00 1.00 1.00 —-1.00 0.00
0.95 16.41 —38.41 —38.53 0.24 —-0.10 0.93 1.31 —-0.85 0.75
0.90 8.31 —18.33 —18.57 0.48 —0.20 0.86 1.59 -0.73 1.25
0.85 5.60 —11.58 —-11.93 0.72 —0.40 0.76 2.06 -0.56 1.91
0.80 425 —-8.16 —8.63 0.97 -0.60 0.69 247 =043 2.40
0.75 3.44 —-6.08 —6.66 1.22 —-0.80 0.63 2.83 -0.34 2,79
0.70 290 —4.67 —5.35 148 —1.00 0.58 3.15 —-0.27 3.13
0.65 251 -3.63 —443 1.77 =120 0.55 3.45 -0.22 3.43
0.60 222 -2.84 -3.74 2.08 —1.40 0.51 3.72 -0.18 3.71
0.55 200 -221 -3.21 246 —1.60 0.49 3.98 -0.15 3.97
0.50 1.82 -1.69 -2.79 292 —-1.80 0.46 422 -0.13 4.21
0.45 1.67 —-125 —-245 3.54 —-2.00 0.44 444 -0.11 4.44
0.40 1.55 -0.88 —2.17 4.50 —-2.50 0.40 497 -0.07 4.97
0.35 1.44 -0.55 —1.94 6.28 —3.00 0.36 5.44 -0.05 5.44
0.30 1.35 -026 -1.74 11.39 -3.50 0.34 5.88 —0.03 5.88

P
o
2 2
01/2 mol/2

! Ql/2 ! mQl/2
l Al

P
"] <"

Figure 11.18
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A graphical representation of the functions is shown in Figure 11.19.

100
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20
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—100 -

Figure 11.19

Example 11.7

Determine the moments in the frame shown in Figure 11.20 for a value of
W = 0.01375Pg. All the members are of uniform section.
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10w 10w
Yoy '
2 3
1 4
77777 77777

Figure 11.20

As a first approximation, the axial force in each column is taken as 10W and in
the beam as zero. The stiffness, carry-over factors, and initial sway moments are:

s,3 = 6EI/l

sy, = nEI/l
0.5EI/l
¢y =oln
-1.27/0.5
—2.54
Mf, = Mj,
-mWi/4
=-0.282WI

The distribution factors at joint 2 are d,3 = 12/13 and d,; = 1/13, and the
final moments are:

M,; = 0.282WI X 12/13
=0.260WI

M,, =—0.282WI —2.54 X 0.022WI
=—0.338WI

The corresponding values obtained when the axial forces in the columns are
neglected are:

M,; =0.25WI X 6/7
=0.214WI

M,, = —0.25WI— 1 0.036WI
= —0.286WI

Example 11.8

Determine the moments in the frame shown in Figure 11.21. For the columns,
EI = 3 X 10° Ib/in? and for the beams, EI = 6 X 10°Ib/in?.
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Figure 11.21

Solution

The Euler load for each column is:

P, =72 X 3% 10°/(120)2
=2,055,000 Ib

As a first approximation, the axial force in each column is taken as 112 kips
and in each beam as zero. The p, m, n, and o factors are:

p =112,000/2,055,000
=0.055

and:
m=1.045, n=0.81, o=-1.1

Because of the skew symmetry, only the left half of the frame needs to be
considered, with a modified stiffness of 6EI/l applied to the beams and no
carry-over between the two halves.

The initial sway moments are:

Mi; = Mj,

—4.48 X 10X 12 X 1.045/4
—140 kip-in

M3,

—13.44 X 10 X 12 X 1.045/4
= —420 kip-in

F
MlZ

The distribution procedure and the final moments are given in Table 11.3.
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Table 11.3 Distribution of moments in Example 11.8

Joint 1 2
Member 12 21 22’ 23 32 33’
Relative EI/l 3 3 2 3 3 2
Modified stiffness 2.43 2.43 12 2.43 2.43 12
Distribution factor 0 0.144 0.144 0.168
Carry-over factor — -1.35 — -1.35

-1.35 —
MF sway —420 -420 —140 —140
Distribution 81 81 24
Carry-over —-109 —-32 —-109
Distribution N 5 18
Carry-over -7 —24 -7
Distribution 3 3 1
Carry-over —4 -1 —4
Final moments, kip-in ~ —540 -331 438 -107 -217 217

(b) Modified matrix methods

The methods of Section 10.2 may be readily modified and applied to the anal-
ysis of structures subjected to axial loads. The stiffness matrix for a structure
must be expressed in terms of the m, g, and r functions. An initial estimate is
required of the axial force in each member in order to determine initial val-
ues of the stability functions, and the analysis is then carried out. A subse-
quent analysis may be required with revised values of the stability functions if
the axial forces derived in the first analysis differ appreciably from the initial
estimates.

The stiffness matrix for a straight prismatic member 12, allowing for axial
strains and referred to the member axis, is given by:

P, All X',
10}, 0 2(q +7r)im symmetric Y/l
M,, - 0 (@ +7) q 0,
P, —All 0 All x4
105, 0 —2(q + r)im —(g+7) 0 2(q +7)Im v5 /1
M,, 0 (g +7) r 0 —(g +7) q 051

Example 11.9

Determine the moments in the frame shown in Figure 11.20 for a value of
W = 1.01375Pg. All the members are of uniform section.
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Solution

The axial forces in the members may be estimated from the results of Example
11.7, neglecting the sway displacement, as:

Py; = 0.260W + 0.338W
=0.598W

Py, = 10W + W —0.676W
=10.324W

Py, = 20W —10.324W
=9.676W

The corresponding stability functions are:

Pr3 = 0.0082, q23 = 3.995, 3y = 2.003

P34 = 0.1420, q34 = 3.810, 34 = 2.049, Mmss = 1.136
o1 =0.1330, gy, =3.822, 1y, = 2.048, m,, =1.126

Neglecting axial strains, the stiffness submatrices for the members are given by:

M,, 3.822 —5.870| | 0,
= El/l
10, —5.870 10.426 | |x,/1
M,; 3.995  2.003 ] (0,
=EI/
M;, 2.003  3.995] |6,
M;, 3.810 —-5.859 0,
= El/l
10, -5.859 10.314 | | x,/I
Collecting the relevant terms gives:
P, 0 7.817 2.003 —-5.870 0,
Py; =| 0 |=ElI| 2.003 7.805 —-5.859 0,
P, + 1P, wi -5.870  —5.859 20.740 | | x,/I

The joint displacements are:

0, = 0.04354WI2/EI
0, = 0.04349WI2/EI
x, = 0.07283WI3/EI
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The moments and axial forces are:

M, =3.810 ¢, — 5.859x,/l = —0.2610W!

M,; = 2.049 0, — 5.859x,/l = —0.3376W!
M,, = 3.822 0, — 5.870x,/l = —0.2611WI
M,, =2.048 6, —5.870x,/l = —0.3383WI
Py, = — 5.859 0, +10.314x,/l = 0.4964W
Py, = 10W + (M,; + My, )/l = 10.5221W
Py, =20W —P,, = 9.4779W

An additional analysis is unnecessary, as the revised values of the axial forces
differ only slightly from the initial estimate.

(c) Determination of the critical load

Instability of frames that are liable to sway occurs in a skew-symmetrical
mode, and the critical load is invariably lower than that of an identical frame
in which sway is prevented. In the case of a symmetrical single-bay frame, the
stiffness of the columns is readily expressed in terms of the 7 and o functions,
and the critical load is the one that produces a singular stiffness matrix.

Instability of the frame, shown in Figure 11.22, occurs in the skew-symmet-
rical mode shown at (i). The rotation of joint 3 is equal and of the same sense
as the rotation of joint 2, and the critical load may be determined by consider-
ing the stiffness of joint 2 only. Thus:

Sy =833 T 5y
=6Elll 4+ n', El/l

w w
/ A

2 3

1 4

[
@
Figure 11.22
At the critical load:
s, =0

and
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From Table 11.2:
pP= WC/PE
=0.177

and
W. =0.17772El/I?

This result may be compared with the value of p = 1.31 obtained in Section
11.2(b) for an identical frame with sway prevented.

In the case of multi-bay frames, a procedure similar to that used in Section
7.9 may be employed to reduce the structure to an equivalent single-bay sym-
metrical frame. However, for the determination of the critical load, it is unnec-
essary for the original structure to satisfy exactly the principle of multiples®’.
The frame, shown in Figure 11.23, may be reduced with sufficient accuracy to
the single-bay frame shown at (i). The EI/l value for the beam of the equivalent

frame is given by Sk’ where k’ is the EI/l for beam i of the original frame.
The EI/l value for each column of the equivalent frame is given by Zk;/z,

where k¢ is the EI/l value for column j of the original frame. The p value for

each column of the equivalent frame is given by X W, /S Pg,, where X W, is the
sum of the applied loads and X P, is the sum of the column Euler loads of the
original frame.

4 b W, b Ws b wW,/2
/ kl \ k2 ¥ \] Ek/ Y
c C C
ki % “ W2
P Py P ZPg,/2
77777 777777 77777 777777 777777

®
Figure 11.23

Example 11.10

Determine the value of W at which elastic instability occurs in the rigid frame
shown in Figure 11.24. All the members are of uniform section.

Solution

The stiffness of joint 2 is:

Sy =33 55
= GEI/2] + n} Elll
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Figure 11.24

At the critical load:

s, =0

and:
ny, =—3
Py =0.142

Hence, instability occurs at a value of the applied load:

W. = 0.14272El/2

Example 11.11

Determine the value of W at which elastic instability occurs in the rigid frame
shown in Figure 11.25. All the members are of uniform section.

114 oW 2w 114
\i \ A
2 3 5 7
1 4 6 8
V4 Ve Ve Vi
2 21 2 X

Figure 11.25
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Solution

The frame may be replaced by an equivalent single-bay frame with a beam
stiffness of:

6E(31)/2] = 9EI/I
and a column stiffness of:
nE(41)/2] = 2nEl/]

At the critical load:

n=-4.5
p =0.69
=6W/4P

Hence, the critical load is:
W, =0.46P;

A more accurate value may be obtained by setting up the stiffness matrix for
the original frame. Instability occurs in a skew-symmetrical mode with 65 = 6
and 0, = 6,. Neglecting axial strains, the stiffness sub-matrices for the mem-
bers are given by:

M,; 2 1 0,
= El/I

M, 1 2|0

M, D —(g21 +11) b,
= El/I

10y, ~(g21 +11) 2qyy + 1 Vmyy | | xy/1

M;y d34 —(q34 T 134) 05
= El/I

1034 —(q34 +138)  2(q34 T 138)msy | | x5/1

Collecting the relevant terms gives:
By, (2 +4921) 1 (g2 T ) | | 0
Py =El/I 1 (5 +qs4) —(q34 +134) 03

[P, + 1P (g1 t 1) —(q34 T 134) (121 + 734) x,y /1
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where:

Jo1 = 2dyy + 1)y,
and:

J34 = 2(q34 + 134)/m134

For values of py; = 0.44 and p34 = 0.88 the determinant of the stiffness
matrix is:

5.39 1.00 -5.55
1.00 7.68 =5.07 | =10.8
—5.55 =35.07 8.22

For values of py; = 0.46 and p34 = 0.92 the determinant of the stiffness
matrix is:

5.34 1.00 —5.53
1.00 7.61 -5.03|=-17.0
—5.53 =5.03 7.49

Hence, the critical load is:

W. = 0.448P,

Example 11.12

Determine the value of W at which elastic instability occurs in the rigid frame
shown in Figure 11.26. All the members are of uniform section.

w w w 3IW/R2 3IW/2
/ VL @ !L
e @
= w w 14 3IW/2 3IW/2
A\ Yy \ ] \ ] ! @ y
s @
1 6
77777 77777 77777 777777 777777
| 21 o 21 | | 21 |

Figure 11.26
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Solution

The frame may be replaced by the equivalent single-bay frame shown at (i),
with the relative second moment of area values ringed. The stiffness sub-matri-
ces for the members are given by:

M,; ny3 023 b,
= 3EI/2]

M, 023 ny3 05

M,5 = 6EI0, /I
Collecting the relevant terms gives:

Py, (4 + ny3 + 1y 03 b,
= 3EIl/2]

Fys 023 (4+mny3) | | 65

For values of p,3 = 0.30 and p,; = 0.60 the determinant of the stiffness
matrix is:

0.90 —-1.74
=0.34

-1.74 3.74

For values of p;3 = 0.31 and p,; = 0.62 the determinant of the stiffness
matrix is:

=-1.18

0.54 —1.78
-1.78 3.68

Hence instability occurs at a value of p,3 = 0.302 and the critical load is:

W. = 0.302P,

(d) Effect of primary bending moments

The buckling load of a structure liable to side sway is only slightly reduced by
primary moments caused by vertical loads. Immediately prior to buckling, the
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expressions derived in Section 11.2(c) for the no-sway case are applicable. As
buckling occurs, an additional expression involving the 7z and o functions must
be satisfied.

A structure subjected to lateral loads, as in Figure 11.20, has no defined
buckling load?!. The frame displacements approach infinity as the vertical
loads approach the elastic critical load of an identical frame subjected only to
vertical loads.

Example 11.13

Determine the value of W at which elastic instability occurs in the rigid frame
shown in Figure 11.27. All the members are of uniform section.

w
T
2 3
1 4
77577 77577
| 21 o
|

Figure 11.27

Solution

There is no sway of the frame until buckling occurs, and the relationship
between p, and p,; established in Example 11.6 and plotted in Figure 11.14 is
applicable.

As buckling occurs, the stiffness of joint 2 is:

52 - 0
= S5y3 T8y
= (g3 + 13)ElI2] + n), El/l
= qy3 T 13 T 2ny,

At the skew-symmetrical buckling load, the relationship between p,; and ps3
is almost linear with: py; = p)3.
For a value of: py; = py3 = 0.12

dy3 T 1y + 2, =142
For a value of: p); = py3 = 0.14

Q3 T 13 + 21, = —0.02
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Hence, instability occurs at a value of p,; = 0.14 and the critical load is:

W. = 2 % 0.14P,
= 0.28P,

where P is the Euler load for a column.
This result may be compared with the value of p,; = 0.142 obtained in
Example 11.10 for an identical frame with the loading applied at the joints.

Example 11.14

Determine the value of W at which elastic instability occurs in the rigid frame
shown in Figure 11.28. All the members are of uniform section.

w w
W/l(lf \
2 3
1 4
Ve b e
| 2 .|
™ ™

Figure 11.28

Solution

The stiffness sub-matrices for the members are given by:

M,; q23 n3 b,
= EI/2]
M, n3 423 b5
M q5 -4, 0
Mo pm M 2 :
105, 45 951 1my, x,/1
M g = 0
# 0 _ gyl P 34 3
1034 ~q 934105, x,/l
Collecting the relevant terms gives:
Py 0 (@51 + q23/2) 723/2 g5 6,
Fys = 0 |=EUl 7332 (@54 + q23/2) g5 b5

IP, +IP5| |WIN0 -4y —q’4 (o1 +754) | | %211
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where
. —_ ! ! A — ! !
jh1 = gy /myy and 5, = g5, /m'y,

Values of P,3 and P34 are estimated and the corresponding stability functions
inserted in the stiffness matrix. Inverting this matrix gives the displacements,
and thus O34, M,3, and M3, may be obtained. The axial forces in the members

are given by:
Py3 = O3y
and:
Py, = W + (My; + M;,)/21

The analysis is correct when these values agree with the initial estimates.

For a value of W = 0.04P; where Py is the Euler load for a column,
p23 = 0.0078, p34 = 0.0427, and 6, = 0.0090rad.

For a wvalue of W =0.08Pg, py3=0.0139, p3;=0.887, and

0, = 0.0290 rad.
For a wvalue of W=0.12Pg, p,3 = —0.0089, p34 = 0.1541, and

0, = 1.145 rad.
For a value of W=0.13Pg, py3=—0.0788, p34 =0.1908, and
0, = 2.047 rad.

In Figure 11.29, values of W/Pg are plotted against 6, and it may be seen
that 6, approaches infinity as W/Pg approaches 0.142. In the same figure values

1.20 4+
112
1.16 +
%
0.16 + 11.6
= 11.10 11.13 1115 11,14
=
2, 012+
&
=
0.08 +
0.04 +
0 } } } } } } }
0 0.04 0.08 0.12 0.16 0.20 0.24 0.28

6, Radians

Figure 11.29
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of W/Pyg, are plotted against 6, for Examples 11.2 and 11.10, and values of p;
are plotted against 6, for Examples 11.6 and 11.13.

(e) Effect of finite displacements

The previous analyses have been based on small deflection theory, and the stiff-
ness matrix of the structure when instability occurs has been assumed identical
to the stiffness matrix of the unloaded structure. In practice, the finite deflec-
tions produced before instability may significantly change the geometry of the
structure. The columns of the frame shown in Figure 11.30 (i) are initially ver-
tical. On the application of a lateral load, as shown at (ii), the geometry of
the frame changes, and the columns are inclined at a sway angle ¢ = x,/l. The
elements in the stiffness matrix of the frame depend on the inclination of the
columns, and thus the stiffness matrix is continuously changing as the lateral
load increases. In structures that undergo a severe change in geometry, elastic

instability may not occur??.

(i)
Figure 11.30

Example 11.15

Determine the relationship between W and 6, for the frame shown in Figure
11.28. All the members are of uniform section.

Solution

At any given loading stage, the columns are inclined at an angle ¢ to the verti-
cal where ¢ = x,/l. The relationship between horizontal and vertical displace-
ment of a column top is y, = x, tan ¢, and the orthogonal transformation
matrix [T,;] of column 21 is given by:

] |1 0 0,

Yo 0 (A+ ptang) | | x,

where A = cos ¢, u = sin¢, and Y31 is the displacement of 2 perpendicular to
member 21.
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The stiffness sub-matrix for column 21, referred to the x- and y-axes, is
given by [T21]"[S21][T>1] and:

M21
10,

where 7 = (A + p tan ¢).
The complete stiffness matrix of the frame is given by:

q; —q5T 0
B 21 21 2

—qy T /’,2172 x,/1

by, 0 (@51 + q23/2) n3/2 —qT 0,
P, =| 0 |=ElI 753/2 (d54 T 923/2) —q54T 0;
IP, +1IP5| |WI10 —qh, T —qyT (jhy + /5472 | | %2/l

Values of P,q, Py3, P34, and ¢ are estimated and the corresponding stability
functions inserted in the stiffness matrix. Inverting this matrix gives the dis-
placements, and thus Qs4, M,3, and M3, may be determined. The axial forces
in the members are given by:

Py = Qs
Py, = (W + (My; + M3,)/2)cosd — Qs sin¢

Py = {W — (M,; + Mj,)/2}cosg — (W/10 — O34)siné

The analysis is correct when these values and the value of ¢ agree with the
initial estimates.

For a value of W = 0.04Pg, p,;3 = 0.0078, p34 = 0.0427, p,y = 0.0372,
¢ = 0.0182, and 6, = 0.00898 rad.

For a value of W = 0.08Pg, p,; = 0.0139, p3, = 0.0883, p,; = 0.0710,
¢ = 0.0586, and 0, = 0.02869 rad.

For a value of W = 0.12Pg, p,3 = —0.0019, p34 = 0.1467, p,; = 0.0862,
¢ = 0.1995, and 6, = 0.0995 rad.

For a value of W = 0.13P%, pa3
¢ = 0.2736,and 6, = 0.1392rad.

Values of W/Pg are plotted against 6, in Figure 11.29, and it may be seen
that 6, continuously increases as W increases and that elastic instability does
not occur.

—0.0266, p3u = 0.1668, p,; = 0.0801,

11.4 Stability coefficient matrix method

A relatively direct determination of the critical load is possible if member
forces are related to joint displacements by the normal stiffness matrix plus a
stability coefficient matrix to allow for the axial load. The stability coefficient
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matrix is derived from the assumption that the elastic curve of a member may
be defined by a cubic polynomial. For a member 12, subjected to the joint dis-
placements and member forces shown in Figure 11.31, the lateral displacement
is given by:

y =ay +a,x + azx? + aux3

T
X

Figure 11.31
Thus:
6 = dy/dx
= a, + 2a;x + 3a,x?
and:
M/EI = d2y/dx?
= 2a; + 6a,x

where M is the bending moment in the member due to the member end forces.
The joint displacements are obtained by substituting the coordinates of
joints 1 and 2 into the displacement functions. Thus:

Y1 1 0 0 0 a
0, 0 1 0 0 a,
Y, 1 ) 2 IE a
0, 0 1 21 312 | | a4
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or:

The coefficients of the cubic polynomial are given by:

{A} = [BI"{A)

1 0 0 0 "
0 112 0 0 0,
Tl o M —UB ||y,
213 s =2 U4 || 6,

where {A} is the vector of undetermined constants in the displacement func-
tions. The total moment in the member is the sum of M due to the member
end forces and M due to the axial load P. The moment due to the member
end forces is given by:

M = EId?y/dx?

=EI0 0 2 6x]|a

= EI[C|{A}
= EI[C][B]"{A}

The member deformations are given by:

dé = M/EI
=[CI[BI"{A}

The moment due to the axial load is given by:

M = Py
a
a,
=P [1 X x2 x3
as
a4
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The member end forces {P} are statically compatible with the total moment
in the member (M + M ). Hence, during any imposed virtual displacements,
the internal work done and the external work done sum to zero. The external
work done is the sum of each member end force multiplied by the correspond-
ing virtual displacement. The internal work done is the product of the virtual
deformation in the member and the total moment, including the moment due
to the axial load?3. Applying unit virtual joint displacements successively while
the remaining displacements are prevented produces the virtual deformations
[C1[B] ![I]. Then, equating external and internal work:

[1(P) = [}/ ([CIBI'[1)T(M + M) dx

Expanding each term separately:

JoUCUBI )™ dx = E1 [} (ICIBI ') (CI[BI(A)) dx
= EI(BI )T [ [CIT[C] dx [BI1(2)

where:
0 0 0 0
0 0 0 0
[CT'[C] =
0 0 4 12x
0 0 12x  36x2
0 0 0 0
, 0 0 0 0
[IcITICldx =
0 0 0 4] 612
0 0 62 128
12/13 62 —12/P 6/12
fl 6112 4/1 — 6112 2/1
BI'Y)T | [CIT[C]dx[B]! =
IBEICTICIABIT = s e s e
6/1% 2/1 — 6/I2 4/1

and this is the normal stiffness matrix for a member,

Ji CIBI )™ dxe = [ ([CIBI 1)) (DB A)) dx
!

= P([B]‘l)Tfo [CT'[D] dx [B]"'{A)
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where:
0 0 0 0
0 0 0 0
[C]'[D] =
2 2x 2x2 2x3
6x 62 6x3 6x*
0 0 0 0
fierolas =| - " |
0 21 12 213/3 1472
32 213 3142 615/5
—6/51  —1/10 6IsI =110
- f’[C]T[D] e -110  —2I1s 110 1130
0 6/51 110 —6/5l 1/10
-1/10 1130 110 —2I1s

and this is the stability coefficient matrix. The individual elements in the

matrix do not involve the axial load as a parameter. The matrix may be com-

puted explicitly for each member and remains independent of the axial load.
Thus the relationship between member forces and joint displacement is:

10,, 12 6 12 6 -3¢ -3 36 =3 [x

M, 6 4 -6 2 -3 -4 3 1] 6
= EI/l + pr2/30

10,, 12 -6 12 -6 36 30 =36 3| |xll

M,, 6 2 -6 4 -3 1 3 4| 6,

and this is valid for a tensile load with a change of sign.

The displacement function used in the above derivation is exact so far as
member forces are concerned and provides an approximate expression for the
displacements produced by an axial load. Provided that failure of the structure
occurs in the sway mode, the axial loads are small and the deformations of the
members agree closely with the assumed displacement function. Thus, a good
estimate of the critical load is obtained, and this is an upper bound because of
the constraints imposed by the assumed displacement function. The accuracy
may be further improved by dividing each member into a number of smaller
segments>*, thus increasing the number of degrees of freedom. Alternatively,
additional terms may be introduced into the sub-matrix for each member, cor-
responding to the first and second buckling modes of a built-in strut?’.
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For the column shown in Figure 11.32 the relationship between member
forces and joint displacements is similarly obtained as:

lQlZ 3 _3 _6 ]. xl/l
= EI/l + ,0772/5
M, -3 3 1 -1 0,
LP
Vi — | 01y —» T
\/0 L/
L My,
2 \
TTR7 Ay

Figure 11.32

Example 11.16

Determine the value of W at which elastic instability occurs in the rigid frame
shown in Figure 11.22. All the members are of uniform section.

Solution

The stiffness sub-matrices for the members are given by:

M,; = 6EIO,/l

and
lQ21 3 _3 - 6 1 xZ/l
= Elll + pr2lS
M,, -3 1 -1 o
Collecting the relevant terms gives:
P, 15 -15 -6 Y
= EI/5] + pr?
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The determinant of the stiffness matrix is zero for a value of:
p=0.185
and:

W, = 0.18572EI/I?

Example 11.17

Determine the value of W at which elastic instability occurs in the rigid frame
shown in Figure 11.25. All the members are of uniform section.

Solution

The stiffness sub-matrices for the members are given by:

= El/l
= El/l + pn2/30
10, -6 12 3 -36 x5 /1
= El/l + 2p72/30
1Q34 _6 12 3 _36 xz/l
Collecting the relevant terms gives:
P, 180 30 —180 -4 0 36
P, |=EN30I| 30 270 —180 |+pr2| 0 -8 6| 6
[Px, + [Px; —180 —180 720 3 6 —108|| | x,/1

The determinant of the stiffness matrix is zero for a value of:
p =0.453
and:

W. = 0.45372El/I>
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Supplementary problems

$11.1 Determine the value of W at which elastic instability occurs in the rigid
frame shown in Figure S11.1. The frame is braced against lateral translation,
and all the members are of uniform section.

w w
/
2 3
1 4
77777 77777

Figure S11.1

$11.2 All the members of the symmetrical rigid frame shown in Figure S11.2
are of uniform section. Determine the value of W at which elastic instability of
the frame occurs in its own plane.

4 . . \
Y ]

11 2 4 6 R
3 5
77777 77777

Figure $11.2
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$11.3 All the members of the braced frame shown in Figure $11.3 are of uni-
form section. Set up the stiffness matrix for the frame and hence determine the
value of W at which elastic instability occurs. The loading on the members
may be replaced by equivalent static loading at the joints.

w
T T T T T I T ITTTTT
2 3 5 7

TAYT TAYT

Figure S11.3

$11.4 All the members of the rigid frame shown in Figure S11.4 are of uni-
form section, and the frame is hinged at supports 1 and 5. The dimensions and
loading are indicated on the figure, and the Euler load for member 12 is 8 W.
Determine the load factor against collapse by elastic instability of the frame in
its own plane.

Figure S11.4
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$11.5 Set up the stiffness matrix and determine the value of W in terms of the
Euler load at which elastic instability occurs in the symmetrical rigid frame
shown in Figure S11.5. All the members are of uniform section.

w w w w
\i A Y /
3
2
1
21 21 21

Figure §11.5
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1 2 Elastic-plastic analysis

Notation

c carry-over factor for a member

{C}  plastic force vector

E modulus of elasticity

I second moment of area of a member

j stability function = 2(g + 7 ) — pr?

j' stability function = g'—pn?

/ length of a member

m stability function = 2(g + 7)/j

M, moment acting at end 1 of a member 12

n stability function = g —m(qg + 7)/2

N load factor

N, load factor against elastic instability

N,; load factor against elastic instability of the deteriorated structure
Ny load factor against elastic-plastic failure

Nr  Rankine-Merchant load factor

N,  load factor against rigid-plastic collapse

o stability function = r —m(q + 7)/2

P axial force in a member

Pg Euler load

q stability function = sl/EI = «ad(sin al — ol cos al)/(2 — 2 cos al — al sin al)
q’ stability function = equals g(1 — ¢?)

7 stability function = gc = al(al - sin al)/(2 - 2 cos al — al sin )
[S] stiffness matrix for the whole structure

W applied load

W, critical load

W, critical load of the deteriorated structure
W, load producing elastic-plastic failure

Wr  Rankine-Merchant load

W,  load producing rigid-plastic collapse

{W}  vector of external loads applied at the joints
x horizontal displacement

y vertical displacement

@ equals (P/EI)%

0 rotation

P equals P/Pg

{A}  vector of joint displacement
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12.1 Introduction

The collapse of a normal structure is influenced by both elastic instability
effects and by plastic yielding in the members. In chapter 9 plastic theory is
used to determine the collapse load of an ideal rigid-plastic structure in which
bending effects predominate and axial effects may be neglected. Chapter 11

w w w
v i v W, ‘ w
2 5 3 “
1 4
T777
I= 21 =I @)

(i) (ii)

‘2
=
s =
%%
=
=
o
=

M, 4T
7777 777 Yeoad Yeoas
(iv) (v)
1.5W,, 1.5W,, 15W,, il.sw,,2
\] A\ \]

J
i
J
—

(vi) (vii)
¢1.5Wd3 1.5W,5

(viii) (ix)

Figure 12.1
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considers the ideal elastic structure in which axial forces are appreciable and
the stresses in the members are entirely within the elastic range at collapse.
Thus, failure occurs due to buckling effects at the elastic critical load of the
structure. The present chapter deals with the determination of the failure load
of a structure, taking account of both plastic yielding and instability effects.

(a) Linear elastic response

The uniform frame shown in Figure 12.1 is designed with a load factor N,
against rigid-plastic collapse (ignoring instability effects) and with a load fac-
tor N, against elastic instability (assuming that the members exhibit indefinite
elastic behavior). Disregarding both instability effects and plastic yielding, the
linear elastic response of the frame to a proportional increase in the applied
loads is linear, as shown in Figure 12.2. A linear relationship exists between
the horizontal deflection, x,, of joint 2 and the applied load W.

(b) Rigid-plastic response

The rigid-plastic collapse mode of the frame is shown in Figure 12.1 (i), and
the ultimate load for proportional loading is:

W, = 3M,/I
where M, is the plastic moment of resistance of the member.

Elastic instability

4
W&
&/
3
»
34 %
= |/ e i
é ) 5 1 Rigid-plastic collapse
-‘E <&— Linear elastic-plastic -7 '__—___r
= 4 3 - - Ny
| 4 3 1 Elastic-plastic
2
Ny3
0 t t
0 0.2 04 0.6

Displacement, x, EI/WI3

Figure 12.2
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For a value of the plastic moment of resistance of 0.667WI, the load factor
against rigid-plastic collapse is:

N, = W,/W
=2

Ignoring the change in the geometry of the frame as loading increases, the
rigid-plastic response curve is shown in Figure 12.2 as a horizontal line, with
no displacements being produced until the load W, is applied.

(c) Linear elastic-plastic response

The linear elastic-plastic response curve is determined by tracing the forma-
tion of plastic hinges as loading increases. Allowing for the linear elastic effects
at loads less than W, the linear response curve is followed as the loads are
increased until the first plastic hinge forms in the frame at joint 4 at a load
factor of 1.60. The equivalent loading applied to the frame subsequent to the
formation of this plastic hinge is shown in Figure 12.1 (ii). The formation of
the hinge may be simulated by the insertion of a frictionless hinge at 4 and
the application of a moment of magnitude M,. The stiffness of the frame is
reduced, and displacements, for a given increase in applied load, are greater
than in the original frame. The linear elastic-plastic response is thus a series of
straight lines with the rate of growth of displacements increasing as the stiff-
ness deteriorates with the formation of each plastic hinge. The sequence of for-
mation of the hinges is shown in Figure 12.2, and the equivalent frame, on
the formation of each additional hinge, is shown in Figure 12.1 at (iii) and
(iv). The second hinge forms at joint 3 at a load factor of 1.74, and the third
hinge forms at § at a load factor of 1.94. The collapse mechanism is produced
when the last hinge forms at joint 1 on the application of the load W, at a load
factor of 2.00.

(d) Elastic instability

Assuming indefinite elastic behavior, the elastic critical load may be obtained
from the equivalent frame and loading shown in Figure 12.1 (v) by equat-
ing the stiffness of joint 2 to zero. Thus, allowing for the skew symmetry and
ignoring the axial force in the beam:

n, Ellly, + 6Elll,; =0
n, +3=0

and from Table 11.2:

1.5W./P, = 0.61
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where Py is the Euler load of column 12. For a value of Py of 9.82W the load
factor against elastic instability is:

N, = W./W
=4

No displacement occurs in the frame until the critical load is applied when
infinite displacements are produced, resulting in the horizontal line shown in
Figure 12.2.

(e) Elastic response

The elastic response of the actual frame to the actual loading, allowing for
instability effects and assuming indefinite elastic behavior, is non-linear, and
displacements approach infinity as the elastic critical load is approached. A
close approximation to the elastic response is obtained by multiplying the lin-
ear elastic displacement at a given load factor N by the amplification factor
1/(1 — N/N,). This follows since the deflected shape of the structure is largely
controlled by the sway deflections, and the displacement components of the
lowest critical mode predominate as the first critical load is approached»2.

(f) Elastic-plastic response

In the actual frame, allowing for both instability effects and plastic yielding of
the members, the elastic response is followed until the first plastic hinge forms
at joint 4 at a load factor of 1.21. Displacements now increase more rapidly as
the response follows a new elastic curve corresponding to the reduced, or dete-
riorated, structure. This deteriorated structure is obtained by taking only that
part of the actual structure that is still behaving elastically. The deteriorated
structure, on the formation of the first hinge, is shown in Figure 12.1 (vi), and
its deteriorated critical load, W, is the value of the applied load that causes
the stiffness matrix of the deteriorated structure to become singular. This value
is given by:

1.5W,,/P, = 0.38

Thus, the first deteriorated structure has a load factor against instability of:

Ny = Wu/Ww
=25

After the formation of the first hinge, the displacements follow the curve
shown by the broken line in Figure 12.2, and this is asymptotic to the load
factor Ny;. The first plastic hinge forms at a lower load than in the linear
elastic-plastic case due to the reduction in the stiffness of the frame by the
instability effects.
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The second plastic hinge forms at joint 3 at a load factor of 1.30, and the
deteriorated critical load, for the second deteriorated structure shown in Figure
12.1 (vii), is Ny = 1.7. This is lower than the rigid-plastic load factor, and it is
clear that this load factor cannot be attained. The load-displacement curve again
exhibits a discontinuity of slope on the formation of the plastic hinge at joint 3,
and displacements follow a curve that is asymptotic to the load factor N,.

The third plastic hinge forms at joint 1 at a load factor of 1.33, and the criti-
cal load for the deteriorated structure shown in Figure 12.1 (viii) is Ny3 = 0.35.
The structure is now unstable; loading must be decreased to maintain equilib-
rium; and the load factor Nyat which the third hinge forms represents the load
factor against elastic-plastic failure. The increasing displacements produced by
a reduction in the loading follow a curve that approaches the load factor N3
from above.

The last plastic hinge forms at joint 2 at a load factor of 0.98, and this pro-
duces the collapse mechanism shown in Figure 12.1 (ix). The elastic-plastic
collapse mechanism is thus quite different from the rigid-plastic collapse mech-
anism. In addition, the sequence of hinge formation differs from that obtained
in a linear elastic-plastic analysis, and this is a general characteristic?.

Several methods have been proposed for determining the elastic-plastic
failure load, and three of these methods will be considered here.

12.2 The Rankine-Merchant load

The Rankine-Merchant method* is a means of estimating the failure load of
a structure from values of the rigid-plastic collapse load and the elastic insta-
bility collapse load. A good approximation to the elastic-plastic load factor is
provided by the Rankine load factor, Ny, which is given by:

1/Ng =1/N, + 1N,

When yield effects predominate, this empirical expression equates N to N,,.
Similarly, when instability effects predominate, Ny is equated to N.. Hence,
for these limiting states, Ny provides an exact estimate of Ny For intermediate
conditions the Rankine expression also gives good results>°.

The linear elastic load-displacement relationship of a typical frame is shown
in Figure 12.3 (i). The load factor against elastic instability is N, the linear dis-
placement at this load factor is 6., and the linear displacement at an arbitrary
load factor, N, is ;. Then:

N(SC = Ncél

The point P is obtained from the point of intersection of the horizontal
and vertical lines RP and QP. The linear displacement of the frame at the load
factor N’ is ¢'. Then:

N'6, = N,§'
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Figure 12.3

From the similar triangles RPQ and SON:

5/

5.(N' — N)/N
= N_(§' - §)IN
= §/(1— N/N.)

where 1/(1 — N/N,) is the amplification factor discussed in section 12.1. Thus,
6" is the elastic displacement of the frame at the load factor N, and the point P
lies on the elastic response curve.

The load factor against rigid-plastic collapse of a typical frame is N,,, and
the linear displacement at this load factor is §,. Then from Figure 12.3 (ii):

8,6, = N, /N,
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From the similar triangles SON and STQ:

and:
1/Ng = UN, + /N,

The linear elastic-plastic response of an ideal frame is shown in Figure
12.3 (iii). Frame displacements follow the linear response curve until all plas-
tic hinges form simultaneously at the rigid-plastic collapse load. The elastic-
plastic response of this ideal frame follows the elastic curve OP, derived in
(ii) to the point P when all plastic hinges form simultaneously and collapse
occurs. Hence, for this ideal frame, the elastic-plastic load factor Ny equals the
Rankine load factor Ng. In an actual structure, allowing for both instability
effects and plastic yielding of the members, the elastic response is followed
until the first plastic hinge forms in the structure. Displacements now increase
more rapidly as the response follows a new elastic curve corresponding to the
reduced, or deteriorated, structure. The stiffness of the deteriorated structure
corresponds to the part of the actual structure that is still behaving elastically,
the formation of the plastic hinge being simulated by the insertion of a fric-
tionless hinge and the application of an external moment of magnitude M,,.
Thus, in an actual structure, the elastic-plastic response lies below the ideal
response as hinges form one at a time and displacements increase more rapidly
as the stiffness deteriorates. The value of Ny thus appears to be lower than Nk.
In practice, it is found that Ny gives a reasonable lower bound to Ny, provided
that side loads are not excessive’.

The Rankine load factor for the frame shown in Figure 12.1 is, given by:

Ny = 4/(1+2)
=1.333

The actual elastic-plastic load factor is:

N, = 1.336

Example 12.1

Determine the load factors against elastic instability and rigid-plastic collapse
of the frame shown in Figure 12.4. Determine the Rankine load factor for a
ratio M,/I = 2 kip in~>. The values of the plastic moments of resistance and
the second moments of area of the members are shown in the figure, and the
modulus of elasticity is 29,000 kip/in?.
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Figure 12.4

The Euler load of column 21 is:

P, = n2E(21)/(180)?
= 17.671 kips

The Euler load of column 23 is:

P. = w2EI/(144)?
= 13.811 kips

At the elastic critical load, as shown at (i), the P/Pf ratios in the columns are:

pyy = 8.4N_/17.671
= 0.475N/I
2.4N,/13.811

= 0.174N_/I

P23
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and:
P21 = 2.735py3

The stiffness sub-matrices for the members are given by:

M;; X 03| |6,
M;, 023 ny3 ] |05
MZl = 2”21E192/121
M34 = 6 X 2E103/134
Collecting the relevant terms gives:
P92 (60 + 5”23 + 87’121> 5023 02
= EI/720
o 50,3 (30 + Smy3)| |65

The determinant of the stiffness matrix is zero for a value of p,; of 0.775.
Thus:

N, =0.7751/0.475
=1.631

Rigid-plastic collapse of the frame occurs in the mechanism shown at (ii) and:
24M, = 12N,,(28.8 + 72.0 + 6.0 + 22.5)
M, = 64.65N,, kip-in
thus:

N, = 0.0155 M,
= 0.0311

The Rankine load factor is given by:
1/Ng = 1/N, + /N,
and:

Ny = 0.0301

12.3 The deteriorated critical load

The formation of plastic hinges in a frame is equivalent to the insertion of fric-
tionless hinges in the frame. The stability of the frame now depends on the
stiffness of the remaining elastic structure, and in general the elastic critical load
of the deteriorated frame is lower than the critical load of the original frame.
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The frame shown in Figure 12.5 collapses as the combined mechanism
shown at (i) at a load factor N,,. The load factor against elastic instability N, is
assumed to be higher than N,,. As the loading is progressively increased, plastic
hinges are produced, and their formation at the center of each beam results in
the deteriorated structure shown at (ii). This deteriorated structure has a criti-
cal load identical with that of the original frame, since the hinges are at points
of contraflexure in the beams. The formation of plastic hinges at the right-hand
end of each beam results in the deteriorated structure shown at (iii). This dete-
riorated structure has a critical load lower than that of the original frame, since
the beam stiffnesses are reduced to approximately 75 percent of their original
values. The formation of plastic hinges at both the center and right-hand end
of each beam results in the deteriorated structure shown at (iv). The beams
have now been reduced to zero stiffness, and the remaining elastic structure
consists of two freestanding cantilevers, three stories in height, which have a
much lower critical load than that of the original frame. If, at any stage in the
formation of plastic hinges, the critical load of the deteriorated frame is lower
than the applied load producing the hinges, the failure load has been attained.

The procedure for determining the failure load consists of tracing the devel-
opment of plastic hinges as the applied loading is increased and determining

77777 77777
()
——0 —O0—0
—————0f ——o0—o0f
—0i ———0——0i
77777 77777 77777 77777

(i) (iii) (iv)
Figure 12.5
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the critical load for each deteriorated frame®. For simple structures, this may
be effected by moment distribution methods, making an initial estimate of the
axial forces in the members and allowing for the modified stiffness and carry-
over values. For more complex structures, the use of a digital computer is nec-
essary, and this procedure is presented in section 12.4.

Example 12.2

The bottom two stories of a multistory frame are shown in Figure 12.6, where
the second-story columns, at 3 and 4, are free to sway but are fixed against
rotation. Beam 25 has a second moment of area of I in* and a plastic moment of
resistance of 180 kip-in. All columns have a second moment of area of 0.61 and
a plastic moment of resistance of 100 kip-in. Determine the load factor against
elastic-plastic failure if the axial load in the columns is 0.28 of the Euler load.

LLLLL LLLLL
4 3
S
7.5%
[HRRNNARNRRRRRRRRRRRRRRRRNAED X
2
E
6 1
77777 77777 T
I 30, |
I I
0.28P; 0.28P; Wai Wai
LL¥Y LS LL¥Y LS LL¥Y LS LLY LS
4 3 4 3
7.5F
[HRRNNARNRRRRRRRRRRRRRRRRNAED o e
3 2 3 2
6 1 6 1
() (i)
Figure 12.6

The stiffness of the members of the frame shown at (i) are:

S21 = S23
gE(0.61)/10
= 3.62 X 0.6EI/10
= 0.217EI
s,5 = 2EI/30
= 0.067EI
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The distribution factors at joint 2 are:

dy = dys
= 0.217/0.501
=0.434
dys = 0.067/0.501
=0.132
The initial fixed-end moments in the frame are:
Mf5 = _Mfz
=7.5%X360/12
= 225 kip-in
The final moments in the frame are:
My, = My,
=—-225X%X0.434
= —98 kip-in

Thus, as loading is increased, plastic hinges are produced simultaneously at

both ends of the beam at a load factor of:

N =180/196
=0.92

The deteriorated structure, at this load factor, is shown at (ii), and the deteri-
orated critical load is obtained by equating the stiffness of joint 2 to zero. Thus:

2% 0.61,,/10 +0 = 0

1y, =0
and:
N, = 0.25/0.28
= 0.89

This is less than the load factor required to produce the plastic hinges, and
thus elastic-plastic failure occurs at a load factor of:

N, =0.92

12.4 Computer analysis

Methods, have been proposed for both the linear elastic-plastic analysis of frames
and grids>'? and for the elastic-plastic analysis of frames!'"»!>2, An alternative
method is available for the elastic-plastic analysis of frames!31%15:1¢but this has
the disadvantage of producing a larger stiffness matrix that is non-banded.
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Neglecting instability effects, the procedure consists of setting up the stiff-
ness matrix in the usual way and obtaining the linear elastic displacements by
inverting and multiplying by the load vector. The member forces are obtained
by back substitution in the stiffness sub-matrices for each member. The load
vector is progressively increased until the first plastic hinge forms in the struc-
ture, when both the stiffness matrix and the load vector require modification.

(a) Linear elastic-plastic analysis

For the uniform frame shown in Figure 12.7, the linear elastic-plastic response
curve has been obtained and is shown in Figure 12.18. The first plastic hinge
forms at joint 7 in member 47. Prior to the formation of this hinge, the stiff-
ness submatrix for member 47, for the displacements and forces shown in Figure
12.8, is given by:

M, 4 6 2][e,
Py, |=Elll6 12 6| |yl

M-, 2 6 4|1 6,
8w 4w 8w
w
3 5 8
1174 4w 8w
w
2 4 7
I 6 M, = 2.75WI
’:I;: ! | ! ”f; Py = 700W
I I 1
Figure 12.7

Figure 12.8
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M,,(1+c)/14
77 N

cMp

Figure 12.9

After the formation of the hinge at joint 7, the member may be replaced by
a member hinged at 7 with an applied moment M,. The member forces are
obtained from Figure 12.9 and are given by:

M,, 33 0], 1/2
IPs|= EIN3 3 0|yl +M,|3/2
M,, 0 0 0| 1

or:
{Py7} = [S47 {Ay } +{Cy7}

where {P4-} and {A47} are the member forces and end displacements of member
47, [S47] is the modified stiffness matrix, and {C4-} is the plastic force vector
for member 47. The stiffness sub-matrices of all the members are combined in
the usual way to give the complete stiffness matrix of the deteriorated struc-
ture [S], and the modified load vector is obtained by subtracting the plastic
force vector from the corresponding terms of the vector of external loads [W].
In general:

and the analysis continues with a reduced loading system applied to the dete-
riorated structure. Frame displacements are obtained by inverting the stiffness
matrix and multiplying by the modified load vector {W — C}. Member forces
are obtained by back substitution in the stiffness submatrices for each member,
modified where necessary.

As the modified load vector is progressively increased, the second plastic
hinge forms at joint 8 in member 58. For subsequent loading the stiffness sub-
matrix for member 5 is modified, the load vector is again modified, and the
member forces are given by:

{Psg} = [S551{Asg} + {Csg}



592 Structural Analysis: In Theory and Practice

The third plastic hinge forms at joint 4 in member 47, which is now hinged at
both ends. The member forces are obtained from Figure 12.10 and are given by:

M,, 0o o0 o0]e, 1
Py | =ELO 0 0| |y /l|+M,|2
M, 0 0 0|6 1

\1‘5

N
|

S
P

Figure 12.10

The complete stiffness matrix of the structure and the load vector are again
modified, and loading proceeds until the last hinge forms at joint 5 in member
58. The collapse mechanism is shown in Figure 12.11, and the complete linear
elastic-plastic response curve is shown in Figure 12.18.

Figure 12.11

(b) Elastic-plastic analysis

For elastic-plastic analysis the procedure is similar and consists initially of
assembling the stiffness matrix of the structure using the stiffness submatrices
for each member, allowing for instability effects. For a member 12, considering
the forces and displacements shown in Figure 12.12, this is given by:

IP)5 j (q+7) = (@+7) ||n/l

M, (g +7) q —(q +7) r 0,
= EI/l

IP)yy -7 —(g+7) j —(q +7)||y2/1

My, (q+7) 4 —(q+7) q b,
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Figure 12.12

where the stability functions are defined in the notation. An initial estimate is
made of the axial forces in the members, and the complete stiffness matrix is
obtained. Solving for joint displacements and member forces provides revised
values of the axial forces. The procedure continues until the revised values of
the axial forces are in close agreement with the previous values.

As the applied loading is progressively increased, the first plastic hinge
forms in a member; this corresponds to the insertion of a frictionless hinge
in the member and the application of an external moment M,,. The modified
stiffness matrix for a member 12 with a plastic hinge at 2 is obtained from

Figure 12.13 as:

IPyy, 7’ q =i 0] (w/
M, q g -9 0]]6
= EIl . +M,
IP>, - —q i 0] |w/l
M,, 0 0 0 0|]86
Py 12 P

P P
+
M (1+c)/l
\ e
- C

Figure 12.13

1+ 7lq)
rlq

—(1+7/q)
1
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or:
{P12} = [51/2]{412} + {C12}

These values are used to assemble the stiffness matrix of the deteriorated struc-
ture [S'] and the reduced load vector {W} — {C;,}. Thus, for the deteriorated
structure:

(W} = {Cpp) = [SHA}

where {W} is the vector of applied loading, which is progressively increased
until the next plastic hinge forms, and so on.

The modified stiffness matrix for a member with a plastic hinge at both ends
is obtained from Figure 12.14 as:

IP,1, —pm? 0 pm? 0] y,/1 2
M,, 0 0 0 0| 6 1
= El/l M,
IP, pr? 0 —pn? 01|y,/l -2
M,, 0 0 0 0l 6, 1
Py]Z Mp Py21
\ f i )
P ! M, N3
P(y,—y/l -
; b
+
2M,J1
M
5 't 4
I X

Figure 12.14

When allowance is made for instability effects in the frame shown in Figure
12.7, the modified stiffness sub-matrix for member 47 is given by:

M, q (q+7) 4 04
IP,,; | = Elll|(q + 1) j (g+7)| |ysl
My, 4 (g +7) q 6;
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An initial estimate is made of the axial forces in all members, and the com-
plete stiffness matrix is obtained. Solving for displacements and member forces
provides revised values of the axial forces. The procedure continues until the
correct values are obtained.

As the loading is progressively increased, the elastic response curve is fol-
lowed until the first plastic hinge forms at joint 7 in member 47. The member
forces are given by:

M,, q q 0| ] 6, rlq
le47 = Ell|q j' 0] |y4/! +M, | (1 + 7/q)
M-, 0 0 0| |6 1

For subsequent loading, the stiffness matrix and the load vector are modi-
fied, and the response now follows a new elastic curve, which is asymptotic
to the critical load factor of the first deteriorated structure with N, = 3.00.
Loading proceeds until the second plastic hinge forms at joint 8 in member 58.

The third plastic hinge forms at joint 2 in member 12 at the elastic-
plastic load factor of Ny = 1.56. Prior to the formation of this hinge, the stiff-
ness sub-matrix for member 12, for the displacements and forces shown in
Figure 12.15, is given by:

My, q -q b,
= EI/I
[Py - REY
Xy P,\Z] P
— 5 —
L ~ |
0, My,
1
7T 7T

Figure 12.15

Subsequent to the formation of the plastic hinge at 2, the member forces are
obtained from Figure 12.16 as:

My, = =M,
P 21 = (MP - sz)/l
= M/l — pm?Elx,/I?
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P
(M,—P )l

|2y f—
Figure 12.16

The modified stiffness sub-matrix and the plastic force vector are given by:

= El/l +M

4

IP,, 0 —pr2| |xyll 1

The structure becomes unstable on the formation of the plastic hinge at 2, and
loading must be decreased to maintain equilibrium. The last plastic hinge forms
at joint 7 in member 76, producing the collapse mechanism shown in Figure

12.17. The complete elastic-plastic response curve is shown in Figure 12.18.

Figure 12.17
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Answers to supplementary
problems part 2

Chapter 1
The degree of indeterminacy of the frames are:
S$1.1 D=1
S1.2 D=1
$1.3 D =12
S1.4 D=22
$1.5 (i) D=7

(i) D=7
S16 (i) D=3

(i) D=0

(ii) D=0

(iv) D=0
S1.7 (i) D=5

(i) D=9

(iii) D=3

(iv) D=1

(vy D=1
Chapter 2
$2.1 &= wa*(4l/3a - 1/3)/8EI
§2.2 5= 2.16 in upward
$23 6, =0.1141in

83 = 0.068 in

W = 16.75kips
S24 H/V=0.65
§2.5 6,=0.59in
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$2.6 M, = —138kip-in
MZI = —102k1p-1n
M23 = —112k1p-1n
M32 = —128 klp—m
Q1 = =0y = Op3 = =03, = 2kips
63 = 907,200/EI + 480/AG

$2.7 M, = 20atEl/al
V, = 20atEl/aP
M, = 80atElla?l

Chapter 3

$3.1 P4 = 32.66kips compression

$3.2  P,4 = 1.07kips tension
P54 = 10.33 kips compression

$3.3  Py3 = WI/(5.407 + 0.4724%A/I) compression
$3.4 P34 = 11kips compression

$3.5 Py, = 132kips tension

$3.6 H = 62.5kips

$3.7 H = 8.28kips

$3.8 H=0.166W

$3.9 T =20.5kips

Chapter 4

S4.1 M, = Wab?/I?

S4.2 0, = SW/128EI
83 = 3WP/2S6EI

S4.3 6, = wa’(l — a/4)/6EI

S4.4 M, = 0.345M

—0.147M

=
Il

S$4.5 MlZ = _475k1p-ft
MZI = _313k1p-ft
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$4.6 My, = —25.74kip-ft
M, = —32.45kip-ft
S4.7 MlZ = _101 klp—ft
M21 = _113k1p—ft
S4.8 M, = —Pab(a + b)/I?
M,, = —Pab(a + b)/I?
$4.9 M, = Pb(> — bH)2P?
$4.10 My, = —21.45kip-ft
M,; = —7.10kip-ft
Chapter 5
S5.1
x/1 0.2 0.4 0.6 0.8 1.0
V, 0.36 0.64 0.84 0.96 1.00
§5.2  For member 12
x/l 0.2 0.4 0.6 0.8
M/l 0.048 0.084 0.096 0.072
For member 23
x/l 0.2 0.4 0.6 0.8
Myl 0.064 0.072 0.048 0.016
S$5.3
x 0’ 20’ 40’ 60’ 80’
H, 0.153 0.264 0.375 0.462 0.486
S5.4
Panel point 1 2 3 4 S 6 7
1.000 0.610 0.264 0.000 -0.069 —-0.055 0.000

Chapter 6

S6.1

My, =

M21

0.345M
—0.147M
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$6.2 M, = —47.6kip-ft
MZI = _313k1p-ft
$6.3 M12 = 254k1p-ft
$6.4 M12 = _257k1p—ft
M21 = _32.5k1p—ft
$6.5 M12 = —101 klp-ft
M21 = —133 klp-ft
$6.6 My, = —Pab¥P
My, = —Pba¥/P
$6.7 My, = Ph(I2 — bA)21
$6.8 S12 — —0.275EI
C1y = 0.444
M12 = _21.55k1p-ft
MZI = -7.05 klp-ft
$6.9 H = 1.08kips
$6.10 M = 34.4kip-in
S6.11 M12 = _441b-ft
M21 = _361b—ft
Chapter 7
§71 'V, = 7.60kips
V3 = 8.32kips
V, = 2.08kips
§7.2  M; = 19kip-in
Vi = 2.68kips
H; = 0.48kips ... acting to the right
M, = 38kip-in
V, = 3.32kips
H, = 1.9Kkips ... acting to the left
§7.3 M, = 1682kip-in

M; = 421kip-in
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§7.4 M, = 3.5kip-in
M; = 10.5kip-in
M; = 0.7kip-in

§7.5 M, = 7Skip-ft
M; = 50kip-ft

§7.6 M, = 9.1kip-ft
M; = 13.5kip-ft
M, = 15.1kip-ft

§7.7 M, = 197kip-in
M; = 237kip-in

S7.8 M]z = —138k1p-11’1

M,; = —102kip-in
M,; = —112kip-in
M;, = —128kip-in

M = 128 kip-in

M,s = 214kip-in

Py, = 5.70kips ... tension

P,; = 2.13kips ... tension

P3¢ = 2.00kips ... compression
P25 = OklpS

Q]z = 2.00k1ps

Q23 = 2.00k1ps

Q36 = 2.13k1ps

Q25 = 357k1p8

§7.9 My, = —687kip-ft
M21 = —811 klp-ft
M23 = 347k1p-ft
M32 = 154k1p-ft
M34 = 257k1p-ft
M,; = 242 kip-fe
Mys = 239kip-fe
My, = 259kip-fe

§7.10 My, = —322kip-fc
M21 = _277k1p-ft
= —184kip-fc
—415 kip-ft
M34 =652 klp-ft
M,; = 548 kip-fe

==
([
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§711 M,, = —225kip-ft
M23 = —28 klp-ft
M32 = —80k1p-ft
M34 = _14klp-ft
M43 = _22klp-ft

Chapter 8

$8.1 My = 1351.7 + 712.8 = 2064.5 kip-in
Vo = 94.7 + 40.5 = 135.2kips

$8.2  M; = 153kip-in

$83  ky =190

S84 P4, = 8.6kips

$8.5 (i) I,=1,/120 = 0.133(E,[,/AE)""

(11) M6 = 250)/12/(5)1/2 + 50)/34/(5)1/2 + 150y5
(iii) The influence line ordinates for M are:

x,ft 0 50 100 150 200 250
I L ordinates for M¢ —40.5 —21.0 0 21.0 41.8 65.2

Chapter 9

$9.1  lla=3.17
w = 58.5M,/I2

$9.2 S=14.8in’

$9.3 W/H = 8/3 ... for the beam mode
W/H = 2/3 ... for the sway mode
2/3 < W/H < 8/3 ... for the combined mode

$9.4 M, = 9.42kip-ft ... for the columns
M,, = 18.84kip-ft ... for the beams

§9.5 M, = 25kip-ft ... for the posts
M, = 50kip-ft ... for the chords

$9.6 M, = Wi
Xy = SM,2(5)05/24EI
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$9.7 (i) W=2.0Mj/a
(i) W=3M,/a
(iii) W = 2.80M,/a

$9.8 M, = Wal2

Chapter 10

S$10.1 The stiffness matrix is:

P, 20 0,
= El/I
The final moments are:
M,; =181.7 kip-in
$10.2 The stiffness matrix is:
P, 8 210
|- Em ?
By 2 4|6,
The final moments are:
M,, = 12/7 kip-ft
M;, =12/14 kip-ft
$10.3 The stiffness matrix is:
B 2 8 symmetric 05
= El/I
P, 0o 2 4 0,
P, -6 -6 -6 24|\ x,/1

x, = 0.13612/EI
0, = 0.477I/EI
M, = —0.285IH
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$10.4 The stiffness matrix is:

P, 2.723  0.548][x,
= EAll
P, 0.548  2.296||y,

The member forces are:

P, = —0.490W
P,; = 0.460W
P, = 1.428W
Py = —0.433W

$10.5 The stiffness matrix is:

P., 3/16  symmetric Xq
P, |= EA/l1/4 3 Vo
Py, 9/8 172 41/4||6,

The member forces are:

P, = 0.00 kips
P, = 8.52 kips
P, = 11.48 kips

$10.6  The flexibility matrix is:

-5,]  [3002 0 R

-6, 0 3002||R

The cable force is:

R = 20.5 kips

$10.7 The horizontal thrust H may be taken as the redundant.
Then:

H = 11 kips

Chapter 11

S11.1 W, = 2.55P;

S11.2 W, = 3.1P;
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$11.3 The stiffness matrix is given by
P 4+ 45,) 2 0
b2 _ Ell 21 2
B3 2 (6 + g54) |03
w, = 1.55P;/
$11.4 The stiffness matrix is given by
By, (2951 t d23 t g4 + d55) 23 Ta4 0,
Py, |=ElI 23 (934 + q23) 734 03
By T4 734 (G24 T G54 T d4s) ||04

pcll = 1.055
Load Factor = 2.81

$11.5 The stiffness matrix is given by

Py, 9+ 4n) 2Xo ||6,

= El/l

P, 2Xo0 (9% 2n)|6;

W. = 0.455P;
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determinate
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stable

two-dimensional

unstable

R = e e E E B E R

Substitute frame see Multiples
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Successive sway corrections for grid
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